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How to count in hierarchical landscapes: A full solution to mean-field complexity1

Jaron Kent-Dobias and Jorge Kurchan2

Laboratoire de Physique de l’Ecole Normale Supérieure, Paris, France3

(Received 5 September 2022; accepted 24 February 2023; published xxxxxxxxxx)5

We derive the general solution for counting the stationary points of mean-field complex landscapes. It
incorporates Parisi’s solution for the ground state, as it should. Using this solution, we count the stationary points
of two models: one with multistep replica symmetry breaking and one with full replica symmetry breaking.
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I. INTRODUCTION10

The computation of the number of metastable states of11

mean-field spin glasses goes back to the beginning of the12

field. Over 40 years ago, Bray and Moore [1] attempted the13

first calculation for the Sherrington–Kirkpatrick model, in a14

paper remarkable for being one of the first applications of15

a replica symmetry breaking (RSB) scheme. As was clear16

when the actual ground state of the model was computed by17

Parisi with a different scheme, the Bray–Moore result was18

not exact, and the problem has been open ever since [2].19

To date, the program of computing the number of stationary20

points—minima, saddle points, and maxima—of mean-field21

complex landscapes has been only carried out for a small22

subset of models, including most notably the (pure) p-spin23

model (p > 2) [3–6] and for similar energy functions inspired1 24

by molecular biology, evolution, and machine learning [7–9].25

In a parallel development, it has evolved into an active field of26

probability theory [10–12].27

In this paper we present what we argue is the gen-28

eral replica ansatz for the number of stationary points of29

generic mean-field models, which we expect to include the30

Sherrington–Kirkpatrick model. It reproduces the Parisi result31

in the limit of small temperature for the lowest states, as it32

should.33

To understand the importance of this computation, con-34

sider the following situation. When one solves the problem of35

spheres in large dimensions, one finds that there is a transition36

at a given temperature to a one-step replica symmetry break-37

ing (1RSB) phase at a Kauzmann temperature, and, at a lower38

temperature, another transition to a full RSB (FRSB) phase39

(see Refs. [13,14], the so-called “Gardner” phase [15]). Now,40

this transition involves the lowest equilibrium states. Because41

they are obviously unreachable at any reasonable timescale, a42

common question is: what is the signature of the Gardner tran-43

sition line for higher than equilibrium energy-densities? This44

is a question whose answers are significant to interpreting the45

results of myriad experiments and simulations [16–25] (see,46

for a review [26]). For example, when studying “jamming” at47

zero temperature, the question is posed as, “On what side of48

the 1RSB–FRSB transition are high-energy (or low-density)49

states reachable dynamically?” One approach to answering50

such questions makes use of “state following,” which tracks51

metastable thermodynamic configurations to their zero tem-52

perature limit [27–31]. In the present paper we give a purely53

geometric approach: We consider the local energy minima at 54

a given energy and study their number and other properties; 55

the solution involves a replica-symmetry breaking scheme that 56

is well-defined and corresponds directly to the topological 57

characteristics of those minima. 58

Perhaps the most interesting application of this compu- 59

tation is in the context of optimization problems; see, for 60

example, Refs. [32–34]. A question that appears there is how 61

to define a “threshold” level, the lowest energy level that good 62

algorithms can expect to reach. This notion was introduced in 63

the context of the pure p-spin models, as the energy at which 64

level sets of the energy in phase-space percolate, explaining 65

why dynamics never go below that level [35]. The notion 66

of a “threshold” for more complicated landscapes has later 67

been invoked several times, never to our knowledge in a clear 68

and unambiguous way. One of the purposes of this paper is 69

to give a sufficiently detailed characterization of a general 70

landscape so that a meaningful general notion of threshold 71

may be introduced—if this is at all possible. 72

The format of this paper is as follows. In Sec. II, we 73

introduce the mean-field model of study, the mixed p-spin 74

spherical model. In Sec. III we review details of the equilib- 75

rium solution that are relevant to our study of the landscape 76

complexity. In Sec. IV we derive a generic form for the com- 77

plexity. In Sec. V we make and review the hierarchical replica 78

symmetry breaking ansatz used to solve the complexity. In 79

Sec. VI we write down the solution in a specific and limited 80

regime, which is nonetheless helpful as it gives a foothold 81

for numerically computing the complexity everywhere else. 82

Sec. VII explains aspects of the solution specific to the case 83

of full RSB, and derives the replica symmetric to full FRSB 84

(RS–FRSB) transition line. Sec. VIII details the landscape 85

topology of two example models: a 3 + 16 model with a 2RSB 86

ground state and a 1RSB complexity, and a 2 + 4 with a FRSB 87

ground state and a FRSB complexity. Finally Sec. IX provides 88

some interpretation of our results. 89

II. THE MODEL 90

For definiteness, we consider the mixed p-spin spherical 91

model, whose Hamiltonian 92

H (s) = −
∑

p

1

p!

N∑
i1···ip

J (p)
i1···ip

si1 · · · sip (1)
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is defined for vectors s ∈ RN confined to the sphere ‖s‖2 = N .93

The coupling coefficients J are taken at random, with zero94

mean and variance (J (p) )2 = ap p!/2N p−1 chosen so that the95

energy is typically extensive. The overbar will always denote96

an average over the coefficients J . The factors ap in the vari-97

ances are freely chosen constants that define the particular98

model. For instance, the so-called “pure” models have ap = 199

for some p and all others zero.100

The variance of the couplings implies that the covariance101

of the energy with itself depends on only the dot product (or102

overlap) between two configurations. In particular, one finds103

H (s1)H (s2) = N f
( s1 · s2

N

)
, (2)

where f is defined by the series104

f (q) = 1

2

∑
p

apqp. (3)

One need not start with a Hamiltonian like Eq. (1), defined as105

a series: instead, the covariance rule (2) can be specified for106

arbitrary, nonpolynomial f , as in the “toy model” of Mézard107

and Parisi [36].108

The family of mixed p-spin models may be considered as109

the most general models of generic Gaussian functions on110

the sphere. To constrain the model to the sphere, we use a111

Lagrange multiplier μ, with the total energy being112

H (s) + μ

2
(‖s‖2 − N ). (4)

For reasons that will become clear in Sec. IV A 1, we refer113

to μ as the stability parameter. At any stationary point, the114

gradient and Hessian are given by115

∇H (s, μ) = ∂H (s) + μs, Hess H (s, μ) = ∂∂H (s) + μI,

(5)

where ∂ = ∂
∂s always. An important observation was made by116

Bray and Dean [37] that gradient and Hessian are independent117

for Gaussian random functions. The average over disorder118

breaks into a product of two independent averages, one for119

any function of the gradient and one for any function of the120

Hessian. In particular, the number of negative eigenvalues at121

a stationary point, which sets the index I of the saddle, is a122

function of the Hessian alone (see Fyodorov [38] for a detailed123

discussion).124

III. EQUILIBRIUM125

Here we review the equilibrium solution, which has been126

studied in detail [39–42]. For a succinct review, see Ref. [43].127

The free energy, averaged over disorder, is128

βF = −ln
∫

ds δ(‖s‖2 − N ) e−βH (s). (6)

Once n replicas are introduced to treat the logarithm, the129

fields sa can be replaced with the new n × n matrix field130

Qab ≡ (sa · sb)/N . This yields for the free energy131

βF = −1 − ln 2π − 1

2
lim
n→0

1

n

(
β2

n∑
ab

f (Qab) + ln det Q

)
,

(7)

which must be evaluated at the Q which maximizes this ex- 132

pression and whose diagonal is one. The solution is generally 133

a hierarchical matrix à la Parisi. The properties of these matri- 134

ces is reviewed in Sec. A, including how to write down Eq. (7) 135

in terms of their parameters. 136

The free energy can also be written in a functional form, 137

which is necessary for working with the solution in the limit 138

k → ∞, the so-called full replica symmetry breaking (FRSB). 139

If P(q) is the probability distribution for elements q in a row 140

of the matrix, then define χ (q) by 141

χ (q) =
∫ 1

q
dq′

∫ q′

0
dq′′ P(q′′). (8)

