\documentclass[fleqn]{article} \usepackage{fullpage,amsmath,amssymb,latexsym} \begin{document} \section{Equilibrium} \begin{equation} \beta F=\frac12\lim_{n\to0}\frac1n\left(\beta^2\sum_{ab}f(Q_{ab})+\log\det Q\right)-\frac12\log S_\infty \end{equation} $\log S_\infty=1+\log2\pi$. \begin{align*} \beta F= -\frac12\log S_\infty+ \frac12\lim_{n\to0}\frac1n\left(\beta^2nf(1)+\beta^2\sum_{i=0}^kn(x_i-x_{i+1})f(q_i) +\log\left[ \frac{ 1+\sum_{i=0}^k(x_i-x_{i+1})q_i }{ 1+\sum_{i=1}^k(x_i-x_{i+1})q_i-x_1q_0 } \right]\right.\\ +\frac n{x_1}\log\left[ 1+\sum_{i=1}^k(x_i-x_{i+1})q_i-x_1q_0 \right]\\ \left.+\sum_{j=1}^kn(x_{j+1}^{-1}-x_j^{-1})\log\left[ 1+\sum_{i=j+1}^k(x_i-x_{i+1})q_i-x_{j+1}q_j \right] \right) \end{align*} \begin{align*} \lim_{n\to0}\frac1n \log\left[ \frac{ 1+\sum_{i=0}^k(x_i-x_{i+1})q_i }{ 1+\sum_{i=1}^k(x_i-x_{i+1})q_i-x_1q_0 } \right] &= \lim_{n\to0}\frac1n \log\left[ \frac{ 1+\sum_{i=0}^k(x_i-x_{i+1})q_i }{ 1+\sum_{i=0}^k(x_i-x_{i+1})q_i-nq_0 } \right] \\ &=q_0\left(1+\sum_{i=0}^k(x_i-x_{i+1})q_i\right)^{-1} \end{align*} \begin{align*} \beta F= -\frac12\log S_\infty+ \frac12\left(\beta^2f(1)+\beta^2\sum_{i=0}^k(x_i-x_{i+1})f(q_i) +q_0\left(1+\sum_{i=0}^k(x_i-x_{i+1})q_i\right)^{-1}\right. \\ +\frac1{x_1}\log\left[ 1+\sum_{i=1}^{k}(x_i-x_{i+1})q_i-x_1q_0 \right]\\ \left.+\sum_{j=1}^k(x_{j+1}^{-1}-x_j^{-1})\log\left[ 1+\sum_{i=j+1}^{k}(x_i-x_{i+1})q_i-x_{j+1}q_j \right] \right) \end{align*} $q_0=0$ \begin{align*} \beta F= -\frac12\log S_\infty+ \frac12\left(\beta^2f(1)+\beta^2\sum_{i=0}^k(x_i-x_{i+1})f(q_i) +\frac1{x_1}\log\left[ 1+\sum_{i=1}^{k}(x_i-x_{i+1})q_i \right]\right.\\ \left.+\sum_{j=1}^k(x_{j+1}^{-1}-x_j^{-1})\log\left[ 1+\sum_{i=j+1}^{k}(x_i-x_{i+1})q_i-x_{j+1}q_j \right] \right) \end{align*} $x_i=\tilde x_ix_k$, $x_k=y/\beta$, $q_k=1-z/\beta$ \begin{align*} \beta F= -\frac12\log S_\infty+ \frac12\left(\beta^2f(1)+\beta^2(y\beta^{-1}-1)f(1-z\beta^{-1})+y\beta\sum_{i=0}^{k-1}(\tilde x_i-\tilde x_{i+1})f(q_i)\right. \\ +\frac\beta{\tilde x_1 y}\log\left[ y\sum_{i=1}^{k-1}(\tilde x_i-\tilde x_{i+1})q_i+y+z-yz/\beta \right]\\ +\sum_{j=1}^{k-1}\frac\beta y(\tilde x_{j+1}^{-1}-\tilde x_j^{-1})\log\left[ y\sum_{i=j+1}^{k-1}(\tilde x_i-\tilde x_{i+1})q_i+y+z-yz/\beta-y\tilde x_{j+1}q_j \right]\\ \left.