From 2aaf47af7a5a49033f54d6619ed9e4a448d69a0a Mon Sep 17 00:00:00 2001 From: Jaron Kent-Dobias Date: Sat, 19 Apr 2025 14:38:03 -0300 Subject: Changed notation --- log-fourier_integrator.cpp | 14 -------------- 1 file changed, 14 deletions(-) diff --git a/log-fourier_integrator.cpp b/log-fourier_integrator.cpp index bf83da5..ffbce1d 100644 --- a/log-fourier_integrator.cpp +++ b/log-fourier_integrator.cpp @@ -87,13 +87,10 @@ int main(int argc, char* argv[]) { Real ΔC = 100; while (ΔC > ε) { std::vector RddfC(N); -// std::vector dfC(N); for (unsigned n = 0; n < N; n++) { RddfC[n] = Rₜ[n] * ddf(λ, p, s, Cₜ[n]); -// dfC[n] = df(λ, p, s, Cₜ[n]); } std::vector RddfCt = fft.fourier(RddfC, false); -// std::vector dfCt = fft.fourier(dfC, true); std::vector Ȓₜ₊₁(N); std::vector Ĉₜ₊₁(N); @@ -104,17 +101,6 @@ int main(int argc, char* argv[]) { } std::vector Rₜ₊₁ = fft.inverse(Ȓₜ₊₁); - /* - for (unsigned n = 0; n < N; n++) { - RddfC[n] = Rₜ₊₁[n] * ddf(λ, p, s, Cₜ[n]); - } - RddfCt = fft.fourier(RddfC, false); - - for (unsigned n = 0; n < N; n++) { - Ĉₜ₊₁[n] = (2 * Γ₀ * std::conj(Ȓₜ₊₁[n]) / (1 + pow(τ₀ * fft.ν(n), 2)) + pow(β, 2) * (RddfCt[n] * Ĉₜ[n] + dfCt[n] * std::conj(Ȓₜ₊₁[n]))) / (μ + 1i * fft.ν(n)); - } - */ - std::vector Cₜ₊₁ = fft.inverse(Ĉₜ₊₁); ΔC = 0; -- cgit v1.2.3-70-g09d2