From 08ba6a632cf36ff5bf16bc024770e9bf0bf282ed Mon Sep 17 00:00:00 2001 From: Jaron Kent-Dobias Date: Thu, 30 Jun 2022 14:37:41 +0200 Subject: Some figure work, and some interpretation work. --- frsb_kac-rice.tex | 49 +++++++++++++++++++++++++++++++++++++++++++++---- 1 file changed, 45 insertions(+), 4 deletions(-) (limited to 'frsb_kac-rice.tex') diff --git a/frsb_kac-rice.tex b/frsb_kac-rice.tex index 0896da4..180798a 100644 --- a/frsb_kac-rice.tex +++ b/frsb_kac-rice.tex @@ -497,10 +497,7 @@ E\rangle_2$. \begin{figure} - \centering - \includegraphics{figs/316_complexity_contour_1.pdf} - \hfill - \includegraphics{figs/316_complexity_contour_2.pdf} + \includegraphics{figs/316_complexity.pdf} \caption{ Complexity of dominant saddles (blue), marginal minima (yellow), and @@ -512,6 +509,13 @@ E\rangle_2$. } \label{fig:2rsb.complexity} \end{figure} +\begin{figure} + \centering + \includegraphics{figs/316_complexity_contour_1.pdf} + \hfill + \includegraphics{figs/316_complexity_contour_2.pdf} +\end{figure} + \begin{figure} \centering \begin{minipage}{0.7\textwidth} @@ -633,6 +637,43 @@ for different energies and typical vs minima. \section{Interpretation} +\begin{equation} + H(s)-h^Ts+g\xi^Ts +\end{equation} +Let $\langle A\mid\epsilon,\mu\rangle$ be average over stationary points with given $\epsilon$ and $\mu$, i.e., +\begin{equation} + \langle A\mid\epsilon,\mu\rangle + =\frac1{\mathcal N} + \int d\nu(s\mid\epsilon,\mu)\,A(s) +\end{equation} +with +\begin{equation} + d\nu(s\mid\epsilon,\mu)=ds\,\delta(N\epsilon-H(s))\delta(\partial H(s)+\mu s)|\det(\partial\partial H(s)+\mu I)| +\end{equation} +\begin{equation} + \frac1N\|\langle s\mid\epsilon,\mu\rangle\|^2 + =\lim_{n\to0}\int\prod_\alpha^nd\nu(s_\alpha\mid\epsilon,\mu)\,\left(\frac1{n(n-1)}\sum_{\alpha\neq\beta}\frac{s_\alpha^Ts_\beta}N\right) + =\lim_{n\to0}\frac1{n(n-1)}\left\langle\sum_{a\neq b}^nC_{ab}\right\rangle + =\int_0^1 dx\,c(x) +\end{equation} + +\begin{equation} + \frac1N\sum_i\frac{\partial\langle s_i\rangle}{\partial h_i} + =\lim_{n\to0}\int\prod_\alpha^nd\nu(s_\alpha)\,\left(\frac1n\sum_{\alpha\beta}-i\frac{\hat s_\alpha^Ts_\beta}N\right) + =\lim_{n\to0}\frac1n\left\langle\sum_{\alpha\beta}R_{\alpha\beta}\right\rangle + =r_d-\int_0^1dx\,r(x) +\end{equation} + +\begin{equation} + \begin{aligned} + \lim_{g\to0}\overline{\frac{\partial^2\Sigma}{\partial g^2}} + =\frac1N\lim_{g\to0}\lim_{n\to0}\frac1n\overline{\int\prod_\alpha d\nu(s_\alpha)\left(\sum_\alpha i\xi^T\hat s_\alpha\right)^2} + =\lim_{n\to0}\frac1n\int\prod_\alpha d\nu(s_\alpha)\left(\sum_{ab}-\frac{\hat s_a^T\hat s_b}N\right) \\ + =-\lim_{n\to0}\frac1n\left\langle\sum_{ab}D_{ab}\right\rangle + =-d_d+\int_0^1dx\,d(x) + \end{aligned} +\end{equation} + The meaning of $R_{ab}$ is that of a response of replica $a$ to a linear field in replica $b$: -- cgit v1.2.3-70-g09d2