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Abstract

We derive the general solution for counting the stationary points of mean-field complex land-

scapes. It incorporates Parisi’s solution for the ground state, as it should. Using this solution, we

count the stationary points of two models: one with multi-multistep replica symmetry breaking,

and one with full replica symmetry breaking.
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I. INTRODUCTION

The computation of the number of metastable states of mean-field spin glasses goes back

to the beginning of the field. Over forty40 years ago, Bray and Moore [1] attempted the

first calculation for the Sherrington–Kirkpatrick model, in a paper remarkable for being one

of the first applications of a replica symmetry breaking (RSB) scheme. As was clear when

the actual ground state of the model was computed by Parisi with a different scheme, the

Bray–Moore result was not exact, and the problem has been open ever since [2]. To date,

the program of computing the number of stationary points—minima, saddle points, and

maxima—of mean-field complex landscapes has been only carried out for a small subset of

models, including most notably the (pure) p-spin model (p > 2) [9–12] and for similar energy

functions inspired by molecular biology, evolution, and machine learning [6–8]. In a parallel

development, it has evolved into an active field of probability theory [3–5].

In this paper we present what we argue is the general replica ansatz for the number of

stationary points of generic mean-field models, which we expect to include the Sherrington–

Kirkpatrick model. It reproduces the Parisi result in the limit of small temperature for the

lowest states, as it should.

To understand the importance of this computation, consider the following situation.

When one solves the problem of spheres in large dimensions, one finds that there is a

transition at a given temperature to a one-step replica symmetry breaking (1RSB) phase

at a Kauzmann temperature, and, at a lower temperature, another transition to a full RSB

(FRSB) phase (see Refs. [15, 16], the so-called ‘“Gardner” phase [14]). Now, this transition

involves the lowest equilibrium states. Because they are obviously unreachable at any rea-

sonable timescale, a common question is: what is the signature of the Gardner transition

line for higher than equilibrium energy-densities? This is a question whose answers are sig-

nificant to interpreting the results of myriad experiments and simulations [17–26] (see, for

a review [27]). For example, when studying ‘“jamming” at zero temperature, the question

is posed as, ‘“On what side of the 1RSB–FRSB transition are high-energy (or low-density)

states reachable dynamically?” One approach to answering such questions makes use of

‘“state following,” which tracks metastable thermodynamic configurations to their zero tem-

perature limit [28–32]. In the present paper we give a purely geometric appoarchapproach:

We consider the local energy minima at a given energy and study their number and other
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properties; the solution involves a replica-symmetry breaking scheme that is well-defined

and corresponds directly to the topological characteristics of those minima.

Perhaps the most interesting application of this computation is in the context of opti-

mization problems; see, for example, Refs. [33–35]. A question that appears there is how

to define a “threshold” level, the lowest energy level that good algorithms can expect to

reach. This notion was introduced in the context of the pure p-spin models, as the energy at

which level sets of the energy in phase-space percolate, explaining why dynamics never go

below that level [36]. The notion of a ‘“threshold” for more complicated landscapes has later

been invoked several times, never to our knowledge in a clear and unambiguous way. One

of the purposes of this paper is to give a sufficiently detailed characterization of a general

landscape so that a meaningful general notion of threshold may be introduced – —if this is

at all possible.

The format of this paper is as follows. In §Sec. II, we introduce the mean-field model of

study, the mixed p-spin spherical model. In §Sec. III we review details of the equilibrium

solution that are relevant to our study of the landscape complexity. In §Sec. IV we derive

a generic form for the complexity. In §Sec. V we make and review the hierarchical replica

symmetry breaking ansatz used to solve the complexity. In §Sec. VI we write down the

solution in a specific and limited regime, which is nonetheless helpful as it gives a foothold

for numerically computing the complexity everywhere else. §Sec. VII explains aspects of the

solution specific to the case of full RSB, and derives the replica symmetric to full FRSB (RS–

FRSB) transition line. §Sec. VIII details the landscape topology of two example models: a

3 + 16 model with a 2RSB ground state and a 1RSB complexity, and a 2 + 4 with a FRSB

ground state and a FRSB complexity. Finally §Sec. IX provides some interpretation of our

results.

II. THE MODEL

For definiteness, we consider the mixed p-spin spherical model, whose Hamiltonian

H(s) = −
∑

p

1

p!

N∑

i1∙∙∙ip

J
(p)
i1∙∙∙ipsi1 ∙ ∙ ∙ sip (1)

is defined for vectors s ∈ RN confined to the sphere ‖s‖2 = N . The coupling coefficients J

are taken at random, with zero mean and variance (J (p))2 = app!/2Np−1 chosen so that the
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energy is typically extensive. The overbar will always denote an average over the coefficients

J . The factors ap in the variances are freely chosen constants that define the particular

model. For instance, the so-called ‘“pure” models have ap = 1 for some p and all others zero.

The variance of the couplings implies that the covariance of the energy with itself depends

on only the dot product (or overlap) between two configurations. In particular, one finds

H(s1)H(s2) = Nf
(s1 ∙ s2

N

)
, (2)

where f is defined by the series

f(q) =
1

2

∑

p

apq
p. (3)

One need not start with a Hamiltonian like Eq. (1), defined as a series: instead, the

covariance rule (2) can be specified for arbitrary, non-nonpolynomial f , as in the ‘“toy

model” of Mézard and Parisi [37].

The family of mixed p-spin models may be considered as the most general models of

generic Gaussian functions on the sphere. To constrain the model to the sphere, we use a

Lagrange multiplier μ, with the total energy being

H(s) +
μ

2
(‖s‖2 − N). (4)

For reasons that will become clear in §Sec. IVA1, we refer to μ as the stability parameter.

At any stationary point, the gradient and Hessian are given by

∇H(s, μ) = ∂H(s) + μs, Hess H(s, μ) = ∂∂H(s) + μI, (5)

where ∂ = ∂
∂s
always. An important observation was made by Bray and Dean [38] that

gradient and Hessian are independent for Gaussian random functions. The average over

disorder breaks into a product of two independent averages, one for any function of the

gradient and one for any function of the Hessian. In particular, the number of negative

eigenvalues at a stationary point, which sets the index I of the saddle, is a function of the

Hessian alone (see Fyodorov [39] for a detailed discussion).
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III. EQUILIBRIUM

Here we review the equilibrium solution, which has been studied in detail [40–43]. For a

succinct review, see Ref. [44]. The free energy, averaged over disorder, is

βF = −ln

∫
ds δ(‖s‖2 − N) e−βH(s). (6)

Once n replicas are introduced to treat the logarithm, the fields sa can be replaced with the

new n × n matrix field Qab ≡ (sa ∙ sb)/N . This yields for the free energy

βF = −1 − ln 2π −
1

2
lim
n→0

1

n

(

β2

n∑

ab

f(Qab) + ln det Q

)

, (7)

which must be evaluated at the Q which maximizes this expression and whose diagonal is

one. The solution is generally a hierarchical matrix à la Parisi. The properties of these

matrices is reviewed in §Sec. X, including how to write down Eq. (7) in terms of their

parameters.

The free energy can also be written in a functional form, which is necessary for working

with the solution in the limit k → ∞, the so-called full replica symmetry breaking (FRSB).

If P (q) is the probability distribution for elements q in a row of the matrix, then define χ(q)

by

χ(q) =

∫ 1

q

dq′
∫ q′

0

dq′′ P (q′′). (8)

Since it is the double integral of a probability distribution, χ must be concave, monotonically

decreasing, and have χ(1) = 0 and χ′(1) = −1. The function χ turns out to have an

interpretation as the spectrum of the hierarchical matrix Q. Using standard arguments, the

free energy can be written as a functional over χ as

βF = −1 − ln 2π −
1

2

∫ 1

0

dq

(

β2f ′′(q)χ(q) +
1

χ(q)

)

, (9)

which must be maximized with respect to χ given the constraints outlined above.

