From 9f97debabab68e4fcffe5c2c9ec485cc58502b1c Mon Sep 17 00:00:00 2001 From: Jaron Kent-Dobias Date: Tue, 25 Jun 2024 16:02:23 +0200 Subject: Some consistency fixes, including a lot in the GOE example. --- figs/msg_marg_legend.pdf | Bin 4925 -> 4925 bytes figs/msg_marg_params.pdf | Bin 66167 -> 66014 bytes figs/msg_marg_spectra.pdf | Bin 20075 -> 20075 bytes figures.nb | 6531 +++++++++++++++++++++------------------------ marginal.tex | 191 +- 5 files changed, 3173 insertions(+), 3549 deletions(-) diff --git a/figs/msg_marg_legend.pdf b/figs/msg_marg_legend.pdf index 0bf074f..04cf130 100644 Binary files a/figs/msg_marg_legend.pdf and b/figs/msg_marg_legend.pdf differ diff --git a/figs/msg_marg_params.pdf b/figs/msg_marg_params.pdf index 3168bbe..b38d142 100644 Binary files a/figs/msg_marg_params.pdf and b/figs/msg_marg_params.pdf differ diff --git a/figs/msg_marg_spectra.pdf b/figs/msg_marg_spectra.pdf index 19eda13..a0a7abc 100644 Binary files a/figs/msg_marg_spectra.pdf and b/figs/msg_marg_spectra.pdf differ diff --git a/figures.nb b/figures.nb index 071055a..2ae860b 100644 --- a/figures.nb +++ b/figures.nb @@ -10,10 +10,10 @@ NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 158, 7] -NotebookDataLength[ 1071099, 20226] -NotebookOptionsPosition[ 1059056, 20028] -NotebookOutlinePosition[ 1059455, 20044] -CellTagsIndexPosition[ 1059412, 20041] +NotebookDataLength[ 1050318, 19825] +NotebookOptionsPosition[ 1037654, 19619] +NotebookOutlinePosition[ 1038051, 19635] +CellTagsIndexPosition[ 1038008, 19632] WindowFrame->Normal*) (* Beginning of Notebook Content *) @@ -740,7 +740,7 @@ bjB/r4OXJvt0ej38B+c4z40= 3.924161184537413*^9, 3.924162190364997*^9, {3.924162312284491*^9, 3.9241623202322807`*^9}, {3.926760723533168*^9, 3.926760740655086*^9}, 3.926760772978333*^9, {3.926762098244166*^9, 3.926762107827166*^9}, { - 3.92676233110467*^9, 3.926762350345076*^9}, 3.9271760125323696`*^9}, + 3.92676233110467*^9, 3.926762350345076*^9}, 3.92717601253237*^9}, CellLabel->"Out[7]=",ExpressionUUID->"96d8c022-71f7-4175-ad56-0b948701a2c3"] }, Open ]], @@ -3010,7 +3010,7 @@ a0Tpd86A6YzNkbw/bMx7GC1ewuMJQ4f97McXyPYtbRMrL+2E/wCiOZhr 3.895208026480008*^9, 3.895208869333159*^9, 3.895208913648329*^9, 3.924161611725056*^9, {3.924161710538059*^9, 3.924161720851728*^9}, 3.924161760789225*^9, {3.924161828428911*^9, 3.924161866638994*^9}, { - 3.924163256019329*^9, 3.9241632689619246`*^9}, {3.926761187709559*^9, + 3.924163256019329*^9, 3.924163268961925*^9}, {3.926761187709559*^9, 3.926761263193915*^9}, {3.9267614370306377`*^9, 3.9267614865111933`*^9}, 3.926761551544959*^9, 3.926761627762596*^9, 3.926761670173362*^9, 3.926761738825984*^9, {3.926761837375955*^9, 3.926761880360046*^9}, @@ -3230,7 +3230,7 @@ Cell[BoxData[ 3.90601616215897*^9}, {3.9060164087157993`*^9, 3.9060164195478573`*^9}, { 3.906016724777636*^9, 3.906016759546612*^9}, {3.906017868966701*^9, 3.906017993144882*^9}}, - CellLabel->"In[6]:=",ExpressionUUID->"830d12ec-ccc1-4fbc-9de0-2282430f4840"], + CellLabel->"In[11]:=",ExpressionUUID->"830d12ec-ccc1-4fbc-9de0-2282430f4840"], Cell[BoxData[ RowBox[{ @@ -3279,7 +3279,7 @@ Cell[BoxData[ RowBox[{"_", ",", "_"}], "]"}], ":>", "a0"}]}], "}"}]}]}], "]"}]}]], "Input", CellChangeTimes->{{3.90601619406374*^9, 3.906016261000745*^9}}, - CellLabel->"In[7]:=",ExpressionUUID->"bcf9e08b-5bc8-4156-8987-ae991b3777be"], + CellLabel->"In[12]:=",ExpressionUUID->"bcf9e08b-5bc8-4156-8987-ae991b3777be"], Cell[BoxData[{ RowBox[{ @@ -3299,7 +3299,7 @@ Cell[BoxData[{ CellChangeTimes->{{3.906016273153998*^9, 3.906016296681038*^9}, { 3.906016335065982*^9, 3.906016335785755*^9}, {3.906016425291695*^9, 3.906016427035625*^9}}, - CellLabel->"In[8]:=",ExpressionUUID->"90676af5-535d-4801-950c-574cc68db098"], + CellLabel->"In[13]:=",ExpressionUUID->"90676af5-535d-4801-950c-574cc68db098"], Cell[CellGroupData[{ @@ -3307,7 +3307,7 @@ Cell[BoxData[ RowBox[{ RowBox[{"matForm", "[", "A", "]"}], "//", "MatrixForm"}]], "Input", CellChangeTimes->{{3.90601650742142*^9, 3.906016511901194*^9}}, - CellLabel->"In[10]:=",ExpressionUUID->"3e4fb69d-9599-4326-945e-414023395a5f"], + CellLabel->"In[15]:=",ExpressionUUID->"3e4fb69d-9599-4326-945e-414023395a5f"], Cell[BoxData[ TagBox[ @@ -3336,10 +3336,11 @@ Cell[BoxData[ 3.90853517690338*^9, 3.9086033051904783`*^9, 3.908611419200552*^9, 3.908621322305964*^9, 3.908959013422355*^9, 3.909041244953446*^9, 3.915532039997315*^9, 3.915532490361631*^9, 3.9157715661300697`*^9, - 3.916379988951159*^9, 3.92726705097127*^9, 3.9272670916913843`*^9}, + 3.916379988951159*^9, 3.92726705097127*^9, 3.927267091691385*^9, + 3.928307087937766*^9}, CellLabel-> - "Out[10]//MatrixForm=",ExpressionUUID->"ab6f4526-c3bb-4b3a-81ed-\ -e5649ee31393"] + "Out[15]//MatrixForm=",ExpressionUUID->"dc8c4d24-e3b9-4519-b25a-\ +d1b37a8ca665"] }, Open ]], Cell[CellGroupData[{ @@ -3356,7 +3357,7 @@ Cell[BoxData[ "MatrixForm"}]], "Input", CellChangeTimes->{{3.90601630021717*^9, 3.9060163020008*^9}, { 3.906016344778521*^9, 3.906016369306422*^9}}, - CellLabel->"In[11]:=",ExpressionUUID->"692c829b-e066-4a5e-bd71-7d2bb33fb03d"], + CellLabel->"In[16]:=",ExpressionUUID->"692c829b-e066-4a5e-bd71-7d2bb33fb03d"], Cell[BoxData[ TagBox[ @@ -3386,10 +3387,11 @@ Cell[BoxData[ 3.908535176947983*^9, 3.9086033052426033`*^9, 3.908611419390637*^9, 3.908621322502807*^9, 3.9089590134471207`*^9, 3.909041245152533*^9, 3.915532040420734*^9, 3.915532490902354*^9, 3.9157715661819*^9, - 3.916379989103819*^9, 3.927267051024227*^9, 3.927267091746293*^9}, + 3.916379989103819*^9, 3.927267051024227*^9, 3.927267091746293*^9, + 3.928307087994485*^9}, CellLabel-> - "Out[11]//MatrixForm=",ExpressionUUID->"f0727734-e4df-49a4-948d-\ -8f277e06e8c3"] + "Out[16]//MatrixForm=",ExpressionUUID->"1d662128-382e-4f15-b860-\ +f781d0e058f9"] }, Open ]], Cell[CellGroupData[{ @@ -3414,7 +3416,7 @@ Cell[BoxData[ RowBox[{"ad", ">", "0"}], ",", RowBox[{"ad", ">", "0"}]}], "}"}]}]}], "]"}], "&"}]}]], "Input", CellChangeTimes->{{3.906016432156065*^9, 3.906016492940791*^9}}, - CellLabel->"In[12]:=",ExpressionUUID->"9dee447a-c909-40cb-8546-4295c33c7ecb"], + CellLabel->"In[17]:=",ExpressionUUID->"9dee447a-c909-40cb-8546-4295c33c7ecb"], Cell[BoxData["0"], "Output", CellChangeTimes->{{3.906016435385942*^9, 3.906016493093434*^9}, @@ -3424,8 +3426,8 @@ Cell[BoxData["0"], "Output", 3.908611419701027*^9, 3.908621322735462*^9, 3.908959013614911*^9, 3.909041245371322*^9, 3.915532041003538*^9, 3.915532491323807*^9, 3.9157715663195257`*^9, 3.916379989663705*^9, 3.927267051079937*^9, - 3.927267091844021*^9}, - CellLabel->"Out[12]=",ExpressionUUID->"1ba86785-13f6-440b-acc6-140d6fc7710d"] + 3.927267091844021*^9, 3.9283070880533533`*^9}, + CellLabel->"Out[17]=",ExpressionUUID->"f17e3a44-13b0-4bd9-987a-b8c0d0f58652"] }, Open ]], Cell[BoxData[ @@ -3526,7 +3528,7 @@ Cell[BoxData[ 3.905850823299843*^9}, {3.906016526231467*^9, 3.906016610960813*^9}, { 3.906016648120619*^9, 3.906016668361017*^9}, {3.906018022634241*^9, 3.906018040601918*^9}, {3.906018074803009*^9, 3.906018131963895*^9}}, - CellLabel->"In[13]:=",ExpressionUUID->"ae225317-c8f2-42eb-a092-5a3d6696fcf1"], + CellLabel->"In[18]:=",ExpressionUUID->"ae225317-c8f2-42eb-a092-5a3d6696fcf1"], Cell[CellGroupData[{ @@ -3555,8 +3557,7 @@ Cell[BoxData[ RowBox[{"b", "/", SuperscriptBox["a", "2"]}], "]"}], "]"}]}]}]], "Input", CellChangeTimes->{{3.9272803840094433`*^9, 3.927280410881407*^9}}, - CellLabel-> - "In[233]:=",ExpressionUUID->"441c736d-f94a-4b61-ae4a-050ffb34f1d4"], + CellLabel->"In[19]:=",ExpressionUUID->"441c736d-f94a-4b61-ae4a-050ffb34f1d4"], Cell[BoxData[ RowBox[{ @@ -3625,6 +3626,18 @@ Cell[BoxData[ FractionBox["1", "2"], " ", RowBox[{"Log", "[", RowBox[{ + FractionBox["1", + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + SuperscriptBox[ + RowBox[{"(", + RowBox[{"q120", "-", "q12d0"}], ")"}], "2"], "-", + RowBox[{ + RowBox[{"(", + RowBox[{"q110", "-", "q11d0"}], ")"}], " ", + RowBox[{"(", + RowBox[{"q220", "-", "q22d0"}], ")"}]}]}], ")"}], "2"]], RowBox[{"(", RowBox[{ RowBox[{ @@ -3678,23 +3691,12 @@ Cell[BoxData[ SuperscriptBox["q121", "2"], "-", SuperscriptBox["q12d1", "2"], "-", RowBox[{"q111", " ", "q221"}], "+", - RowBox[{"q11d1", " ", "q22d1"}]}], ")"}]}]}], ")"}], "/", - SuperscriptBox[ - RowBox[{"(", - RowBox[{ - SuperscriptBox[ - RowBox[{"(", - RowBox[{"q120", "-", "q12d0"}], ")"}], "2"], "-", - RowBox[{ - RowBox[{"(", - RowBox[{"q110", "-", "q11d0"}], ")"}], " ", - RowBox[{"(", - RowBox[{"q220", "-", "q22d0"}], ")"}]}]}], ")"}], "2"]}], + RowBox[{"q11d1", " ", "q22d1"}]}], ")"}]}]}], ")"}]}], "]"}]}]}]], "Output", CellChangeTimes->{ - 3.927277343768147*^9, {3.9272804001319523`*^9, 3.927280411646502*^9}}, - CellLabel-> - "Out[233]=",ExpressionUUID->"0fe05580-3c79-4e5d-9205-fc1ac479e5a6"] + 3.927277343768147*^9, {3.9272804001319532`*^9, 3.927280411646502*^9}, + 3.928307089831167*^9}, + CellLabel->"Out[19]=",ExpressionUUID->"7e5b218a-4bf7-4e16-b6af-f640354de52c"] }, Open ]], Cell[CellGroupData[{ @@ -3723,7 +3725,7 @@ Cell[BoxData[ CellChangeTimes->{{3.905850825091011*^9, 3.905850839218413*^9}, { 3.905851002581938*^9, 3.905851024062209*^9}, {3.905853123574729*^9, 3.905853141726667*^9}, {3.906014604394625*^9, 3.906014632601555*^9}}, - CellLabel->"In[14]:=",ExpressionUUID->"27f3f5fd-a103-416e-9e22-49288939ab46"], + CellLabel->"In[20]:=",ExpressionUUID->"27f3f5fd-a103-416e-9e22-49288939ab46"], Cell[BoxData[ RowBox[{ @@ -3899,8 +3901,8 @@ Cell[BoxData[ 3.908603306888613*^9, 3.908611423684043*^9, 3.90862132459629*^9, 3.9089590151457157`*^9, 3.909041247694905*^9, 3.915532043468378*^9, 3.915532493400175*^9, 3.915771567714175*^9, 3.9163799917950907`*^9, - 3.92726705254059*^9, 3.927267093315587*^9}, - CellLabel->"Out[14]=",ExpressionUUID->"4d658288-3cec-4eb5-98c5-3d00b7ee767f"] + 3.92726705254059*^9, 3.927267093315587*^9, 3.928307090052944*^9}, + CellLabel->"Out[20]=",ExpressionUUID->"1b144bac-a028-45f3-a721-bd16185eb07c"] }, Open ]], Cell[CellGroupData[{ @@ -3930,7 +3932,7 @@ Cell[BoxData[ "q11d1"}]}], ">", "0"}], "}"}]}]}], "]"}]}]], "Input", CellChangeTimes->{{3.906186860286684*^9, 3.906186879686674*^9}, { 3.906186913895919*^9, 3.906186964896375*^9}}, - CellLabel->"In[15]:=",ExpressionUUID->"ad63e4bc-666e-46ed-8c23-6d418adb2b5d"], + CellLabel->"In[21]:=",ExpressionUUID->"ad63e4bc-666e-46ed-8c23-6d418adb2b5d"], Cell[BoxData[ RowBox[{ @@ -4046,8 +4048,9 @@ Cell[BoxData[ 3.908535179422303*^9, 3.90860330775679*^9, 3.908613742673404*^9, 3.908621325654201*^9, 3.9089590159595833`*^9, 3.909041248490795*^9, 3.915532082121131*^9, 3.915532494340509*^9, 3.915771568554364*^9, - 3.916379992916336*^9, 3.927267053334233*^9, 3.927267094186154*^9}, - CellLabel->"Out[15]=",ExpressionUUID->"77a1ebce-86f9-4b90-a78a-3119e0ea33a9"] + 3.916379992916336*^9, 3.927267053334233*^9, 3.927267094186154*^9, + 3.928307090784978*^9}, + CellLabel->"Out[21]=",ExpressionUUID->"85986fc9-5212-4924-bbb0-44c85aa62f64"] }, Open ]], Cell[BoxData[ @@ -4070,7 +4073,7 @@ Cell[BoxData[ 3.905931930671042*^9, 3.905931935878457*^9}, {3.906014640147063*^9, 3.906014648273918*^9}, {3.906016798634808*^9, 3.906016810306693*^9}, { 3.9061871443158627`*^9, 3.906187168844187*^9}}, - CellLabel->"In[16]:=",ExpressionUUID->"c88cdbf9-9e5d-49a2-927e-12c0fc1e998e"], + CellLabel->"In[22]:=",ExpressionUUID->"c88cdbf9-9e5d-49a2-927e-12c0fc1e998e"], Cell[BoxData[ RowBox[{ @@ -4126,7 +4129,7 @@ Cell[BoxData[ 3.906015113442898*^9, 3.906015153147285*^9}, {3.906016827027356*^9, 3.906016885852555*^9}, 3.906187789048245*^9, {3.906189215794698*^9, 3.906189222514817*^9}, {3.90619067192666*^9, 3.906190680838689*^9}}, - CellLabel->"In[17]:=",ExpressionUUID->"13c828e2-dc96-418a-98b1-bcedb602773f"], + CellLabel->"In[23]:=",ExpressionUUID->"13c828e2-dc96-418a-98b1-bcedb602773f"], Cell[CellGroupData[{ @@ -4140,7 +4143,7 @@ Cell[BoxData[ RowBox[{"-", "2"}]}], "}"}]}], "]"}]}]], "Input", CellChangeTimes->{ 3.906187797968542*^9, {3.906187865137899*^9, 3.906187871433025*^9}}, - CellLabel->"In[18]:=",ExpressionUUID->"5547b70f-6ccc-4c3c-b7a2-430267adff70"], + CellLabel->"In[24]:=",ExpressionUUID->"5547b70f-6ccc-4c3c-b7a2-430267adff70"], Cell[BoxData[ RowBox[{"{", @@ -4285,8 +4288,9 @@ Cell[BoxData[ 3.908535193733109*^9, 3.908603321580958*^9, 3.908613759558733*^9, 3.908621342371894*^9, 3.908959029760838*^9, 3.909041262667035*^9, 3.915532095652994*^9, 3.915532506920657*^9, 3.915771581205089*^9, - 3.916380012398842*^9, 3.9272670660374203`*^9, 3.9272671062765293`*^9}, - CellLabel->"Out[18]=",ExpressionUUID->"c03390ca-902f-4044-8505-354784ced201"] + 3.916380012398842*^9, 3.9272670660374207`*^9, 3.9272671062765293`*^9, + 3.928307102814274*^9}, + CellLabel->"Out[24]=",ExpressionUUID->"f66850fa-e64c-45dd-b704-5045a5ac66bd"] }, Open ]], Cell[CellGroupData[{ @@ -4301,7 +4305,7 @@ Cell[BoxData[ RowBox[{"\[Beta]", ",", "\[Infinity]", ",", RowBox[{"-", "1"}]}], "}"}]}], "]"}], "//", "Simplify"}]}]], "Input", CellChangeTimes->{{3.906187873026173*^9, 3.906187899186184*^9}}, - CellLabel->"In[19]:=",ExpressionUUID->"87393889-0e58-4140-85b8-c09bdfb83fa6"], + CellLabel->"In[25]:=",ExpressionUUID->"87393889-0e58-4140-85b8-c09bdfb83fa6"], Cell[BoxData[ RowBox[{"{", @@ -4620,8 +4624,8 @@ Cell[BoxData[ 3.908603358180184*^9, 3.908613796140329*^9, 3.9086213853239603`*^9, 3.908959065638323*^9, 3.909041299813568*^9, 3.915532108906477*^9, 3.915532519605406*^9, 3.9157715941794653`*^9, 3.91638002605516*^9, - 3.9272671185759277`*^9}, - CellLabel->"Out[19]=",ExpressionUUID->"c4a79746-5ea4-4897-b93e-15c55d36d8ed"] + 3.927267118575928*^9, 3.9283071149957333`*^9}, + CellLabel->"Out[25]=",ExpressionUUID->"f6ce55a2-7f04-49c0-800a-b712e2e93692"] }, Open ]], Cell[CellGroupData[{ @@ -4638,7 +4642,7 @@ Cell[BoxData[ RowBox[{"\[Beta]", ",", "\[Infinity]", ",", "0"}], "}"}]}], "]"}], "//", "Simplify"}]}]], "Input", CellChangeTimes->{{3.906187902458308*^9, 3.906187917954363*^9}}, - CellLabel->"In[20]:=",ExpressionUUID->"4d2d8f62-3f6d-45b3-9a63-780219e0e7e8"], + CellLabel->"In[26]:=",ExpressionUUID->"4d2d8f62-3f6d-45b3-9a63-780219e0e7e8"], Cell[BoxData[ RowBox[{ @@ -4675,8 +4679,8 @@ Cell[BoxData[ 3.908527814198004*^9, 3.908535231041009*^9, 3.908603358210541*^9, 3.90861379620579*^9, 3.90862138535625*^9, 3.909041299849929*^9, 3.915532115920799*^9, 3.9155325197505903`*^9, 3.9157715942701187`*^9, - 3.916380026125768*^9, 3.927267118653653*^9}, - CellLabel->"Out[20]=",ExpressionUUID->"36d18a4d-87f3-428e-a686-2a39a067e0b6"] + 3.916380026125768*^9, 3.927267118653653*^9, 3.928307115066297*^9}, + CellLabel->"Out[26]=",ExpressionUUID->"de5a6a45-70fe-4fde-8b20-59e5cc7175f7"] }, Open ]], Cell[CellGroupData[{ @@ -4701,13 +4705,13 @@ Cell[BoxData[ 3.906187831432788*^9}, {3.906187923675535*^9, 3.906187969649603*^9}, { 3.906188000516306*^9, 3.9061880008675756`*^9}, {3.906188709249345*^9, 3.906188738449854*^9}, {3.906190696079129*^9, 3.9061906986149282`*^9}}, - CellLabel->"In[21]:=",ExpressionUUID->"83eebe5d-3503-4b31-b14f-639ea14a0248"], + CellLabel->"In[27]:=",ExpressionUUID->"83eebe5d-3503-4b31-b14f-639ea14a0248"], Cell[BoxData[ TemplateBox[{ "Solve", "svars", "\"Equations may not give solutions for all \\\"solve\\\" variables.