#include "fourier.hpp" inline Real fP(unsigned p, Real q) { return 0.5 * pow(q, p); } inline Real dfP(unsigned p, Real q) { return 0.5 * p * pow(q, p - 1); } inline Real ddfP(unsigned p, Real q) { return 0.5 * p * (p - 1) * pow(q, p - 2); } Real f(Real λ, unsigned p, unsigned s, Real q) { return (1 - λ) * fP(p, q) + λ * fP(s, q); } Real df(Real λ, unsigned p, unsigned s, Real q) { return (1 - λ) * dfP(p, q) + λ * dfP(s, q); } Real ddf(Real λ, unsigned p, unsigned s, Real q) { return (1 - λ) * ddfP(p, q) + λ * ddfP(s, q); } FourierTransform::FourierTransform(unsigned n, Real Δω, Real Δτ, unsigned flags) : a(2 * n), â(n + 1), Δω(Δω), Δτ(Δτ) { plan_r2c = fftw_plan_dft_r2c_1d(2 * n, a.data(), reinterpret_cast(â.data()), flags); plan_c2r = fftw_plan_dft_c2r_1d(2 * n, reinterpret_cast(â.data()), a.data(), flags); } FourierTransform::~FourierTransform() { fftw_destroy_plan(plan_r2c); fftw_destroy_plan(plan_c2r); fftw_cleanup(); } std::vector FourierTransform::fourier(const std::vector& c) { a = c; fftw_execute(plan_r2c); std::vector ĉ(â.size()); for (unsigned i = 0; i < â.size(); i++) { ĉ[i] = â[i] * (Δτ * M_PI); } return ĉ; } std::vector FourierTransform::inverse(const std::vector& ĉ) { â = ĉ; fftw_execute(plan_c2r); std::vector c(a.size()); for (unsigned i = 0; i < a.size(); i++) { c[i] = a[i] * (Δω / (2 * M_PI)); } return c; } std::string fourierFile(std::string prefix, unsigned p, unsigned s, Real λ, Real τ₀, Real y, unsigned log2n, Real τₘₐₓ) { return prefix + "_" + std::to_string(p) + "_" + std::to_string(s) + "_" + std::to_string(λ) + "_" + std::to_string(τ₀) + "_" + std::to_string(y) + "_" + std::to_string(log2n) + "_" + std::to_string(τₘₐₓ) + ".dat"; } Real energy(const std::vector& C, const std::vector& R, unsigned p, unsigned s, Real λ, Real y, Real Δτ) { Real e = 0; for (unsigned i = 0; i < C.size() / 2; i++) { e += y * R[i] * df(λ, p, s, C[i]) * M_PI * Δτ; } return e; } std::tuple, std::vector> RddfCtdfCt(FourierTransform& fft, const std::vector& C, const std::vector& R, unsigned p, unsigned s, Real λ) { std::vector RddfC(C.size()); for (unsigned i = 0; i < C.size() / 2; i++) { RddfC[i] = R[i] * ddf(λ, p, s, C[i]); } std::vector RddfCt = fft.fourier(RddfC); std::vector dfC(C.size()); for (unsigned i = 0; i < C.size(); i++) { dfC[i] = df(λ, p, s, C[i]); } std::vector dfCt = fft.fourier(dfC); return {RddfCt, dfCt}; } Real estimateZ(FourierTransform& fft, const std::vector& C, const std::vector& Ct, const std::vector& R, const std::vector& Rt, unsigned p, unsigned s, Real λ, Real y) { auto [RddfCt, dfCt] = RddfCtdfCt(fft, C, R, p, s, λ); return ((std::conj(Rt[0]) + pow(y, 2) * (RddfCt[0] * Ct[0] + dfCt[0] * std::conj(Rt[0]))) / Ct[0]).real(); }