In our study of the landscape, the free energy will not be directly relevant anywhere

except at the ground state, when the temperature is zero or β → ∞. Here, the measure

will be concentrated in the lowest minima, and the average energy 〈E〉0 = limβ→∞
∂
∂β

βF

will correspond to the ground-state energy E0. The zero temperature limit is most easily

obtained by putting xi = x̃ixk and xk = β̃/β, qk = 1 − z/β, which ensures the x̃i, β̃, and z
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have nontrivial limits. Inserting the ansatz and taking the limit, carefully treating the kth

term in each sum separately from the rest, one can show after some algebra that

β̃〈E〉0 = β̃ lim
β→∞

∂(βF )

∂β
= −

1

2
zβ̃f ′(1)−

1

2
lim
n→0

1

n

[

β̃2

n∑

ab

f(Q̃ab) + ln det(β̃z−1Q̃ + I)

]

, (10)

where Q̃ is a (k − 1)RSB matrix with entries q̃1 = limβ→∞ q1, . . . , q̃k−1 = limβ→∞ qk−1 pa-

rameterized by x̃1, . . . , x̃k−1. This is a (k−1)RSB ansatz whose spectrum in the determinant

is scaled by β̃z−1 and shifted by 1, with effective temperature β̃, and an extra term. In the

continuum case, this is

β̃〈E〉0 = −
1

2
zβ̃f ′(1) −

1

2

∫ 1

0

dq

[

β̃2f ′′(q)χ̃(q) +
1

χ̃(q) + β̃z−1

]

, (11)

where χ̃ is bound by the same constraints as χ.

The zero temperature limit of the free energy loses one level of replica symmetry breaking.

Physically, this is a result of the fact that in kRSB, qk gives the overlap within a state, i.e.,

within the basin of a well inside the energy landscape. At zero temperature, the measure

is completely localized on the bottom of the well, and therefore the overlap within each

state becomes one. We will see that the complexity of low-energy stationary points in Kac–

Rice computation is also given by a (k − 1)RSB anstaz. Heuristically, this is because each

stationary point also has no width and therefore overlap one with itself.

IV. LANDSCAPE COMPLEXITY

The stationary points of a function can be counted using the Kac–Rice formula, which

integrates over the function’s domain a δ function containing the gradient multiplied by the

absolute value of the determinant [45, 46]. It gives the number of stationary points N as

N =

∫
ds dμ δ

(
1
2
(‖s‖2 − N)

)
δ
(
∇H(s, μ)

) ∣∣ det Hess H(s, μ)
∣
∣. (12)

It is more interesting to count stationary points which share certain properties, like energy

density E or index density I. These properties can be fixed by inserting additional δ-

functions into the integral. Rather than fix the index directly, we fix the trace of the

Hessian, which we’ll soon show is equivalent to fixing the value μ, and fixing μ fixes the
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index to within order one. Inserting these δ functions, we arrive at

N (E, μ∗) =

∫
ds dμ δ

(
1
2
(‖s‖2 − N)

)
δ
(
∇H(s, μ)

) ∣∣ det Hess H(s, μ)
∣
∣

× δ
(
NE − H(s)

)
δ
(
Nμ∗ − Tr Hess H(s, μ)

)
.

(13)

This number will typically be exponential in N . In order toTo find the typical count when

disorder is averaged, we want to average its logarithm instead, which is known as the com-

plexity:

Σ(E, μ∗) = lim
N→∞

1

N
logN (E, μ∗). (14)

If one averages over N and afterward takes its logarithm, then one arrives at the so-called

annealed complexity

Σa(E, μ∗) = lim
N→∞

1

N
logN (E, μ∗). (15)

The annealed complexity has been previously computed for the mixed p-spin models [5]. The

annealed complexity is known to equal the actual (quenched) complexity in circumstances

where there is at most one level of replica symmetry breaking in the model’s equilibrium.

This is the case for the pure p-spin models, or for mixed models where 1/
√

f ′′(q) is a convex

function. However, it fails dramatically for models with higher replica symmetry breaking.

For instance, when f(q) = 1
2
(q2 + 1

16
q4) (a model we study in detail later), the annealed

complexity predicts that minima vanish well before the dominant saddles, a contradiction

for any bounded function.

A sometimes more illuminating quantity is the Legendre transform G of the complexity,

defined by

eNG(β̂,μ∗) =

∫
dE e−β̂E+Σ(β̂,μ∗). (16)

There will be a critical value β̂c beyond which the complexity is zero: above this value

the measure is split between the lowest O(1) energy states. We shall not study here this

regime that interpolates between the dynamically relevant and the equilibrium states, but

just mention that it is an interesting object of study.

A. The replicated problem

The replicated Kac–Rice formula was introduced by Ros et al.et al. [7], and its effective

action for the mixed p-spin model has previously been computed by Folena et al.et al. [47].
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Here we review the derivation.

In order toTo average the complexity over disorder, we must deal with the logarithm. We

use the standard replica trick to convert the logarithm into a product, which gives

logN (E, μ∗) = lim
n→0

∂

∂n
N n(E, μ∗)

= lim
n→0

∂

∂n

∫ n∏

a

dsa dμa δ
(

1
2
(‖sa‖

2 − N)
)
δ
(
∇H(sa, μa)

) ∣∣ det Hess H(sa, μa)
∣
∣

× δ
(
NE − H(sa)

)
δ
(
Nμ∗ − Tr Hess H(sa, μa)

)
.

(17)

As discussed in §Sec. II, it has been shown that to the largest order in N , the Hessian of

Gaussian random functions is independent from their gradient, once both are conditioned

on certain properties. Here, they are only related by their shared value of μ. Because of this

statistical independence, we may write

Σ(E, μ∗) = lim
N→∞

1

N
lim
n→0

∂

∂n

∫ ( n∏

a

dsa dμa

)
n∏

a

δ
(

1
2
(‖sa‖2 − N)

)
δ
(
∇H(sa, μa)

)
δ(NE − H(sa))

×
n∏

a

| det Hess(sa, μa)| δ
(
Nμ∗ − Tr Hess H(sa, μa)

)
,

(18)

which simplifies matters. The average of the two factors may now be treated separately.

1. The Hessian factors

The spectrum of the matrix ∂∂H(s) is uncorrelated from the gradient. In the large-N

limit, for almost every point and realization of disorder it is a GOE matrix with variance

(∂i∂jH(s))2 =
1

N
f ′′(1)δij . (19)

Therefore, in that limit its spectrum is given by the Wigner semicircle with radius
√

4f ′′(1),

or

ρ(λ) =






1
2πf ′′(1)

√
4f ′′(1) − λ2 λ2 ≤ 4f ′′(1),

0 otherwise.
(20)
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The spectrum of the Hessian Hess H(s, μ) is the same semicircle shifted by μ, or ρ(λ + μ).

The stability parameter μ thus fixes the center of the spectrum of the Hessian. The semicircle

radius μm =
√

4f ′′(1) is a kind of threshold. When μ is taken to be within the range ±μm,

the critical points have index density

I(μ) =

∫ ∞

0

dλ ρ(λ + μ) =
1

2
−

1

π

[

arctan

(
μ

√
μ2

m − μ2

)

+
μ

μ2
m

√
μ2

m − μ2

]

. (21)

When μ > μm, the critical points are minima whose sloppiest eigenvalue is μ − μm. When

μ = μm, the critical points are marginal minima, with flat directions in their spectrum.

This property of μ is why we’ve named it the stability parameter: it governs the stability of

stationary points, and for unstable ones it governs their index.

To largest order in N , the average over the product of determinants factorizes into the

product of averages, each of which is given by the same expression depending only on μ [7].

We therefore find

n∏

a

| det Hess(sa, μa)| δ
(
Nμ∗ − Tr Hess H(sa, μa)

)
→

n∏

a

eND(μa)δ
(
N(μ∗ − μa)

)
, (22)

where the function D is defined by

D(μ) =
1

N
ln | det Hess H(s, μ)| =

∫
dλ ρ(λ + μ) ln |λ|

= Re

{
1

2

[

1 +
μ

2f ′′(1)

(
μ −

√
μ2 − 4f ′′(1)

)]

− ln

[
1

2f ′′(1)

(
μ −

√
μ2 − 4f ′′(1)

)]}

.