\"", 2, - 21, 1, 23876000146772358520, "Local"}, + 27, 7, 23882815617388216864, "Local"}, "MessageTemplate"]], "Message", "MSG", CellChangeTimes->{3.906188768978856*^9, 3.906189233017943*^9, 3.906190730289953*^9, 3.906445795758022*^9, 3.906455280766007*^9, @@ -4716,10 +4720,10 @@ Cell[BoxData[ 3.908613828558267*^9, 3.908615455337167*^9, 3.90862142384585*^9, 3.908959097492876*^9, 3.909041332451538*^9, 3.915532146769128*^9, 3.915532550417849*^9, 3.915771624173337*^9, 3.916380057276285*^9, - 3.927267148342062*^9}, + 3.927267148342062*^9, 3.928307144939105*^9}, CellLabel-> "During evaluation of \ -In[21]:=",ExpressionUUID->"cdf4559f-03c0-42c4-9176-18b5009a37cf"] +In[27]:=",ExpressionUUID->"55c5134f-0549-48cf-b7a6-054801bf5ad4"] }, Open ]], Cell[BoxData[ @@ -4744,7 +4748,7 @@ Cell[BoxData[ 3.908962534254868*^9, 3.908963027542485*^9, {3.908963083415245*^9, 3.908963089503387*^9}, 3.9089631790945587`*^9, {3.908963292075355*^9, 3.908963292187259*^9}, {3.916386845349831*^9, 3.916386846349766*^9}}, - CellLabel->"In[22]:=",ExpressionUUID->"4c448220-e031-41d2-9096-b9e341dcd981"], + CellLabel->"In[28]:=",ExpressionUUID->"4c448220-e031-41d2-9096-b9e341dcd981"], Cell[BoxData[ RowBox[{ @@ -4829,7 +4833,7 @@ Cell[BoxData[ 3.906195919154381*^9}, {3.906213868718033*^9, 3.906213885938034*^9}, { 3.906449467308639*^9, 3.906449467504347*^9}, {3.906458374848988*^9, 3.90645838768067*^9}, 3.907244382872212*^9, 3.908959048467206*^9}, - CellLabel->"In[23]:=",ExpressionUUID->"63ea8c17-6059-4955-9b14-1b9deb692962"], + CellLabel->"In[29]:=",ExpressionUUID->"63ea8c17-6059-4955-9b14-1b9deb692962"], Cell[CellGroupData[{ @@ -4859,7 +4863,7 @@ Cell[BoxData[ 3.906449850271374*^9, 3.906449864831753*^9}, {3.906452288389834*^9, 3.906452349678601*^9}, {3.906452536307121*^9, 3.906452536562147*^9}, { 3.90724443620947*^9, 3.907244488412445*^9}}, - CellLabel->"In[24]:=",ExpressionUUID->"7fe546c9-0af1-4973-85bb-971e16ca3307"], + CellLabel->"In[30]:=",ExpressionUUID->"7fe546c9-0af1-4973-85bb-971e16ca3307"], Cell[BoxData[ RowBox[{"{", @@ -4898,8 +4902,8 @@ Cell[BoxData[ 3.908611456149561*^9, 3.9086144305920887`*^9, 3.908621428030292*^9, 3.9089591306410522`*^9, 3.909041335868808*^9, 3.915532186836844*^9, 3.915532553880711*^9, 3.915771627638197*^9, 3.916380060899454*^9, - 3.916386848539817*^9, 3.9272671515009537`*^9}, - CellLabel->"Out[24]=",ExpressionUUID->"47691ab5-e9b8-4c29-9c2e-87886cec4f26"] + 3.916386848539817*^9, 3.9272671515009546`*^9, 3.9283071481271563`*^9}, + CellLabel->"Out[30]=",ExpressionUUID->"d2c67767-48a3-43d0-8cac-dbcdc66f4cec"] }, Open ]], Cell[BoxData[ @@ -4927,7 +4931,7 @@ Cell[BoxData[ 3.906460777446906*^9, 3.906460792814526*^9}, {3.90724455188748*^9, 3.907244564134206*^9}, {3.908530577362788*^9, 3.908530577674566*^9}, 3.908533636339531*^9}, - CellLabel->"In[25]:=",ExpressionUUID->"84934d64-fc27-4a55-a1de-6f9f09494033"], + CellLabel->"In[31]:=",ExpressionUUID->"84934d64-fc27-4a55-a1de-6f9f09494033"], Cell[BoxData[ RowBox[{ @@ -4938,14 +4942,13 @@ Cell[BoxData[ RowBox[{"\[Beta]", "->", "\[Infinity]"}]}], "]"}], "]"}]}], ";"}]], "Input", CellChangeTimes->{{3.908529782124156*^9, 3.908529796140355*^9}}, - CellLabel->"In[26]:=",ExpressionUUID->"83f76904-20b3-4c92-8479-9704a86e9bc3"], + CellLabel->"In[32]:=",ExpressionUUID->"83f76904-20b3-4c92-8479-9704a86e9bc3"], Cell[CellGroupData[{ Cell[BoxData["e10"], "Input", CellChangeTimes->{{3.927282513001899*^9, 3.927282513297226*^9}}, - CellLabel-> - "In[235]:=",ExpressionUUID->"18644ace-46f3-463e-bb29-b07ed4d9811c"], + CellLabel->"In[33]:=",ExpressionUUID->"18644ace-46f3-463e-bb29-b07ed4d9811c"], Cell[BoxData[ RowBox[{ @@ -5489,9 +5492,8 @@ Cell[BoxData[ RowBox[{"y11d0", "+", "y11d1", "+", RowBox[{"2", " ", "y221"}]}], ")"}]}]}], ")"}], "2"]}], "]"}]}], ")"}]}]], "Output", - CellChangeTimes->{3.927282513513418*^9}, - CellLabel-> - "Out[235]=",ExpressionUUID->"22aca13c-5dae-4ac2-8dc1-059e767b7a58"] + CellChangeTimes->{3.927282513513418*^9, 3.928307339446171*^9}, + CellLabel->"Out[33]=",ExpressionUUID->"095ac6f5-3be6-431b-ab90-af3de346ca5f"] }, Open ]], Cell[BoxData[ @@ -5512,7 +5514,7 @@ Cell[BoxData[ 3.908534493867115*^9, 3.908534503451172*^9}, {3.908534639469946*^9, 3.908534652366032*^9}, {3.908534769136189*^9, 3.908534784840426*^9}, { 3.908534838729506*^9, 3.908534842369544*^9}}, - CellLabel->"In[27]:=",ExpressionUUID->"82f4b3f0-5071-4e29-8e26-febf3110e5e0"], + CellLabel->"In[34]:=",ExpressionUUID->"82f4b3f0-5071-4e29-8e26-febf3110e5e0"], Cell[CellGroupData[{ @@ -5602,54 +5604,56 @@ BNMpeqFyIPpDhb0uiP4S89oRRLfMfuAMok9IVkWDaIWz68C0gbx+Coh+7qKd BqJlptqVguiZffMqQHT/pUm1IHrDSp86EP2u7nALiK5mmdUGojfn3esH0Tqe XDNANACqiaYp "], - CellLabel->"In[28]:=",ExpressionUUID->"acfb6249-e04b-4f94-810b-05af73aac0bc"], + CellLabel->"In[35]:=",ExpressionUUID->"acfb6249-e04b-4f94-810b-05af73aac0bc"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{ - "q11d", "\[Rule]", "0.00001555391729866604814657721185465622`20."}], ",", + "q11d", "\[Rule]", "0.00001555391729866743591210885272737786`20."}], ",", RowBox[{"q12", "\[Rule]", - RowBox[{"-", "0.00367071456291389600788000358201604466`20."}]}], ",", + RowBox[{"-", "0.00367071456291406177768910248974066172`20."}]}], ",", RowBox[{ - "y111", "\[Rule]", "0.00043001532472795813778829515987816502`20."}], ",", + "y111", "\[Rule]", "0.00065043140195796702182856566934775626`20."}], ",", RowBox[{ - "y221", "\[Rule]", "0.68061312635936392976106041214802964103`20."}], ",", + "y221", "\[Rule]", "0.68039271028211151651033861945559360213`20."}], ",", RowBox[{ - "y12d1", "\[Rule]", "0.00060953624613590285739164715020414719`20."}], ",", + "y12d1", "\[Rule]", "0.00060750396624263108397159884321583912`20."}], ",", RowBox[{"y11d0", "\[Rule]", - RowBox[{"-", "0.18244171337789963186665388931786472424`20."}]}], ",", + RowBox[{"-", "0.18222129730066958635611590193271040541`20."}]}], ",", RowBox[{"y11d1", "\[Rule]", - RowBox[{"-", "0.18244171296640565582691806412185542285`20."}]}], ",", + RowBox[{"-", "0.18222129688917562684302708930772496387`20."}]}], ",", RowBox[{"y121", "\[Rule]", - RowBox[{"-", "0.00121240225446201511427879244885860051`20."}]}], ",", + RowBox[{"-", "0.00121443453435520461097659995307132142`20."}]}], ",", RowBox[{ - "y12d0", "\[Rule]", "0.00060958515967050755455375332658718435`20."}], ",", + "y12d0", "\[Rule]", "0.00060755287977723568173388235535981039`20."}], ",", + RowBox[{"z110", "\[Rule]", "0.0005712710799326965039262224749098408`20."}], + ",", RowBox[{ - "z110", "\[Rule]", "0.00007379798284491771519910448955201698`20."}], ",", - RowBox[{"z111", "\[Rule]", - RowBox[{"-", "0.00006577963644236893472200256027804244`20."}]}], ",", - RowBox[{"z11d0", "\[Rule]", - RowBox[{"-", "0.00018987990770255628780849243214776884`20."}]}], ",", + "z111", "\[Rule]", "0.00004212530126601509225655814439015501`20."}], ",", + RowBox[{ + "z11d0", "\[Rule]", "0.00063653664931464679360046021176191013`20."}], ",", + RowBox[{ - "z11d1", "\[Rule]", "0.00020099616290969734037560878725514613`20."}], ",", + "z11d1", "\[Rule]", "0.00024827640117629402741541988497431248`20."}], ",", RowBox[{ - "z220", "\[Rule]", "0.00029790159061462273938983291721172009`20."}], ",", + "z220", "\[Rule]", "0.00010311751093255246049945617059506731`20."}], ",", RowBox[{"z221", "\[Rule]", - RowBox[{"-", "0.00081017217570553774676905822715866634`20."}]}], ",", - RowBox[{"z120", "\[Rule]", "2.12106706524579996016730294515906`20.*^-6"}], + RowBox[{"-", "0.00061538809602346741366857285626679186`20."}]}], ",", + RowBox[{"z120", "\[Rule]", "4.98747387222428635276227560574952`20.