From 98788e2a3ad68a868ac13da3d012cf99bc3f933d Mon Sep 17 00:00:00 2001 From: Jaron Kent-Dobias Date: Fri, 7 Feb 2025 16:34:53 -0300 Subject: Change addressing report #3, weakness #5 Clarified that information involving the use of superspace coordinates can be found in an appendix of the cited reference. --- topology.bib | 16 ++++++++++------ topology.tex | 2 +- 2 files changed, 11 insertions(+), 7 deletions(-) diff --git a/topology.bib b/topology.bib index 716c8b2..bb46305 100644 --- a/topology.bib +++ b/topology.bib @@ -526,15 +526,19 @@ issn = {2542-4653} } -@unpublished{Kent-Dobias_2024_Conditioning, +@article{Kent-Dobias_2024_Conditioning, author = {Kent-Dobias, Jaron}, title = {Conditioning the complexity of random landscapes on marginal optima}, + journal = {Physical Review E}, + publisher = {American Physical Society (APS)}, year = {2024}, - url = {https://arxiv.org/abs/2407.02082}, - note = {arXiv preprint}, - archiveprefix = {arXiv}, - eprint = {2407.02082}, - primaryclass = {cond-mat.dis-nn} + month = {December}, + number = {6}, + volume = {110}, + pages = {064148}, + url = {http://dx.doi.org/10.1103/PhysRevE.110.064148}, + doi = {10.1103/physreve.110.064148}, + issn = {2470-0053} } @article{Mezard_2009_Constraint, diff --git a/topology.tex b/topology.tex index 328df90..47a6588 100644 --- a/topology.tex +++ b/topology.tex @@ -802,7 +802,7 @@ Grassmann vectors. With these expressions substituted into whose argument is linear in the random functions $V_k$. To make the calculation compact, we introduce -superspace coordinates \cite{DeWitt_1992_Supermanifolds, Kent-Dobias_2024_Conditioning}. Introducing the Grassmann indices $\bar\theta_1$ +superspace coordinates \cite{DeWitt_1992_Supermanifolds}. An introduction to the use of superspace coordinates in mean field theoretical calculations, including definitions of operators like the superdeterminant using the same conventions as the present article, can be found in Appendix~A of Ref.~\cite{Kent-Dobias_2024_Conditioning}. Introducing the Grassmann indices $\bar\theta_1$ and $\theta_1$, we define the supervectors \begin{align} \pmb\phi(1)=\mathbf x+\bar\theta_1\pmb\eta+\bar{\pmb\eta}\theta_1+\bar\theta_1\theta_1i\hat{\mathbf x} -- cgit v1.2.3-70-g09d2