(23)

By fixing the trace of the Hessian, we have effectively fixed the value of the stability μ in

all replicas to the value μ∗.

• For μ∗ < μm, this amounts to fixing the index density. Since the overwhelming major-

ity of saddles have a semicircle distribution, the fluctuations are rarer than exponential.

• For the gapped case μ∗ > μm, there is an exponentially small probability that r =

1, 2, ... eigenvalues detach from the semicircle in such a way that the index is in fact

NI = r. We shall not discuss these subextensive index fluctuations in this paper, the

interested reader may find what is needed in Ref. [4].
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2. The gradient factors

The δ functions in the remaining factor are treated by writing them in the Fourier basis.

Introducing auxiliary fields ŝa and β̂ for this purpose, for each replica replica one writes

δ
(

1
2
(‖sa‖

2 − N)
)
δ
(
∇H(sa, μ

∗)
)
δ(NE − H(sa))

=

∫
dμ̂

2π

dβ̂

2π

dŝa

(2π)N
e

1
2
μ̂(‖sa‖2−N)+β̂(NE−H(sa))+iŝa∙(∂H(sa)+μ∗sa).

(24)

Anticipating a Parisi-style solution, we do not label μ̂ or β̂ with replica indices, since replica

vectors won’twill not be broken in the scheme. The average over disorder can now be taken

for the pieces which depend explicitly on the Hamiltonian, and since everything is Gaussian

this gives

exp

[
n∑

a

(iŝa ∙ ∂a − β̂)H(sa)

]

= exp

[
1

2

n∑

ab

(iŝa ∙ ∂a − β̂)(iŝb ∙ ∂b − β̂)H(sa)H(sb)

]

= exp

[
N

2

n∑

ab

(iŝa ∙ ∂a − β̂)(iŝb ∙ ∂b − β̂)f
(sa ∙ sb

N

)
]

= exp

{
N

2

n∑

ab

[

β̂2f
(sa ∙ sb

N

)
− 2iβ̂

ŝa ∙ sb

N
f ′
(sa ∙ sb

N

)
−

ŝa ∙ ŝb

N
f ′
(sa ∙ sb

N

)
+

(

i
ŝa ∙ sb

N

)2

f ′′
(sa ∙ sb

N

)
]}

.

(25)

We introduce new matrix fields

Cab =
1

N
sa ∙ sb, Rab = −i

1

N
ŝa ∙ sb, Dab =

1

N
ŝa ∙ ŝb. (26)

Their physical meaning is explained in §Sec. IX. By substituting these parameters into the

expressions above and then making a change of variables in the integration from sa and ŝa

to these three matrices, we arrive at the form for the complexity

Σ(E, μ∗) = D(μ∗) + β̂E −
1

2
μ̂ + lim

n→0

1

n

{
1

2
μ̂ Tr C − μ∗ Tr R

+
1

2

∑

ab

[
β̂2f(Cab) + (2β̂Rab − Dab)f

′(Cab) + R2
abf

′′(Cab)
]

+
1

2
ln det




C iR

iR D









,

(27)

where μ̂, β̂, C, R, and D must be evaluated at the extrema of this expression which mini-

mize the complexity. Note that one cannot minimize the complexity with respect to these
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parameters: there is no pure variational problem here. Extremizing with respect to μ̂ is

not difficult, and results in setting the diagonal of C to one, fixing the spherical constraint.

Maintaining μ̂ in the complexity is useful for writing down the extremal conditions, but

when convenient we will drop the dependence.

The same information is contained but better expressed in the Legendre transform

G(β̂, μ∗) = D(μ∗)+

+ lim
n→0

1

n





−μ∗ Tr R +

1

2

∑

ab

[
β̂2f(Cab) + (2β̂Rab − Dab)f

′(Cab) + R2
abf

′′(Cab)
]

+
1

2
ln det




C iR

iR D









.

(28)

Denoting rd ≡ 1
n
TrR, we can write down the double Legendre transform K(β̂, rd):

eNK(β̂,rd) =

∫
dE dμ∗eN{Σ(E,μ∗)−β̂E+rdμ∗−D(μ∗)}, (29)

given by

K(β̂, rd) = lim
n→0

1

n





1

2

∑

ab

[
β̂2f(Cab) + (2β̂Rab − Dab)f

′(Cab) + R2
abf

′′(Cab)
]

+
1

2
ln det




C iR

iR D









,

(30)

where the diagonal of C is fixed to one and the diagonal of R is fixed to rd. The variable rd

is conjugate to μ∗ and through it to the index density, while β̂ plays the role of an inverse

temperature conjugate to the complexity, that has been used since the beginning of the

spin-glass field. In this way K(β̂, rd) contains all the information about saddle densities.

V. REPLICA ANSATZ

Based on previous work on the Sherrington–Kirkpatrick model and the equilibrium so-

lution of the spherical model, we expect C, and R and D to be hierarchical matrices in

Parisi’s scheme. This assumption immediately simplifies the extremal conditions, since hier-

archical matrices commute and are closed under matrix products and Hadamard products.

In particular, the determinant of the block matrix can be written as a determinant of a

product,

ln det




C iR

iR D



 = ln det(CD + R2). (31)
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This is straightforward (if strenuous) to write down at kRSB, since the product and sum of

the hierarchical matrices is still a hierarchical matrix. The algebra of hierarchical matrices

is reviewed in §Sec. X. Using the product formula (95), one can write down the hierarchical

matrix CD + R2, and then compute the ln det using the formula (94).

The extremal conditions are given by differentiating the complexity with respect to its

parameters, yielding

0 =
∂Σ

∂μ̂
=

1

2
(cd − 1), (32)

0 =
∂Σ

∂β̂
= E + lim

n→0

1

n

∑

ab

[
β̂f(Cab) + Rabf

′(Cab)
]
, (33)

0 =
∂Σ

∂C
=

1

2

[
μ̂I + β̂2f ′(C) + (2β̂R − D) � f ′′(C) + R � R � f ′′′(C) + (CD + R2)−1D

]
,

(34)

0 =
∂Σ

∂R
= −μ∗I + β̂f ′(C) + R � f ′′(C) + (CD + R2)−1R, (35)

0 =
∂Σ

∂D
= −

1

2
f ′(C) +

1

2
(CD + R2)−1C, (36)

where � denotes the Hadamard product, or the componentwise product. Equation (36)

implies that

D = f ′(C)−1 − RC−1R. (37)

To these conditions must be added the addition condition that Σ is extremal with respect

to x1, . . . , xk. There is no better way to enforce this condition than to directly differentiate

Σ with respect to the xs, and we have

0 =
∂Σ

∂xi

1 ≤ i ≤ k. (38)

The stationary conditions for the xs are the most numerically taxing.

In addition to these equations, we often want to maximize the complexity as a function

of μ∗, to find the most common type of stationary points. These are given by the condition

0 =
∂Σ

∂μ∗
= D′(μ∗) − rd. (39)

Since D(μ∗) is effectively a piecewise function, with different forms for μ∗ greater or less

than μm, there are two regimes. When μ∗ > μm and the critical points are minima, Eq. (39)

implies

μ∗ =
1

rd

+ rdf
′′(1). (40)
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When μ∗ < μm and the critical points are saddles, it implies

μ∗ = 2f ′′(1)rd. (41)

It is often useful to have the extremal conditions in a form without matrix inverses, so

that the saddle conditions can be expressed using products alone. By simple manipulations,

the matrix equations can be written as

0 =
[
β̂2f ′(C) + (2β̂R − D) � f ′′(C) + R � R � f ′′′(C) + μ̂I

]
C + f ′(C)D, (42)

0 =
[
β̂f ′(C) + R � f ′′(C) − μ∗I

]
C + f ′(C)R, (43)

0 = C − f ′(C)(CD + R2). (44)

The right-hand side of each of these equations is also a hierarchical matrix, since products,

Hadamard products, and sums of hierarchical matrices are such.