Since it is the double integral of a probability distribution, χ 142

must be concave, monotonically decreasing, and have χ (1) = 143

0 and χ ′(1) = −1. The function χ turns out to have an 144

interpretation as the spectrum of the hierarchical matrix Q. 145

Using standard arguments, the free energy can be written as a 146

functional over χ as 147

βF = −1 − ln 2π − 1

2

∫ 1

0
dq

(
β2 f ′′(q)χ (q) + 1

χ (q)

)
,

(9)

which must be maximized with respect to χ given the con- 148

straints outlined above. 149

In our study of the landscape, the free energy will not be 150

directly relevant anywhere except at the ground state, when 151

the temperature is zero or β → ∞. Here, the measure will 152

be concentrated in the lowest minima, and the average energy 153

〈E〉0 = limβ→∞ ∂
∂β

βF will correspond to the ground-state en- 154

ergy E0. The zero temperature limit is most easily obtained by 155

putting xi = x̃ixk and xk = β̃/β, qk = 1 − z/β, which ensures 156

the x̃i, β̃, and z have nontrivial limits. Inserting the ansatz 157

and taking the limit, carefully treating the kth term in each 158

sum separately from the rest, one can show after some algebra 159

that 160

β̃〈E〉0 = β̃ lim
β→∞

∂ (βF )

∂β

= −1

2
zβ̃ f ′(1) − 1

2
lim
n→0

1

n

×
[
β̃2

n∑
ab

f (Q̃ab) + ln det(β̃z−1Q̃ + I )

]
, (10)

where Q̃ is a (k − 1)RSB matrix with entries q̃1 = limβ→∞ q1, 161

..., q̃k−1 = limβ→∞ qk−1 parameterized by x̃1, . . . , x̃k−1. This 162

is a (k − 1)RSB ansatz whose spectrum in the determinant is 163

scaled by β̃z−1 and shifted by 1, with effective temperature β̃, 164

and an extra term. In the continuum case, this is 165

β̃〈E〉0 = − 1

2
zβ̃ f ′(1) − 1

2

∫ 1

0
dq

×
[
β̃2 f ′′(q)χ̃ (q) + 1

χ̃ (q) + β̃z−1

]
, (11)

where χ̃ is bound by the same constraints as χ . 166
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The zero temperature limit of the free energy loses one167

level of replica symmetry breaking. Physically, this is a result168

of the fact that in kRSB, qk gives the overlap within a state,169

i.e., within the basin of a well inside the energy landscape. At170

zero temperature, the measure is completely localized on the171

bottom of the well, and therefore the overlap within each state172

becomes one. We will see that the complexity of low-energy173

stationary points in Kac–Rice computation is also given by a174

(k − 1)RSB anstaz. Heuristically, this is because each station-175

ary point also has no width and therefore overlap one with176

itself.177

IV. LANDSCAPE COMPLEXITY178

The stationary points of a function can be counted using179

the Kac–Rice formula, which integrates over the function’s180

domain a δ function containing the gradient multiplied by the181

absolute value of the determinant [44,45]. It gives the number182

of stationary points N as183

N =
∫

ds dμδ

(
1

2
(‖s‖2 − N )

)
δ(∇H (s, μ))

× | det Hess H (s, μ)|. (12)

It is more interesting to count stationary points which share184

certain properties, like energy density E or index density185

I. These properties can be fixed by inserting additional δ-186

functions into the integral. Rather than fix the index directly,187

we fix the trace of the Hessian, which we’ll soon show is188

equivalent to fixing the value μ, and fixing μ fixes the index189

to within order one. Inserting these δ functions, we arrive at190

N (E , μ∗) =
∫

ds dμδ

(
1

2
(‖s‖2 − N )

)
δ(∇H (s, μ))

× | det Hess H (s, μ)|δ(NE − H (s))

× δ(Nμ∗ − Tr Hess H (s, μ)). (13)

This number will typically be exponential in N . To find the191

typical count when disorder is averaged, we want to average192

its logarithm instead, which is known as the complexity:193

�(E , μ∗) = lim
N→∞

1

N
logN (E , μ∗). (14)

If one averages over N and afterward takes its logarithm, then 194

one arrives at the so-called annealed complexity 195

�a(E , μ∗) = lim
N→∞

1

N
logN (E , μ∗). (15)

The annealed complexity has been previously computed for 196

the mixed p-spin models [12]. The annealed complexity is 197

known to equal the actual (quenched) complexity in circum- 198

stances where there is at most one level of replica symmetry 199

breaking in the model’s equilibrium. This is the case for the 200

pure p-spin models, or for mixed models where 1/
√

f ′′(q) is 201

a convex function. However, it fails dramatically for models 202

with higher replica symmetry breaking. For instance, when 203

f (q) = 1
2 (q2 + 1

16 q4) (a model we study in detail later), the 204

annealed complexity predicts that minima vanish well be- 205

fore the dominant saddles, a contradiction for any bounded 206

function. 207

A sometimes more illuminating quantity is the Legendre 208

transform G of the complexity, defined by 209

eNG(β̂,μ∗ ) =
∫

dE e−β̂E+�(β̂,μ∗ ). (16)

There will be a critical value β̂c beyond which the complexity 210

is zero: above this value the measure is split between the 211

lowest O(1) energy states. We shall not study here this regime 212

that interpolates between the dynamically relevant and the 213

equilibrium states, but just mention that it is an interesting 214

object of study. 215

A. The replicated problem 216

The replicated Kac–Rice formula was introduced by Ros 217

et al. [8], and its effective action for the mixed p-spin model 218

has previously been computed by Folena et al. [46]. Here we 219

review the derivation. 220

To average the complexity over disorder, we must deal with 221

the logarithm. We use the standard replica trick to convert the 222

logarithm into a product, which gives 223

logN (E , μ∗) = lim
n→0

∂

∂n
N n(E , μ∗) = lim

n→0

∂

∂n

∫ n∏
a

dsa dμa δ

(
1

2
(‖sa‖2 − N )

)
δ(∇H (sa, μa)) | det Hess H (sa, μa)|

× δ(NE − H (sa))δ(Nμ∗ − Tr Hess H (sa, μa)). (17)

As discussed in Sec. II, it has been shown that to the largest order in N , the Hessian of Gaussian random functions is independent 224

from their gradient, once both are conditioned on certain properties. Here, they are only related by their shared value of μ. 225

Because of this statistical independence, we may write 226

�(E , μ∗) = lim
N→∞

1

N
lim
n→0

∂

∂n

∫ ( n∏
a

dsa dμa

)
n∏
a

δ

(
1

2
(‖sa‖2 − N )

)
δ(∇H (sa, μa))δ(NE − H (sa))

×
n∏
a

| det Hess(sa, μa)| δ(Nμ∗ − Tr Hess H (sa, μa)), (18)
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which simplifies matters. The average of the two factors may227

now be treated separately.228

1. The Hessian factors229

The spectrum of the matrix ∂∂H (s) is uncorrelated from230

the gradient. In the large-N limit, for almost every point and231

realization of disorder it is a GOE matrix with variance232

(∂i∂ jH (s))2 = 1

N
f ′′(1)δi j . (19)

Therefore, in that limit its spectrum is given by the Wigner 233

semicircle with radius
√

4 f ′′(1), or 234

ρ(λ) =
{

1
2π f ′′(1)

√
4 f ′′(1) − λ2 λ2 � 4 f ′′(1),

0 otherwise.
(20)

The spectrum of the Hessian Hess H (s, μ) is the same semi- 235

circle shifted by μ, or ρ(λ + μ). The stability parameter μ 236

thus fixes the center of the spectrum of the Hessian. The 237

semicircle radius μm = √
4 f ′′(1) is a kind of threshold. When 238

μ is taken to be within the range ±μm, the critical points have 239

index density 240

I (μ) =
∫ ∞

0
dλ ρ(λ + μ) = 1

2
− 1

π

[
arctan

(
μ√

μ2
m − μ2

)
+ μ

μ2
m

√
μ2

m − μ2

]
. (21)

When μ > μm, the critical points are minima whose sloppiest eigenvalue is μ − μm. When μ = μm, the critical points are 241

marginal minima, with flat directions in their spectrum. This property of μ is why we’ve named it the stability parameter: it 242

governs the stability of stationary points, and for unstable ones it governs their index. 243

