#include "log-fourier.hpp" #include "p-spin.hpp" #include #include int main(int argc, char* argv[]) { /* Model parameters */ unsigned p = 2; unsigned s = 2; Real λ = 0.5; Real τ₀ = 0; /* Log-Fourier parameters */ unsigned log2n = 8; Real Δτ = 0.1; Real k = 0.1; /* Iteration parameters */ Real ε = 1e-13; Real γ = 1; Real βₘₐₓ = 0.7; Real Δβ = 0.01; int opt; while ((opt = getopt(argc, argv, "p:s:2:T:t:b:d:g:k:D:")) != -1) { switch (opt) { case 'p': p = atoi(optarg); break; case 's': s = atoi(optarg); break; case '2': log2n = atoi(optarg); break; case 't': τ₀ = atof(optarg); break; case 'b': βₘₐₓ = atof(optarg); break; case 'd': Δβ = atof(optarg); break; case 'g': γ = atof(optarg); break; case 'k': k = atof(optarg); break; case 'D': Δτ = atof(optarg); break; default: exit(1); } } unsigned N = pow(2, log2n); LogarithmicFourierTransform fft(N, k, Δτ, 4); Real Γ₀ = 1.0; Real μ = Γ₀; if (τ₀ > 0) { μ = (sqrt(1+4*Γ₀*τ₀)-1)/(2*τ₀); } std::vector Cₜ₋₁(N); std::vector Rₜ₋₁(N); std::vector Ĉₜ₋₁(N); std::vector Ȓₜ₋₁(N); /* Start from the exact solution for β = 0 */ for (unsigned n = 0; n < N; n++) { if (τ₀ > 0) { Cₜ₋₁[n] = Γ₀ * (exp(-μ * fft.t(n)) - μ * τ₀ * exp(-fft.t(n) / τ₀)) / (μ - pow(μ, 3) * pow(τ₀, 2)); } else { Cₜ₋₁[n] = Γ₀ * exp(-μ * fft.t(n)) / μ; } Rₜ₋₁[n] = exp(-μ * fft.t(n)); Ĉₜ₋₁[n] = 2 * Γ₀ / (pow(μ, 2) + pow(fft.ν(n), 2)) / (1 + pow(τ₀ * fft.ν(n), 2)); Ȓₜ₋₁[n] = 1.0 / (μ + 1i * fft.ν(n)); } std::vector Cₜ = Cₜ₋₁; std::vector Rₜ = Rₜ₋₁; std::vector Ĉₜ = Ĉₜ₋₁; std::vector Ȓₜ = Ȓₜ₋₁; Real fac = 1; Real β = 0; while (β < βₘₐₓ) { Real μ₁ = 0; Real μ₂ = 0; while (true) { Real ΔC = 100; Real ΔC₀ = 100; unsigned it = 0; while (ΔC > ε) { std::vector dfC(N); std::vector RddfC(N); for (unsigned n = 0; n < N; n++) { RddfC[n] = Rₜ[n] * ddf(λ, p, s, Cₜ[n]); dfC[n] = df(λ, p, s, Cₜ[n]); } std::vector RddfCt = fft.fourier(RddfC, false); std::vector dfCt = fft.fourier(dfC, true); std::vector Ȓₜ₊₁(N); std::vector Ĉₜ₊₁(N); for (unsigned n = 0; n < N; n++) { Ȓₜ₊₁[n] = (1.0 + pow(β, 2) * RddfCt[n] * Ȓₜ[n]) / (μ + 1i * fft.