#include #include #include #include #include using Real = double; class Point : public std::array { public: Real τ() const { return front(); } Real C() const { return back(); } }; Real f(Real q) { return 0.5 * pow(q, 2); } Real df(Real q) { return q; } Real ddf(Real q) { return 1; } Real integrate(const std::vector& Cₜ) { Real I = 0; for (unsigned i = 0; i < Cₜ.size() - 1; i++) { Real Δτ = Cₜ[i + 1].τ() - Cₜ[i].τ(); Real C = (Cₜ[i + 1].C() + Cₜ[i].C()) / 2; Real dC = (Cₜ[i + 1].C() - Cₜ[i].C()) / Δτ; I += Δτ * df(C) * dC; } return I; } int main(int argc, char* argv[]) { Real Δτ = 1e-3; Real τₘₐₓ = 1e3; Real τ₀ = 0; Real y = 0.5; int opt; while ((opt = getopt(argc, argv, "d:T:t:y:")) != -1) { switch (opt) { case 'd': Δτ = atof(optarg); break; case 'T': τₘₐₓ = atof(optarg); break; case 't': τ₀ = atof(optarg); break; case 'y': y = atof(optarg); break; default: exit(1); } } std::vector Cₜ; Cₜ.reserve(τₘₐₓ / Δτ); Cₜ.push_back({0, 1}); Cₜ.push_back({Δτ, 1 - Δτ}); while (Cₜ.back().τ() < τₘₐₓ) { Real dC = -Cₜ.back().C() - 2 * pow(y, 2) * integrate(Cₜ); Cₜ.push_back({Cₜ.back().τ() + Δτ, Cₜ.back().C() + Δτ * dC}); } for (const Point& p : Cₜ) { std::cout << p.τ() << " " << p.C() << std::endl; } return 0; }