To largest order in N , the average over the product of determinants factorizes into the product of averages, each of which is 244

given by the same expression depending only on μ [8]. We therefore find 245

n∏
a

| det Hess(sa, μa)| δ(Nμ∗ − Tr Hess H (sa, μa)) →
n∏
a

eND(μa )δ(N (μ∗ − μa)), (22)

where the function D is defined by 246

D(μ) = 1

N
ln | det Hess H (s, μ)| =

∫
dλ ρ(λ + μ) ln |λ|

= Re

{
1

2

[
1 + μ

2 f ′′(1)
(μ −

√
μ2 − 4 f ′′(1))

]
− ln

[
1

2 f ′′(1)
(μ −

√
μ2 − 4 f ′′(1))

]}
. (23)

By fixing the trace of the Hessian, we have effectively fixed the value of the stability μ in all replicas to the value μ∗. 247

(1) For μ∗ < μm, this amounts to fixing the index density. Since the overwhelming majority of saddles have a semicircle 248

distribution, the fluctuations are rarer than exponential. 249

(2) For the gapped case μ∗ > μm, there is an exponentially small probability that r = 1, 2, ... eigenvalues detach from the 250

semicircle in such a way that the index is in fact NI = r. We shall not discuss these subextensive index fluctuations in this paper, 251

the interested reader may find what is needed in Ref. [11]. 252

2. The gradient factors 253

The δ functions in the remaining factor are treated by writing them in the Fourier basis. Introducing auxiliary fields ŝa and β̂ 254

for this purpose, for each replica replica one writes 255

δ

(
1

2
(‖sa‖2 − N )

)
δ(∇H (sa, μ

∗))δ(NE − H (sa)) =
∫

dμ̂

2π

dβ̂

2π

d ŝa

(2π )N
e

1
2 μ̂(‖sa‖2−N )+β̂(NE−H (sa ))+iŝa·(∂H (sa )+μ∗sa ). (24)

Anticipating a Parisi-style solution, we do not label μ̂ or β̂ with replica indices, since replica vectors will not be broken in 256

the scheme. The average over disorder can now be taken for the pieces which depend explicitly on the Hamiltonian, and since 257

everything is Gaussian this gives 258

exp

[
n∑
a

(iŝa · ∂a − β̂ )H (sa)

]

= exp

[
1

2

n∑
ab

(iŝa · ∂a − β̂ )(iŝb · ∂b − β̂ )H (sa)H (sb)

]
= exp

[
N

2

n∑
ab

(iŝa · ∂a − β̂ )(iŝb · ∂b − β̂ ) f
( sa · sb

N

)]

= exp

{
N

2

n∑
ab

[
β̂2 f

( sa · sb

N

)
− 2iβ̂

ŝa · sb

N
f ′
( sa · sb

N

)
− ŝa · ŝb

N
f ′
( sa · sb

N

)
+
(

i
ŝa · sb

N

)2

f ′′
( sa · sb

N

)]}
. (25)
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We introduce new matrix fields259

Cab = 1

N
sa · sb, Rab = −i

1

N
ŝa · sb, Dab = 1

N
ŝa · ŝb. (26)

Their physical meaning is explained in Sec. IX. By substituting these parameters into the expressions above and then making a260

change of variables in the integration from sa and ŝa to these three matrices, we arrive at the form for the complexity261

�(E , μ∗) = D(μ∗) + β̂E − 1

2
μ̂ + lim

n→0

1

n

×
{

1

2
μ̂ Tr C − μ∗ Tr R + 1

2

∑
ab

[β̂2 f (Cab) + (2β̂Rab − Dab) f ′(Cab) + R2
ab f ′′(Cab)] + 1

2
ln det

[
C iR
iR D

]}
, (27)

where μ̂, β̂, C, R, and D must be evaluated at the extrema of this expression which minimize the complexity. Note that one262

cannot minimize the complexity with respect to these parameters: there is no pure variational problem here. Extremizing with263

respect to μ̂ is not difficult, and results in setting the diagonal of C to one, fixing the spherical constraint. Maintaining μ̂ in the264

complexity is useful for writing down the extremal conditions, but when convenient we will drop the dependence.265

The same information is contained but better expressed in the Legendre transform266

G(β̂, μ∗) = D(μ∗) + lim
n→0

1

n

{
−μ∗ Tr R + 1

2

∑
ab

[β̂2 f (Cab) + (2β̂Rab − Dab) f ′(Cab) + R2
ab f ′′(Cab)] + 1

2
ln det

[
C iR
iR D

]}
.

(28)

Denoting rd ≡ 1
n TrR, we can write down the double Legendre transform K (β̂, rd ):267

eNK (β̂,rd ) =
∫

dE dμ∗eN{�(E ,μ∗ )−β̂E+rd μ∗−D(μ∗ )}, (29)

given by268

K (β̂, rd ) = lim
n→0

1

n

{
1

2

∑
ab

[β̂2 f (Cab) + (2β̂Rab − Dab) f ′(Cab) + R2
ab f ′′(Cab)] + 1

2
ln det

[
C iR
iR D

]}
, (30)

where the diagonal of C is fixed to one and the diagonal269

of R is fixed to rd . The variable rd is conjugate to μ∗ and270

through it to the index density, while β̂ plays the role of an271

inverse temperature conjugate to the complexity, that has been272

used since the beginning of the spin-glass field. In this way273

K (β̂, rd ) contains all the information about saddle densities.274

V. REPLICA ANSATZ275

Based on previous work on the Sherrington–Kirkpatrick276

model and the equilibrium solution of the spherical model,277

we expect C, and R and D to be hierarchical matrices in278

Parisi’s scheme. This assumption immediately simplifies the279

extremal conditions, since hierarchical matrices commute and280

are closed under matrix products and Hadamard products. In281

particular, the determinant of the block matrix can be written282

as a determinant of a product,283

ln det

[
C iR
iR D

]
= ln det(CD + R2). (31)

This is straightforward (if strenuous) to write down at kRSB,284

since the product and sum of the hierarchical matrices is still285

a hierarchical matrix. The algebra of hierarchical matrices286

is reviewed in Sec. A. Using the product formula (A3), one287

can write down the hierarchical matrix CD + R2, and then288

compute the ln det using the formula (A2).289

The extremal conditions are given by differentiating the 290

complexity with respect to its parameters, yielding 291

0 = ∂�

∂μ̂
= 1

2
(cd − 1), (32)

0 = ∂�

∂β̂
= E + lim

n→0

1

n

∑
ab

[β̂ f (Cab) + Rab f ′(Cab)], (33)

0 = ∂�

∂C
= 1

2
[μ̂I + β̂2 f ′(C) + (2β̂R − D) � f ′′(C)

+ R � R � f ′′′(C) + (CD + R2)−1D], (34)

0 = ∂�

∂R
= −μ∗I + β̂ f ′(C) + R � f ′′(C) + (CD + R2)−1R,

(35)

0 = ∂�

∂D
= −1

2
f ′(C) + 1

2
(CD + R2)−1C, (36)

where � denotes the Hadamard product, or the component- 292

wise product. Equation (36) implies that 293

D = f ′(C)−1 − RC−1R. (37)

To these conditions must be added the addition condition that 294

� is extremal with respect to x1, . . . , xk . There is no better 295

way to enforce this condition than to directly differentiate � 296

with respect to the xs, and we have 297

0 = ∂�

∂xi
1 � i � k. (38)
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The stationary conditions for the xs are the most numerically298

taxing.299

In addition to these equations, we often want to maximize300

the complexity as a function of μ∗, to find the most common301

type of stationary points. These are given by the condition302

0 = ∂�

∂μ∗ = D′(μ∗) − rd . (39)

Since D(μ∗) is effectively a piecewise function, with different303

forms for μ∗ greater or less than μm, there are two regimes.304

When μ∗ > μm and the critical points are minima, Eq. (39)305

implies306

μ∗ = 1

rd
+ rd f ′′(1). (40)

When μ∗ < μm and the critical points are saddles, it implies307

μ∗ = 2 f ′′(1)rd . (41)

It is often useful to have the extremal conditions in a form308

without matrix inverses, so that the saddle conditions can be309

expressed using products alone. By simple manipulations, the310

matrix equations can be written as311

0 = [β̂2 f ′(C) + (2β̂R − D) � f ′′(C)

+ R � R � f ′′′(C) + μ̂I]C + f ′(C)D, (42)

