#include "fourier.hpp" #include inline Real fP(unsigned p, Real q) { return 0.5 * pow(q, p); } inline Real dfP(unsigned p, Real q) { return 0.5 * p * pow(q, p - 1); } inline Real ddfP(unsigned p, Real q) { return 0.5 * p * (p - 1) * pow(q, p - 2); } Real f(Real λ, unsigned p, unsigned s, Real q) { return (1 - λ) * fP(p, q) + λ * fP(s, q); } Real df(Real λ, unsigned p, unsigned s, Real q) { return (1 - λ) * dfP(p, q) + λ * dfP(s, q); } Real ddf(Real λ, unsigned p, unsigned s, Real q) { return (1 - λ) * ddfP(p, q) + λ * ddfP(s, q); } FourierTransform::FourierTransform(unsigned n, Real Δω, Real Δτ, unsigned flags) : n(n), Δω(Δω), Δτ(Δτ) { a = fftw_alloc_real(2 * n); â = reinterpret_cast(fftw_alloc_complex(n + 1)); // fftw_init_threads(); // fftw_plan_with_nthreads(FFTW_THREADS); fftw_import_wisdom_from_filename("fftw.wisdom"); plan_r2c = fftw_plan_dft_r2c_1d(2 * n, a, reinterpret_cast(â), flags); plan_c2r = fftw_plan_dft_c2r_1d(2 * n, reinterpret_cast(â), a, flags); fftw_export_wisdom_to_filename("fftw.wisdom"); } FourierTransform::~FourierTransform() { fftw_destroy_plan(plan_r2c); fftw_destroy_plan(plan_c2r); fftw_free(a); fftw_free(â); fftw_cleanup(); } std::vector FourierTransform::fourier(const std::vector& c) { for (unsigned i = 0; i < 2 * n; i++) { a[i] = c[i]; } fftw_execute(plan_r2c); std::vector ĉ(n + 1); for (unsigned i = 0; i < n + 1; i++) { ĉ[i] = â[i] * (Δτ * M_PI); } return ĉ; } std::vector FourierTransform::fourier() { fftw_execute(plan_r2c); std::vector ĉ(n+1); for (unsigned i = 0; i < n+1; i++) { ĉ[i] = â[i] * (Δτ * M_PI); } return ĉ; } std::vector FourierTransform::convolve(const std::vector& Γh, const std::vector& R) { a[0] = 0; for (unsigned i = 1; i < n; i++) { a[i] = R[i]; a[2 * n - i] = -R[i]; } fftw_execute(plan_r2c); for (unsigned i = 1; i < n + 1; i++) { â[i] *= Γh[i] * (Δτ * M_PI); } fftw_execute(plan_c2r); std::vector dC(n); for (unsigned i = 0; i < n; i++) { dC[i] = a[i] * (Δω / (2 * M_PI)); } return dC; } std::vector FourierTransform::inverse(const std::vector& ĉ) { for (unsigned i = 0; i < n + 1; i++) { â[i] = ĉ[i]; } fftw_execute(plan_c2r); std::vector c(2*n); for (unsigned i = 0; i < 2*n; i++) { c[i] = a[i] * (Δω / (2 * M_PI)); } return c; } void FourierTransform::writeToA(unsigned i, Real ai) { a[i] = ai; } LogarithmicFourierTransform::LogarithmicFourierTransform(unsigned N, Real k, Real Δτ, unsigned pad) : N(N), pad(pad), k(k), Δτ(Δτ) { τₛ = -0.5 * N; ωₛ = -0.5 * N; sₛ = -0.5 * pad * N; a = reinterpret_cast(fftw_alloc_complex(pad*N)); â = reinterpret_cast(fftw_alloc_complex(pad*N)); fftw_import_wisdom_from_filename("fftw.wisdom"); a_to_â = fftw_plan_dft_1d(pad*N, reinterpret_cast(a), reinterpret_cast(â), FFTW_BACKWARD, 0); â_to_a = fftw_plan_dft_1d(pad*N, reinterpret_cast(â), reinterpret_cast(a), FFTW_BACKWARD, 0); fftw_export_wisdom_to_filename("fftw.wisdom"); } LogarithmicFourierTransform::~LogarithmicFourierTransform() { fftw_destroy_plan(a_to_â); fftw_destroy_plan(â_to_a); fftw_free(a); fftw_free(â); fftw_cleanup(); } Real LogarithmicFourierTransform::τ(unsigned n) const { return Δτ * (n + τₛ); } Real LogarithmicFourierTransform::ω(unsigned n) const { return Δτ * (n + ωₛ); } Real LogarithmicFourierTransform::s(unsigned n) const { return (n + sₛ) * 2*M_PI / (pad * N * Δτ); } Real LogarithmicFourierTransform::t(unsigned n) const { return exp(τ(n)); } Real LogarithmicFourierTransform::ν(unsigned n) const { return exp(ω(n)); } Complex gamma(Complex z) { gsl_sf_result logΓ; gsl_sf_result argΓ; gsl_sf_lngamma_complex_e(z.real(), z.imag(), &logΓ, &argΓ); return exp(logΓ.val + 1i * argΓ.val); } std::vector LogarithmicFourierTransform::fourier(const std::vector& c, bool symmetric) { std::vector ĉ(N); std::vector σs = {1}; if (symmetric){ σs.push_back(-1); } for (Real σ : σs) { for (unsigned n = 0; n < pad*N; n++) { if (n < N) { a[n] = c[n] * exp((1 - k) * τ(n)); } else { a[n] = 0; } } fftw_execute(a_to_â); for (unsigned n = 0; n < pad*N; n++) { â[(pad*N / 2 + n) % (pad*N)] *= pow(1i * σ, 1i * s(n) - k) * gamma(k - 1i * s(n)); } fftw_execute(â_to_a); for (unsigned n = 0; n < N; n++) { ĉ[n] += exp(-k * ω(n)) * a[(pad - 1)*N+n] / (Real)(pad*N); } } return ĉ; } std::vector LogarithmicFourierTransform::inverse(const std::vector& ĉ) { std::vector c(N); std::vector σs = {1, -1}; for (Real σ : σs) { for (unsigned n = 0; n < pad * N; n++) { if (n < N) { a[n] = ĉ[n] * exp((1 - k) * ω(n)); } else { a[n] = 0; } } fftw_execute(a_to_â); for (unsigned n = 0; n < pad*N; n++) { â[(pad*N / 2 + n) % (pad*N)] *= pow(-1i * σ, 1i * s(n) - k) * gamma(k - 1i * s(n)); } fftw_execute(â_to_a); for (unsigned n = 0; n < N; n++) { c[n] += exp(-k * τ(n)) * a[(pad - 1)*N+n].real() / (Real)(pad*N) / (2 * M_PI); } } return c; } std::string fourierFile(std::string prefix, unsigned p, unsigned s, Real λ, Real τ₀, Real y, unsigned log2n, Real τₘₐₓ) { return prefix + "_" + std::to_string(p) + "_" + std::to_string(s) + "_" + std::to_string(λ) + "_" + std::to_string(τ₀) + "_" + std::to_string(y) + "_" + std::to_string(log2n) + "_" + std::to_string(τₘₐₓ) + ".dat"; } Real energy(const std::vector& C, const std::vector& R, unsigned p, unsigned s, Real λ, Real y, Real Δτ) { Real e = 0; for (unsigned i = 0; i < C.size() / 2; i++) { e += y * R[i] * df(λ, p, s, C[i]) * M_PI * Δτ; } return e; } std::tuple, std::vector> RddfCtdfCt(FourierTransform& fft, const std::vector& C, const std::vector& R, unsigned p, unsigned s, Real λ) { for (unsigned i = 0; i < C.size() / 2; i++) { fft.writeToA(i, R[i] * ddf(λ, p, s, C[i])); } for (unsigned i = C.size() / 2; i < C.size(); i++) { fft.writeToA(i, 0); } std::vector RddfCt = fft.fourier(); for (unsigned i = 0; i < C.size(); i++) { fft.writeToA(i, df(λ, p, s, C[i])); } std::vector dfCt = fft.fourier(); return {RddfCt, dfCt}; } Real estimateZ(FourierTransform& fft, const std::vector& C, const std::vector& Ct, const std::vector& R, const std::vector& Rt, unsigned p, unsigned s, Real λ, Real τ₀, Real y) { auto [RddfCt, dfCt] = RddfCtdfCt(fft, C, R, p, s, λ); Real Γ₀ = 1 + τ₀ / 2; return ((Γ₀ * std::conj(Rt[0]) + pow(y, 2) * (RddfCt[0] * Ct[0] + dfCt[0] * std::conj(Rt[0]))) / Ct[0]).real(); }