From bba01ec107ea1e0e6eccd79e4a8ebb30f46bfea7 Mon Sep 17 00:00:00 2001 From: Jaron Kent-Dobias Date: Wed, 25 Dec 2024 12:28:36 +0100 Subject: Wrote the program --- compile_flags.txt | 3 ++ walk.cpp | 128 ++++++++++++++++++++++++++++++++++++++++++++++++++++++ 2 files changed, 131 insertions(+) create mode 100644 compile_flags.txt create mode 100644 walk.cpp diff --git a/compile_flags.txt b/compile_flags.txt new file mode 100644 index 0000000..4cb2489 --- /dev/null +++ b/compile_flags.txt @@ -0,0 +1,3 @@ +-std=c++17 +-Wno-mathematical-notation-identifier-extension +-Wall diff --git a/walk.cpp b/walk.cpp new file mode 100644 index 0000000..3d7020d --- /dev/null +++ b/walk.cpp @@ -0,0 +1,128 @@ +#include +#include + +#include "pcg-cpp/include/pcg_random.hpp" +#include "randutils/randutils.hpp" + +#include "eigen/Eigen/Dense" + +using Rng = randutils::random_generator; + +using Real = double; +using Vector = Eigen::Matrix; +using Matrix = Eigen::Matrix; + +Vector normalize(const Vector& x) { + return x * sqrt(x.size() / x.squaredNorm()); +} + +class QuadraticModel { +private: + Matrix J; + +public: + unsigned N; + + QuadraticModel(unsigned N, Rng& r) : J(N, N), N(N) { + + for (unsigned i = 0; i < N; i++) { + for (unsigned j = i; j < N; j++) { + J(i, j) = r.variate(0, 1 / sqrt(N)); + if (i != j) { + J(j, i) = J(i, j); + } + } + } + } + + Real H(const Vector& x) const { + return 0.5 * (J * x).dot(x); + } + + Vector ∇H(const Vector& x) const { + Vector ∂H = J * x; + return ∂H - (∂H.dot(x) / x.squaredNorm()) * x; + } +}; + +Vector gradientDescent(const QuadraticModel& M, const Vector& x₀, Real E, Real ε = 1e-14) { + Vector xₜ = x₀; + Real Hₜ = M.H(x₀); + Real α = 1; + Real m; + Vector ∇H; + + while ( + ∇H = (Hₜ / M.N - E) * M.∇H(xₜ) / M.N, m = ∇H.squaredNorm(), + m > ε + ) { + Vector xₜ₊₁; + Real Hₜ₊₁; + + while ( + xₜ₊₁ = normalize(xₜ - α * ∇H), Hₜ₊₁ = M.H(xₜ₊₁), + pow(Hₜ₊₁ / M.N - E, 2) > pow(Hₜ / M.N - E, 2) - α * m + ) { + α /= 2; + } + + xₜ = xₜ₊₁; + Hₜ = Hₜ₊₁; + α *= 1.25; + } + + return xₜ; +} + +Vector randomStep(const QuadraticModel& M, const Vector& x₀, Real E, Rng& r, Real Δt = 1e-4) { + Vector η(M.N); + for (Real& ηᵢ : η) { + ηᵢ = r.variate(0, sqrt(2 * Δt)); + } + η -= η.dot(x₀) * x₀ / x₀.squaredNorm(); + Vector ∇H₀ = M.∇H(x₀); + η -= η.dot(∇H₀) * ∇H₀ / ∇H₀.squaredNorm(); + return gradientDescent(M, normalize(x₀ + η), E); +} + +int main(int argc, char* argv[]) { + unsigned N = 10; + unsigned steps = 10; + Real E = 0; + + int opt; + + while ((opt = getopt(argc, argv, "N:E:n:")) != -1) { + switch (opt) { + case 'N': + N = (unsigned)atof(optarg); + break; + case 'E': + E = atof(optarg); + break; + case 'n': + steps = (unsigned)atof(optarg); + break; + default: + exit(1); + } + } + + Rng r; + QuadraticModel ls(N, r); + + Vector x₀ = Vector::Zero(N); + x₀(0) = sqrt(N); + x₀ = gradientDescent(ls, x₀, E); + + std::cout << std::setprecision(15); + + Vector x = x₀; + + for (unsigned step = 0; step < steps; step++) { + x = randomStep(ls, x, E, r); + std::cout << ls.H(x) / N << " " << x.dot(x₀) / N << std::endl; + } + + return 0; +} -- cgit v1.2.3-70-g09d2