0 = [β̂ f ′(C) + R � f ′′(C) − μ∗I]C + f ′(C)R, (43)

0 = C − f ′(C)(CD + R2). (44)

The right-hand side of each of these equations is also a hierar-312

chical matrix, since products, Hadamard products, and sums313

of hierarchical matrices are such.314

VI. SUPERSYMMETRIC SOLUTION315

The Kac–Rice problem has an approximate supersymme-316

try, which is found when the absolute value of the determinant317

is neglected and the trace of the Hessian is not fixed. This318

supersymmetry has been studied in great detail in the com-319

plexity of the Thouless–Anderson–Palmer (TAP) free energy320

[47–51]. When the absolute value is dropped, the determinant321

in (12) can be represented by an integral over Grassmann vari-322

ables, which yields a complexity depending on “bosons” and323

“fermions” that share the supersymmetry. The Ward identities324

associated with the supersymmetry imply that D = β̂R [47].325

Under which conditions can this relationship be expected to326

hold? We find that their applicability is limited to a specific327

line in the energy and stability plane.328

The identity D = β̂R heavily constrains the form that the329

rest of the solution can take. Assuming the supersymmetry330

holds, Eq. (34) implies331

0 = μ̂I + β̂2 f ′(C) + β̂R � f ′′(C)

+ R � R � f ′′′(C) + β̂(CD + R2)−1R. (45)

Substituting (35) for the factor (CD + R2)−1R, we find sub-332

stantial cancellation, and finally333

0 = (μ̂ + μ∗)I + R � R � f ′′′(C). (46)

If C has a nontrivial off-diagonal structure and supersymmetry 334

holds, then the off-diagonal of R must vanish, and therefore 335

R = rd I . Therefore, a supersymmetric ansatz is equivalent to 336

a diagonal ansatz for both R and D. 337

Supersymmetry has further implications. Equations (35) 338

and (36) can be combined to find 339

I = R[μ∗I − R � f ′′(C)] + (D − β̂R) f ′(C). (47)

Assuming the supersymmetry holds implies that 340

I = R[μ∗I − R � f ′′(C)]. (48)

Understanding that R is diagonal, we find 341

μ∗ = 1

rd
+ rd f ′′(1), (49)

which is precisely the condition (40) for dominant minima. 342

Therefore, the supersymmetric solution counts the most com- 343

mon minima [49]. When minima are not the most common 344

type of stationary point, the supersymmetric solution correctly 345

counts minima that satisfy (40), but these do not have any 346

other special significance. 347

Inserting the supersymmetric ansatz D = β̂R and R = rd I , 348

one gets for the complexity 349

�(E , μ∗) =D(μ∗) + β̂E − μ∗rd + 1

2
β̂rd f ′(1)

+ 1

2
r2

d f ′′(1) + 1

2
ln r2

d + 1

2
lim
n→0

1

n

×
[
β̂2
∑

ab

f (Cab) + ln det((β̂/rd )C + I )

]
.

(50)

From here, it is straightforward to see that the complexity 350

vanishes at the ground-state energy. First, in the ground-state 351

minima will dominate (even if they are marginal), so we may 352

assume Eq. (40). Then, taking �(E0, μ
∗) = 0, gives 353

β̂E0 = − 1

2
rd β̂ f ′(1) − 1

2
lim
n→0

1

n

×
[
β̂2

n∑
ab

f (Cab) + ln det
(
β̂r−1

d C + I
)]

, (51)

which is precisely the ground-state energy predicted by the 354

equilibrium solution (10) with rd = z, β̂ = β̃, and C = Q̃. 355

Therefore, a (k − 1)RSB ansatz in Kac–Rice will predict 356

the correct ground-state energy for a model whose equilib- 357

rium state at small temperatures is kRSB Moreover, there 358

is an exact correspondence between the saddle parameters 359

of each. If the equilibrium is given by a Parisi matrix with 360

parameters x1, . . . , xk and q1, . . . , qk , then the parameters β̂, 361

rd , dd , x̃1, . . . , x̃k−1, and c1, . . . , ck−1 for the complexity in the 362

ground state are 363

β̂ = lim
β→∞

βxk, x̃i = lim
β→∞

xi

xk
, ci = lim

β→∞
qi,

rd = lim
β→∞

β(1 − qk ), dd = β̂rd . (52)

Unlike the case for the TAP complexity, this correspondence 364

between landscape complexity and equilibrium solutions only 365
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exists at the ground state. We will see in our examples in366

Sec. VIII that there appears to be little correspondence be-367

tween these parameters away from the ground state.368

The supersymmetric solution produces the correct com-369

plexity for the ground state and for a class of minima,370

including dominant ones. Moreover, it produces the correct371

parameters for the fields C, R, and D at those points. This372

is an important foothold in the problem of computing the373

general complexity. The full saddle point equations at kRSB374

are not very numerically stable, and a “good” saddle point375

has a typically small radius of convergence under methods376

like Newton’s algorithm. With the supersymmetric solution377

in hand, it is possible to take small steps in the parameter378

space to find nonsupersymmetric numeric solutions, each time379

ensuring the initial conditions for the solver are sufficiently380

close to the correct answer. This is the strategy we use in381

Sec. VIII.382

VII. FULL REPLICA SYMMETRY BREAKING383

This reasoning applies equally well to FRSB systems. In384

the end, when the limit of n → 0 is taken, each matrix field385

can be represented in the canonical way by its diagonal and a386

continuous function on the domain [0,1] which parameterizes387

each of its rows, with388

C ↔ [cd , c(x)], R ↔ [rd , r(x)], D ↔ [dd , d (x)].

(53)

The algebra of hierarchical matrices under this continuous389

parametrization is reviewed in Sec. A. With these substitu-390

tions, the complexity becomes391

�(E , μ∗) =D(μ∗) + β̂E − μ∗rd + 1

2

[
β̂2 f (1)

+ (2β̂rd − dd ) f ′(1) + r2
d f ′′(1)

]
− 1

2

∫ 1

0
dx[β̂2 f (c(x)) + (2β̂r(x) − d (x)) f ′(c(x))

+ r(x)2 f ′′(c(x))] + 1

2
lim
n→0

1

n
ln det(CD + R2).

(54)

The formula for the determinant is complicated and can be392

found by using the product formula (A6) to write CD and R2,393

summing them, and finally using the ln det formula (A9). The394

saddle point equations take the form395

0 = μ̂c(x) + [(β̂2( f ′ ◦ c) + (2β̂r − d )( f ′′ ◦ c)

+ r2( f ′′′ ◦ c)) ∗ c](x) + [( f ′ ◦ c) ∗ d](x), (55)

0 = −μ∗c(x) + [(β̂( f ′ ◦ c) + r ∗ ( f ′′ ◦ c)) ∗ c](x)

+ [( f ′ ◦ c) ∗ r](x), (56)

0 = c(x) − [( f ′ ◦ c) ∗ (c ∗ d + r ∗ r)](x), (57)

where (ab)(x) = a(x)b(x) denotes the hadamard product, (a ∗396

b)(x) denotes the functional parametrization of the diagonal of397

the product of hierarchical matrices AB defined in Eq. (A6),398

and (a ◦ b)(x) = a[b(x)] denotes composition.399

A. Supersymmetric complexity 400

Using standard manipulations, one finds also a continuous 401

version of the supersymmetric complexity 402

�(E , μ∗) =D(μ∗) + β̂E − μ∗rd

+ 1

2

[
β̂rd f ′(1) + r2

d f ′′(1) + ln r2
d

]
+ 1

2

∫ 1

0
dq

[
β̂2 f ′′(q)χ (q) + 1

χ (q) + rd/β̂

]
,

(58)

where χ (q) = ∫ q
1 dq′ ∫ q′

0 dq′′ P(q) for P(q) the distribution 403

of elements in a row of C, as in the equilibrium case. Like 404

in the equilibrium case, χ must be concave, monotonically 405

decreasing, and have χ (1) = 0, χ ′(1) = −1. 406

First, we use this solution to inspect the ground state of 407

a full RSB system. We know from the equilibrium that in 408

the ground state χ is continuous in the whole range of q. 409

Therefore, the saddle solution found by extremizing 410

0 = δ�

δχ (q)
= 1

2
β̂2 f ′′(q) − 1

2

1

[χ (q) + rd/β̂]2
(59)

over all functions χ . This gives 411

χ0(q | β̂, rd ) = 1

β̂
[ f ′′(q)−1/2 − rd ]. (60)