-\frac\beta{\tilde x_1 y}\log\beta-\sum_{j=1}^{k-1}\frac\beta y(\tilde x_{j+1}^{-1}-\tilde x_j^{-1})\log\beta+(1-\beta y^{-1})\log\left[ z/\beta \right] \right) \end{align*} \begin{align*} \lim_{\beta\to\infty}F= \frac12\left(yf(1)+zf'(1)+y\sum_{i=0}^{k-1}(\tilde x_i-\tilde x_{i+1})f(q_i) +\frac1{\tilde x_1 y}\log\left[ y\sum_{i=1}^{k-1}(\tilde x_i-\tilde x_{i+1})q_i+y+z \right]\right.\\ \left.+\sum_{j=1}^{k-1}\frac1 y(\tilde x_{j+1}^{-1}-\tilde x_j^{-1})\log\left[ y\sum_{i=j+1}^{k-1}(\tilde x_i-\tilde x_{i+1})q_i+y+z-y\tilde x_{j+1}q_j \right] -\frac1y\log z \right) \end{align*} $F$ is a $k-1$ RSB ansatz with all eigenvalues scaled by $y$ and shifted by $z$. $\tilde x_0=0$ and $\tilde x_k=1$. \begin{equation} \label{eq:ground.state.free.energy} \lim_{\beta\to\infty}F=\lim_{n\to0}\frac1n\frac12\left(nzf'(1)+y\sum_{ab}f(\tilde Q_{ab})+\frac1y\log\det(yz^{-1}\tilde Q+I) \right) \end{equation} \section{Kac-Rice} \begin{align*} \Sigma =-\epsilon\hat\epsilon+\lim_{n\to0}\frac1n\left( \sum_a\mu(F_{aa}-R_{aa}) +\frac12\sum_{ab}\left[ \hat\epsilon^2f(Q_{ab})+2\hat\epsilon R_{ab}f'(Q_{ab}) +D_{ab}f'(Q_{ab})+R_{ab}^2f''(Q_{ab})-F_{ab}^2f''(Q_{ab}) \right]\right.\\\left. +\frac12\log\det\begin{bmatrix}Q&-iR\\-iR&-D\end{bmatrix} -\log\det F \right) \end{align*} \[ 0=\frac{\partial\Sigma}{\partial R_{ab}} =-\mu\delta_{ab}+\hat\epsilon f'(Q_{ab})+R_{ab}f''(Q_{ab})+\sum_c(R^2-DQ)^{-1}_{ac}R_{cb} \] \[ 0=\frac{\partial\Sigma}{\partial D_{ab}} =\frac12 f'(Q_{ab})-\frac12\sum_c(R^2-DQ)^{-1}_{ac}Q_{cb} \] The second equation implies \[ (R^2-DQ)^{-1}=Q^{-1}f'(Q) \] Insert the diagonal ansatz $R=R_dI$, $D=D_dI$. Then \[ 0=(R_df''(1)-\mu)I+\hat\epsilon f'(Q)+R_d(R_d^2I-D_dQ)^{-1} =(R_df''(1)-\mu)I+\hat\epsilon f'(Q)+R_dQ^{-1}f'(Q) \] and \[ Q^{-1}f'(Q)=(I+D_df'(Q))/R_d^2 \] Substituting the second into the first, we have \[ 0=(R_df''(1)-\mu)I+\hat\epsilon f'(Q)+\frac1{R_d}(I+D_df'(Q)) \] \[ 0=(R_df''(1)-\mu+R_d^{-1})I+(\hat\epsilon+D_d/R_d)f'(Q) \] The only way for this equation to be satisfied off the diagonal for nontrivial $Q$ is for $D_d=-R_d\hat\epsilon$. We therefore have \begin{align*} \Sigma =-\epsilon\hat\epsilon+\lim_{n\to0}\frac1n\left( n\mu(F_d-R_d)+\frac12n\left[ \hat\epsilon R_df'(1)+R_d^2f''(1)-F_d^2f''(1) \right] +\frac12\sum_{ab} \hat\epsilon^2f(Q_{ab}) ]\right.