*^-6"}], ",", - RowBox[{"z121", "\[Rule]", "4.65557374464977633134838905237807`20.*^-6"}], + RowBox[{"z121", "\[Rule]", "6.71414756737206777929740514343493`20.*^-6"}], ",", - RowBox[{"z12d0", "\[Rule]", "4.62168757759767013333293550481073`20.*^-6"}], + RowBox[{ + "z12d0", "\[Rule]", "0.00001020466122400344218120685907402745`20."}], ",", + + RowBox[{"z12d1", "\[Rule]", "7.00726010271815447603971360734931`20.*^-6"}], ",", - RowBox[{"z12d1", "\[Rule]", "3.0399524249058029638575432335168`20.*^-6"}], - ",", RowBox[{"\[Lambda]0", "\[Rule]", - RowBox[{"-", "0.00366394260012097035489395990973068968`20."}]}]}], + RowBox[{"-", "0.00366394260016572271428919350045642924`20."}]}]}], "}"}]], "Output", CellChangeTimes->{ 3.908534617165332*^9, 3.908534760405347*^9, 3.908534794452958*^9, @@ -5671,8 +5675,9 @@ Cell[BoxData[ 3.908963452507598*^9, 3.908963523634545*^9}, {3.909041670516673*^9, 3.909041694543151*^9}, 3.909042006145735*^9, {3.915532160299971*^9, 3.915532168934849*^9}, 3.9155327735576057`*^9, 3.915771847507398*^9, - 3.916380285011002*^9, 3.916387076462816*^9, 3.927267370127882*^9}, - CellLabel->"Out[29]=",ExpressionUUID->"d807d019-8ba4-4c91-8850-4ccda5fd9c8e"] + 3.916380285011002*^9, 3.916387076462816*^9, 3.927267370127882*^9, + 3.928307366588512*^9}, + CellLabel->"Out[36]=",ExpressionUUID->"06f5dbb6-66c5-4be6-bfb0-0ba8e6dc498e"] }, Open ]], Cell[CellGroupData[{ @@ -5739,7 +5744,7 @@ Cell[BoxData[ 3.908964574277124*^9, 3.908964612668378*^9}, {3.908965377762587*^9, 3.90896537784248*^9}, {3.909042427724539*^9, 3.90904242782031*^9}, { 3.909042471277335*^9, 3.909042532246409*^9}}, - CellLabel->"In[30]:=",ExpressionUUID->"2a2f7dd9-b465-4d3a-81cf-abf195bcfc21"], + CellLabel->"In[37]:=",ExpressionUUID->"2a2f7dd9-b465-4d3a-81cf-abf195bcfc21"], Cell[BoxData[ TemplateBox[{ @@ -5748,14 +5753,14 @@ Cell[BoxData[ by AccuracyGoal and PrecisionGoal but was unable to find a sufficient \ decrease in the merit function. You may need more than \ \\!\\(\\*RowBox[{\\\"20.`\\\"}]\\) digits of working precision to meet these \ -tolerances.\"", 2, 30, 2, 23876000146772358520, "Local"}, +tolerances.\"", 2, 37, 8, 23882815617388216864, "Local"}, "MessageTemplate"]], "Message", "MSG", CellChangeTimes->{3.909042535149797*^9, 3.9155328751204443`*^9, 3.915771850129451*^9, 3.916380287761401*^9, 3.916387078856232*^9, - 3.927267371956482*^9}, + 3.927267371956482*^9, 3.928307368436137*^9}, CellLabel-> "During evaluation of \ -In[30]:=",ExpressionUUID->"4692e6b0-96ac-4677-8a36-e5e38fc7acee"], +In[37]:=",ExpressionUUID->"786007c0-0f52-4a68-90a6-bffa68476339"], Cell[BoxData[ TemplateBox[{ @@ -5764,14 +5769,14 @@ Cell[BoxData[ by AccuracyGoal and PrecisionGoal but was unable to find a sufficient \ decrease in the merit function. You may need more than \ \\!\\(\\*RowBox[{\\\"20.`\\\"}]\\) digits of working precision to meet these \ -tolerances.\"", 2, 30, 3, 23876000146772358520, "Local"}, +tolerances.\"", 2, 37, 9, 23882815617388216864, "Local"}, "MessageTemplate"]], "Message", "MSG", CellChangeTimes->{3.909042535149797*^9, 3.9155328751204443`*^9, 3.915771850129451*^9, 3.916380287761401*^9, 3.916387078856232*^9, - 3.927267372093017*^9}, + 3.927267371956482*^9, 3.928307368595253*^9}, CellLabel-> "During evaluation of \ -In[30]:=",ExpressionUUID->"fd1344b0-e7b7-423b-8b2f-4e71acb0f17c"], +In[37]:=",ExpressionUUID->"8343f91d-bee2-4489-a09e-c242d7f6db9f"], Cell[BoxData[ TemplateBox[{ @@ -5780,28 +5785,28 @@ Cell[BoxData[ by AccuracyGoal and PrecisionGoal but was unable to find a sufficient \ decrease in the merit function. You may need more than \ \\!\\(\\*RowBox[{\\\"20.`\\\"}]\\) digits of working precision to meet these \ -tolerances.\"", 2, 30, 4, 23876000146772358520, "Local"}, +tolerances.\"", 2, 37, 10, 23882815617388216864, "Local"}, "MessageTemplate"]], "Message", "MSG", CellChangeTimes->{3.909042535149797*^9, 3.9155328751204443`*^9, 3.915771850129451*^9, 3.916380287761401*^9, 3.916387078856232*^9, - 3.927267372402162*^9}, + 3.927267371956482*^9, 3.928307368911684*^9}, CellLabel-> "During evaluation of \ -In[30]:=",ExpressionUUID->"795d0375-6c9a-420c-8812-2ab30333bc33"], +In[37]:=",ExpressionUUID->"8a7a66b8-fdaa-4895-86b5-f2f9772834e4"], Cell[BoxData[ TemplateBox[{ "General", "stop", "\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"FindRoot\\\", \ \\\"::\\\", \\\"lstol\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ -during this calculation.\"", 2, 30, 5, 23876000146772358520, "Local"}, +during this calculation.\"", 2, 37, 11, 23882815617388216864, "Local"}, "MessageTemplate"]], "Message", "MSG", CellChangeTimes->{3.909042535149797*^9, 3.9155328751204443`*^9, 3.915771850129451*^9, 3.916380287761401*^9, 3.916387078856232*^9, - 3.9272673724071836`*^9}, + 3.927267371956482*^9, 3.928307368916849*^9}, CellLabel-> "During evaluation of \ -In[30]:=",ExpressionUUID->"15ea9d46-2e6b-4e49-92b8-ca963c9b6130"] +In[37]:=",ExpressionUUID->"9bbcb702-372f-43ae-8c39-af496c0a7ec4"] }, Open ]], Cell[CellGroupData[{ @@ -5858,7 +5863,7 @@ Cell[BoxData[{ 3.908965836578917*^9}, {3.909042567863147*^9, 3.909042711337614*^9}, { 3.909042759667089*^9, 3.90904277613109*^9}, {3.909042894757884*^9, 3.909042904805442*^9}}, - CellLabel->"In[31]:=",ExpressionUUID->"f6acd6ad-220b-4828-a7d3-5558b5c91e4c"], + CellLabel->"In[38]:=",ExpressionUUID->"f6acd6ad-220b-4828-a7d3-5558b5c91e4c"], Cell[BoxData[ RowBox[{"{", @@ -5872,74 +5877,72 @@ Cell[BoxData[ FractionBox["1", "100"]}], ",", RowBox[{ "\[Omega]2", "\[Rule]", - "2.000036573013715313595240425517688742694065898076334924359`30."}], ",", - + "2.0000365730137153135952404255176887426957612212323401280535`30."}], ",", RowBox[{ "q11d", "\[Rule]", - "0.0000154411885960749806570359963625850074975847724158849463`30."}], ",", + "0.0000154411885960749806570359963625850074975869925745841856`30."}], ",", RowBox[{"q12", "\[Rule]", RowBox[{ - "-", "0.0036572655523585039857887359364182652063509000624865228001`30."}]}\ + "-", "0.0036572655523585039857887359364182652063511330489952163033`30."}]}\ ], ",", RowBox[{ "y111", "\[Rule]", - "0.0004300435368226789586587325946317437685622268102945908043`30."}], ",", + "0.000650459614052707942549707408762202749368691271506584109`30."}], ",", + RowBox[{ "y221", "\[Rule]", - "0.682441712914770090075006121861825119141409833649854799789`30."}], ",", - + "0.6822212968375400610911151470476946601610349431554824262518`30."}], ",", RowBox[{ "y12d1", "\[Rule]", - "0.0006095851596705075545537533265871843468637544143437718708`30."}], ",", + "0.0006075528797772356817338823553598103899273881127126321687`30."}], ",", RowBox[{"y11d0", "\[Rule]", RowBox[{ - "-", "0.1824417129664056558269180641218554228541496257222446133275`30."}]}\ + "-", "0.1822212968891756268430270893077249638735029565779753905432`30."}]}\ ], ",", RowBox[{"y11d1", "\[Rule]", RowBox[{ - "-", "0.18244171296640565582691806412185542285442352294921875`30."}]}], + "-", "0.1822212968891756268430270893077249638736248016357421875`30."}]}], ",", RowBox[{"y121", "\[Rule]", RowBox[{ - "-", "0.0012190655259063248487769272119051643340668676297687580859`30."}]}\ + "-", "0.0012210978057995967215967981831325382910049005103558847269`30."}]}\ ], ",", RowBox[{ "y12d0", "\[Rule]", - "0.0006095851596705075545537533265871843468630686402320861816`30."}], ",", + "0.0006075528797772356817338823553598103899275884032249450684`30."}], ",", RowBox[{"z110", "\[Rule]", RowBox[{ - "-", "0.0011738534027625294208808937046484288656098213192243519839`30."}]}\ -], ",", - RowBox[{"z111", "\[Rule]", - RowBox[{ - "-", "0.0000657796364423689347220025602780424378579482436180114746`30."