Satisfying the boundary conditions requires rd = f ′′(1)−1/2
412

and β̂ = 1
2 f ′′′(1)/ f ′′(1)3/2. This in turn implies μ∗ = 1

rd
+ 413

f ′′(1)rd = √
4 f ′′(1) = μm. Therefore, the FRSB ground state 414

is always marginal, as excepted. It is straightforward to check 415

that these conditions are indeed a saddle of the complexity. 416

This has several implications. First, other than the ground 417

state, there are no energies at which minima are most numer- 418

ous; saddles always dominate. As we will see, stable minima 419

are numerous at energies above the ground state, but these 420

vanish at the ground state. 421

Away from the ground state, this expression still correctly 422

counts a class of nondominant minima. However, like in the 423

equilibrium solution, the function χ which produces an ex- 424

tremal value is not smooth in the entire range [0,1], but adopts 425

a piecewise form 426

χ (q) =
{

χ0(q | β̂, rd ) q � qmax,

1 − q otherwise.
(61)

With this ansatz, the complexity must be extremized with 427

respect to rd and β̂, while simultaneously ensuring that qmax 428

is such that χ (q) is continuous, that is, that χ0(qmax | β̂, rd ) = 429

1 − qmax. The significance of the minima counted by this 430

method is unclear, but they do represent a nodal line in the 431

off-diagonal parts of R and D. Since, as usual, χ (q) is related 432

to c(x) by −χ ′(c(x)) = x, there is a corresponding xmax given 433

by 434

xmax = −χ ′(qmax) = 1

2β̂

f ′′′(qmax)

f ′′(qmax)3/2
. (62)
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B. Expansion near the transition435

Working with the continuum equations away from the su-436

persymmetric solution is not generally tractable. However,437

there is another point where they can be treated analytically:438

near the onset of replica symmetry breaking. Here, the off-439

diagonal components of C, R, and D are expected to be small.440

In particular, we expect the functions c(x), r(x), and d (x)441

to approach zero at the transition, and moreover take the442

piecewise linear form443

c(x) =
{

c̄x x � xmax

c̄xmax otherwise
, r(x) =

{
r̄x x � xmax

r̄xmax otherwise
,

d (x) =
{

d̄x x � xmax

d̄xmax otherwise
, (63)

with xmax vanishing at the transition, with the slopes c̄, r̄,444

and d̄ remaining nonzero. This ansatz is informed both by445

the experience of the equilibrium solution, and by empirical446

observation within the numerics of Sec. VIII447

Given this ansatz, we take Eqs. (55)–(57), which are true448

for any x, and integrate them over x. We then expand the result449

about small xmax to linear order in xmax. Equation (56) depends 450

linearly on r̄ to all orders, and therefore r̄ can be found in 451

terms of c̄, yielding 452

r̄

c̄
= − β̂ − 1

f ′(1) + f ′′(0)
{rd [ f ′′(0) + f ′′(1)]

− μ∗} + O(xmax). (64)

Likewise, Eq. (57) depends linearly on d̄ to all orders and can 453

be solved to give 454

d̄

c̄
= − 2rd

r̄

c̄
− 1

f ′(1)

{
r2

d f ′′(0) + dd [ f ′(1)

+ f ′′(0)] − 1
}+ O(xmax). (65)

The equations cannot be used to find the value of c̄ without 455

going to higher order in xmax, but the transition line can be 456

determined by examining the stability of the replica sym- 457

metric complexity. First, we expand the full form for the 458

complexity about small xmax in the same way as we expand the 459

extremal conditions, using Eq. (A9) to treat the determinant. 460

To quadratic order, this gives 461

�(E , μ∗) =D(μ∗) + β̂E − μrd + 1

2

[
β̂2 f (1) + (2β̂rd − dd ) f ′(1) + r2

d f ′′(1)
]+ 1

2
ln
(
dd + r2

d

)

− 1

2

[
1

2
β̂2c̄2 f ′′(0) + (2β̂ r̄ − d̄ )c̄ f ′′(0) + r̄2 f ′′(0) − d̄2 − 2dd r̄2 + d2

d c̄2 + 4rd r̄(d̄ + dd c̄) − 2r2
d (c̄d̄ + r̄2)

2
(
dd + r2

d

)2
]

x2
max.

(66)

The spectrum of the Hessian of � with evaluated at the RS solution gives its stability with respect to these functional 462

perturbations. When the values of r̄ and d̄ above are substituted into the Hessian and β̂, rd , and dd are evaluated at their RS 463

values, the eigenvalue of interest takes the form 464

λ = −c̄2 ( f ′(1) − 2 f (1))2( f ′(1) − f ′′(0)) f ′′(0)

2( f ′(1) + f ′′(0))( f ′(1)2 − f (1)( f ′(1) + f ′′(1)))2
(μ∗ − μ∗

+(E ))(μ∗ − μ∗
−(E )), (67)

where 465

μ∗
±(E ) = ± ( f ′(1) + f ′′(0))( f ′(1)2 − f (1)( f ′(1) + f ′′(1)))

(2 f (1) − f ′(1)) f ′(1) f ′′(0)−1/2
− f ′′(1) − f ′(1)

f ′(1) − 2 f (1)
E . (68)

This eigenvalue changes sign when μ∗ crosses μ∗
±(E ). We466

expect that this is the line of stability for the replica symmetric467

solution when the transition is RS-FRSB. The numerics in468

Sec. VIII bear this out.469

VIII. GENERAL SOLUTION: EXAMPLES470

Though we have only written down an easily computable471

complexity along a specific (and often uninteresting) line in472

energy and stability, this computable (supersymmetric) solu-473

tion gives a numeric foothold for computing the complexity in474

the rest of that space. First, Eq. (11) is maximized with respect475

to its parameters, since the equilibrium solution is equivalent476

to a variational problem. Second, the mapping (52) is used477

to find the corresponding Kac–Rice saddle parameters in the478

ground state. With these parameters in hand, small steps are479

then made in energy E or stability μ, after which known these480

values are used as the initial condition for a saddle-finding481

problem. In this section, we use this basic numeric idea to 482

map out the complexity for two representative examples: a 483

model with a 2RSB equilibrium ground state and therefore 484

1RSB complexity in its vicinity, and a model with a FRSB 485

equilibrium ground state, and therefore FRSB complexity as 486

well. 487

A. 1RSB complexity 488

It is known that by choosing a covariance f as the sum of 489

polynomials with well-separated powers, one develops 2RSB 490

in equilibrium. This should correspond to 1RSB in Kac–Rice. 491

For this example, we take 492

f (q) = 1
2

(
q3 + 1

16 q16
)

(69)

established to have a 2RSB ground state [52]. With this 493

covariance, the model sees a replica symmetric to 1RSB tran- 494

sition at β1 = 1.70615 . . . and a 1RSB to 2RSB transition 495
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FIG. 1. Complexity of dominant saddles, marginal minima, and dominant minima of the 3 + 16 model. Solid lines show the result of the
1RSB ansatz, while the dashed lines show that of a RS ansatz. The complexity of marginal minima is always below that of dominant critical
points except at the black dot, where they are dominant. The inset shows a region around the ground state and the fate of the RS solution.

at β2 = 6.02198 . . .. At these transitions, the average ener-496

gies in equilibrium are 〈E〉1 = −0.906391 . . . and 〈E〉2 =497

−1.19553 . . ., respectively, and the ground-state energy is498

E0 = −1.287 605 530 . . .. Besides these typical equilibrium499

energies, an energy of special interest for looking at the land-500

scape topology is the algorithmic thresholdEalg, defined by the501

lowest energy reached by local algorithms like approximate502

message passing [53,54]. In the spherical models, this has503

been proven to be504

Ealg = −
∫ 1

0
dq
√

f ′′(q). (70)

