#include "log-fourier.hpp" #include #include int main(int argc, char* argv[]) { /* Model parameters */ unsigned p = 2; unsigned s = 2; Real λ = 0.5; Real τ₀ = 0; /* Log-Fourier parameters */ unsigned log2n = 8; Real Δτ = 0.1; Real k = -0.01; Real logShift = 0; /* Iteration parameters */ Real ε = 1e-15; Real γ₀ = 1; Real x = 1; Real β₀ = 0; Real βₘₐₓ = 20; Real Δβ = 0.01; bool loadData = false; unsigned stepsToRespond = 1e7; unsigned pad = 2; int opt; while ((opt = getopt(argc, argv, "p:s:2:T:t:b:d:g:k:D:e:0:lS:x:P:h:")) != -1) { switch (opt) { case 'p': p = atoi(optarg); break; case 's': s = atoi(optarg); break; case '2': log2n = atoi(optarg); break; case 't': τ₀ = atof(optarg); break; case 'b': βₘₐₓ = atof(optarg); break; case 'd': Δβ = atof(optarg); break; case 'g': γ₀ = atof(optarg); break; case 'k': k = atof(optarg); break; case 'h': logShift = atof(optarg); break; case 'D': Δτ = atof(optarg); break; case 'e': ε = atof(optarg); break; case '0': β₀ = atof(optarg); break; case 'x': x = atof(optarg); break; case 'P': pad = atoi(optarg); break; case 'l': loadData = true; break; case 'S': stepsToRespond = atoi(optarg); break; default: exit(1); } } unsigned N = pow(2, log2n); Real Γ₀ = 1; Real μ₀ = τ₀ > 0 ? (sqrt(1+4*Γ₀*τ₀)-1)/(2*τ₀) : Γ₀; LogarithmicFourierTransform fft(N, k, Δτ, pad, μ₀ * pow(10, logShift)); std::cerr << "Starting, μ₀ = " << μ₀ << ", range " << fft.t(0) << " " << fft.t(N-1) << std::endl; Real μₜ₋₁ = μ₀; std::vector Cₜ₋₁(N); std::vector Rₜ₋₁(N); std::vector Ĉₜ₋₁(N); std::vector Ȓₜ₋₁(N); if (!loadData) { /* Start from the exact solution for β = 0 */ for (unsigned n = 0; n < N; n++) { if (τ₀ > 0) { if (τ₀ == 2) { Cₜ₋₁[n] = Γ₀ * std::exp(-fft.t(n) / 2) * (1 + fft.t(n) / 2); } else { Cₜ₋₁[n] = Γ₀ * (std::exp(-μ₀ * fft.t(n)) - μ₀ * τ₀ * std::exp(-fft.t(n) / τ₀)) / (μ₀ - pow(μ₀, 3) * pow(τ₀, 2)); } } else { Cₜ₋₁[n] = Γ₀ * std::exp(-μ₀ * fft.t(n)) / μ₀; } Rₜ₋₁[n] = std::exp(-μ₀ * fft.t(n)); Ĉₜ₋₁[n] = 2 * Γ₀ / (pow(μ₀, 2) + pow(fft.ν(n), 2)) / (1 + pow(τ₀ * fft.ν(n), 2)); Ȓₜ₋₁[n] = (Real)1.0 / (μ₀ + II * fft.ν(n)); } } else { logFourierLoad(Cₜ₋₁, Rₜ₋₁, Ĉₜ₋₁, Ȓₜ₋₁, p, s, λ, τ₀, β₀, log2n, Δτ, logShift); μₜ₋₁ = estimateZ(fft, Cₜ₋₁, Ĉₜ₋₁, Rₜ₋₁, Ȓₜ₋₁, p, s, λ, τ₀, β₀); } std::vector Cₜ = Cₜ₋₁; std::vector Rₜ = Rₜ₋₁; std::vector Ĉₜ = Ĉₜ₋₁; std::vector Ȓₜ = Ȓₜ₋₁; Real μₜ = μₜ₋₁; Real β = β₀ + Δβ; while (β < βₘₐₓ) { Real γ = γ₀; Real ΔCmin = 1000; Real ΔCₜ = 100; unsigned stepsUp = 0; Real cost; Real oldCost = 1000; while (ΔCₜ > ε) { auto [RddfCt, dfCt] = RddfCtdfCt(fft, Cₜ, Rₜ, p, s, λ); std::vector Ĉₜ₊₁(N); std::vector Ȓₜ₊₁(N); cost = 0; for (unsigned n = 0; n < N; n++) { cost += std::norm((μₜ + II * fft.