}]}\ + "-", "0.0006763803056900047819114708824717041579958611852687006444`30."}]}\ ], ",", + RowBox[{ + "z111", "\[Rule]", + "0.0000421253012660150922565581443901550073860562406480312347`30."}], ",", RowBox[{"z11d0", "\[Rule]", RowBox[{ - "-", "0.0020151513697306236319421735014856267295445618391953833783`30."}]}\ + "-", "0.0011887348127357457209206381687494058497134980465169963604`30."}]}\ ], ",", RowBox[{ "z11d1", "\[Rule]", - "0.0002009961629096973403756087872551461259718053042888641357`30."}], ",", + "0.0002482764011762940274154198849743124810629524290561676025`30."}], ",", RowBox[{ "z220", "\[Rule]", - "0.0002979015906146227393898329172117200869251973927021026611`30."}], ",", + "0.0001031175109325524604994561705950673058396205306053161621`30."}], ",", RowBox[{"z221", "\[Rule]", RowBox[{ - "-", "0.0008101721757055377467690582271586663409834727644920349121`30."}]}\ + "-", "0.0006153880960234674136685728562667918595252558588981628418`30."}]}\ ], ",", RowBox[{ "z120", "\[Rule]", - "5.4464413209957099160860851880250343981961998581229084`30.*^-6"}], ",", + "8.3128481280147116318809778767739970824078547117172208`30.*^-6"}], ",", RowBox[{ "z121", "\[Rule]", - "4.6555737446497763313483890523780672765497001819312572`30.*^-6"}], ",", + "6.7141475673720677792974051434349291866965359076857567`30.*^-6"}], ",", RowBox[{ "z12d0", "\[Rule]", - "4.621687577597670133332935504810734528291504830121994`30.*^-6"}], ",", + "0.0000102046612240034421812068590740274487416172632947564125`30."}], ",", RowBox[{ "z12d1", "\[Rule]", - "3.0399524249058029638575432335168002850878110621124506`30.*^-6"}]}], + "7.0072601027181544760397136073493129515554755926132202`30.*^-6"}]}], "}"}]], "Output", CellChangeTimes->{{3.908622258019921*^9, 3.908622282010366*^9}, { 3.908622358176366*^9, 3.908622423275463*^9}, 3.908960404757339*^9, @@ -5948,8 +5951,8 @@ Cell[BoxData[ 3.9090426426640863`*^9, 3.909042703605441*^9}, 3.909042794897882*^9, 3.909042920676709*^9, {3.915532883718834*^9, 3.9155328867105827`*^9}, 3.915771852468653*^9, 3.916380290705749*^9, 3.916387091153274*^9, - 3.927267373141869*^9}, - CellLabel->"Out[32]=",ExpressionUUID->"8e088654-6144-4e7e-ae52-b08db69f12e9"] + 3.927267373141869*^9, 3.9283073696397676`*^9}, + CellLabel->"Out[39]=",ExpressionUUID->"5b9fabee-d5d5-41fa-9d66-158181a4ce5a"] }, Open ]], Cell[BoxData[ @@ -5992,7 +5995,7 @@ Cell[BoxData[ CellChangeTimes->{{3.909043333070065*^9, 3.909043451649344*^9}, { 3.9090464238882*^9, 3.909046424128012*^9}, {3.909046458976687*^9, 3.909046460128731*^9}}, - CellLabel->"In[33]:=",ExpressionUUID->"b04acde6-1c4d-4632-b34e-b05a8c3158f7"], + CellLabel->"In[40]:=",ExpressionUUID->"b04acde6-1c4d-4632-b34e-b05a8c3158f7"], Cell[CellGroupData[{ @@ -6003,7 +6006,7 @@ Cell[BoxData[ RowBox[{"\[Epsilon]", ",", "\[Omega]2"}], "}"}], "/.", "solzeros"}], "]"}]], "Input", CellChangeTimes->{{3.909043941257431*^9, 3.909043955169023*^9}}, - CellLabel->"In[34]:=",ExpressionUUID->"bb7ea87c-a295-4530-bdcd-103371a64b77"], + CellLabel->"In[41]:=",ExpressionUUID->"bb7ea87c-a295-4530-bdcd-103371a64b77"], Cell[BoxData[ GraphicsBox[{{}, @@ -7311,8 +7314,8 @@ M8mtd2mT5w2wnqXn2WOfNnneAF72ntCBB7Vt/w9HjB69 Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{3.909043955430275*^9, 3.909046701012884*^9, 3.915533054748672*^9, 3.915772001814284*^9, 3.916380445982705*^9, - 3.916387250792478*^9, 3.927267525287052*^9}, - CellLabel->"Out[34]=",ExpressionUUID->"88fd1897-8c0a-468d-9d2b-390b68a5128e"] + 3.916387250792478*^9, 3.927267525287052*^9, 3.928307523980886*^9}, + CellLabel->"Out[41]=",ExpressionUUID->"039f6472-f8d6-4898-919b-ff05699a256c"] }, Open ]], Cell[CellGroupData[{ @@ -7721,7 +7724,7 @@ rxNvS3I8DW3/D8t6RRQ= Scaled[0.05]}}, Ticks->{Automatic, Automatic}]], "Input", CellChangeTimes->{{3.915771872450286*^9, 3.915771873801431*^9}}, - CellLabel->"In[35]:=",ExpressionUUID->"c8acd08e-419d-47df-95d8-cd474e7cf4f4"], + CellLabel->"In[42]:=",ExpressionUUID->"c8acd08e-419d-47df-95d8-cd474e7cf4f4"], Cell[BoxData[ GraphicsBox[{{}, @@ -8126,8 +8129,8 @@ rxNvS3I8DW3/D8t6RRQ= Scaled[0.05], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]], "Output", - CellChangeTimes->{3.927267525451137*^9}, - CellLabel->"Out[35]=",ExpressionUUID->"258a3fb8-1858-449e-81cf-7305a0050158"] + CellChangeTimes->{3.927267525451137*^9, 3.9283075243698483`*^9}, + CellLabel->"Out[42]=",ExpressionUUID->"0cdb0669-18fb-49e4-894f-65cf01920ce6"] }, Open ]], Cell[CellGroupData[{ @@ -8163,7 +8166,7 @@ Cell[BoxData[ RowBox[{"Drop", "[", RowBox[{"sol", ",", "5"}], "]"}], "/.", RowBox[{"Rule", "->", "List"}]}], ",", - RowBox[{"WorkingPrecision", "->", "20"}], ",", + RowBox[{"WorkingPrecision", "->", "22"}], ",", RowBox[{"MaxIterations", "->", "500"}]}], "]"}]}], "]"}]}], "]"}], ",", RowBox[{"Join", "[", @@ -8217,8 +8220,9 @@ Cell[BoxData[ 3.909045183744899*^9, 3.909045184480734*^9}, {3.909045272674652*^9, 3.909045275818399*^9}, {3.909045363781097*^9, 3.909045364556114*^9}, 3.909045705179872*^9, {3.909046708942043*^9, 3.909046709005525*^9}, { - 3.916385716465579*^9, 3.9163857237454777`*^9}}, - CellLabel->"In[36]:=",ExpressionUUID->"0012cb53-2118-4c32-9687-3900486d9017"], + 3.916385716465579*^9, 3.9163857237454777`*^9}, {3.928308656081287*^9, + 3.9283086561604433`*^9}, {3.928309883344429*^9, 3.92830988348765*^9}}, + CellLabel->"In[72]:=",ExpressionUUID->"0012cb53-2118-4c32-9687-3900486d9017"], Cell[BoxData[ TemplateBox[{ @@ -8226,14 +8230,122 @@ Cell[BoxData[ "\"The line search decreased the step size to within tolerance specified \ by AccuracyGoal and PrecisionGoal but was unable to find a sufficient \ decrease in the merit function. You may need more than \ -\\!\\(\\*RowBox[{\\\"20.`\\\"}]\\) digits of working precision to meet these \ -tolerances.\"", 2, 36, 6, 23876000146772358520, "Local"}, +\\!\\(\\*RowBox[{\\\"22.`\\\"}]\\) digits of working precision to meet these \ +tolerances.\"", 2, 72, 28, 23882815617388216864, "Local"}, + "MessageTemplate"]], "Message", "MSG", + CellChangeTimes->{3.916386517291394*^9, 3.916387274542672*^9, + 3.927268332320952*^9, 3.928307554609683*^9, 3.928308667108411*^9, + 3.928309912423233*^9}, + CellLabel-> + "During evaluation of \ +In[72]:=",ExpressionUUID->"cc6071c7-90c8-44e6-a05d-139fcf893f9f"], + +Cell[BoxData[ + TemplateBox[{ + "FindRoot", "jsing", + "\"Encountered a singular Jacobian at the point \ +\\!\\(\\*RowBox[{\\\"{\\\", RowBox[{\\\"\[Omega]1\\\", \\\",\\\", \ +\\\"q11d\\\", \\\",\\\", \\\"q12\\\", \\\",\\\", \\\"y111\\\", \\\",\\\", \ +\\\"y221\\\", \\\",\\\", \\\"y12d1\\\", \\\",\\\", \\\"y11d0\\\", \\\",\\\", \ +\\\"y11d1\\\", \\\",\\\", \\\"y121\\\", \\\",\\\", \\\"y12d0\\\", \\\",\\\", \ +RowBox[{\\\"\[LeftSkeleton]\\\", \\\"10\\\", \\\"\[RightSkeleton]\\\"}]}], \\\ +\"}\\\"}]\\) = \\!\\(\\*RowBox[{\\\"{\\\", \ +RowBox[{\\\"2.039273869900844141882`22.\\\", \\\",\\\", \ +\\\"0.3517150256870181021593`22.\\\", \\\",\\\", RowBox[{\\\"-\\\", \ +\\\"0.1817460909055636582058`22.\\\"}], \\\",\\\", \ +\\\"0.3016907956564680274182`22.\\\", \\\",\\\", \ +\\\"0.6776322371946231197046`22.\\\", \\\",\\\", \ +\\\"0.000607552879777235681694`22.\\\", \\\",\\\", RowBox[{\\\"-\\\", \ +\\\"0.1822929464927225535781`22.\\\"}], \\\",\\\", RowBox[{\\\"-\\\", \ +\\\"0.1822929464927225535763`22.\\\"}], \\\",\\\", RowBox[{\\\"-\\\", \ +\\\"0.09186635096246261688907`22.\\\"}], \\\",\\\", \ +\\\"0.0006075528797772356817339`22.\\\", \\\",\\\", RowBox[{\\\"\ +\[LeftSkeleton]\\\", \\\"10\\\", \\\"\[RightSkeleton]\\\"}]}], \ +\\\"}\\\"}]\\). Try perturbing the initial point(s).