#include "log-fourier.hpp" #include "p-spin.hpp" #include #include int main(int argc, char* argv[]) { unsigned p = 2; unsigned s = 2; Real λ = 0.5; Real τ₀ = 0; unsigned log2n = 8; Real Δτ = 0.1; Real k = 0.1; Real ε = 1e-13; Real γ = 1; Real βₘₐₓ = 0.7; Real Δβ = 0.01; int opt; while ((opt = getopt(argc, argv, "p:s:2:T:t:b:d:g:k:D:")) != -1) { switch (opt) { case 'p': p = atoi(optarg); break; case 's': s = atoi(optarg); break; case '2': log2n = atoi(optarg); break; case 't': τ₀ = atof(optarg); break; case 'b': βₘₐₓ = atof(optarg); break; case 'd': Δβ = atof(optarg); break; case 'g': γ = atof(optarg); break; case 'k': k = atof(optarg); break; case 'D': Δτ = atof(optarg); break; default: exit(1); } } unsigned N = pow(2, log2n); LogarithmicFourierTransform fft(N, k, Δτ, 4); Real Γ₀ = 1.0; Real μ = Γ₀; if (τ₀ > 0) { μ = (sqrt(1+4*Γ₀*τ₀)-1)/(2*τ₀); } std::vector C(N); std::vector R(N); std::vector Ct(N); std::vector Rt(N); // start from the exact solution for β = 0 for (unsigned n = 0; n < N; n++) { if (τ₀ > 0) { C[n] = Γ₀ * (exp(-μ * fft.t(n)) - μ * τ₀ * exp(-fft.t(n) / τ₀)) / (μ - pow(μ, 3) * pow(τ₀, 2)); } else { C[n] = Γ₀ * exp(-μ * fft.t(n)) / μ; } R[n] = exp(-μ * fft.t(n)); Ct[n] = 2 * Γ₀ / (pow(μ, 2) + pow(fft.ν(n), 2)) / (1 + pow(τ₀ * fft.ν(n), 2)); Rt[n] = 1.0 / (μ + 1i * fft.ν(n)); } Real β = 0; while (β < βₘₐₓ) { Real ΔC = 100; while (ΔC > ε) { std::vector RddfC(N); std::vector dfC(N); for (unsigned n = 0; n < N; n++) { RddfC[n] = R[n] * ddf(λ, p, s, C[n]); dfC[n] = df(λ, p, s, C[n]); } std::vector RddfCt = fft.fourier(RddfC, false); std::vector dfCt = fft.fourier(dfC, true); std::vector Rtnew(N); std::vector Ctnew(N); for (unsigned n = 0; n < N; n++) { Rtnew[n] = (1.0 + pow(β, 2) * RddfCt[n] * Rt[n]) / (μ + 1i * fft.ν(n)); Ctnew[n] = (2 * Γ₀ * std::conj(Rtnew[n]) / (1 + pow(τ₀ * fft.ν(n), 2)) + pow(β, 2) * (RddfCt[n] * Ct[n] + dfCt[n] * std::conj(Rtnew[n]))) / (μ + 1i * fft.ν(n)); // Ctnew[n] = - 2 * Γ₀ * Rtnew[n].imag() / (1 + pow(τ₀ * fft.ν(n), 2)) / fft.ν(n); } std::vector Cnew = fft.inverse(Ctnew); std::vector Rnew = fft.inverse(Rtnew); ΔC = 0; for (unsigned i = 0; i < N; i++) { ΔC += std::norm(Ct[i] - Ctnew[i]); ΔC += std::norm(Rt[i] - Rtnew[i]); } ΔC = sqrt(ΔC) / (2*N); for (unsigned i = 0; i < N; i++) { C[i] += γ * (Cnew[i] - C[i]); R[i] += γ * (Rnew[i] - R[i]); Ct[i] += γ * (Ctnew[i] - Ct[i]); Rt[i] += γ * (Rtnew[i] - Rt[i]); } μ *= C[0]; // std::cerr << ΔC << std::endl; } /* Integrate the energy using Simpson's rule */ Real E = 0; for (unsigned i = 0; i < N/2-1; i++) { Real h₂ᵢ = fft.t(2*i+1) - fft.t(2*i); Real h₂ᵢ₊₁ = fft.t(2*i+2) - fft.t(2*i+1); Real f₂ᵢ = R[2*i] * df(λ, p, s, C[2*i]); Real f₂ᵢ₊₁ = R[2*i+1] * df(λ, p, s, C[2*i+1]); Real f₂ᵢ₊₂ = R[2*i+2] * df(λ, p, s, C[2*i+2]); E += (h₂ᵢ + h₂ᵢ₊₁) / 6 * ( (2 - h₂ᵢ₊₁ / h₂ᵢ) * f₂ᵢ + pow(h₂ᵢ + h₂ᵢ₊₁, 2) / (h₂ᵢ * h₂ᵢ₊₁) * f₂ᵢ₊₁ + (2 - h₂ᵢ / h₂ᵢ₊₁) * f₂ᵢ₊₂ ); } E *= β; std::cerr << β << " " << μ << " " << Ct[0].real() << " " << E << std::endl; β += Δβ; } for (unsigned i = 0; i < N; i++) { std::cout << fft.t(i) << " " << C[i] << std::endl; } return 0; }