For full RSB systems, Ealg = E0 and the algorithm can reach505

the ground-state energy. For the pure p-spin models, Ealg =506

Eth, where Eth is the energy at which marginal minima are507

the most common stationary points. Something about the508

topology of the energy function might be relevant to where509

this algorithmic threshold lies. For the 3 + 16 model at hand,510

Ealg = −1.275 140 128 . . ..511

In this model, the RS complexity gives an inconsistent512

answer for the complexity of the ground state, predict-513

ing that the complexity of minima vanishes at a higher514

energy than the complexity of saddles, with both at a515

lower energy than the equilibrium ground state. The 1RSB516

complexity resolves these problems, predicting the same517

ground state as equilibrium and with a ground-state stabil-518

ity μ0 = 6.480 764 . . . > μm. It predicts that the complexity519

of marginal minima (and therefore all saddles) vanishes at520

Em = −1.287 605 527 . . ., which is very slightly greater than521

E0. Saddles become dominant over minima at a higher energy522

Eth = −1.287 575 114 . . .. The 1RSB complexity transitions523

to a RS description for dominant stationary points at an energy524

E1 = −1.273 886 852 . . .. The highest energy for which the525

1RSB description exists is Emax = −0.886 029 051 . . .526

The complexity as a function of energy difference from the527

ground state is plotted in Fig. 1. In that figure, the complexity528

is plotted for dominant minima and saddles, marginal minima,529

and supersymmetric minima. A contour plot of the complexity 530

as a function of energy E and stability μ is shown in Fig. 2. 531

That plot also shows the RS–1RSB transition line in the com- 532

plexity. For minima, the complexity does not inherit a 1RSB 533

description until the energy is with in a close vicinity of the 534

ground state. However, for high-index saddles the complexity 535

becomes described by 1RSB at quite high energies. This sug- 536

gests that when sampling a landscape at high energies, high 537

index saddles may show a sign of replica symmetry breaking 538

when minima or inherent states do not. 539

Figure 3 shows a different detail of the complexity in the 540

vicinity of the ground state, now as functions of the energy dif- 541

ference and stability difference from the ground state. Several 542

of the landmark energies described above are plotted, along- 543

side the boundaries between the “phases.” Though Ealg looks 544

quite close to the energy at which dominant saddles transition 545

from 1RSB to RS, they differ by roughly 10−3, as evidenced 546

by the numbers cited above. Likewise, though 〈E〉1 looks 547

very close to Emax, where the 1RSB transition line terminates, 548

they too differ. The fact that Ealg is very slightly below the 549

place where most saddle transition to 1RSB is suggestive; we 550

speculate that an analysis of the typical minima connected to 551

these saddles by downward trajectories will coincide with the 552

algorithmic limit. An analysis of the typical nearby minima 553

or the typical downward trajectories from these saddles at 554

1RSB is warranted [8,55]. Also notable is that Ealg is at a 555

significantly higher energy than Eth; according to the theory, 556

optimal smooth algorithms in this model stall in a place where 557

minima are exponentially subdominant. 558

Figure 4 shows the saddle parameters for the 3 + 16 system 559

for notable species of stationary points, notably the most com- 560

mon, the marginal ones, those with zero complexity, and those 561

on the transition line. When possible, these are compared 562

with the same expressions in the equilibrium solution at the 563

same average energy. Besides the agreement at the ground- 564

state energy, there seems to be little correlation between the 565

equilibrium and complexity parameters. 566
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FIG. 2. Complexity of the 3 + 16 model in the energy E and stability μ∗ plane. The right shows a detail of the left. Below the horizontal
marginal line the complexity counts saddles of increasing index as μ∗ decreases. Above the horizontal marginal line the complexity counts
minima of increasing stability as μ∗ increases.

Of specific note is what happens to d1 as the 1RSB phase567

boundary for the complexity meets the zero complexity line.568

Here, d1 diverges like569

d1 = −
(

1

f ′(1)
− (dd + r2

d

))
(1 − x1)−1 + O(1), (71)

while x1 and q1 both go to one. Note that this is the only570

place along the phase boundary where q1 goes to one. The571

significance of this critical point in the complexity of high-572

index saddles in worth further study.573

B. Full RSB complexity 574

If the covariance f is chosen to be concave, then one 575

develops FRSB in equilibrium. To this purpose, we choose 576

f (q) = 1
2

(
q2 + 1

16 q4
)
, (72)

also studied before in equilibrium [41,42]. Because the ground 577

state is FRSB, for this model 578

E0 = Ealg = Eth = −
∫ 1

0
dq
√

f ′′(q) = −1.059 384 319 . . . .

(73)

FIG. 3. Detail of the “phases” of the 3 + 16 model complexity as a function of energy and stability. Above the horizontal marginal stability
line the complexity counts saddles of fixed index, while below that line it counts minima of fixed stability. The shaded red region to the left
of the transition line shows places where the complexity is described by the 1RSB solution, while the shaded gray region to the right of the
transition line shows places where the complexity is described by the RS solution. In white regions the complexity is zero. Several interesting
energies are marked with vertical black lines: the traditional “threshold” Eth where minima become most numerous, the algorithmic threshold
Ealg that bounds the performance of smooth algorithms, and the average energies at the 2RSB and 1RSB equilibrium transitions 〈E〉2 and 〈E〉1,
respectively. Though the figure is suggestive, Ealg lies at slightly lower energy than the termination of the RS–1RSB transition line.
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FIG. 4. Comparison of the saddle point parameters for the 3 + 16 model along different trajectories in the energy and stability space, and
with the equilibrium values (when they exist) at the same value of average energy 〈E〉.

In the equilibrium solution, the transition temperature from579

RS to FRSB is β∞ = 1, with corresponding average energy580

〈E〉∞ = −0.53125 . . ..581

Along the supersymmetric line, the FRSB solution can582

be found in full, exact functional form. To treat the FRSB583

away from this line numerically, we resort to finite kRSB584

approximations. Since we are not trying to find the actual585

kRSB solution, but approximate the FRSB one, we drop the586

extremal condition (38) for x1, . . . , xk and instead set587

xi =
(

i

k + 1

)
xmax (74)

and extremize over xmax alone. This dramatically simplifies588

the equations that must be solved to find solutions. In the589

results that follow, a 20RSB approximation is used to trace590

the dominant saddles and marginal minima, while a 5RSB591

approximation is used to trace the (much longer) boundaries592

of the complexity.593

Figure 5 shows the complexity for this model as a function594

of energy difference from the ground state for several notable595

trajectories in the energy and stability plane. Figure 6 shows596

these trajectories, along with the phase boundaries of the com-597

plexity in this plane. Notably, the phase boundary predicted598

by Eq. (68) correctly predicts where all of the finite kRSB599

approximations terminate. Like the 1RSB model in the previ-600

ous subsection, this phase boundary is oriented such that very601

few, low energy, minima are described by a FRSB solution,602

while relatively high-energy saddles of high index are also.603

Again, this suggests that studying the mutual distribution of604

high-index saddle points might give insight into lower-energy605

symmetry breaking in more general contexts.606

Figure 7 shows the value of xmax along several trajectories607

of interest. Everywhere along the transition line, xmax continu-608

ously goes to zero. Examples of our 20RSB approximations of 609

the continuous functions c(x), r(x), and d (x) are also shown. 610

As expected, these functions approach linear ones as xmax goes 611

to zero with finite slopes. 612

IX. INTERPRETATION 613

Let 〈A〉 be the average of any function A over stationary 614

points with given E and μ∗, i.e., 615

〈A〉 = 1

N
∑
s∈S

A(s) = 1

N

∫
dν(s) A(s), (75)

with 616

dν(s) = ds dμδ

(
1

2
(‖s‖2 − N )

)
δ(∇H (s, μ)) | det Hess H

× (s, μ)|δ(NE − H (s))δ(Nμ∗ − Tr Hess H (s, μ))

(76)

the Kac–Rice measure. Note that this definition of the angle 617

brackets, which is in analogy with the typical equilibrium av- 618

erage, is not the same as that used in Sec. VII B for averaging 619

over the off-diagonal elements of a hierarchical matrix. The 620

fields C, R, and D defined in (26) can be related to certain 621

averages of this type. 622

A. C: Distribution of overlaps 623

First consider C, which has an interpretation nearly identi- 624

cal to that of Parisi’s Q matrix of overlaps in the equilibrium 625

case. Its off-diagonal corresponds to the probability distribu- 626

tion P(q) of the overlaps q = (s1 · s2)/N between stationary 627

points. Let S be the set of all stationary points with given 628
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FIG. 5. The complexity � of the mixed 2 + 4 spin model as a function of distance �E = E − E0 of the ground state. The solid blue line
shows the complexity of dominant saddles given by the FRSB ansatz, and the solid yellow line shows the complexity of marginal minima. The
dashed lines show the same for the annealed complexity. The inset shows more detail around the ground state.

