#include "log-fourier.hpp" #include "p-spin.hpp" #include #include #include std::string logFourierFile(std::string prefix, unsigned p, unsigned s, Real λ, Real τ₀, Real β, unsigned log2n, Real Δτ, Real k) { return prefix + "_" + std::to_string(p) + "_" + std::to_string(s) + "_" + std::to_string(λ) + "_" + std::to_string(τ₀) + "_" + std::to_string(β) + "_" + std::to_string(log2n) + "_" + std::to_string(Δτ) + "_" + std::to_string(k) + ".dat"; } std::tuple, std::vector> RddfCtdfCt(LogarithmicFourierTransform& fft, const std::vector& C, const std::vector& R, unsigned p, unsigned s, Real λ) { std::vector dfC(C.size()); std::vector RddfC(C.size()); for (unsigned n = 0; n < C.size(); n++) { RddfC[n] = R[n] * ddf(λ, p, s, C[n]); dfC[n] = df(λ, p, s, C[n]); } std::vector RddfCt = fft.fourier(RddfC, false); std::vector dfCt = fft.fourier(dfC, true); return {RddfCt, dfCt}; } Real estimateZ(LogarithmicFourierTransform& fft, const std::vector& C, const std::vector& Ct, const std::vector& R, const std::vector& Rt, unsigned p, unsigned s, Real λ, Real τ₀, Real β) { auto [RddfCt, dfCt] = RddfCtdfCt(fft, C, R, p, s, λ); Real Γ₀ = 1 + τ₀ / 2; return ((2 * Γ₀ * std::conj(Rt[0]) + pow(β, 2) * (RddfCt[0] * Ct[0] + dfCt[0] * std::conj(Rt[0]))) / Ct[0]).real(); } int main(int argc, char* argv[]) { /* Model parameters */ unsigned p = 2; unsigned s = 2; Real λ = 0.5; Real τ₀ = 0; /* Log-Fourier parameters */ unsigned log2n = 8; Real Δτ = 0.1; Real k = 0.1; /* Iteration parameters */ Real ε = 1e-14; Real γ = 1; Real β₀ = 0; Real βₘₐₓ = 0.7; Real Δβ = 0.01; bool loadData = false; int opt; while ((opt = getopt(argc, argv, "p:s:2:T:t:b:d:g:k:D:e:0:l")) != -1) { switch (opt) { case 'p': p = atoi(optarg); break; case 's': s = atoi(optarg); break; case '2': log2n = atoi(optarg); break; case 't': τ₀ = atof(optarg); break; case 'b': βₘₐₓ = atof(optarg); break; case 'd': Δβ = atof(optarg); break; case 'g': γ = atof(optarg); break; case 'k': k = atof(optarg); break; case 'D': Δτ = atof(optarg); break; case 'e': ε = atof(optarg); break; case '0': β₀ = atof(optarg); break; case 'l': loadData = true; break; default: exit(1); } } unsigned N = pow(2, log2n); LogarithmicFourierTransform fft(N, k, Δτ, 4); Real Γ₀ = 1.0 + τ₀; Real μₜ₋₁ = 1.0; std::vector Cₜ₋₁(N); std::vector Rₜ₋₁(N); std::vector Ĉₜ₋₁(N); std::vector Ȓₜ₋₁(N); if (!loadData) { /* Start from the exact solution for β = 0 */ for (unsigned n = 0; n < N; n++) { if (τ₀ != 1) { Cₜ₋₁[n] = Γ₀ * (exp(-μₜ₋₁ * fft.t(n)) - μₜ₋₁ * τ₀ * exp(-fft.t(n) / τ₀)) / (μₜ₋₁ - pow(μₜ₋₁, 3) * pow(τ₀, 2)); } else { Cₜ₋₁[n] = Γ₀ * exp(-fft.t(n)) * (1 + fft.t(n)); } Rₜ₋₁[n] = exp(-μₜ₋₁ * fft.t(n)); Ĉₜ₋₁[n] = 2 * Γ₀ / (pow(μₜ₋₁, 2) + pow(fft.ν(n), 2)) / (1 + pow(τ₀ * fft.