VI. SUPERSYMMETRIC SOLUTION

The Kac–Rice problem has an approximate supersymmetry, which is found when the

absolute value of the determinant is neglected and the trace of the Hessian is not fixed. This

supersymmetry has been studied in great detail in the complexity of the Thouless–Anderson–

Palmer (TAP) free energy [48–52]. When the absolute value is dropped, the determinant in

(12) can be represented by an integral over Grassmann variables, which yields a complexity

depending on ‘“bosons” and ‘“fermions” that share the supersymmetry. The Ward identities

associated with the supersymmetry imply that D = β̂R [48]. Under which conditions can

this relationship be expected to hold? We find that their applicability is limited to a specific

line in the energy and stability plane.

The identity D = β̂R heavily constrains the form that the rest of the solution can take.

Assuming the supersymmetry holds, Eq. (34) implies

0 = μ̂I + β̂2f ′(C) + β̂R � f ′′(C) + R � R � f ′′′(C) + β̂(CD + R2)−1R. (45)

Substituting (35) for the factor (CD + R2)−1R, we find substantial cancellation, and finally

0 = (μ̂ + μ∗)I + R � R � f ′′′(C). (46)
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If C has a nontrivial off-diagonal structure and supersymmetry holds, then the off-diagonal

of R must vanish, and therefore R = rdI. Therefore, a supersymmetric ansatz is equivalent

to a diagonal ansatz for both R and D.

Supersymmetry has further implications. Equations (35) and (36) can be combined to

find

I = R [μ∗I − R � f ′′(C)] + (D − β̂R)f ′(C). (47)

Assuming the supersymmetry holds implies that

I = R [μ∗I − R � f ′′(C)] . (48)

Understanding that R is diagonal, we find

μ∗ =
1

rd

+ rdf
′′(1), (49)

which is precisely the condition (40) for dominant minima. Therefore, the supersymmetric

solution counts the most common minima [50]. When minima are not the most common

type of stationary point, the supersymmetric solution correctly counts minima that satisfy

(40), but these do not have any other special significance.

Inserting the supersymmetric ansatz D = β̂R and R = rdI, one gets for the complexity

Σ(E, μ∗) = D(μ∗) + β̂E − μ∗rd +
1

2
β̂rdf

′(1) +
1

2
r2
df

′′(1) +
1

2
ln r2

d

+
1

2
lim
n→0

1

n

[

β̂2
∑

ab

f(Cab) + ln det((β̂/rd)C + I)

]

.
(50)

From here, it is straightforward to see that the complexity vanishes at the ground-state

energy. First, in the ground-state minima will dominate (even if they are marginal), so we

may assume Eq. (40). Then, taking Σ(E0, μ
∗) = 0, gives

β̂E0 = −
1

2
rdβ̂f ′(1) −

1

2
lim
n→0

1

n

[

β̂2

n∑

ab

f(Cab) + ln det(β̂r−1
d C + I)

]

, (51)

which is precisely the ground-state energy predicted by the equilibrium solution (10) with

rd = z, β̂ = β̃, and C = Q̃.

Therefore, a (k − 1)RSB ansatz in Kac–Rice will predict the correct ground-state energy

for a model whose equilibrium state at small temperatures is kRSB Moreover, there is an

exact correspondence between the saddle parameters of each. If the equilibrium is given
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by a Parisi matrix with parameters x1, . . . , xk and q1, . . . , qk, then the parameters β̂, rd, dd,

x̃1, . . . , x̃k−1, and c1, . . . , ck−1 for the complexity in the ground state are

β̂ = lim
β→∞

βxk, x̃i = lim
β→∞

xi

xk

, ci = lim
β→∞

qi, rd = lim
β→∞

β(1 − qk), dd = β̂rd. (52)

Unlike the case for the TAP complexity, this correspondence between landscape complexity

and equilibrium solutions only exists at the ground state. We will see in our examples in

§Sec. VIII that there appears to be little correspondence between these parameters away

from the ground state.

The supersymmetric solution produces the correct complexity for the ground state and for

a class of minima, including dominant ones. Moreover, it produces the correct parameters

for the fields C, R, and D at those points. This is an important foothold in the problem

of computing the general complexity. The full saddle point equations at kRSB are not very

numerically stable, and a ‘“good” saddle point has a typically small radius of convergence

under methods like Newton’s algorithm. With the supersymmetric solution in hand, it is

possible to take small steps in the parameter space to find non-nonsupersymmetric numeric

solutions, each time ensuring the initial conditions for the solver are sufficiently close to the

correct answer. This is the strategy we use in §Sec. VIII.

VII. FULL REPLICA SYMMETRY BREAKING

This reasoning applies equally well to FRSB systems. In the end, when the limit of n → 0

is taken, each matrix field can be represented in the canonical way by its diagonal and a

continuous function on the domain [0, 1] which parameterizes each of its rows, with

C ↔ [cd, c(x)], R ↔ [rd, r(x)], D ↔ [dd, d(x)]. (53)

The algebra of hierarchical matrices under this continuous parameterizationparametrization

is reviewed in §Sec. X. With these substitutions, the complexity becomes

Σ(E, μ∗) = D(μ∗) + β̂E − μ∗rd +
1

2

[
β̂2f(1) + (2β̂rd − dd)f

′(1) + r2
df

′′(1)
]

−
1

2

∫ 1

0

dx
[
β̂2f(c(x)) + (2β̂r(x) − d(x))f ′(c(x)) + r(x)2f ′′(c(x))

]
+

1

2
lim
n→0

1

n
ln det(CD + R2).

(54)
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The formula for the determinant is complicated and can be found by using the product

formula (98) to write CD and R2, summing them, and finally using the ln det formula (101).

The saddle point equations take the form

0 = μ̂c(x) +
[(

β̂2(f ′ ◦ c) + (2β̂r − d)(f ′′ ◦ c) + r2(f ′′′ ◦ c)
)
∗ c
]
(x) +

[
(f ′ ◦ c) ∗ d

]
(x),

(55)

0 = −μ∗c(x) +
[(

β̂(f ′ ◦ c) + r ∗ (f ′′ ◦ c)
)
∗ c
]
(x) +

[
(f ′ ◦ c) ∗ r

]
(x), (56)

0 = c(x) −
[
(f ′ ◦ c) ∗ (c ∗ d + r ∗ r)

]
(x), (57)

where (ab)(x) = a(x)b(x) denotes the hadamard product, (a ∗ b)(x) denotes the functional

parameterizationparametrization of the diagonal of the product of hierarchical matrices AB

defined in Eq. (98), and (a ◦ b)(x) = a[b(x)] denotes composition.

A. Supersymmetric complexity

Using standard manipulations, one finds also a continuous version of the supersymmetric

complexity

Σ(E, μ∗) = D(μ∗)+β̂E−μ∗rd+
1

2

[
β̂rdf

′(1) + r2
df

′′(1) + ln r2
d

]
+

1

2

∫ 1

0

dq

[

β̂2f ′′(q)χ(q) +
1

χ(q) + rd/β̂

]

,

(58)

where χ(q) =
∫ q

1
dq′
∫ q′

0
dq′′ P (q) for P (q) the distribution of elements in a row of C, as in the

equilibrium case. Like in the equilibrium case, χ must be concave, monotonically decreasing,

and have χ(1) = 0, χ′(1) = −1.