energy density and index. Then629

P(q) ≡ 1

N 2

∑
s1∈S

∑
s2∈S

δ
( s1 · s2

N
− q
)
. (77)

This is the probability that two stationary points uniformly 630

drawn from the ensemble of all stationary points with fixed E 631

and μ∗ happen to be at overlap q. Though these are evaluated 632

for a given energy, index, etc, we shall omit these subindices 633

for simplicity. 634

The moments of this distribution q(p) are given by 635

FIG. 6. “Phases” of the complexity for the 2 + 4 model in the energy E and stability μ∗ plane. The region shaded gray to the right of the
transition line shows where the RS solution is correct, while the region shaded red to the left of the transition line shows that where the FRSB
solution is correct. The white region shows where the complexity is zero.
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FIG. 7. xmax as a function of E for several trajectories of interest, along with examples of the 20RSB approximations of the functions c(x),
r(x), and d (x) along the dominant saddles. Colors of the approximate functions correspond to the points on the xmax plot. The supersymmetric
line terminates where the complexity reaches zero, which happens inside the FRSB phase.

q(p) ≡
∫ 1

0
dq qpP(q) = 1

N p

∑
i1···ip

〈
si1 · · · sip

〉〈
si1 · · · sip

〉 = 1

N p

1

N 2

⎧⎨
⎩
∑
s1,s2

∑
i1···ip

s1
i1 · · · s1

ip
s2

i1 · · · s2
ip

⎫⎬
⎭

= 1

N 2

⎧⎨
⎩
∑
s1,s2

( s1 · s2

N

)p

⎫⎬
⎭ = lim

n→0

⎧⎨
⎩
∑

s1,s2,...,sn

( s1 · s2

N

)p

⎫⎬
⎭. (78)

The (n − 2) extra replicas provide the normalization, with limn→0 N n−2 = N−2. Replacing the sums over station-636

ary points with integrals over the Kac–Rice measure, the average over disorder (again, for fixed energy and index)637

gives638

q(p) = 1

N p

∑
i1···ip

〈
si1 · · · sip

〉〈
si1 · · · sip

〉 = lim
n→0

∫ n∏
a

dν(sa)
( s1 · s2

N

)p

= lim
n→0

∫
D[C, R, D] (C12)p enN�[C,R,D] = lim

n→0

∫
D[C, R, D]

1

n(n − 1)

∑
a �=b

(Cab)p enN�[C,R,D]. (79)

In the last line, we have used that there is nothing special about replicas one and two. Using the Parisi ansatz, evaluating by639

saddle point summing over all the n(n − 1) saddles related by permutation we then have640

q(p) =
∫ 1

0
dx cp(x) =

∫ 1

0
dq qpP(q), concluding P(q) = dx

dq
=
(

dc

dx

)−1∣∣∣∣
c(x)=q

. (80)
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FIG. 8. A cartoon visualizing how to interpret replica symmetry breaking solutions in the complexity. The black region show schematically
areas where stationary points of a given energy can be found. Left: When the region is connected, pairs of stationary points exist at any overlap,
but the vast majority of pairs are orthogonal. Center: When there are exponentially many disconnected regions of similar size, the vast majority
of pairs will be found in different, orthogonal regions. Right: When there are a few large disconnected regions, pairs have a comparable
probability to be found in different regions or in the same region. This gives rise to two (or more) possible overlaps.

The appeal of Parisi to properties of pure states is unnecessary641

here, since the stationary points are points.642

With this established, we now address what it means for643

C to have a nontrivial replica-symmetry broken structure.644

When C is replica symmetric, drawing two stationary points645

at random will always lead to the same overlap. In the case646

when there is no linear field and q0 = 0, they will always have647

overlap zero, because the second point will almost certainly648

lie on the equator of the sphere with respect to the first.649

Though other stationary points exist nearby the first one, they650

are exponentially fewer and so will be picked with vanishing651

probability in the thermodynamic limit.652

When C is replica-symmetry broken, there is a nonzero653

probability of picking a second stationary point at some other654

overlap. This can be interpreted by imagining the level sets of655

the Hamiltonian in this scenario. If the level sets are discon-656

nected but there are exponentially many of them distributed657

on the sphere, then one will still find zero average overlap.658

However, if the disconnected level sets are few, i.e., less than659

order N , then it is possible to draw two stationary points660

from the same set with nonzero probability. Therefore, the661

picture in this case is of few, large basins each containing662

exponentially many stationary points. A cartoon of this picture663

is shown in Fig. 8.664

1. A tractable example665

One can construct a schematic 2RSB model from two666

1RSB models. Consider two independent pure models of size667

N and with p1-spin and p2-spin couplings, respectively, with668

energies Hp1 (s) and Hp2 (σ), and couple them weakly with669

ε σ · s. The landscape of the pure models is much simpler670

than that of the mixed because, in these models, fixing the671

stability μ is equivalent to fixing the energy: μ = pE . This672

implies that at each energy level there is only one type of673

stationary point. Therefore, for the pure models our formulas674

for the complexity and its Legendre transforms are functions675

of one variable only, E , and each instance of μ∗ inside must676

be replaced with pE .677

In the joint model, we wish to fix the total energy, not the678

energies of the individual two models. Therefore, we insert679

a δ function containing (E1 + E2) − E and integrate over E1 680

and E2. This results in a joint complexity (and Legendre 681

transform) 682

eN�(E ) =
∫

dE1 dE2 dλ exp{N[�1(E1) + �2(E2)

+ O(ε) − λ((E1 + E2) − E )]}, (81)

eNG(β̂ ) =
∫

dE dE1 dE2 dλ exp{N[−β̂E + �1(E1)

+ �2(E2) + O(ε) − λ((E1 + E2) − E )]}. (82)

The saddle point is given by �′
1(E1) = �′

2(E2) = β̂, provided 683

that both �1(E1) and �2(E2) are nonzero. In this situation, 684

two systems are “thermalized,” and, because many points 685

contribute, the overlap between two global configurations is 686

zero: 687

1

2N
〈(s1, σ1) · (s2, σ2)〉 = 1

2N
[〈s1 · s2〉 + 〈σ1 · σ2〉] = 0.

(83)

This is the “annealed” phase of a Kac-Rice calculation. 688

Now start going down in energy, or up in β̂: there will be 689

a point Ec or β̂c at which one of the subsystems (say it is 690

system one) freezes at its lowest energy density, while system 691

two is not yet frozen. At this point, �1(E1) = 0 and E1 is the 692

ground-state energy. At an even higher value β̂ = β̂ f , both 693

systems will become frozen in their ground states. For β̂ f > 694

β̂ > β̂c one system is unfrozen, while the other is, because 695

of coupling, frozen at inverse temperature β̂c. The overlap 696

between two solutions in this intermediate phase is 697

1

2N
〈(s1, σ1) · (s2, σ2)〉 = 1

2N
[〈s1 · s2〉 + 〈σ1 · σ2〉]

= 1

2N
〈s1 · s2〉 > 0, (84)

which is nonzero because there are only a few low-energy 698

stationary points in system one, and there is a nonvanishing 699

probability of selecting one of them twice. The distribution 700

of this overlap is one-half the overlap distribution of a frozen 701

spin-glass at temperature β̂, a 1RSB system like the random 702
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energy model. The value of x corresponding to it depends on703

β̂, starting at x = 1 at β̂c and decreasing with increasing β̂.704

Globally, the joint complexity of the system is 1RSB, but note705

that the global overlap between different states is at most 1/2.706

At β̂ > β̂ f there is a further transition.707

This schematic example provides a metaphor for consider-708

ing what happens in ordinary models when replica symmetry709

is broken. At some point certain degrees of freedom “freeze”710

onto a subextensive number of possible states, while the re-711

mainder are effectively unconstrained. The overlap measures712

something in the competition between the number of these713

unconstrained subregions and their size.714

B. R and D: Response functions715

The matrix field R is related to responses of the stationary716

points to perturbations of the tensors J . One adds to the Hamil-717

tonian a random term εpH̃p = − 1
p!εp

∑
i1···ip

J̃i1···ipsi1 · · · sip ,718

where the J̃ are random Gaussian uncorrelated with the Js719

and having variance J̃2 = p!/2N p−1. The response to these is720

1

N

∂〈H̃p〉
∂εp

= lim
n→0

∫ ( n∏
a

dν(sa)

)
n∑
b

×
[
β̂
( s1 · sb

N

)p
+ p

(
−i

s1 · ŝb

N

)( s1 · sb

N

)p−1
]
.