\"", 2, 72, 29, + 23882815617388216864, "Local"}, + "MessageTemplate"]], "Message", "MSG", + CellChangeTimes->{3.916386517291394*^9, 3.916387274542672*^9, + 3.927268332320952*^9, 3.928307554609683*^9, 3.928308667108411*^9, + 3.928309912633354*^9}, + CellLabel-> + "During evaluation of \ +In[72]:=",ExpressionUUID->"445bfe58-b467-43b4-9f8a-4f09d47858a6"], + +Cell[BoxData[ + TemplateBox[{ + "FindRoot", "jsing", + "\"Encountered a singular Jacobian at the point \ +\\!\\(\\*RowBox[{\\\"{\\\", RowBox[{\\\"\[Omega]1\\\", \\\",\\\", \ +\\\"q11d\\\", \\\",\\\", \\\"q12\\\", \\\",\\\", \\\"y111\\\", \\\",\\\", \ +\\\"y221\\\", \\\",\\\", \\\"y12d1\\\", \\\",\\\", \\\"y11d0\\\", \\\",\\\", \ +\\\"y11d1\\\", \\\",\\\", \\\"y121\\\", \\\",\\\", \\\"y12d0\\\", \\\",\\\", \ +RowBox[{\\\"\[LeftSkeleton]\\\", \\\"10\\\", \\\"\[RightSkeleton]\\\"}]}], \\\ +\"}\\\"}]\\) = \\!\\(\\*RowBox[{\\\"{\\\", \ +RowBox[{\\\"2.039273869900844141882`22.\\\", \\\",\\\", \ +\\\"0.3517150256870181021593`22.\\\", \\\",\\\", RowBox[{\\\"-\\\", \ +\\\"0.1817460909055636582058`22.\\\"}], \\\",\\\", \ +\\\"0.3016907956564680274182`22.\\\", \\\",\\\", \ +\\\"0.6776322371946231197046`22.\\\", \\\",\\\", \ +\\\"0.000607552879777235681694`22.\\\", \\\",\\\", RowBox[{\\\"-\\\", \ +\\\"0.1822929464927225535781`22.\\\"}], \\\",\\\", RowBox[{\\\"-\\\", \ +\\\"0.1822929464927225535763`22.\\\"}], \\\",\\\", RowBox[{\\\"-\\\", \ +\\\"0.09186635096246261688907`22.\\\"}], \\\",\\\", \ +\\\"0.0006075528797772356817339`22.\\\", \\\",\\\", RowBox[{\\\"\ +\[LeftSkeleton]\\\", \\\"10\\\", \\\"\[RightSkeleton]\\\"}]}], \ +\\\"}\\\"}]\\). Try perturbing the initial point(s).\"", 2, 72, 30, + 23882815617388216864, "Local"}, + "MessageTemplate"]], "Message", "MSG", + CellChangeTimes->{3.916386517291394*^9, 3.916387274542672*^9, + 3.927268332320952*^9, 3.928307554609683*^9, 3.928308667108411*^9, + 3.928309912885548*^9}, + CellLabel-> + "During evaluation of \ +In[72]:=",ExpressionUUID->"a2709c3e-f5dc-4790-bafb-ccde8842d1ce"], + +Cell[BoxData[ + TemplateBox[{ + "FindRoot", "jsing", + "\"Encountered a singular Jacobian at the point \ +\\!\\(\\*RowBox[{\\\"{\\\", RowBox[{\\\"\[Omega]1\\\", \\\",\\\", \ +\\\"q11d\\\", \\\",\\\", \\\"q12\\\", \\\",\\\", \\\"y111\\\", \\\",\\\", \ +\\\"y221\\\", \\\",\\\", \\\"y12d1\\\", \\\",\\\", \\\"y11d0\\\", \\\",\\\", \ +\\\"y11d1\\\", \\\",\\\", \\\"y121\\\", \\\",\\\", \\\"y12d0\\\", \\\",\\\", \ +RowBox[{\\\"\[LeftSkeleton]\\\", \\\"10\\\", \\\"\[RightSkeleton]\\\"}]}], \\\ +\"}\\\"}]\\) = \\!\\(\\*RowBox[{\\\"{\\\", \ +RowBox[{\\\"2.039273869900844141882`22.\\\", \\\",\\\", \ +\\\"0.3517150256870181021593`22.\\\", \\\",\\\", RowBox[{\\\"-\\\", \ +\\\"0.1817460909055636582058`22.\\\"}], \\\",\\\", \ +\\\"0.3016907956564680274182`22.\\\", \\\",\\\", \ +\\\"0.6776322371946231197046`22.\\\", \\\",\\\", \ +\\\"0.000607552879777235681694`22.\\\", \\\",\\\", RowBox[{\\\"-\\\", \ +\\\"0.1822929464927225535781`22.\\\"}], \\\",\\\", RowBox[{\\\"-\\\", \ +\\\"0.1822929464927225535763`22.\\\"}], \\\",\\\", RowBox[{\\\"-\\\", \ +\\\"0.09186635096246261688907`22.\\\"}], \\\",\\\", \ +\\\"0.0006075528797772356817339`22.\\\", \\\",\\\", RowBox[{\\\"\ +\[LeftSkeleton]\\\", \\\"10\\\", \\\"\[RightSkeleton]\\\"}]}], \ +\\\"}\\\"}]\\). Try perturbing the initial point(s).\"", 2, 72, 31, + 23882815617388216864, "Local"}, "MessageTemplate"]], "Message", "MSG", CellChangeTimes->{3.916386517291394*^9, 3.916387274542672*^9, - 3.927268332320952*^9}, + 3.927268332320952*^9, 3.928307554609683*^9, 3.928308667108411*^9, + 3.928309913093972*^9}, CellLabel-> "During evaluation of \ -In[36]:=",ExpressionUUID->"1dbf7ac6-ed08-415b-9217-21822168aafb"], +In[72]:=",ExpressionUUID->"fa094df9-6af9-4495-a07c-a010e433523f"], + +Cell[BoxData[ + TemplateBox[{ + "General", "stop", + "\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"FindRoot\\\", \ +\\\"::\\\", \\\"jsing\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"", 2, 72, 32, 23882815617388216864, "Local"}, + "MessageTemplate"]], "Message", "MSG", + CellChangeTimes->{3.916386517291394*^9, 3.916387274542672*^9, + 3.927268332320952*^9, 3.928307554609683*^9, 3.928308667108411*^9, + 3.928309913102157*^9}, + CellLabel-> + "During evaluation of \ +In[72]:=",ExpressionUUID->"215a4a4b-5897-4135-97c4-a3567b3a0ea7"], Cell[BoxData[ TemplateBox[{ @@ -8241,14 +8353,15 @@ Cell[BoxData[ "\"The line search decreased the step size to within tolerance specified \ by AccuracyGoal and PrecisionGoal but was unable to find a sufficient \ decrease in the merit function. You may need more than \ -\\!\\(\\*RowBox[{\\\"20.`\\\"}]\\) digits of working precision to meet these \ -tolerances.\"", 2, 36, 7, 23876000146772358520, "Local"}, +\\!\\(\\*RowBox[{\\\"22.`\\\"}]\\) digits of working precision to meet these \ +tolerances.\"", 2, 72, 33, 23882815617388216864, "Local"}, "MessageTemplate"]], "Message", "MSG", CellChangeTimes->{3.916386517291394*^9, 3.916387274542672*^9, - 3.9272684390247297`*^9}, + 3.927268332320952*^9, 3.928307554609683*^9, 3.928308667108411*^9, + 3.9283099157527027`*^9}, CellLabel-> "During evaluation of \ -In[36]:=",ExpressionUUID->"730f5176-d4ff-4335-8127-b006765df617"], +In[72]:=",ExpressionUUID->"6d8b40a1-7762-4fd5-b677-32728cbb74d0"], Cell[BoxData[ TemplateBox[{ @@ -8256,27 +8369,29 @@ Cell[BoxData[ "\"The line search decreased the step size to within tolerance specified \ by AccuracyGoal and PrecisionGoal but was unable to find a sufficient \ decrease in the merit function. You may need more than \ -\\!\\(\\*RowBox[{\\\"20.`\\\"}]\\) digits of working precision to meet these \ -tolerances.\"", 2, 36, 8, 23876000146772358520, "Local"}, +\\!\\(\\*RowBox[{\\\"22.`\\\"}]\\) digits of working precision to meet these \ +tolerances.\"", 2, 72, 34, 23882815617388216864, "Local"}, "MessageTemplate"]], "Message", "MSG", CellChangeTimes->{3.916386517291394*^9, 3.916387274542672*^9, - 3.927268439156069*^9}, + 3.927268332320952*^9, 3.928307554609683*^9, 3.928308667108411*^9, + 3.928309915917659*^9}, CellLabel-> "During evaluation of \ -In[36]:=",ExpressionUUID->"65f2ef6d-d552-46ba-88a6-14db70c55524"], +In[72]:=",ExpressionUUID->"532219ae-c3fa-48ce-8fc3-f61573c72449"], Cell[BoxData[ TemplateBox[{ "General", "stop", "\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"FindRoot\\\", \ \\\"::\\\", \\\"lstol\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ -during this calculation.\"", 2, 36, 9, 23876000146772358520, "Local"}, +during this calculation.