#include #include #include "randutils/randutils.hpp" #include "pcg-cpp/include/pcg_random.hpp" #include "blossom5-v2.05.src/PerfectMatching.h" using Rng = randutils::random_generator; using Real = long double; class AztecDiamond { public: using Coordinate = std::array; typedef struct Vertex { unsigned index; Coordinate coordinate; } Vertex; typedef struct Edge { Vertex* tail; Vertex* head; Real weight; std::stack weights; Real probability = 0; } Edge; private: std::tuple face(unsigned i, unsigned j) { unsigned x0 = n - i; unsigned x = x0 + 2 * (j % i); unsigned y = x0 + 2 * (j / i); Edge& e1 = edges[2 * n * y + x]; Edge& e2 = edges[2 * n * y + x + 1]; Edge& e3 = edges[2 * n * (y + 1) + x]; Edge& e4 = edges[2 * n * (y + 1) + x + 1]; return {e1, e2, e3, e4}; } public: unsigned n; std::vector vertices; std::vector edges; AztecDiamond(int n) : n(n), vertices(2 * n * (n + 1)), edges(pow(2 * n, 2)) { unsigned M = vertices.size() / 2; for (int i = 0; i < M; i++) { vertices[i].index = i; vertices[M + i].index = M + i; vertices[i].coordinate = {2 * (i % (n + 1)), 2 * (i / (n + 1)) + 1}; vertices[M + i].coordinate = {2 * (i % n) + 1, 2 * (i / n)}; } for (unsigned i = 0; i < edges.size(); i++) { edges[i].tail = &vertices[(1 + (i % (2 * n))) / 2 + (n + 1) * ((i / 4) / n)]; edges[i].head = &vertices[M + (i % (2 * n)) / 2 + n * (((i + 2 * n) / 4) / n)]; } } void setWeights(Rng& r) { for (Edge& e : edges) { e.weight = r.variate(1); } } void computeWeights(Real T) { for (Edge& e : edges) { e.weights.push(exp(-e.weight / T)); } for (unsigned i = n; i > 0; i--) { #pragma omp parallel for for (unsigned j = 0; j < pow(i, 2); j++) { auto [e1, e2, e3, e4] = face(i, j); Real w = e1.weights.top(); Real x = e2.weights.top(); Real y = e3.weights.top(); Real z = e4.weights.top(); Real cellFactor = w * z + x * y; e1.weights.push(z / cellFactor); e2.weights.push(y / cellFactor); e3.weights.push(x / cellFactor); e4.weights.push(w / cellFactor); } } // This process computes one extra weight per edge. for (Edge& e : edges) { e.weights.pop(); } } Real computeProbabilities() { // destroys *all* weights for (Edge& e : edges) { e.probability = 0; } Real logPartitionFunction = 0; for (unsigned i = 1; i <= n; i++) { #pragma omp parallel for reduction(+:logPartitionFunction) for (unsigned j = 0; j < pow(i, 2); j++) { auto [e1, e2, e3, e4] = face(i, j); Real p = e1.probability; Real q = e2.probability; Real r = e3.probability; Real s = e4.probability; Real w = e1.weights.top(); Real x = e2.weights.top(); Real y = e3.weights.top(); Real z = e4.weights.top(); Real cellFactor = w * z + x * y; Real deficit = 1 - p - q - r - s; e1.probability = s + deficit * w * z / cellFactor; e2.probability = r + deficit * x * y / cellFactor; e3.probability = q + deficit * x * y / cellFactor; e4.probability = p + deficit * w * z / cellFactor; e1.weights.pop(); e2.weights.pop(); e3.weights.pop(); e4.weights.pop(); logPartitionFunction += log(cellFactor); } } return logPartitionFunction; } };