First, we use this solution to inspect the ground state of a full RSB system. We know from

the equilibrium that in the ground state χ is continuous in the whole range of q. Therefore,

the saddle solution found by extremizing

0 =
δΣ

δχ(q)
=

1

2
β̂2f ′′(q) −

1

2

1

[χ(q) + rd/β̂]2
(59)

over all functions χ. This gives

χ0(q | β̂, rd) =
1

β̂

[
f ′′(q)−1/2 − rd

]
. (60)
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Satisfying the boundary conditions requires rd = f ′′(1)−1/2 and β̂ = 1
2
f ′′′(1)/f ′′(1)3/2. This

in turn implies μ∗ = 1
rd

+ f ′′(1)rd =
√

4f ′′(1) = μm. Therefore, the FRSB ground state is

always marginal, as excepted. It is straightforward to check that these conditions are indeed

a saddle of the complexity. This has several implications. First, other than the ground state,

there are no energies at which minima are most numerous; saddles always dominate. As we

will see, stable minima are numerous at energies above the ground state, but these vanish

at the ground state.

Away from the ground state, this expression still correctly counts a class of non-nondominant

minima. However, like in the equilibrium solution, the function χ which produces an ex-

tremal value is not smooth in the entire range [0, 1], but adopts a piecewise form

χ(q) =






χ0(q | β̂, rd) q ≤ qmax,

1 − q otherwise.
(61)

With this ansatz, the complexity must be extremized with respect to rd and β̂, while simul-

taneously ensuring that qmax is such that χ(q) is continuous, that is, that χ0(qmax | β̂, rd) =

1 − qmax. The significance of the minima counted by this method is unclear, but they do

represent a nodal line in the off-diagonal parts of R and D. Since, as usual, χ(q) is related

to c(x) by −χ′(c(x)) = x, there is a corresponding xmax given by

xmax = −χ′(qmax) =
1

2β̂

f ′′′(qmax)

f ′′(qmax)3/2
. (62)

B. Expansion near the transition

Working with the continuum equations away from the supersymmetric solution is not

generally tractable. However, there is another point where they can be treated analytically:

near the onset of replica symmetry breaking. Here, the off-diagonal components of C, R,

and D are expected to be small. In particular, we expect the functions c(x), r(x), and d(x)

to approach zero at the transition, and moreover take the piecewise linear form

c(x) =






c̄x x ≤ xmax

c̄xmax otherwise
, r(x) =






r̄x x ≤ xmax

r̄xmax otherwise
, d(x) =






d̄x x ≤ xmax

d̄xmax otherwise
,

(63)
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with xmax vanishing at the transition, with the slopes c̄, r̄, and d̄ remaining nonzero. This

ansatz is informed both by the experience of the equilibrium solution, and by empirical

observation within the numerics of §Sec. VIII

Given this ansatz, we take the equationsEqs. (55), (56), and (57), which are true for any

x, and integrate them over x. We then expand the result about small xmax to linear order

in xmax. Equation (56) depends linearly on r̄ to all orders, and therefore r̄ can be found in

terms of c̄, yielding

r̄

c̄
= −β̂ −

1

f ′(1) + f ′′(0)
{rd[f

′′(0) + f ′′(1)] − μ∗} + O(xmax). (64)

Likewise, Eq. (57) depends linearly on d̄ to all orders and can be solved to give

d̄

c̄
= −2rd

r̄

c̄
−

1

f ′(1)
{r2

df
′′(0) + dd[f

′(1) + f ′′(0)] − 1} + O(xmax). (65)

The equations cannot be used to find the value of c̄ without going to higher order in xmax,

but the transition line can be determined by examining the stability of the replica symmetric

complexity. First, we expand the full form for the complexity about small xmax in the same

way as we expand the extremal conditions, using Eq. (101) to treat the determinant. To

quadratic order, this gives

Σ(E, μ∗) = D(μ∗) + β̂E − μrd +
1

2

[
β̂2f(1) + (2β̂rd − dd)f

′(1) + r2
df

′′(1)
]

+
1

2
ln(dd + r2

d)

−
1

2

[
1

2
β̂2c̄2f ′′(0) + (2β̂r̄ − d̄)c̄f ′′(0) + r̄2f ′′(0) −

d̄2 − 2ddr̄
2 + d2

dc̄
2 + 4rdr̄(d̄ + ddc̄) − 2r2

d(c̄d̄ + r̄2)

2(dd + r2
d)

2

]

x2
max.

(66)

The spectrum of the Hessian of Σ with evaluated at the RS solution gives its stability with

respect to these functional perturbations. When the values of r̄ and d̄ above are substituted

into the Hessian and β̂, rd, and dd are evaluated at their RS values, the eigenvalue of interest

takes the form

λ = −c̄2 (f ′(1) − 2f(1))2(f ′(1) − f ′′(0))f ′′(0)

2(f ′(1) + f ′′(0))(f ′(1)2 − f(1)(f ′(1) + f ′′(1)))2
(μ∗−μ∗

+(E))(μ∗−μ∗
−(E)), (67)

where

μ∗
±(E) = ±

(f ′(1) + f ′′(0))(f ′(1)2 − f(1)(f ′(1) + f ′′(1)))

(2f(1) − f ′(1))f ′(1)f ′′(0)−1/2
−

f ′′(1) − f ′(1)

f ′(1) − 2f(1)
E. (68)

This eigenvalue changes sign when μ∗ crosses μ∗
±(E). We expect that this is the line of

stability for the replica symmetric solution when the transition is RS-FRSB. The numerics

in §Sec. VIII bear this out.
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VIII. GENERAL SOLUTION: EXAMPLES

Though we have only written down an easily computable complexity along a specific (and

often uninteresting) line in energy and stability, this computable (supersymmetric) solution

gives a numeric foothold for computing the complexity in the rest of that space. First, Eq.

(11) is maximized with respect to its parameters, since the equilibrium solution is equivalent

to a variational problem. Second, the mapping (52) is used to find the corresponding Kac–

Rice saddle parameters in the ground state. With these parameters in hand, small steps

are then made in energy E or stability μ, after which known these values are used as the

initial condition for a saddle-finding problem. In this section, we use this basic numeric

idea to map out the complexity for two representative examples: a model with a 2RSB

equilibrium ground state and therefore 1RSB complexity in its vicinity, and a model with a

FRSB equilibrium ground state, and therefore FRSB complexity as well.

A. 1RSB complexity

It is known that by choosing a covariance f as the sum of polynomials with well-separated

powers, one develops 2RSB in equilibrium. This should correspond to 1RSB in Kac–Rice.

For this example, we take

f(q) =
1

2

(

q3 +
1

16
q16

)

(69)

established to have a 2RSB ground state [53]. With this covariance, the model sees a

replica symmetric to 1RSB transition at β1 = 1.70615 . . . and a 1RSB to 2RSB transition

at β2 = 6.02198 . . .. At these transitions, the average energies in equilibrium are 〈E〉1 =

−0.906391 . . . and 〈E〉2 = −1.19553 . . ., respectively, and the ground-state energy is E0 =

−1.287 605 530 . . .. Besides these typical equilibrium energies, an energy of special interest

for looking at the landscape topology is the algorithmic threshold Ealg, defined by the lowest

energy reached by local algorithms like approximate message passing [54, 55]. In the spherical

models, this has been proven to be

Ealg = −
∫ 1

0

dq
√

f ′′(q). (70)

For full RSB systems, Ealg = E0 and the algorithm can reach the ground-state energy. For

the pure p-spin models, Ealg = Eth, where Eth is the energy at which marginal minima are
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FIG. 1. Complexity of dominant saddles, marginal minima, and dominant minima of the 3 + 16

model. Solid lines show the result of the 1RSB ansatz, while the dashed lines show that of a RS

ansatz. The complexity of marginal minima is always below that of dominant critical points except

at the black dot, where they are dominant. The inset shows a region around the ground state and

the fate of the RS solution.

the most common stationary points. Something about the topology of the energy function

might be relevant to where this algorithmic threshold lies. For the 3 + 16 model at hand,

Ealg = −1.275 140 128 . . ..

