#include "fourier.hpp" #include "p-spin.hpp" #include FourierTransform::FourierTransform(unsigned n, Real Δω, Real Δτ, unsigned flags) : n(n), Δω(Δω), Δτ(Δτ) { a = fftw_alloc_real(2 * n); â = reinterpret_cast(fftw_alloc_complex(n + 1)); // fftw_init_threads(); // fftw_plan_with_nthreads(FFTW_THREADS); fftw_import_wisdom_from_filename("fftw.wisdom"); plan_r2c = fftw_plan_dft_r2c_1d(2 * n, a, reinterpret_cast(â), flags); plan_c2r = fftw_plan_dft_c2r_1d(2 * n, reinterpret_cast(â), a, flags); fftw_export_wisdom_to_filename("fftw.wisdom"); } FourierTransform::~FourierTransform() { fftw_destroy_plan(plan_r2c); fftw_destroy_plan(plan_c2r); fftw_free(a); fftw_free(â); fftw_cleanup(); } std::vector FourierTransform::fourier(const std::vector& c) { for (unsigned i = 0; i < 2 * n; i++) { a[i] = c[i]; } fftw_execute(plan_r2c); std::vector ĉ(n + 1); for (unsigned i = 0; i < n + 1; i++) { ĉ[i] = â[i] * (Δτ * M_PI); } return ĉ; } std::vector FourierTransform::fourier() { fftw_execute(plan_r2c); std::vector ĉ(n+1); for (unsigned i = 0; i < n+1; i++) { ĉ[i] = â[i] * (Δτ * M_PI); } return ĉ; } std::vector FourierTransform::convolve(const std::vector& Γh, const std::vector& R) { a[0] = 0; for (unsigned i = 1; i < n; i++) { a[i] = R[i]; a[2 * n - i] = -R[i]; } fftw_execute(plan_r2c); for (unsigned i = 1; i < n + 1; i++) { â[i] *= Γh[i] * (Δτ * M_PI); } fftw_execute(plan_c2r); std::vector dC(n); for (unsigned i = 0; i < n; i++) { dC[i] = a[i] * (Δω / (2 * M_PI)); } return dC; } std::vector FourierTransform::inverse(const std::vector& ĉ) { for (unsigned i = 0; i < n + 1; i++) { â[i] = ĉ[i]; } fftw_execute(plan_c2r); std::vector c(2*n); for (unsigned i = 0; i < 2*n; i++) { c[i] = a[i] * (Δω / (2 * M_PI)); } return c; } void FourierTransform::writeToA(unsigned i, Real ai) { a[i] = ai; } std::string fourierFile(std::string prefix, unsigned p, unsigned s, Real λ, Real τ₀, Real y, unsigned log2n, Real τₘₐₓ) { return prefix + "_" + std::to_string(p) + "_" + std::to_string(s) + "_" + std::to_string(λ) + "_" + std::to_string(τ₀) + "_" + std::to_string(y) + "_" + std::to_string(log2n) + "_" + std::to_string(τₘₐₓ) + ".dat"; } Real energy(const std::vector& C, const std::vector& R, unsigned p, unsigned s, Real λ, Real y, Real Δτ) { Real e = 0; for (unsigned i = 0; i < C.size() / 2; i++) { e += y * R[i] * df(λ, p, s, C[i]) * M_PI * Δτ; } return e; } std::tuple, std::vector> RddfCtdfCt(FourierTransform& fft, const std::vector& C, const std::vector& R, unsigned p, unsigned s, Real λ) { for (unsigned i = 0; i < C.size() / 2; i++) { fft.writeToA(i, R[i] * ddf(λ, p, s, C[i])); } for (unsigned i = C.size() / 2; i < C.size(); i++) { fft.writeToA(i, 0); } std::vector RddfCt = fft.fourier(); for (unsigned i = 0; i < C.size(); i++) { fft.writeToA(i, df(λ, p, s, C[i])); } std::vector dfCt = fft.fourier(); return {RddfCt, dfCt}; } Real estimateZ(FourierTransform& fft, const std::vector& C, const std::vector& Ct, const std::vector& R, const std::vector& Rt, unsigned p, unsigned s, Real λ, Real τ₀, Real y) { auto [RddfCt, dfCt] = RddfCtdfCt(fft, C, R, p, s, λ); Real Γ₀ = 1 + τ₀ / 2; return ((Γ₀ * std::conj(Rt[0]) + pow(y, 2) * (RddfCt[0] * Ct[0] + dfCt[0] * std::conj(Rt[0]))) / Ct[0]).real(); }