#include "log-fourier.hpp" #include #include int main(int argc, char* argv[]) { /* Model parameters */ unsigned p = 2; unsigned s = 2; Real λ = 0.5; Real τ₀ = 0; /* Log-Fourier parameters */ unsigned log2n = 8; Real Δτ = 0.1; Real k = 0.1; /* Iteration parameters */ Real ε = 1e-14; Real γ₀ = 1; Real β₀ = 0; Real βₘₐₓ = 0.7; Real Δβ = 0.01; bool loadData = false; unsigned stepsToRespond = 1000; int opt; while ((opt = getopt(argc, argv, "p:s:2:T:t:b:d:g:k:D:e:0:lS:")) != -1) { switch (opt) { case 'p': p = atoi(optarg); break; case 's': s = atoi(optarg); break; case '2': log2n = atoi(optarg); break; case 't': τ₀ = atof(optarg); break; case 'b': βₘₐₓ = atof(optarg); break; case 'd': Δβ = atof(optarg); break; case 'g': γ₀ = atof(optarg); break; case 'k': k = atof(optarg); break; case 'D': Δτ = atof(optarg); break; case 'e': ε = atof(optarg); break; case '0': β₀ = atof(optarg); break; case 'l': loadData = true; break; case 'S': stepsToRespond = atoi(optarg); break; default: exit(1); } } unsigned N = pow(2, log2n); LogarithmicFourierTransform fft(N, k, Δτ, 4); Real Γ₀ = 1.0; Real μₜ₋₁ = Γ₀; if (τ₀ > 0) { μₜ₋₁ = (sqrt(1+4*Γ₀*τ₀)-1)/(2*τ₀); } std::vector Cₜ₋₁(N); std::vector Rₜ₋₁(N); std::vector Ĉₜ₋₁(N); std::vector Ȓₜ₋₁(N); if (!loadData) { /* Start from the exact solution for β = 0 */ for (unsigned n = 0; n < N; n++) { if (τ₀ > 0) { if (τ₀ == 2) { Cₜ₋₁[n] = Γ₀ * exp(-fft.t(n) / 2) * (1 + fft.t(n) / 2); } else { Cₜ₋₁[n] = Γ₀ * (exp(-μₜ₋₁ * fft.t(n)) - μₜ₋₁ * τ₀ * exp(-fft.t(n) / τ₀)) / (μₜ₋₁ - pow(μₜ₋₁, 3) * pow(τ₀, 2)); } } else { Cₜ₋₁[n] = Γ₀ * exp(-μₜ₋₁ * fft.t(n)) / μₜ₋₁; } Rₜ₋₁[n] = exp(-μₜ₋₁ * fft.t(n)); Ĉₜ₋₁[n] = 2 * Γ₀ / (pow(μₜ₋₁, 2) + pow(fft.ν(n), 2)) / (1 + pow(τ₀ * fft.ν(n), 2)); Ȓₜ₋₁[n] = 1.0 / (μₜ₋₁ + 1i * fft.ν(n)); } } else { logFourierLoad(Cₜ₋₁, Rₜ₋₁, Ĉₜ₋₁, Ȓₜ₋₁, p, s, λ, τ₀, β₀, log2n, Δτ, k); μₜ₋₁ = estimateZ(fft, Cₜ₋₁, Ĉₜ₋₁, Rₜ₋₁, Ȓₜ₋₁, p, s, λ, τ₀, β₀); } std::vector Cₜ = Cₜ₋₁; std::vector Rₜ = Rₜ₋₁; std::vector Ĉₜ = Ĉₜ₋₁; std::vector Ȓₜ = Ȓₜ₋₁; Real μₜ = μₜ₋₁; Real β = β₀ + Δβ; while (β < βₘₐₓ) { Real γ = γ₀; Real ΔCmin = 1000; Real ΔCₜ = 100; unsigned stepsDown = 0; unsigned stepsUp = 0; while (ΔCₜ > ε) { auto [RddfCt, dfCt] = RddfCtdfCt(fft, Cₜ, Rₜ, p, s, λ); std::vector Ĉₜ₊₁(N); std::vector Ȓₜ₊₁(N); for (unsigned n = 0; n < N; n++) { Ȓₜ₊₁[n] = (1.0 + pow(β, 2) * RddfCt[n] * Ȓₜ[n]) / (μₜ + 1i * fft.ν(n)); Ĉₜ₊₁[n] = (2 * Γ₀ * std::conj(Ȓₜ[n]) / (1 + pow(τ₀ * fft.ν(n), 2)) + pow(β, 2) * (RddfCt[n] * Ĉₜ[n] + dfCt[n] * std::conj(Ȓₜ[n]))) / (μₜ + 1i * fft.ν(n)); } std::vector Rₜ₊₁ = fft.inverse(Ȓₜ₊₁); std::vector Cₜ₊₁ = fft.inverse(Ĉₜ₊₁); μₜ *= pow(tanh(Cₜ₊₁[0]-1)+1, 0.05); ΔCₜ = 0; for (unsigned i = 0; i < N; i++) { ΔCₜ += std::norm(Ĉₜ[i] - Ĉₜ₊₁[i]); ΔCₜ += std::norm(Ȓₜ[i] - Ȓₜ₊₁[i]); } ΔCₜ = sqrt(ΔCₜ) / (2*N); if (ΔCₜ < ΔCmin) { ΔCmin = ΔCₜ; stepsUp = 0; stepsDown++; } else { stepsDown = 0; stepsUp++; } if (stepsUp > stepsToRespond) { γ = std::max(γ/2, 1e-4); stepsUp = 0; } if (stepsDown > stepsToRespond) { γ = std::min(2*γ, 1.0); stepsDown = 0; } for (unsigned i = 0; i < N; i++) { Cₜ[i] += γ * (Cₜ₊₁[i] - Cₜ[i]); Rₜ[i] += γ * (Rₜ₊₁[i] - Rₜ[i]); Ĉₜ[i] += γ * (Ĉₜ₊₁[i] - Ĉₜ[i]); Ȓₜ[i] += γ * (Ȓₜ₊₁[i] - Ȓₜ[i]); } std::cerr << "\x1b[2K" << "\r"; std::cerr << β << " " << μₜ << " " << ΔCₜ << " " << γ << " " << Cₜ[0]; } if (std::isnan(Cₜ[0])) { γ₀ /= 2; Cₜ = Cₜ₋₁; Rₜ = Rₜ₋₁; Ĉₜ = Ĉₜ₋₁; Ȓₜ = Ȓₜ₋₁; μₜ = μₜ₋₁; } else { Real E = energy(fft, Cₜ, Rₜ, p, s, λ, β); std::cerr << "\x1b[2K" << "\r"; std::cerr << β << " " << μₜ << " " << Ĉₜ[0].real() << " " << E << " " << γ << std::endl; logFourierSave(Cₜ, Rₜ, Ĉₜ, Ȓₜ, p, s, λ, τ₀, β, log2n, Δτ, k); β += Δβ; Cₜ₋₁ = Cₜ; Rₜ₋₁ = Rₜ; Ĉₜ₋₁ = Ĉₜ; Ȓₜ₋₁ = Ȓₜ; μₜ₋₁ = μₜ; } } return 0; }