ν(n), 2)); Ȓₜ₋₁[n] = 1.0 / (μₜ₋₁ + 1i * fft.ν(n)); } } else { std::ifstream cfile(logFourierFile("C", p, s, λ, τ₀, β₀, log2n, Δτ, k), std::ios::binary); cfile.read((char*)(Cₜ₋₁.data()), N * sizeof(Real)); cfile.close(); std::ifstream rfile(logFourierFile("R", p, s, λ, τ₀, β₀, log2n, Δτ, k), std::ios::binary); rfile.read((char*)(Rₜ₋₁.data()), N * sizeof(Real)); rfile.close(); Ĉₜ₋₁ = fft.fourier(Cₜ₋₁, true); Ȓₜ₋₁ = fft.fourier(Rₜ₋₁, false); μₜ₋₁ = estimateZ(fft, Cₜ₋₁, Ĉₜ₋₁, Rₜ₋₁, Ȓₜ₋₁, p, s, λ, τ₀, β₀); } std::vector Cₜ = Cₜ₋₁; std::vector Rₜ = Rₜ₋₁; std::vector Ĉₜ = Ĉₜ₋₁; std::vector Ȓₜ = Ȓₜ₋₁; Real μₜ = μₜ₋₁; Real β = β₀ + Δβ; while (β < βₘₐₓ) { Real ΔC = 100; while (ΔC > ε) { auto [RddfCt, dfCt] = RddfCtdfCt(fft, Cₜ, Rₜ, p, s, λ); std::vector Ĉₜ₊₁(N); std::vector Ȓₜ₊₁(N); for (unsigned n = 0; n < N; n++) { Ȓₜ₊₁[n] = (1.0 + pow(β, 2) * RddfCt[n] * Ȓₜ[n]) / (μₜ + 1i * fft.ν(n)); Ĉₜ₊₁[n] = (2 * Γ₀ * std::conj(Ȓₜ[n]) / (1 + pow(τ₀ * fft.ν(n), 2)) + pow(β, 2) * (RddfCt[n] * Ĉₜ[n] + dfCt[n] * std::conj(Ȓₜ[n]))) / (μₜ + 1i * fft.ν(n)); } std::vector Rₜ₊₁ = fft.inverse(Ȓₜ₊₁); std::vector Cₜ₊₁ = fft.inverse(Ĉₜ₊₁); μₜ *= pow(tanh(Cₜ₊₁[0]-1)+1, 0.05); ΔC = 0; for (unsigned i = 0; i < N; i++) { ΔC += std::norm(Ĉₜ[i] - Ĉₜ₊₁[i]); ΔC += std::norm(Ȓₜ[i] - Ȓₜ₊₁[i]); } ΔC = sqrt(ΔC) / (2*N); for (unsigned i = 0; i < N; i++) { Cₜ[i] += γ * (Cₜ₊₁[i] - Cₜ[i]); Rₜ[i] += γ * (Rₜ₊₁[i] - Rₜ[i]); Ĉₜ[i] += γ * (Ĉₜ₊₁[i] - Ĉₜ[i]); Ȓₜ[i] += γ * (Ȓₜ₊₁[i] - Ȓₜ[i]); } std::cerr << "\x1b[2K" << "\r"; std::cerr << β << " " << μₜ << " " << ΔC << " " << γ << " " << Cₜ[0]; } if (std::isnan(Cₜ[0])) { Cₜ = Cₜ₋₁; Rₜ = Rₜ₋₁; Ĉₜ = Ĉₜ₋₁; Ȓₜ = Ȓₜ₋₁; μₜ = μₜ₋₁; γ /= 2; } else { /* Integrate the energy using Simpson's rule */ Real E = 0; for (unsigned n = 0; n < N/2-1; n++) { Real h₂ₙ = fft.t(2*n+1) - fft.t(2*n); Real h₂ₙ₊₁ = fft.t(2*n+2) - fft.t(2*n+1); Real f₂ₙ = Rₜ[2*n] * df(λ, p, s, Cₜ[2*n]); Real f₂ₙ₊₁ = Rₜ[2*n+1] * df(λ, p, s, Cₜ[2*n+1]); Real f₂ₙ₊₂ = Rₜ[2*n+2] * df(λ, p, s, Cₜ[2*n+2]); E += (h₂ₙ + h₂ₙ₊₁) / 6 * ( (2 - h₂ₙ₊₁ / h₂ₙ) * f₂ₙ + pow(h₂ₙ + h₂ₙ₊₁, 2) / (h₂ₙ * h₂ₙ₊₁) * f₂ₙ₊₁ + (2 - h₂ₙ / h₂ₙ₊₁) * f₂ₙ₊₂ ); } E *= β; std::cerr << "\x1b[2K" << "\r"; std::cerr << β << " " << μₜ << " " << Ĉₜ[0].real() << " " << E << " " << γ << std::endl; std::ofstream outfile(logFourierFile("C", p, s, λ, τ₀, β, log2n, Δτ, k), std::ios::out | std::ios::binary); outfile.write((const char*)(Cₜ.data()), N * sizeof(Real)); outfile.close(); std::ofstream outfileR(logFourierFile("R", p, s, λ, τ₀, β, log2n, Δτ, k), std::ios::out | std::ios::binary); outfileR.write((const char*)(Rₜ.data()), N * sizeof(Real)); outfileR.close(); β += Δβ; Cₜ₋₁ = Cₜ; Rₜ₋₁ = Rₜ; Ĉₜ₋₁ = Ĉₜ; Ȓₜ₋₁ = Ȓₜ; μₜ₋₁ = μₜ; } } return 0; }