ν(n)) * Ȓₜ[n] - ((Real)1.0 + std::pow(β, 2) * RddfCt[n] * Ȓₜ[n])); cost += std::norm((μₜ + II * fft.ν(n)) * Ĉₜ[n] - ((2 * Γ₀ * std::conj(Ȓₜ[n]) / (1 + std::pow(τ₀ * fft.ν(n), 2)) + std::pow(β, 2) * (RddfCt[n] * Ĉₜ[n] + dfCt[n] * std::conj(Ȓₜ[n]))))); Ȓₜ₊₁[n] = ((Real)1.0 + std::pow(β, 2) * RddfCt[n] * Ȓₜ[n]) / (μₜ + II * fft.ν(n)); Ĉₜ₊₁[n] = ((2 * Γ₀ * std::conj(Ȓₜ[n]) / (1 + std::pow(τ₀ * fft.ν(n), 2)) + std::pow(β, 2) * (RddfCt[n] * Ĉₜ[n] + dfCt[n] * std::conj(Ȓₜ[n]))) / (μₜ + II * fft.ν(n))).real(); } cost = sqrt(cost); cost /= 2*N; std::vector Rₜ₊₁ = fft.inverse(Ȓₜ₊₁); std::vector Cₜ₊₁ = fft.inverse(Ĉₜ₊₁); cost += std::abs(Cₜ₊₁[0] - 1); Real C₀ = Cₜ₊₁[0]; if (!std::isnan(Cₜ₊₁[0])) { bool trigger0 = false; bool trigger1 = false; for (unsigned i = 0; i < N; i++) { if (Rₜ₊₁[i] < ε || trigger0) { Rₜ₊₁[i] = 0; trigger0 = true; } } Real Rmax = 0; for (unsigned i = 0; i < N; i++) { if (Rₜ₊₁[N-1-i] > Rmax) Rmax = Rₜ₊₁[N-1-i]; Rₜ₊₁[N-1-i] = Rmax; } trigger0 = false; trigger1 = false; for (unsigned i = 0; i < N; i++) { if (Cₜ₊₁[i] < ε || trigger0) { Cₜ₊₁[i] = 0; trigger0 = true; } if (Cₜ₊₁[N-1-i] > 1 - ε || trigger1) { Cₜ₊₁[N-1-i] = 1; trigger1 = true; } } trigger0 = false; trigger1 = false; for (unsigned i = 0; i < N; i++) { if (Rₜ₊₁[N-1-i] > 1 - ε || trigger1) { Rₜ₊₁[N-1-i] = 1; trigger1 = true; } } Real Cmax = 0; for (unsigned i = 0; i < N; i++) { if (Cₜ₊₁[N-1-i] > Cmax) Cmax = Cₜ₊₁[N-1-i]; Cₜ₊₁[N-1-i] = Cmax; } } μₜ *= pow(tanh(C₀-1)+1, x); ΔCₜ = 0; for (unsigned i = 0; i < N; i++) { ΔCₜ += std::norm(Cₜ[i] - Cₜ₊₁[i]); ΔCₜ += std::norm(Rₜ[i] - Rₜ₊₁[i]); } ΔCₜ = sqrt(ΔCₜ) / (2*N); if (cost < oldCost) { γ = std::min(1.01 * γ, γ₀); } else { γ = std::max(γ / 2, (Real)1e-2);; } oldCost = cost; /* if (ΔCₜ < 0.9 * ΔCmin) { ΔCmin = ΔCₜ; stepsUp = 0; } else { stepsUp++; } if (stepsUp > stepsToRespond) { γ = std::max(γ/2, (Real)1e-4); stepsUp = 0; ΔCmin = ΔCₜ; } */ for (unsigned i = 0; i < N; i++) { Cₜ[i] += γ * (Cₜ₊₁[i] - Cₜ[i]); Rₜ[i] += γ * (Rₜ₊₁[i] - Rₜ[i]); Ĉₜ[i] += γ * (Ĉₜ₊₁[i] - Ĉₜ[i]); Ȓₜ[i] += γ * (Ȓₜ₊₁[i] - Ȓₜ[i]); } std::cerr << "\x1b[2K" << "\r"; std::cerr << β << " " << μₜ << " " << ΔCₜ << " " << γ << " " << C₀ << " " << cost; } if (std::isnan(Cₜ[0])) { γ₀ /= 2; Cₜ = Cₜ₋₁; Rₜ = Rₜ₋₁; Ĉₜ = Ĉₜ₋₁; Ȓₜ = Ȓₜ₋₁; μₜ = μₜ₋₁; } else { Real E = energy(fft, Cₜ, Rₜ, p, s, λ, β); std::cerr << "\x1b[2K" << "\r"; std::cerr << β << " " << μₜ << " " << Ĉₜ[0].real() << " " << E << " " << γ << std::endl; logFourierSave(Cₜ, Rₜ, Ĉₜ, Ȓₜ, p, s, λ, τ₀, β, log2n, Δτ, logShift); if (Ĉₜ[0].real() / Ĉₜ₋₁[0].real() > 1.5) { Δβ *= 0.1; } β = std::round(1e6 * (β + Δβ)) / 1e6; Cₜ₋₁ = Cₜ; Rₜ₋₁ = Rₜ; Ĉₜ₋₁ = Ĉₜ; Ȓₜ₋₁ = Ȓₜ; μₜ₋₁ = μₜ; } } return 0; }