#include "log-fourier.hpp" #include "p-spin.hpp" #include #include int main(int argc, char* argv[]) { /* Model parameters */ unsigned p = 2; unsigned s = 2; Real λ = 0.5; Real τ₀ = 0; /* Log-Fourier parameters */ unsigned log2n = 8; Real Δτ = 0.1; Real k = 0.1; /* Iteration parameters */ Real ε = 1e-14; Real γ₀ = 1; Real x = 0.5; Real β₀ = 0; Real βₘₐₓ = 0.7; Real Δβ = 0.01; bool loadData = false; unsigned stepsToRespond = 1000; unsigned pad = 4; int opt; while ((opt = getopt(argc, argv, "p:s:2:T:t:b:d:g:k:D:e:0:lS:x:P:")) != -1) { switch (opt) { case 'p': p = atoi(optarg); break; case 's': s = atoi(optarg); break; case '2': log2n = atoi(optarg); break; case 't': τ₀ = atof(optarg); break; case 'b': βₘₐₓ = atof(optarg); break; case 'd': Δβ = atof(optarg); break; case 'g': γ₀ = atof(optarg); break; case 'k': k = atof(optarg); break; case 'D': Δτ = atof(optarg); break; case 'e': ε = atof(optarg); break; case '0': β₀ = atof(optarg); break; case 'x': x = atof(optarg); break; case 'P': pad = atoi(optarg); break; case 'l': loadData = true; break; case 'S': stepsToRespond = atoi(optarg); break; default: exit(1); } } unsigned N = pow(2, log2n); LogarithmicFourierTransform fft(N, k, Δτ, pad); Real Γ₀ = 1; Real μₜ₋₁ = Γ₀; if (τ₀ > 0) { μₜ₋₁ = (sqrt(1+4*Γ₀*τ₀)-1)/(2*τ₀); } std::vector Cₜ₋₁(N); std::vector Rₜ₋₁(N); std::vector Γ(N); std::vector Ĉₜ₋₁(N); std::vector Ȓₜ₋₁(N); if (!loadData) { /* Start from the exact solution for β = 0 */ for (unsigned n = 0; n < N; n++) { if (τ₀ > 0) { if (τ₀ == 2) { Cₜ₋₁[n] = Γ₀ * exp(-fft.t(n) / 2) * (1 + fft.t(n) / 2); } else { Cₜ₋₁[n] = Γ₀ * (exp(-μₜ₋₁ * fft.t(n)) - μₜ₋₁ * τ₀ * exp(-fft.t(n) / τ₀)) / (μₜ₋₁ - pow(μₜ₋₁, 3) * pow(τ₀, 2)); } } else { Cₜ₋₁[n] = Γ₀ * exp(-μₜ₋₁ * fft.t(n)) / μₜ₋₁; } Rₜ₋₁[n] = exp(-μₜ₋₁ * fft.t(n)); Γ[n] = (Γ₀ / τ₀) * exp(-fft.t(n) / τ₀); Ĉₜ₋₁[n] = 2 * Γ₀ / (pow(μₜ₋₁, 2) + pow(fft.ν(n), 2)) / (1 + pow(τ₀ * fft.ν(n), 2)); Ȓₜ₋₁[n] = (Real)1.0 / (μₜ₋₁ + II * fft.ν(n)); } } else { logFourierLoad(Cₜ₋₁, Rₜ₋₁, Ĉₜ₋₁, Ȓₜ₋₁, p, s, λ, τ₀, β₀, log2n, Δτ, k); μₜ₋₁ = estimateZ(fft, Cₜ₋₁, Ĉₜ₋₁, Rₜ₋₁, Ȓₜ₋₁, p, s, λ, τ₀, β₀); } std::vector Cₜ = Cₜ₋₁; std::vector Rₜ = Rₜ₋₁; std::vector Ĉₜ = Ĉₜ₋₁; std::vector Ȓₜ = Ȓₜ₋₁; Real μₜ = μₜ₋₁; Real β = β₀ + Δβ; while (β < βₘₐₓ) { Real γ = γ₀; Real ΔCmin = 1000; Real ΔCₜ = 100; unsigned stepsUp = 0; while (ΔCₜ > ε) { std::vector RddfC(N); std::vector dfC(N); for (unsigned i = 0; i < N; i++) { RddfC[i] = Rₜ[i] * ddf(λ, p, s, Cₜ[i]); dfC[i] = df(λ, p, s, Cₜ[i]); } std::vector dC(N); std::vector dR(N); for (unsigned i = 0; i < N; i++) { dC[i] += -μₜ * Cₜ[i]; dR[i] += -μₜ * Rₜ[i]; for (unsigned j = 1; j < N - i; j++) { Real Γᵢ₊ⱼ = (Γ[i + j] + Γ[i + j - 1]) / 2; signed jR = round(log(fft.t(i+j) - fft.t(i)) / Δτ) + N / 2; Real Rⱼ = jR >= N ? 0 : jR < 0 ? 1 : Rₜ[jR]; Real Cⱼ = jR >= N ? 0 : jR < 0 ? 1 : Cₜ[jR]; Real ΓR2 = Γᵢ₊ⱼ * Rⱼ; Real dfCR = (dfC[i + j] * Rⱼ + dfC[i + j - 1] * Rⱼ) / 2; Real RddfCC = (RddfC[i + j] * Cⱼ + RddfC[i + j - 1] * Cⱼ) / 2; dC[i] += (fft.t(i+j) - fft.t(i+j - 1)) * (ΓR2 + pow(β, 2) * (dfCR + RddfCC)); } for (unsigned j = 1; j < i; j++) { signed jR = round(log(fft.t(i) - fft.t(i-j)) / Δτ) + N / 2; Real Rⱼ = jR >= N ? 0 : jR < 0 ? 1 : Rₜ[jR]; Real Cⱼ = jR >= N ? 0 : jR < 0 ? 1 : Cₜ[jR]; dC[i] += (fft.t(i-j) - fft.t(i-j - 1)) * pow(β, 2) * (RddfC[i - 1 - j] * Cⱼ + RddfC[i - 1 - j+1] * Cⱼ) / 2; dR[i] += (fft.t(i-j) - fft.t(i-j - 1)) * pow(β, 2) * (RddfC[i - 1 - j] * Rⱼ + RddfC[i - 1 - j+1] * Rⱼ) / 2; } if (dC[i] > 0) dC[i] = 0; if (dR[i] > 0) dR[i] = 0; } std::vector Rₜ₊₁(N); std::vector Cₜ₊₁(N); Rₜ₊₁[0] = 1; Cₜ₊₁[N - 1] = 0; for (unsigned i = 1; i < N; i++) { Cₜ₊₁[N - 1 - i] = Cₜ₊₁[N - i] - (fft.t(N - i) - fft.t(N - i - 1)) * (dC[N - i] + dC[N - 1 - i]) / 2; Rₜ₊₁[i] = Rₜ₊₁[i - 1] + (fft.t(i) - fft.t(i - 1)) * (dR[i - 1] + dR[i]) / 2; } μₜ /= pow(tanh(Cₜ₊₁[0]-1)+1, x); Real C₀ = Cₜ₊₁[0]; for (unsigned i = 0; i < N; i++) { Rₜ₊₁[i] = Rₜ₊₁[i] < 0 ? 0 : Rₜ₊₁[i]; } ΔCₜ = 0; for (unsigned i = 0; i < N; i++) { ΔCₜ += std::norm(Cₜ[i] - Cₜ₊₁[i]); ΔCₜ += std::norm(Rₜ[i] - Rₜ₊₁[i]); } ΔCₜ = sqrt(ΔCₜ) / (2*N); if (ΔCₜ < 0.9 * ΔCmin) { ΔCmin = ΔCₜ; stepsUp = 0; } else { stepsUp++; } if (stepsUp > stepsToRespond) { γ = std::max(γ/2, (Real)1e-4); stepsUp = 0; ΔCmin = ΔCₜ; } for (unsigned i = 0; i < N; i++) { Cₜ[i] += γ * (Cₜ₊₁[i] - Cₜ[i]); Rₜ[i] += γ * (Rₜ₊₁[i] - Rₜ[i]); } std::cerr << "\x1b[2K" << "\r"; std::cerr << β << " " << μₜ << " " << ΔCₜ << " " << γ << " " << Cₜ[0]; } if (std::isnan(Cₜ[0])) { γ₀ /= 2; Cₜ = Cₜ₋₁; Rₜ = Rₜ₋₁; μₜ = μₜ₋₁; } else { Real E = energy(fft, Cₜ, Rₜ, p, s, λ, β); std::cerr << "\x1b[2K" << "\r"; std::cerr << β << " " << μₜ << " " << Ĉₜ[0].real() << " " << E << " " << γ << std::endl; logFourierSave(Cₜ, Rₜ, Ĉₜ, Ȓₜ, p, s, λ, τ₀, β, log2n, Δτ, k); β += Δβ; Cₜ₋₁ = Cₜ; Rₜ₋₁ = Rₜ; μₜ₋₁ = μₜ; } } return 0; }