In this model, the RS complexity gives an inconsistent answer for the complexity of the

ground state, predicting that the complexity of minima vanishes at a higher energy than the

complexity of saddles, with both at a lower energy than the equilibrium ground state. The

1RSB complexity resolves these problems, predicting the same ground state as equilibrium

and with a ground-state stability μ0 = 6.480 764 . . . > μm. It predicts that the complexity

of marginal minima (and therefore all saddles) vanishes at Em = −1.287 605 527 . . ., which

is very slightly greater than E0. Saddles become dominant over minima at a higher energy

Eth = −1.287 575 114 . . .. The 1RSB complexity transitions to a RS description for dominant

stationary points at an energy E1 = −1.273 886 852 . . .. The highest energy for which the

1RSB description exists is Emax = −0.886 029 051 . . .

The complexity as a function of energy difference from the ground state is plotted in

Fig. 1. In that figure, the complexity is plotted for dominant minima and saddles, marginal

minima, and supersymmetric minima. A contour plot of the complexity as a function of

energy E and stability μ is shown in Fig. 2. That plot also shows the RS–1RSB transition

line in the complexity. For minima, the complexity does not inherit a 1RSB description until

the energy is with in a close vicinity of the ground state. On the other handHowever, for

high-index saddles the complexity becomes described by 1RSB at quite high energies. This

suggests that when sampling a landscape at high energies, high index saddles may show a

sign of replica symmetry breaking when minima or inherent states do not.

Figure 3 shows a different detail of the complexity in the vicinity of the ground state,

now as functions of the energy difference and stability difference from the ground state.

Several of the landmark energies described above are plotted, alongside the boundaries

between the ‘“phases.” Though Ealg looks quite close to the energy at which dominant saddles
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FIG. 2. Complexity of the 3 + 16 model in the energy E and stability μ∗ plane. The right

shows a detail of the left. Below the horizontal marginal line the complexity counts saddles of

increasing index as μ∗ decreases. Above the horizontal marginal line the complexity counts minima

of increasing stability as μ∗ increases.

FIG. 3. Detail of the ‘“phases” of the 3+16 model complexity as a function of energy and stability.

Above the horizontal marginal stability line the complexity counts saddles of fixed index, while below

that line it counts minima of fixed stability. The shaded red region to the left of the transition

line shows places where the complexity is described by the 1RSB solution, while the shaded gray

region to the right of the transition line shows places where the complexity is described by the

RS solution. In white regions the complexity is zero. Several interesting energies are marked with

vertical black lines: the traditional ‘“threshold” Eth where minima become most numerous, the

algorithmic threshold Ealg that bounds the performance of smooth algorithms, and the average

energies at the 2RSB and 1RSB equilibrium transitions 〈E〉2 and 〈E〉1, respectively. Though the

figure is suggestive, Ealg lies at slightly lower energy than the termination of the RS–1RSB transition

line.

transition from 1RSB to RS, they differ by roughly 10−3, as evidenced by the numbers cited

above. Likewise, though 〈E〉1 looks very close to Emax, where the 1RSB transition line

terminates, they too differ. The fact that Ealg is very slightly below the place where most

saddle transition to 1RSB is suggestive; we speculate that an analysis of the typical minima

connected to these saddles by downward trajectories will coincide with the algorithmic limit.

An analysis of the typical nearby minima or the typical downward trajectories from these

saddles at 1RSB is warranted [7, 13]. Also notable is that Ealg is at a significantly higher

energy than Eth; according to the theory, optimal smooth algorithms in this model stall in

a place where minima are exponentially subdominant.

Figure 4 shows the saddle parameters for the 3 + 16 system for notable species of sta-

tionary points, notably the most common, the marginal ones, those with zero complexity,

and those on the transition line. When possible, these are compared with the same ex-

pressions in the equilibrium solution at the same average energy. Besides the agreement at

the ground-state energy, there seems to be little correlation between the equilibrium and

complexity parameters.
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FIG. 4. Comparison of the saddle point parameters for the 3+16 model along different trajectories

in the energy and stability space, and with the equilibrium values (when they exist) at the same

value of average energy 〈E〉.

Of specific note is what happens to d1 as the 1RSB phase boundary for the complexity

meets the zero complexity line. Here, d1 diverges like

d1 = −

(
1

f ′(1)
− (dd + r2

d)

)

(1 − x1)
−1 + O(1), (71)

while x1 and q1 both go to one. Note that this is the only place along the phase boundary

where q1 goes to one. The significance of this critical point in the complexity of high-index

saddles in worth further study.

B. Full RSB complexity

If the covariance f is chosen to be concave, then one develops FRSB in equilibrium. To

this purpose, we choose

f(q) =
1

2

(

q2 +
1

16
q4

)

, (72)

also studied before in equilibrium [42, 43]. Because the ground state is FRSB, for this model

E0 = Ealg = Eth = −
∫ 1

0

dq
√

f ′′(q) = −1.059 384 319 . . . . (73)

In the equilibrium solution, the transition temperature from RS to FRSB is β∞ = 1, with

corresponding average energy 〈E〉∞ = −0.53125 . . ..

Along the supersymmetric line, the FRSB solution can be found in full, exact functional

form. To treat the FRSB away from this line numerically, we resort to finite kRSB approx-

imations. Since we are not trying to find the actual kRSB solution, but approximate the

FRSB one, we drop the extremal condition (38) for x1, . . . , xk and instead set

xi =

(
i

k + 1

)

xmax (74)

and extremize over xmax alone. This dramatically simplifies the equations that must be

solved to find solutions. In the results that follow, a 20RSB approximation is used to trace
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FIG. 5. The complexity Σ of the mixed 2+4 spin model as a function of distance ΔE = E −E0 of

the ground state. The solid blue line shows the complexity of dominant saddles given by the FRSB

ansatz, and the solid yellow line shows the complexity of marginal minima. The dashed lines show

the same for the annealed complexity. The inset shows more detail around the ground state.

FIG. 6. ‘“Phases” of the complexity for the 2 + 4 model in the energy E and stability μ∗ plane.

The region shaded gray to the right of the transition line shows where the RS solution is correct,

while the region shaded red to the left of the transition line shows that where the FRSB solution

is correct. The white region shows where the complexity is zero.

the dominant saddles and marginal minima, while a 5RSB approximation is used to trace

the (much longer) boundaries of the complexity.

Figure 5 shows the complexity for this model as a function of energy difference from

the ground state for several notable trajectories in the energy and stability plane. Figure 6

shows these trajectories, along with the phase boundaries of the complexity in this plane.

Notably, the phase boundary predicted by Eq. (68) correctly predicts where all of the finite

kRSB approximations terminate. Like the 1RSB model in the previous subsection, this

phase boundary is oriented such that very few, low energy, minima are described by a FRSB

solution, while relatively high-energy saddles of high index are also. Again, this suggests

that studying the mutual distribution of high-index saddle points might give insight into

lower-energy symmetry breaking in more general contexts.

Figure 7 shows the value of xmax along several trajectories of interest. Everywhere along

the transition line, xmax continuously goes to zero. Examples of our 20RSB approximations

of the continuous functions c(x), r(x), and d(x) are also shown. As expected, these functions

approach linear ones as xmax goes to zero with finite slopes.

FIG. 7. xmax as a function of E for several trajectories of interest, along with examples of the

20RSB approximations of the functions c(x), r(x), and d(x) along the dominant saddles. Colors

of the approximate functions correspond to the points on the xmax plot. The supersymmetric line

terminates where the complexity reaches zero, which happens inside the FRSB phase.
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IX. INTERPRETATION

Let 〈A〉 be the average of any function A over stationary points with given E and μ∗,

i.e.,

〈A〉 =
1

N

∑

s∈S

A(s) =
1

N

∫
dν(s) A(s), (75)

with

dν(s) = ds dμ δ
(

1
2
(‖s‖2−N)

)
δ
(
∇H(s, μ)

) ∣∣ det Hess H(s, μ)
∣
∣δ
(
NE−H(s)

)
δ
(
Nμ∗−Tr Hess H(s, μ)

)

(76)

the Kac–Rice measure. Note that this definition of the angle brackets, which is in analogy

with the typical equilibrium average, is not the same as that used in §Sec. VIIB for averaging

over the off-diagonal elements of a hierarchical matrix. The fields C, R, and D defined in

(26) can be related to certain averages of this type.