(85)

Taking the average of this expression over disorder and aver-721

aging over the equivalent replicas in the integral gives, similar722

to before,723

1

N

∂〈H̃p〉
∂εp

= lim
n→0

∫
D[C, R, D]

1

n

n∑
ab

× (β̂Cp
ab + pRabC

p−1
ab

)
enN�[C,R,D]

= β̂ + prd −
∫ 1

0
dx cp−1(x)[β̂c(x) + pr(x)]. (86)

The responses as defined by this average perturbation in the724

pure p-spin energy can be directly related to responses in the725

tensor polarization of the stationary points:726

1

N p

∑
i1···ip

∂
〈
si1 · · · sip

〉
∂J (p)

i1···ip

= 1

N

∂〈H̃p〉
∂εp

. (87)

In particular, when the energy is unconstrained (β̂ = 0) and727

there is replica symmetry, the above formulas imply that728

1

N

∑
i

∂〈si〉
∂J (1)

i

= rd , (88)

i.e., adding a linear field causes a response in the average729

stationary point location proportional to rd . If positive, for730

instance, then stationary points tend to align with a field.731

The energy constraint has a significant contribution due to the732

perturbation causing stationary points to move up or down in733

energy.734

The matrix field D is related to the response of the com-735

plexity to perturbations of the variance of the tensors J . This736

can be found by taking the expression for the complexity and737

inserting the dependence of f on the coefficients ap, then 738

differentiating: 739

∂�

∂ap
= 1

4
lim
n→0

1

n

n∑
ab

[
β̂2Cp

ab + p(2β̂Rab − Dab)Cp−1
ab

+ p(p − 1)R2
abC

p−2
ab

]
. (89)

In particular, when the energy is unconstrained (β̂ = 0) and 740

there is no replica symmetry breaking, 741

∂�

∂a1
= −1

4
lim
n→0

1

n

∑
ab

Dab = −1

4
dd , (90)

i.e., adding a random linear field decreases the complexity of 742

solutions by an amount proportional to dd in the variance of 743

the field. 744

When the saddle point of the Kac–Rice problem is super- 745

symmetric, 746

∂�

∂ap
= β̂

4

1

N p

∑
i1···ip

∂
〈
si1 · · · sip

〉
∂J (p)

i1···ip

+ lim
n→0

1

n

n∑
ab

p(p − 1)R2
abC

p−2
ab ,

(91)

and in particular for p = 1, 747

∂�

∂a1
= β̂

4

1

N

∑
i

∂〈si〉
∂J (1)

i

, (92)

i.e., the change in complexity due to a linear field is directly 748

related to the resulting magnetization of the stationary points 749

for supersymmetric minima. 750

X. CONCLUSION 751

We have constructed a replica solution for the general 752

problem of finding saddles of random mean-field landscapes, 753

including systems with many steps of RSB. For systems with 754

full RSB, we find that minima are exponentially subdominant 755

with respect to saddles at all energy densities above the ground 756

state. The solution should be subjected to standard checks, 757

like the examination of its stability with respect to other RSB 758

schemes. The solution contains valuable geometric informa- 759

tion that has yet to be extracted in all detail, for example, 760

considering several copies of the system [56], or the extension 761

to complex variables [57,58]. 762

A first and very important application of the method here 763

is to perform the calculation for high dimensional spheres, 764

where it would give us a clear understanding of what happens 765

in realistic low-temperature jamming dynamics [59]. More 766

simply, examining the landscape of a spherical model with 767

a glass to glass transition from 1RSB to RS, like the 2 + 4 768

model when a4 is larger than we have taken it in our exam- 769

ple, might give insight into the cases of interest for Gardner 770

physics [41,42]. In any case, our analysis of typical 1RSB and 771

FRSB landscapes indicates that the highest energy signature 772

of RSB phases is in the overlap structure of the high-index 773

saddle points. Though measuring the statistics of saddle points 774

is difficult to imagine for experiments, this insight could find 775

application in simulations of glass formers, where saddle- 776

finding methods are possible. 777
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A second application is to evaluate in more detail the778

landscape of these RSB systems. In particular, examining779

the complexity of stationary points with nonextensive indices780

(like rank-one saddles), the complexity of pairs of stationary781

points at fixed overlap, or the complexity of energy barriers782

[10,60]. These other properties of the landscape might shed783

light on the relationship between landscape RSB and dynami-784

cal features, like the algorithmic energy Ealg, or the asymptotic785

level reached by physical dynamics. For our 1RSB example,786

because Ealg is just below the energy where dominant saddles787

transition to a RSB complexity, we speculate that Ealg may be 788

related to the statistics of minima connected to the saddles at 789

this transition point. 790
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APPENDIX: HIERARCHICAL MATRIX DICTIONARY 795

Each row of a hierarchical matrix is the same up to permutation of their elements. The so-called kRSB ansatz has k + 2 796

different values in each row. If A is an n × n hierarchical matrix, then n − x1 of those entries are a0, x1 − x2 of those entries 797

are a1, and so on until xk − 1 entries of ak , and one entry of ad , corresponding to the diagonal. Given such a matrix, there are 798

standard ways of producing the sum and determinant that appear in the free energy. These formulas are, for an arbitrary kRSB 799

matrix A with ad on its diagonal (recall qd = 1), 800

lim
n→0

1

n

n∑
ab

Aab = ad −
k∑

i=0

(xi+1 − xi )ai, (A1)

lim
n→0

1

n
ln det A = a0

ad −∑k
i=0(xi+1 − xi )ai

+ 1

x1
log

[
ad −

k∑
i=0

(xi+1 − xi )ai

]

−
k∑

j=1

(
x−1

j − x−1
j+1

)
log

⎡
⎣ad −

k∑
i= j

(xi+1 − xi )ai − x ja j

⎤
⎦, (A2)

where x0 = 0 and xk+1 = 1. The sum of two hierarchical matrices results in the sum of each of their elements: (a + b)d = ad + bd 801

and (a + b)i = ai + bi. The product AB of two hierarchical matrices A and B is given by 802

(a ∗ b)d = ad bd −
k∑

j=0

(x j+1 − x j )a jb j, (A3)

(a ∗ b)i = bd ai + ad bi −
i−1∑
j=0

(x j+1 − x j )a jb j + (2xi+1 − xi )aibi −
k∑

j=i+1

(x j+1 − x j )(aib j + a jbi ). (A4)

There is a canonical mapping between the parametrization of a hierarchical matrix described above and a functional 803

parametrization that is particularly convenient in the twin limit n → 0 and k → ∞ [61,62]. The distribution of diagonal elements 804

of a matrix A is parameterized by a continuous function a(x) on the interval [0,1], while its diagonal is still called ad . Define for 805

any function g the average 806

〈g〉 =
∫ 1

0
dx g(x). (A5)

The sum of two hierarchical matrices so parameterized results in the sum of these functions. The product AB of hierarchical 807

matrices A and B gives 808

(a ∗ b)d = ad bd − 〈ab〉, (A6)

(a ∗ b)(x) = (bd − 〈b〉)a(x) + (ad − 〈a〉)b(x) −
∫ x

0
dy [a(x) − a(y)][b(x) − b(y)]. (A7)

The sum over all elements of a hierarchical matrix A gives 809

lim
n→0

1

n

∑
ab

Aab = ad − 〈a〉. (A8)
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The ln det = Tr ln becomes810

lim
n→0

1

n
ln det A = ln(ad − 〈a〉) + a(0)

ad − 〈a〉 −
∫ 1

0

dx

x2
ln

(
ad − 〈a〉 − xa(x) + ∫ x

0 dy a(y)

ad − 〈a〉

)
. (A9)
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