#include #include #include #include "pcg-cpp/include/pcg_random.hpp" #include "randutils/randutils.hpp" #include "eigen/Eigen/Dense" using Rng = randutils::random_generator; using Real = double; using Vector = Eigen::Matrix; Vector normalizeVector(const Vector& x) { return x * sqrt(x.size() / x.squaredNorm()); } Vector randomVector(unsigned N, Rng& r, Real σ = 1) { Vector v(N); for (Real& vᵢ : v) { vᵢ = r.variate(0, σ); } return v; } Vector projectionOfOn(const Vector& v, const Vector& u) { return (v.dot(u) / u.squaredNorm()) * u; } Real wignerCDF(Real λ) { return 0.5 + (λ * sqrt(4 - pow(λ, 2)) / 4 + atan(λ / sqrt(4 - pow(λ, 2)))) / M_PI; } Real wignerInverse(Real p, Real ε = 1e-14) { Real a = -2; Real b = 2; while (b - a > ε) { Real c = (a + b) / 2; if ((wignerCDF(a) - p) * (wignerCDF(c) - p) > 0) { a = c; } else { b = c; } } return (a + b) / 2; } class QuadraticModel { private: Vector J; public: unsigned N; QuadraticModel(unsigned N, Rng& r) : J(N), N(N) { for (Real& Jᵢ : J) { Jᵢ = wignerInverse(r.uniform(0.0, 1.0)); } } Real H(const Vector& x) const { return 0.5 * (J.cwiseProduct(x)).dot(x); } Vector ∇H(const Vector& x) const { Vector ∂H = J.cwiseProduct(x); return ∂H - projectionOfOn(∂H, x); } }; Vector gradientDescent(const QuadraticModel& M, const Vector& x₀, Real E, Real ε = 1e-14) { Vector xₜ = x₀; Real Hₜ = M.H(x₀); Real α = 1.0 / M.N; Real m; Vector ∇H; while ( ∇H = (Hₜ / M.N - E) * M.∇H(xₜ) / M.N, m = ∇H.squaredNorm(), m > ε ) { Vector xₜ₊₁; Real Hₜ₊₁; while ( xₜ₊₁ = normalizeVector(xₜ - α * ∇H), Hₜ₊₁ = M.H(xₜ₊₁), pow(Hₜ₊₁ / M.N - E, 2) > pow(Hₜ / M.N - E, 2) - α * m ) { α /= 2; } xₜ = xₜ₊₁; Hₜ = Hₜ₊₁; α *= 1.25; } return xₜ; } Vector randomStep(const QuadraticModel& M, const Vector& x₀, Real E, Rng& r, Real Δt = 1e-4) { Vector η = randomVector(M.N, r, sqrt(2 * Δt)); η -= projectionOfOn(η, x₀); η -= projectionOfOn(η, M.∇H(x₀)); return gradientDescent(M, normalizeVector(x₀ + η), E); } int main(int argc, char* argv[]) { unsigned N = 10; Real T = 10; Real T₀ = 2; Real E = 0; Real Δt = 1e-4; int opt; while ((opt = getopt(argc, argv, "N:E:T:t:I:")) != -1) { switch (opt) { case 'N': N = (unsigned)atof(optarg); break; case 'E': E = atof(optarg); break; case 'T': T = atof(optarg); break; case 'I': T₀ = atof(optarg); break; case 't': Δt = atof(optarg); break; default: exit(1); } } Rng r; QuadraticModel model(N, r); Vector x₀ = normalizeVector(randomVector(N, r)); x₀ = gradientDescent(model, x₀, E); std::cout << std::setprecision(15); for (Real t = 0; t < T₀; t += Δt) { x₀ = randomStep(model, x₀, E, r, Δt); } Vector x = x₀; for (Real t = 0; t < T; t += Δt) { std::cout << t << " " << x.dot(x₀) / N << std::endl; x = randomStep(model, x, E, r, Δt); } return 0; }