A. C : Distribution of overlaps

First consider C, which has an interpretation nearly identical to that of Parisi’s Q matrix

of overlaps in the equilibrium case. Its off-diagonal corresponds to the probability distribu-

tion P (q) of the overlaps q = (s1 ∙ s2)/N between stationary points. Let S be the set of all

stationary points with given energy density and index. Then

P (q) ≡
1

N 2

∑

s1∈S

∑

s2∈S

δ
(s1 ∙ s2

N
− q
)

. (77)

This is the probability that two stationary points uniformly drawn from the ensemble of all

stationary points with fixed E and μ∗ happen to be at overlap q. Though these are evaluated

for a given energy, index, etc, we shall omit these subindices for simplicity.

The moments of this distribution q(p) are given by

q(p) ≡
∫ 1

0

dq qpP (q) =
1

Np

∑

i1∙∙∙ip

〈si1 ∙ ∙ ∙ sip〉〈si1 ∙ ∙ ∙ sip〉 =
1

Np

1

N 2






∑

s1,s2

∑

i1∙∙∙ip

s1
i1
∙ ∙ ∙ s1

ips
2
i1
∙ ∙ ∙ s2

ip






=
1

N 2

{
∑

s1,s2

(s1 ∙ s2

N

)p
}

= lim
n→0

{
∑

s1,s2,...,sn

(s1 ∙ s2

N

)p
}

.
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(78)

The (n − 2) extra replicas provide the normalization, with limn→0 N n−2 = N−2. Replacing

the sums over stationary points with integrals over the Kac–Rice measure, the average over

disorder (again, for fixed energy and index) gives

q(p) =
1

Np

∑

i1∙∙∙ip

〈si1 ∙ ∙ ∙ sip〉〈si1 ∙ ∙ ∙ sip〉 = lim
n→0

∫ n∏

a

dν(sa)
(s1 ∙ s2

N

)p

= lim
n→0

∫
D[C,R,D] (C12)

p enNΣ[C,R,D] = lim
n→0

∫
D[C,R,D]

1

n(n − 1)

∑

a 6=b

(Cab)
p enNΣ[C,R,D].

(79)

In the last line, we have used that there is nothing special about replicas one and two. Using

the Parisi ansatz, evaluating by saddle point summing over all the n(n − 1) saddles related

by permutation we then have

q(p) =

∫ 1

0

dx cp(x) =

∫ 1

0

dq qpP (q), concluding P (q) =
dx

dq
=

(
dc

dx

)−1 ∣∣
∣
∣
c(x)=q

.

(80)

The appeal of Parisi to properties of pure states is unnecessary here, since the stationary

points are points.

With this established, we now address what it means for C to have a nontrivial replica-

symmetry broken structure. When C is replica symmetric, drawing two stationary points at

random will always lead to the same overlap. In the case when there is no linear field and

q0 = 0, they will always have overlap zero, because the second point will almost certainly

lie on the equator of the sphere with respect to the first. Though other stationary points

exist nearby the first one, they are exponentially fewer and so will be picked with vanishing

probability in the thermodynamic limit.

When C is replica-symmetry broken, there is a nonzero probability of picking a second

stationary point at some other overlap. This can be interpreted by imagining the level

sets of the Hamiltonian in this scenario. If the level sets are disconnected but there are

exponentially many of them distributed on the sphere, then one will still find zero average

overlap. However, if the disconnected level sets are few, i.e., less than order N , then it is

possible to draw two stationary points from the same set with nonzero probability. Therefore,



26 JARON KENT-DOBIAS AND JORGE KURCHAN

FIG. 8. A cartoon visualizing how to interpret replica symmetry breaking solutions in the complex-

ity. The black region show schematically areas where stationary points of a given energy can be

found. Left: When the region is connected, pairs of stationary points exist at any overlap, but the

vast majority of pairs are orthogonal. Center: When there are exponentially many disconnected

regions of similar size, the vast majority of pairs will be found in different, orthogonal regions.

Right: When there are a few large disconnected regions, pairs have a comparable probability to be

found in different regions or in the same region. This gives rise to two (or more) possible overlaps.

the picture in this case is of few, large basins each containing exponentially many stationary

points. A cartoon of this picture is shown in Fig. 8.

1. A tractable example

One can construct a schematic 2RSB model from two 1RSB models. Consider two in-

dependent pure models of size N and with p1-spin and p2-spin couplings, respectively, with

energies Hp1(s) and Hp2(σ), and couple them weakly with ε σ ∙ s. The landscape of the

pure models is much simpler than that of the mixed because, in these models, fixing the

stability μ is equivalent to fixing the energy: μ = pE. This implies that at each energy level

there is only one type of stationary point. Therefore, for the pure models our formulas for

the complexity and its Legendre transforms are functions of one variable only, E, and each

instance of μ∗ inside must be replaced with pE.

In the joint model, we wish to fix the total energy, not the energies of the individual two

models. Therefore, we insert a δ function containing (E1 + E2) − E and integrate over E1

and E2. This results in a joint complexity (and Legendre transform)

eNΣ(E) =

∫
dE1 dE2 dλ exp

{
N
[
Σ1(E1) + Σ2(E2) + O(ε) − λ

(
(E1 + E2) − E

)]}
,

(81)

eNG(β̂) =

∫
dE dE1 dE2 dλ exp

{
N
[
−β̂E + Σ1(E1) + Σ2(E2) + O(ε) − λ

(
(E1 + E2) − E

)]}
.

(82)

The saddle point is given by Σ′
1(E1) = Σ′

2(E2) = β̂, provided that both Σ1(E1) and Σ2(E2)

are non-nonzero. In this situation, two systems are ‘“thermalized,” and, because many points
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contribute, the overlap between two global configurations is zero:

1

2N

〈
(s1, σ1) ∙ (s2, σ2)

〉
=

1

2N

[
〈s1 ∙ s2〉 + 〈σ1 ∙ σ2〉

]
= 0. (83)

This is the ‘“annealed” phase of a Kac-Rice calculation.

Now start going down in energy, or up in β̂: there will be a point Ec or β̂c at which one

of the subsystems (say it is system one) freezes at its lowest energy density, while system

two is not yet frozen. At this point, Σ1(E1) = 0 and E1 is the ground-state energy. At

an even higher value β̂ = β̂f , both systems will become frozen in their ground states. For

β̂f > β̂ > β̂c one system is unfrozen, while the other is, because of coupling, frozen at inverse

temperature β̂c. The overlap between two solutions in this intermediate phase is

1

2N

〈
(s1, σ1) ∙ (s2, σ2)

〉
=

1

2N

[
〈s1 ∙ s2〉 + 〈σ1 ∙ σ2〉

]
=

1

2N
〈s1 ∙ s2〉 > 0, (84)

which is nonzero because there are only a few low-energy stationary points in system one,

and there is a nonvanishing probability of selecting one of them twice. The distribution

of this overlap is one-half the overlap distribution of a frozen spin-glass at temperature β̂,

a 1RSB system like the Rrandom Eenergy Mmodel. The value of x corresponding to it

depends on β̂, starting at x = 1 at β̂c and decreasing with increasing β̂. Globally, the joint

complexity of the system is 1RSB, but note that the global overlap between different states

is at most 1/2. At β̂ > β̂f there is a further transition.

This schematic example provides a metaphor for considering what happens in ordinary

models when replica symmetry is broken. At some point certain degrees of freedom ‘“freeze”

onto a subextensive number of possible states, while the remainder are effectively uncon-

strained. The overlap measures something in the competition between the number of these

unconstrained subregions and their size.