\\\left. +\frac12\log\det(\hat\epsilon R_d^{-1} Q+I) +n\log R_d -n\log F_d \right) \end{align*} Taking the saddle with respect to $\mu$ and $F_d$ yields \[ F_d=R_d \] \[ \mu=R_d^{-1}(1+R_d^2f''(1)) \] and gives \begin{align*} \Sigma =-\epsilon\hat\epsilon+\lim_{n\to0}\frac1n\frac12\left( n \hat\epsilon R_df'(1) +\hat\epsilon^2\sum_{ab} f(Q_{ab}) +\log\det(\hat\epsilon R_d^{-1} Q+I) \right) \end{align*} Finally, setting $0=\Sigma$ gives \[ \epsilon =\lim_{n\to0}\frac1n\frac12\left(nR_df'(1)+\hat\epsilon\sum_{ab} f(Q_{ab}) +\frac1{\hat\epsilon}\log\det(\hat\epsilon R_d^{-1} Q+I) \right) \] which is precisely \eqref{eq:ground.state.free.energy} with $R_d=z$ and $\hat\epsilon=y$. Therefore, a $(k-1)$-RSB ansatz in Kac-Rice will predict the correct ground state energy for a model whose equilibrium state at small temperatures is $k$-RSB. \section{Full} \begin{align*} \lim_{n\to0}\frac1n\log\det(\hat\epsilon R_d^{-1} Q+I) =x_1^{-1}\log\left(\hat\epsilon R_d^{-1}(1-\bar q_k)+1\right)+\int_{q_0^+}^{q_{k-1}}dq\,\mu(q)\log\left[\hat\epsilon R_d^{-1}\lambda(q)+1\right] \end{align*} where \[ \mu(q)=\frac{\partial x^{-1}(q)}{\partial q} \] Integrating by parts, \begin{align*} \lim_{n\to0}\frac1n\log\det(\hat\epsilon R_d^{-1} Q+I) &=x_1^{-1}\log\left(\hat\epsilon R_d^{-1}(1-\bar q_k)+1\right)+\left[x^{-1}(q)\log[\hat\epsilon R_d^{-1}\lambda(q)+1]\right]_{q=q_0^+}^{q=q_{k-1}}-\frac{\hat\epsilon}{R_d}\int_{q_0^+}^{q_{k-1}}dq\,\frac{\lambda'(q)}{x(q)}\frac1{\hat\epsilon R_d^{-1}\lambda(q)+1}\\ &=\log[\hat\epsilon R_d^{-1}\lambda(q_{k-1})+1]+\frac{\hat\epsilon}{R_d}\int_{q_0^+}^{q_{k-1}}dq\,\frac1{\hat\epsilon R_d^{-1}\lambda(q)+1} \end{align*} \begin{align*} \Sigma =-\epsilon\hat\epsilon+ \frac12\hat\epsilon R_df'(1) +\frac12\int_0^1dq\,\left[ \hat\epsilon^2\lambda(q)f''(q) +\frac1{\lambda(q)+R_d/\hat\epsilon} \right] \end{align*} for $\lambda$ concave, monotonic, $\lambda(1)=0$, and $\lambda'(1)=-1$ \[ 0=\frac{\delta\Sigma}{\delta\lambda(q)}=\frac12\hat\epsilon^2f''(q)-\frac12\frac1{(\lambda(q)+R_d/\hat\epsilon)^2} \] \[ \lambda^*(q)=\frac1{\hat\epsilon}\left[f''(q)^{-1/2}-R_d\right] \] We suppose that solutions are given by \begin{equation} \lambda(q)=\begin{cases} \lambda^*(q) & q