From 354ce22553f817b6bcabd51502496250396cc4f3 Mon Sep 17 00:00:00 2001 From: Jaron Kent-Dobias Date: Wed, 23 Aug 2023 23:40:41 +0200 Subject: No widetext in this context. --- when_annealed.tex | 2 -- 1 file changed, 2 deletions(-) (limited to 'when_annealed.tex') diff --git a/when_annealed.tex b/when_annealed.tex index d0323de..60e75c1 100644 --- a/when_annealed.tex +++ b/when_annealed.tex @@ -241,7 +241,6 @@ by extremizing an effective action, &\quad=\mathop{\mathrm{extremum}}_{q_1,x}\mathcal S_{\oldstylenums1\textsc{rsb}}(q_1,x\mid E,\mu) \end{align} for the action $\mathcal S_{\oldstylenums1\textsc{rsb}}$ given by \eqref{eq:1rsb.action}. -\begin{widetext} \begin{equation} \label{eq:1rsb.action} \begin{aligned} &\mathcal S_{\oldstylenums1\textsc{rsb}}(q_1,x\mid E,\mu) @@ -275,7 +274,6 @@ where $\Delta x=1-x$ and -\log\left(\left|\frac{\mu}{\mu_\text m}\right|-\sqrt{\big(\frac\mu{\mu_\text m}\big)^2-1}\right) & \mu^2>\mu_\text m^2 \end{cases} \end{equation} -\end{widetext} The details of the derivation of these expressions can be found in \cite{Kent-Dobias_2023_How}. The extremal problem in $\hat\beta$, $r_\mathrm d$, $r_1$, $d_\mathrm d$, and $d_1$ has a unique solution and can be found explicitly, but the resulting -- cgit v1.2.3-70-g09d2