From 5b7aa6fc1be23f4999741dc5bbebbe2225c70e18 Mon Sep 17 00:00:00 2001 From: Jaron Kent-Dobias Date: Sun, 20 Apr 2025 10:30:54 -0300 Subject: Reverting --- log-fourier_integrator.cpp | 5 +---- 1 file changed, 1 insertion(+), 4 deletions(-) (limited to 'log-fourier_integrator.cpp') diff --git a/log-fourier_integrator.cpp b/log-fourier_integrator.cpp index 879580d..72eb96c 100644 --- a/log-fourier_integrator.cpp +++ b/log-fourier_integrator.cpp @@ -100,25 +100,22 @@ int main(int argc, char* argv[]) { std::vector RddfCt = fft.fourier(RddfC, false); std::vector dfCt = fft.fourier(dfC, true); - std::vector Ĉₜ₊₁(N); std::vector Ȓₜ₊₁(N); for (unsigned n = 0; n < N; n++) { Ȓₜ₊₁[n] = (1.0 + pow(β, 2) * RddfCt[n] * Ȓₜ[n]) / (μ + 1i * fft.ν(n)); - Ĉₜ₊₁[n] = (2 * Γ₀ * std::conj(Ȓₜ[n]) / (1 + pow(τ₀ * fft.ν(n), 2)) + pow(β, 2) * (RddfCt[n] * Ĉₜ[n] + dfCt[n] * std::conj(Ȓₜ[n]))) / (μ + 1i * fft.ν(n)); } std::vector Rₜ₊₁ = fft.inverse(Ȓₜ₊₁); - /* for (unsigned n = 0; n < N; n++) { RddfC[n] = Rₜ₊₁[n] * ddf(λ, p, s, Cₜ[n]); } RddfCt = fft.fourier(RddfC, false); + std::vector Ĉₜ₊₁(N); for (unsigned n = 0; n < N; n++) { Ĉₜ₊₁[n] = (2 * Γ₀ * std::conj(Ȓₜ₊₁[n]) / (1 + pow(τ₀ * fft.ν(n), 2)) + pow(β, 2) * (RddfCt[n] * Ĉₜ[n] + dfCt[n] * std::conj(Ȓₜ₊₁[n]))) / (μ + 1i * fft.ν(n)); } - */ std::vector Cₜ₊₁ = fft.inverse(Ĉₜ₊₁); μ *= pow(tanh(Cₜ₊₁[0]-1)+1, 0.05); -- cgit v1.2.3-70-g09d2