ν(n)); Ĉₜ₊₁[n] = - 2 * Γ₀ * Ȓₜ₊₁[n].imag() / (1 + pow(τ₀ * fft.ν(n), 2)) / fft.ν(n); // Ĉₜ₊₁[n] = (2 * Γ₀ * std::conj(Ȓₜ[n]) / (1 + pow(τ₀ * fft.ν(n), 2)) + pow(β, 2) * (RddfCt[n] * Ĉₜ[n] + dfCt[n] * std::conj(Ȓₜ[n]))) / (μ + 1i * fft.ν(n)); } std::vector Rₜ₊₁ = fft.inverse(Ȓₜ₊₁); std::vector Cₜ₊₁ = fft.inverse(Ĉₜ₊₁); ΔC = 0; for (unsigned i = 0; i < N; i++) { ΔC += std::norm(Ĉₜ[i] - Ĉₜ₊₁[i]); ΔC += std::norm(Ȓₜ[i] - Ȓₜ₊₁[i]); } ΔC = sqrt(ΔC) / (2*N); for (unsigned i = 0; i < N; i++) { Cₜ[i] += γ * (Cₜ₊₁[i] - Cₜ[i]); Rₜ[i] += γ * (Rₜ₊₁[i] - Rₜ[i]); Ĉₜ[i] += γ * (Ĉₜ₊₁[i] - Ĉₜ[i]); Ȓₜ[i] += γ * (Ȓₜ₊₁[i] - Ȓₜ[i]); } /* if (ΔC < ΔC₀) { ΔC₀ = ΔC; it = 0; γ = std::min(1.001 * γ, 1.0); } else { it++; } if (it > 100) { γ = std::max(0.5 * γ, 1e-3); it = 0; ΔC₀ = ΔC; } */ std::cerr << β << " " << μ << " " << ΔC << " " << γ << " " << Cₜ[0]; std::cerr << "\r"; } if (std::isnan(Cₜ[0])) { Cₜ = Cₜ₋₁; Rₜ = Rₜ₋₁; Ĉₜ = Ĉₜ₋₁; Ȓₜ = Ȓₜ₋₁; μ *= 2; fac /= 2; μ₁ = 0; μ₂ = 0; } else { if (pow(Cₜ[0] - 1, 2) < ε) { break; } if (μ₁ == 0 || μ₂ == 0) { if (Cₜ[0] > 1 && μ₁ == 0) { /* We found a lower bound */ μ₁ = μ; } if (Cₜ[0] < 1 && μ₂ == 0) { /* We found an upper bound */ μ₂ = μ; } μ *= sqrt(sqrt(fac*std::tanh(Cₜ[0]-1)+1)); } else { /* Once the bounds are set, we can use bisection */ if (Cₜ[0] > 1) { μ₁ = μ; } else { μ₂ = μ; } μ = (μ₁ + μ₂) / 2; } } } /* Integrate the energy using Simpson's rule */ Real E = 0; for (unsigned n = 0; n < N/2-1; n++) { Real h₂ₙ = fft.t(2*n+1) - fft.t(2*n); Real h₂ₙ₊₁ = fft.t(2*n+2) - fft.t(2*n+1); Real f₂ₙ = Rₜ[2*n] * df(λ, p, s, Cₜ[2*n]); Real f₂ₙ₊₁ = Rₜ[2*n+1] * df(λ, p, s, Cₜ[2*n+1]); Real f₂ₙ₊₂ = Rₜ[2*n+2] * df(λ, p, s, Cₜ[2*n+2]); E += (h₂ₙ + h₂ₙ₊₁) / 6 * ( (2 - h₂ₙ₊₁ / h₂ₙ) * f₂ₙ + pow(h₂ₙ + h₂ₙ₊₁, 2) / (h₂ₙ * h₂ₙ₊₁) * f₂ₙ₊₁ + (2 - h₂ₙ / h₂ₙ₊₁) * f₂ₙ₊₂ ); } E *= β; std::cerr << β << " " << μ << " " << Ĉₜ[0].real() << " " << E << " " << γ << std::endl; β += Δβ; Cₜ₋₁ = Cₜ; Rₜ₋₁ = Rₜ; Ĉₜ₋₁ = Ĉₜ; Ȓₜ₋₁ = Ȓₜ; } for (unsigned i = 0; i < N; i++) { std::cout << fft.t(i) << " " << Cₜ[i] << std::endl; } return 0; }