B. R and D: Response functions

The matrix field R is related to responses of the stationary points to perturbations of the

tensors J . One adds to the Hamiltonian a random term εpH̃p = − 1
p!
εp

∑
i1∙∙∙ip

J̃i1∙∙∙ipsi1 ∙ ∙ ∙ sip ,

where the J̃ are random Gaussian uncorrelated with the Js and having variance J̃2 =

p!/2Np−1. The response to these is

1

N

∂〈H̃p〉
∂εp

= lim
n→0

∫ ( n∏

a

dν(sa)

)
n∑

b

[

β̂
(s1 ∙ sb

N

)p

+ p

(

−i
s1 ∙ ŝb

N

)(s1 ∙ sb

N

)p−1
]

. (85)
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Taking the average of this expression over disorder and averaging over the equivalent replicas

in the integral gives, similar to before,

1

N

∂〈H̃p〉
∂εp

= lim
n→0

∫
D[C,R,D]

1

n

n∑

ab

(β̂Cp
ab + pRabC

p−1
ab )enNΣ[C,R,D]

= β̂ + prd −
∫ 1

0

dx cp−1(x)[β̂c(x) + pr(x)].

(86)

The responses as defined by this average perturbation in the pure p-spin energy can be

directly related to responses in the tensor polarization of the stationary points:

1

Np

∑

i1∙∙∙ip

∂〈si1 ∙ ∙ ∙ sip〉

∂J
(p)
i1∙∙∙ip

=
1

N

∂〈H̃p〉
∂εp

. (87)

In particular, when the energy is unconstrained (β̂ = 0) and there is replica symmetry, the

above formulas imply that

1

N

∑

i

∂〈si〉

∂J
(1)
i

= rd, (88)

i.e., adding a linear field causes a response in the average stationary point location propor-

tional to rd. If positive, for instance, then stationary points tend to align with a field. The

energy constraint has a significant contribution due to the perturbation causing stationary

points to move up or down in energy.

The matrix field D is related to the response of the complexity to perturbations of the

variance of the tensors J . This can be found by taking the expression for the complexity

and inserting the dependence of f on the coefficients ap, then differentiating:

∂Σ

∂ap

=
1

4
lim
n→0

1

n

n∑

ab

[
β̂2Cp

ab + p(2β̂Rab − Dab)C
p−1
ab + p(p − 1)R2

abC
p−2
ab

]
. (89)

In particular, when the energy is unconstrained (β̂ = 0) and there is no replica symmetry

breaking,

∂Σ

∂a1

= −
1

4
lim
n→0

1

n

∑

ab

Dab = −
1

4
dd, (90)

i.e., adding a random linear field decreases the complexity of solutions by an amount pro-

portional to dd in the variance of the field.

When the saddle point of the Kac–Rice problem is supersymmetric,

∂Σ

∂ap

=
β̂

4

1

Np

∑

i1∙∙∙ip

∂〈si1 ∙ ∙ ∙ sip〉

∂J
(p)
i1∙∙∙ip

+ lim
n→0

1

n

n∑

ab

p(p − 1)R2
abC

p−2
ab , (91)
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and in particular for p = 1,

∂Σ

∂a1

=
β̂

4

1

N

∑

i

∂〈si〉

∂J
(1)
i

, (92)

i.e., the change in complexity due to a linear field is directly related to the resulting magne-

tization of the stationary points for supersymmetric minima.

X. CONCLUSION

We have constructed a replica solution for the general problem of finding saddles of ran-

dom mean-field landscapes, including systems with many steps of RSB. For systems with

full RSB, we find that minima are exponentially subdominant with respect to saddles at

all energy densities above the ground state. The solution should be subjected to standard

checks, like the examination of its stability with respect to other RSB schemes. The solu-

tion contains valuable geometric information that has yet to be extracted in all detail, for

example, considering several copies of the system [56], or the extension to complex variables

[57, 58].

A first and very important application of the method here is to perform the calculation for

high dimensional spheres, where it would give us a clear understanding of what happens in

realistic low-temperature jamming dynamics [59]. More simply, examining the landscape of

a spherical model with a glass to glass transition from 1RSB to RS, like the 2+4 model when

a4 is larger than we have taken it in our example, might give insight into the cases of interest

for Gardner physics [42, 43]. In any case, our analysis of typical 1RSB and FRSB landscapes

indicates that the highest energy signature of RSB phases is in the overlap structure of the

high-index saddle points. Though measuring the statistics of saddle points is difficult to

imagine for experiments, this insight could find application in simulations of glass formers,

where saddle-finding methods are possible.

A second application is to evaluate in more detail the landscape of these RSB systems.

In particular, examining the complexity of stationary points with non-nonextensive indices

(like rank-one saddles), the complexity of pairs of stationary points at fixed overlap, or the

complexity of energy barriers [3, 60]. These other properties of the landscape might shed

light on the relationship between landscape RSB and dynamical features, like the algorithmic

energy Ealg, or the asymptotic level reached by physical dynamics. For our 1RSB example,
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because Ealg is just below the energy where dominant saddles transition to a RSB complexity,

we speculate that Ealg may be related to the statistics of minima connected to the saddles

at this transition point.

APPENDIX: HIERARCHICAL MATRIX DICTIONARY

Each row of a hierarchical matrix is the same up to permutation of their elements. The

so-called kRSB ansatz has k + 2 different values in each row. If A is an n × n hierarchical

matrix, then n − x1 of those entries are a0, x1 − x2 of those entries are a1, and so on until

xk − 1 entries of ak, and one entry of ad, corresponding to the diagonal. Given such a

matrix, there are standard ways of producing the sum and determinant that appear in the

free energy. These formulas are, for an arbitrary kRSB matrix A with ad on its diagonal

(recall qd = 1),

lim
n→0

1

n

n∑

ab

Aab = ad −
k∑

i=0

(xi+1 − xi)ai, (93)

lim
n→0

1

n
ln det A =

a0

ad −
∑k

i=0(xi+1 − xi)ai

+
1

x1

log

[

ad −
k∑

i=0

(xi+1 − xi)ai

]

−
k∑

j=1

(x−1
j − x−1

j+1) log

[

ad −
k∑

i=j

(xi+1 − xi)ai − xjaj

]

,

(94)

where x0 = 0 and xk+1 = 1. The sum of two hierarchical matrices results in the sum of

each of their elements: (a + b)d = ad + bd and (a + b)i = ai + bi. The product AB of two

hierarchical matrices A and B is given by

(a ∗ b)d = adbd −
k∑

j=0

(xj+1 − xj)ajbj , (95)

(a ∗ b)i = bdai + adbi −
i−1∑

j=0

(xj+1 − xj)ajbj + (2xi+1 − xi)aibi −
k∑

j=i+1

(xj+1 − xj)(aibj + ajbi).

(96)

There is a canonical mapping between the parameterizationparametrization of a hier-

archical matrix described above and a functional parameterizationparametrization that is
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particularly convenient in the twin limit n → 0 and k → ∞ [61, 62]. The distribution

of diagonal elements of a matrix A is parameterized by a continuous function a(x) on the

interval [0, 1], while its diagonal is still called ad. Define for any function g the average

〈g〉 =

∫ 1

0

dx g(x). (97)

The sum of two hierarchical matrices so parameterized results in the sum of these functions.

The product AB of hierarchical matrices A and B gives

(a ∗ b)d = adbd − 〈ab〉, (98)

(a ∗ b)(x) = (bd − 〈b〉)a(x) + (ad − 〈a〉)b(x) −
∫ x

0

dy
[
a(x) − a(y)

][
b(x) − b(y)

]
. (99)

The sum over all elements of a hierarchical matrix A gives

lim
n→0

1

n

∑

ab

Aab = ad − 〈a〉. (100)

The ln det = Tr ln becomes

lim
n→0

1

n
ln det A = ln(ad−〈a〉)+

a(0)

ad − 〈a〉
−
∫ 1

0

dx

x2
ln

(
ad − 〈a〉 − xa(x) +

∫ x

0
dy a(y)

ad − 〈a〉

)

. (101)
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