\"", 2, 72, 35, 23882815617388216864, "Local"}, "MessageTemplate"]], "Message", "MSG", CellChangeTimes->{3.916386517291394*^9, 3.916387274542672*^9, - 3.927268439160679*^9}, + 3.927268332320952*^9, 3.928307554609683*^9, 3.928308667108411*^9, + 3.928309915923023*^9}, CellLabel-> "During evaluation of \ -In[36]:=",ExpressionUUID->"ed1cd31f-d5b3-48f5-9989-05bd6a911b44"] +In[72]:=",ExpressionUUID->"dc63d757-ae64-4223-98f0-9e3e51872aa4"] }, Open ]], Cell[CellGroupData[{ @@ -8296,16 +8411,15 @@ Cell[BoxData[ SuperscriptBox["10", RowBox[{"-", "9"}]]}], "]"}]}], ")"}], "//", "N"}]], "Input", CellChangeTimes->{{3.9272693573185596`*^9, 3.927269395519362*^9}}, - CellLabel-> - "In[132]:=",ExpressionUUID->"f60a2b45-e619-4e66-a5fe-f654a250e3c1"], + CellLabel->"In[73]:=",ExpressionUUID->"f60a2b45-e619-4e66-a5fe-f654a250e3c1"], Cell[BoxData[ RowBox[{"{", RowBox[{"2.799706578640259`", ",", "2.068260402684564`"}], "}"}]], "Output",\ - CellChangeTimes->{{3.927269366160224*^9, 3.927269395737912*^9}}, - CellLabel-> - "Out[132]=",ExpressionUUID->"8c46bbcd-bf33-48d3-96cc-0fe08f4e2793"] + CellChangeTimes->{{3.927269366160224*^9, 3.927269395737912*^9}, + 3.928308477075953*^9, 3.92830959074616*^9, 3.928310785366021*^9}, + CellLabel->"Out[73]=",ExpressionUUID->"eb35fdc9-1afa-47f2-8bcc-688c6b1c0b59"] }, Open ]], Cell[CellGroupData[{ @@ -8327,18 +8441,17 @@ Cell[BoxData[ CellChangeTimes->{{3.927268564799363*^9, 3.927268736106742*^9}, { 3.9272691307157307`*^9, 3.927269155354519*^9}, {3.927269190451548*^9, 3.927269192707428*^9}}, - CellLabel-> - "In[116]:=",ExpressionUUID->"966871e9-cb76-4279-9fae-2e272197164a"], + CellLabel->"In[74]:=",ExpressionUUID->"966871e9-cb76-4279-9fae-2e272197164a"], Cell[BoxData[ RowBox[{"{", RowBox[{"2.7997645646754687`", ",", "2.2882412315930387`"}], "}"}]], "Output", CellChangeTimes->{{3.9272685658396063`*^9, 3.927268581798867*^9}, { - 3.927268629337381*^9, 3.927268736340684*^9}, {3.9272691333021603`*^9, - 3.927269155522903*^9}, 3.927269193165361*^9, 3.927269278596757*^9}, - CellLabel-> - "Out[116]=",ExpressionUUID->"efa626f7-90bb-4260-b69d-c55baf79ab36"] + 3.927268629337381*^9, 3.927268736340684*^9}, {3.92726913330216*^9, + 3.927269155522903*^9}, 3.927269193165361*^9, 3.927269278596757*^9, + 3.928308477142424*^9, 3.9283095908187447`*^9, 3.928310785456287*^9}, + CellLabel->"Out[74]=",ExpressionUUID->"2bd51368-da60-47a5-807f-28df1639de14"] }, Open ]], Cell[CellGroupData[{ @@ -8358,17 +8471,16 @@ Cell[BoxData[ SuperscriptBox["10", RowBox[{"-", "9"}]]}], "]"}]}], ")"}], "//", "N"}]], "Input", CellChangeTimes->{{3.927269142818646*^9, 3.927269234028159*^9}}, - CellLabel-> - "In[117]:=",ExpressionUUID->"d19d89e4-a282-47a0-a129-6bfc594811ce"], + CellLabel->"In[75]:=",ExpressionUUID->"d19d89e4-a282-47a0-a129-6bfc594811ce"], Cell[BoxData[ RowBox[{"{", RowBox[{"2.7998505034516117`", ",", "2.750887887632251`"}], "}"}]], "Output",\ CellChangeTimes->{{3.92726914353675*^9, 3.927269234258607*^9}, { - 3.927269272679023*^9, 3.9272692788839903`*^9}}, - CellLabel-> - "Out[117]=",ExpressionUUID->"cdd73faa-648d-4c28-98b3-a11015b0f2a1"] + 3.927269272679023*^9, 3.927269278883991*^9}, 3.9283084772075567`*^9, + 3.9283095909014273`*^9, 3.9283107855492783`*^9}, + CellLabel->"Out[75]=",ExpressionUUID->"f418d492-7f7f-4edd-8289-968340f073ce"] }, Open ]], Cell[CellGroupData[{ @@ -8391,8 +8503,7 @@ Cell[BoxData[ RowBox[{"LegendLabel", "->", "\[Epsilon]"}], ",", "labelStyle", ",", RowBox[{"LegendLayout", "->", "\"\\""}]}], "]"}]}]], "Input", CellChangeTimes->{{3.927270101965452*^9, 3.927270252847728*^9}}, - CellLabel-> - "In[180]:=",ExpressionUUID->"0a707b26-1c87-4e49-9fde-e91e569d127e"], + CellLabel->"In[76]:=",ExpressionUUID->"0a707b26-1c87-4e49-9fde-e91e569d127e"], Cell[BoxData[ TemplateBox[{ @@ -8703,9 +8814,9 @@ Cell[BoxData[ RowBox[{"LegendLayout", "\[Rule]", "\"Row\""}]}], "]"}]& )]], "Output",\ CellChangeTimes->{{3.927270103820716*^9, 3.927270213695313*^9}, - 3.927270253204455*^9}, - CellLabel-> - "Out[180]=",ExpressionUUID->"494215f1-a332-49c8-88a1-c5b4ad751877"] + 3.927270253204455*^9, 3.928308477311769*^9, 3.928309591000692*^9, + 3.928310785656404*^9}, + CellLabel->"Out[76]=",ExpressionUUID->"fa4fd6f1-284d-4d76-8c72-67f727d69aed"] }, Open ]], Cell[CellGroupData[{ @@ -8785,14 +8896,13 @@ Cell[BoxData[ 3.915536859762843*^9, {3.916385726520988*^9, 3.916385734889188*^9}, { 3.927267635645629*^9, 3.927267640645814*^9}, {3.927268509183035*^9, 3.927268543303323*^9}, {3.927269503682035*^9, 3.927269573634857*^9}, { - 3.927269608723671*^9, 3.927269610171708*^9}, {3.9272699535387793`*^9, + 3.927269608723671*^9, 3.927269610171708*^9}, {3.927269953538779*^9, 3.927269963066483*^9}, {3.927270022076383*^9, 3.927270022411675*^9}, { 3.92727006533313*^9, 3.927270100285515*^9}, {3.92727026179222*^9, 3.92727026216817*^9}, {3.927270296449134*^9, 3.927270297536882*^9}, { - 3.927270369203806*^9, 3.9272704072271852`*^9}, {3.927270464988804*^9, + 3.927270369203806*^9, 3.927270407227185*^9}, {3.927270464988804*^9, 3.927270529941201*^9}}, - CellLabel-> - "In[217]:=",ExpressionUUID->"abdd1227-571e-42c2-ba14-b0236a50da8f"], + CellLabel->"In[77]:=",ExpressionUUID->"abdd1227-571e-42c2-ba14-b0236a50da8f"], Cell[BoxData[ GraphicsBox[{{}, {{}, {}, @@ -8807,105 +8917,106 @@ Cell[BoxData[ NCache[ Rational[1, 360], 0.002777777777777778]], AbsoluteThickness[2], LineBox[CompressedData[" -1:eJxNmXk4lfn7x5/nnMPRV0ULLYhRhDZJi4SbTE20aJNMkSVRQjtalC1Fi9JG -aSeyZGlTKRpthDS2limpqSakVELqd3dd857r1z9dr67KOc/z+dz3e/nF3X/W -YokgCI9EQfj5+/2Sn7+UKPZ42Sz5AIEm3RgyO5N5QODzLT+5Ic1+jmaaEs2b -nvTenLm8p1mrcowS7RrkuzCAWexWkrjeV4nutI8sPsWcf/v4de9pSiQ8aB1X -y+y5KfJZ+XAlMku+ltRNWyC566u4LFUlWrExrLcN85PulpFKLXJKnT0ldC2z -7c6jPg8r5fTCUKU5lTnR0kCmellOGkLlwmfMfcu2G149LKfZVfHFvXQEelBz -4ErlZjnFpC0y+4150efiFOfFcvojVD95A3OA1ovm3+zk1OnU0DuLOVd7aXzi -CDmNHpEd+oq5ROJxdb6anPwUApv7/SLQe/3awMAORUp6bOEynXny962dX+sU -6VmWtCSU+ZNpSFjtHUXqE3XX7CJz5MDi6X3PKZKDy67kd8zR3joZOQcUaZvp -XDUdXYHWb93enhKiSAX/0wibw/zGV+tA2xJFan/+vDmKecHllOZjDopkcjHJ -5RpzwflVGxPNFGnZDt+SD8wbKxuuNusq0kkPk/H6AwUqOus/dn9XRXpi9jXZ -mfnv8d837viiQL1V89V2Mc+NkBhVPlegaX+Hhd1kDp/S4+myYgWKuDrlQ+tP -rsgghwsKlL9HxXXoIIGW31FT3HJcgb54V5YsYt7W8OPVtxgFGmGVMH4fszwj -4FhhoAItUXM7c5e5NXzLt3JPBTr2Tl/9O7OSxPiO/kwFqiloCDPRE8g8dFhN -oYUC9TiY/cGLOWXtOfkpIwWa4hfomsD8t/HkcXf7KFCoreX9MuZ1emkzRyoo -UF5/mblMn//9/gTrxx9l1NJ898w4Zr8DqR1Fz2U09PYu9eXMC921g5pLZeR5 -ZG74ceZ1b+9dmn9NRkdWaXysZP5+vD5fSJNR5ZQ61/8NFujjurq4l/Ey6q6T -fN+SeU2d8xTZdhlN+uJrvop5jLz+vUuQjEJKTFKSmZta3xxr8ZbRxRNf1Z8w -ez09EFTgJKPmwPxwVQOBHhleSrj9m4wMZoR/tGWuy40dpmAmIzc9u0VBzCHX -S+cHGcroUIdKaTqzcbXrjIH9ZVTxoNL8BbPJ7kXWEmUZ/e9MQoq6oUC7VTq9 -1L5JaeImtz72zIULnTp+b5TS+jmDI0KY24NXWVT+JaVco8aPOcwRw9UCNpdL -qUHIWfSGuXJ7du2CQinpVQeWahoJNFDH6Q+fXCm5pFtOmMl8vXrvxqQkKe0P -k6VGMHuudHXseUhKZfPv9clj1j2lfDItWkpy490RTcyJd4ZcWb1JSqTo2KI7 -RKATRqFtPiukFPhEw20es9ajhivRnlLKyq4rjWZuUZ7tUTtPSm+jkifcYFb5 -sWf2LHsp6bouT/3EvNo9oOWzpZScR4/qazhUoF7jwtJumkhpr3JbxELmAOPB -7/L0pVRcl98Sy2ywftmAx/2lJLsU7naLOUdJemmgipQm7LQra//JZqOHxkml -tMZT1WLEMIFWfC39MOSrhNLHV6V6MPc16x36T4OE/lY93Pcg876nWU5ldRIa -8NotsoS5ri2zpbZKQvOuDf4kDBfozzWeD7uUSGjX3ka30cwRXbyCXQokdMcn -p8yHeVNsyPLqCxISKcgikbnXpZOjVqdJyEzd6mwFs+mH53NNT0hoZYOsn3yE -QA635rr2OSih1MJ7kebMt/z1nmrulFD9wd2f/JmTLvu62IZLSMPf0f0Us8/I -sat3BEtozq+a5TXMYfGrs1oDJBSj8cKim7FAWclNqaFLJFT0IfmsNXPLF8vW -YS4S6ry9vN9aZpvpRcPb5khoTOKoranM/fokvqu3l5Df6rZPfzFL+hy622gj -oWS76+69Rgo03cPYS328hJ7pRJRPZnbeGbJo4UgJ9W21s9zAfLSr+fxCAwk5 -3FdNO8fctTz5o62OhLadrOr3ilnou7f8ZR8JFQQd3trPhJ/ParuDx1Uk1D7D -/fM05h4de5uD5RIapW/gEcqsnJa0JeCHSMu+NZZfYD6vOPDzllaRTlXkWL5j -1i5W/pLxXqQnZ4LStEcJNOdNvnHra5HUQqz6z2FO39c0y/m5SNPmKkRFMXff -H69cUyNS5JDiz1eZm092UQ54IFK+GOvxgVlF4aZE955IrdWOD/RMBTptG3W6 -sVCkERmaVs7MQ3rNSK64IpJ3+Iu0nczxdubXynNFOuZ8pv9N5kHqh468Thep -1tgvqpU5ZEL1D/VkkXrITb8MGS3Qvegth12OiWT3tM1jEfMgL/Nh+YdECs25 -/iCOWdsvz3f0XpGubIuwustsNKtA/Y8YkVpc7dM7f/KF/m98IkUaOqaHhskY -nr/j4xL1N4vk2bU6yot5zNG2r21BIh15cfhLPLOeTPVi/SqRqi65e5Yx59rE -HqpfLlL3XQYV0rEC6XgMdm9bItLkxU1W45i7DfF+OMhdpBDz3HRfZpOi8nOL -F4h0qUewxnFm3y0F+VccRWp+bbWtkvloWlCh/kyRDPMVWruMEygvpFdokr1I -bnHFnpbMdnqb/xg/SaT4pbEVK5n7VobNrOfbUEHzKJl5sEL2h6PmIin30cp4 -zHwi08cvYIxIExtfaKia8XlMfxA7Z6RIG26e2WbLfFy3Un/qUJFyD/m1BjJP -kuq0OQ4WqdHfdHE6s+MpjcrVuiLpTWqvqGPu5vlu62ktkVw0b5D6eL5v7j7P -3vQVaf/HiAw75sF2A1Mte4tUdsdeM4T587B5F5NURFI62mN7DnOXlc1VOsoi -0Zrq1tfMKnfDa9MU+TbbH1msaS7QAauZu+0kImX94vHQgVl33tj7bZ0C/dNq -YB3BbGCc557Xxn9e2pRxmTm/sGNgzGeBfj+Vq9nEHKKX99Lvg0B7g4O3607g -/ftiapB7I+sKB/rqyFzqdOKC11uBZIMVvaKZTw6zWLn+lUAWncUPrzP3vD0y -9Fgd76WHsdaffv79yoHXKp8KlJEyL9PAgu/PPxPb+z/ivRmipbWQOaz3tB4B -VXzOHOu3xzJ/2hP66M8KgeYNTflaxNy0NX34lDLeKxJ/r3bmmGv9X5cUC3Sn -xvTP4ZYCVaw8+NT1Duu2zHZrD2b3UasbxCKBzCJuZB5gtrkc2JRdINDK3yO1 -Spjn1rzLX5kv0NmRU6MFK4Fmr4oxs74iUL28Z5spc13Q7vEDLgmk+Ve1lw9z -9PsTiV3O8z3OPfLnEebJHXU20myBdmz3sKlgNv/xRKacyTpmkSGrJoECL+0p -1EnjvT3mvZY581wvf2fbFL4H3c5H+zNrtNmdXZMkkH99cNtJ5pzJS+JyTwqU -fJmW1DD/Y+/3WTgu0PNdipVdrQXqvTggwzmRz6lXiY0189ZjL44WJAg0c8Ke -c2uY0+RHUkcfYp3T02lAKrNeS03mhf28d99oxfzFfNp9RKxtHO/d/Pq2njb8 -uZwOGD+LFWjUvpQlk5lfmHsGRO4SaNky/8r1zPfH2I4av0OgU9ajJ55jDjlm -uaB9O+vaPh3nXjK7umeX3ooSSK3pxoB+E3meus3xOxrJc/iPyJhpzI6vhmmH -h7OOjJ/avoU5W5ZQtDqU93ZAT+8LzKZKUyat2My6a1JN5T/Mb8tNI4M2sa7Q -Spyobcvfa1zK0h0bBPJu8ciazRyxzKI2LZjv2V1D7SjmJVYPL1YHClR79H3M -VeYf6/c1dFvH527t+fZm5ruaXxbOWMP3fOp6b71f+T2FpX1MWMXnTNe6aj5z -QXxObMsKga58VbTdyTzo5WRdxwA+d6UlWYXMsf6vom/6CTT09B7tVmaf879e -MF8u0OL1TjuGTOL7P2PhtvxlAh2ZOaDDlZm2zm+0XypQ1eCX3nHMNy4fuVfv -zXP9e0rVHebQ4BtdIpfwufnT37aT+eu6qL0mXgJtTh2dPXIyv9eubx3eegp0 -aXOHthdz2bLvRqkeAn1wLNgRz5zg1kV5jbtAhsO2dpQyn1i/9NEUNz7n0mk+ -0t/4XO8+HGqwiOd+bc/qscyda4c3qroK9DCzxtaXueutK1KpC9+7yMTsY8w9 -Fr/M/L6AfckCT51K5upUm8dS5g0mRju7TBHo9XlX/56/815Tau6wYH4Sd3qu -kbNAjX+d91nJvPzy9HX28wXSP7++Oom5pNusa2ucBHKJtv71MfOpKjvVlHk8 -h9zkOSp2Ao2Y9bvTK0f+XmPv69gyX8hT2mjErNR9785A5vRP3RcHzuXn+NLp -WxrzrjzDL6VzBArKG7C0jrk8srz3cOas3S+r1ez5PJXWndw3m++JV+qvdsyd -C8zCFZgHWgTkbGKeUDU0buMsnme9xvySwxxc8yajc6ZAcW87dr5mVtdJORvB -XHK94JvGVObZtxeoMSvs37rUgXlTztGdaQ48z3yn1YQz3z8zS9Geea1Nr0mX -md0ur9vcPIPnWd/anEbm71bvMg8zv25K/EV3Gs+xW20TZjBrF3nucmQ2LrMu -kjM7JRh1bmfetiXpSdF0nmcrmpdeZ34dH6Wyjfnu5As1Lcy+CUP+dmAWB2yY -ZPD/fsef4+/h3+H/wf+Ln4Ofi8+Bz4XPic+N74Hvhe+J743ngOeC54Tn9t9z -/Pe54jnjueM94L3gPeG94T3iveI9473jHOBc4Jzg3OAc4VzhnOHc4RziXOKc -4tziHONc45zj3OMe4F7gnuDe4B7hXuGe4d7hHuJe4p7i3uIe417jnuPeYw5g -LmBOYG5gjmCuYM5g7mAOYS5hTmFuYY5hrmHOYe5hDmIuYk5ibmKOYq5izmLu -Yg5jLmNOY25jjmOuY85j7mMPYC9gT2BvYI9gr2DPYO9gD2EvYU9hb2GPYa9h -z2HvYQ9iL2JPYm9ij2KvYs9i72IPYy9jT2NvY49jr2PPY+9DB0AXQCdAN0BH -QFdAZ0B3QIdAl0CnQLdAx0DXQOdA90AHQRdBJ0E3QUdBV0FnQXdBh0GXQadB -t0HHQddB50H3QQdCF0InQjdCR0JXQmdCd0KHQpdCp0K3QsdC10LnQvdCB0MX -QydDN0NHQ1dDZ0N3Q4dDl0OnQ7dDx0PXQ+dD98MHwBfAJ8A3wEfAV8BnwHfA -h8CXwKfAt8DHwNfA58D3wAfBF8EnwTfBR8FXwWfBd8GHwZfBp8G3wcfB18Hn -wffBB8IXwifCN8JHwlfCZ8J3wofCl8Knwrf+52P/9bXwufC98MHwxfDJ8M3w -0fDV8Nnw3fDh8OXw6fDt8PHw9fD58P3IAZALICdAboAcAbkCcgbkDsghkEsg -p0BugRwDuQZyDuQeyEGQiyAnQW6CHAW5CnIW5C7IYZDLIKdBboMcB7kOch7k -PsiBkAshJ0JuhBwJuRJyJuROyKGQSyGnQm6FHAu5FnIu5F7IwZCLISdDboYc -DbkacjbkbsjhkMshp0NuhxwPuR5yPuR+yAGRCyInRG74X474b66InBG5I3JI -5JLIKZFbIsdEromcE7knclDkoshJkZsiR0WuipwVuStyWOSyyGmR2yLHRa6L -nBe5L3Jg5MLIiZEbI0dGroycGbkzcmjk0sipkVsjx0aujZwbuTdycOTiyMmR -myNHR66OnB25O3J45PLI6ZHbI8dHro+cH7k/egD0AugJ0BugR0CvgJ4BvQN6 -CPQS6CnQW6DHQK+BngO9B3oQ9CLoSdCboEdBr4KeBb0Lehj0Muhp0Nv81+P8 -2+ug50Hvgx4IvRB6IvRG6JHQK6FnQu+EHgq9FHoq9FbosdBroedC74UeDL0Y -ejL0ZujR0KuhZ0Pvhh4OvRx6OvR26PHQ66HnQ++HHhC9IHpC9IboEdEromdE -74geEr0kekr0lugx0Wui50TviR4UvSh6UvSm6FHRq6JnRe+KHha97P8BE3ed -ig== +1:eJx1mXlUjvn7x+/7WXryDWXJVqkpJTvJUilXaTLKki1pKC1SpLJXlmgTRSJb +SLZSEi12IsZaKpm2wZAYjEqEVOJ3OWfeM53O+fmn83Kinvv+fK7rvfzk5jdt +vkQQhDpREH58vZ//448yxR4qnKboLZDNtQHTTzH3Dni24QdXp9nN0ExTplmT +k96ZMRd1NmlQiVammD4+c/2ZxQ75Cat9lOlO07C8o8w5tw9d9ZqkTMKDhtEV +zB7rIp4WDVYmk+QrSR20BVK4vIzLUFOmJWtDu1oxP+5oEaFcr6DU6RNCVjJb +bz3o/bBEQc/7qdalMidYGMrULihIQyiZ+5S5R+Hmfpf3K2h6aXxeFx2BHpTv +vlSyXkHRafNMfmGe9ykvxWm+gn4LMUhew+yv9bzuF1sFtThWd81gztZeGJ8w +REEjhmSGvGTOl7hfnq2uIF95QF3PnwR6Z1ARENCsREmPzJ0nM4//trHlS6US +Pc2Q5ocwfzQODq24o0TdI++anGOO0Mub3OO0Etk7xyS/ZY7y0knP2q1Em4xn +quvoCrR64+amlGAlyv2fRugM5tc+WrsbFyhR07NndZHMcy6k1CXaK5HRuSTn +K8y5Z5atTTBRokVbfPLfM68tqb5cp6tER9yNTA30BLp5wm/UrvZK9NjkS7IT +81+m39Zu+Synrmo56jHMM8Ml/UueyWnSX6GhN5jDJnR6sihPTuGXJ7xv+MHF +6WR/Vk4521VdBvYRaPEddaUNh+T02askfx7zpurvL79Gy2nI2H2mO5kV6f6J +1wPktEDd9fhd5oawDV+LPOSU+Nag2zdmZcnQOwZT5VSeWx1qpC+QWcig8uvm +cuq0J/O9J3PKytOKo/3lNME3wGUf819Dx4++211OIdYW9wuZV+mnTR0ml9PF +XjIzmQH/+137LB99kFF93d3jo5l9d6c233wmo4G3Y7otZp7rph1YVyAjjwMz +ww4xr3pz7/zsKzI6sEzjQwnzt0NVOUKajEomVLr8r69AH1ZVxr2Il1FHneT7 +FswrKp0myDbLyOazj9ky5pGKqnfOgTIKzjdKSWaubXidWO8lo3OHv3R7zOz5 +ZHdgrqOM6gJywtQMBfqj3/l9t3+RkeGUsA/WzJXZsYPkJjJy1bedF8gcfLVg +dmA/Ge1tVi04yTy0zGWKXi8ZFT8oMXvObLRtnqVERUb/O74vpVs/gbaptniq +f5XSuHWu3e2Yr891bP61RkqrZ/QND2ZuClpmXvKnlLL713zIYg4frO6/vkhK +1ULWvNfMJZszK+Zcl5J+WUCBZn+B9HQcf/POlpLzSYsxU5mvlu1Ym5QkpV2h +stRwZo+lLg6d90qpcPa97heZdY+qHEmLkpJi6LbwWuaEOwMuLV8nJVJyqNcd +INDh/iGN3kukFPBYw3UWs9Yf1ZeiPKSUkVlZEMVcrzLdvWKWlN5EJo+5xqz6 +ffv0aXZS0nVZnPqRebmbf/0nCyk5jRjeo99AgbqMDk27YSSlHSqN4XOZ/Yf2 +fXvRQEp5lTn1scyGqxf1ftRLSrLzYa63mLOUpef1VKU0ZqttYdMPNhkxME4q +pRUeauZDBgm05EvB+wFfJHTStDTVnbmHSdeQv6sl9Jfa/h57mHc+yXAsrJRQ +71euEfnMlY2n6itKJTTrSt+PwmCBfl/h8bBdvoRidtS4jmAOb+cZ5JwroTve +WYXezOtigxeXnZWQSIHmCcxdzh8ZvjxNQibdxp4oZjZ+/2ym8WEJLa2W9VQM +Ecj+1kyX7nsklHr9XoQZ8y0//SeaWyVUtWfbRz/mpAs+ztZhEtLwc3A7yuw9 +bNTyLUESmvGzZlE5c2j88owGfwlFazw37zBUoIzk2tSQBRK6+T75hCVz/WeL +hkHOEmq5vbjnSmaryTcHN86Q0MiE4RtTmXt2T3hbZSch3+WNH/9klnTfe7fG +SkLJtlfdugwTaLL7UM9uphJ6qhNeNJ7ZaWvwvLnDJNSjwdZiDfPB9mazrxtK +yP6+Wtpp5vZFyR+sdSS06Uhpz5fMQo8dRS+6Syg3cP/Gnkb8fJbb7jmkKqGm +KW6fJjF3at5RF6SQ0HADQ/cQZpW0pA3+30Va9LWm6CzzGSW9TxsaRDpanGXx +llk7T+Vz+juRHh8PTNMeLtCM1zlDG16JpB48ttcM5pM7a6c5PRNp0kx5ZCRz +x13xKuXlIkUMyPt0mbnuSDsV/wci5Yix7u+ZVeU3JLr3RGooc3igbyzQMevI +YzXXRRqSrjnWiXlAlynJxZdE8gp7nraVOd7W7EpRtkiJTsd73WDu023vgVcn +RaoY6hvZwBw8pux7t2SROimMPw8YIdC9qA37nRNFsn3S6D6PuY+n2aCcvSKF +ZF19EMes7XvRZ8QOkS5tCh97l7n/tNxuv0WLVO9id7LlB5/t9do7QqSBIztp +GI3k+Wsal2CwXiSP9mWRnswjDzZ+aQwU6cDz/Z/jmfVlaueqlolUet7No5A5 +2yp2b9VikTrGGBZLRwmk497XrXGBSOPn144dzdxhgNfDPm4iBZtln/RhNrpZ +dHr+HJHOdwrSOMTssyE355KDSHWvxm4qYT6YFnjdYKpI/XLkDe1GC3QxuEtI +kp1IrnF5HhbMtvrrfzO1ESl+YWzxUuYeJaFTq/g2FNMsSmbuK898f9BMJJXu +WumPmA+f8vb1HynSuJrnGmomfB5PPoidMUykNTeOb7JmPqRbYjBxoEjZe30b +AphtpDqNDn1FqvEznn+S2eGoRslyXZH0bZqKK5k7eLzdeExLJGfNa9TNlO+b +m/fT1z1E2vUhPN2Wua+tXqpFV5EK79hpBjN/GjTrXJKqSMoHO23OYm63tK5U +R0UkWlHW8IpZ9W5YRZoS32a7A/M1zQTaPXbqNluJSBk/uT+0Z9adNep+Y4tA +fzcYWoYzGw696Haxkf++oDb9AnPO9Wa96E8C/Xo0W7OWOVj/4gvf9wLtCAra +rDuG9+/ziYFuNawr7OmLA3OB4+Gznm8EkvVV8oxiPjLIfOnqlwKZt+Q9vMrc ++fawkMRK3ksPYy0//vj+Er0rJU8ESk+ZdcrQnO/P3+Oaev3BezNYS2suc2jX +SZ38S/mcOVRtjmX+uD3kj9+LBZo1MOXLTebajScHTyjkvSLx82xijr7S61V+ +nkB3yo1/H2whUPHSPU9c7rBuO9Vk6c7sNnx5tXhTIJPwa6d2M1tdCKjNzBVo +6a8RWvnMM8vf5izNEejEsIlRwliBpi+LNrG8JFCVonOjMXNl4DbT3ucF0vyz +zNObOerd4YR2Z/geZx/4/QDz+OZKK2mmQFs2u1sVM5t9fyxTOcU6Zl4/Vk0C +BZzffl0njff2yHdaZswzPf2crFP4HnQ4E+XHrNFoe2JFkkB+VUGNR5izxi+I +yz4iUPIFWlDO/Led7yfhkEDPYpRK2lsK1HW+f7pTAp9Tz3wrS+aNic8P5u4T +aOqY7adXMKcpDqSO2Ms6p7Nj71Rm/fryU2d38d59rRX9J/MxtyGx1nG8d3Oq +Gjtb8e/luHvo01iBhu9MWTCe+bmZh39EjECLFvmVrGa+P9J6uOkWgY5ajhh3 +mjk40WJO02bWtd2bT79gdnHLLLgVKZB67bXePcfxPHWd4XswgufwbxHRk5gd +Xg7SDgtjHRk/sWkDc6Zs383lIby3/Tt7nWU2Vp5gs2Q96y6b8pK/md8UGUcE +rmNdoZUwTtuaP9folIVb1gjkVe+eMZ05fJF5RVoQ37O7/bQjmReMfXiuLECg +ioPvoi8zf1+9s7rDKj53K8801THf1fw8d8oKvucTV3vp/8zvKTTtw75lfM50 +LUtnM+fGZ8XWLxHo0hcl663MfV6M13Xw53NXkJ9xnTnW72XUDV+BBh7brt3A +7H3m57NmiwWav9pxywAbvv9T5m7KWSTQgam9m12YaePsGruFApX2feEVx3zt +woF7VV4817+llN5hDgm61i5iAZ+b3/2sW5i/rIrcYeQp0PrUEZnDxvN7bf/G +/o2HQOfXN2t7Mhcu+tY/1V2g9w65W+KZ97m2U1nhJlC/QRubC5gPr174xwRX +PufSSd7SX/hcb9sfYjiP535F57JRzC0rB9eouQj08FS5tQ9z+1uXpFJnvncR +CZmJzJ3mvzj1bQ77kjkeOiXMZalWj6TMa4z6b203QaBXZ1z8Ov/Ke025rtmc ++XHcsZn9nQSq+fOM91LmxRcmr7KbLZDBmdVlScz5HaZdWeEokHOU5c+PmI+W +2qqlzOI55KrIUrUVaMi0Xx1fOvDnGnVfx5r57EXltf2ZlTvu2BrAfPJjx/kB +M/k5vnD8msYcc7Hf54IZAgVe7L2wkrkooqjrYOaMbS/K1O34PBVUHtk5ne+J +Z+rPtswtc0zC5Mx65v5Z65jHlA6MWzuN51mXkT9lMQeVv05vmSpQ3Jvmra+Y +u+mknAhnzr+a+1VjIvP023PUmeW7Ni60Z16XdXBrmj3PM59J5WHM1Wt3PfBl +XmnVxeZCK07vUZFV04pf1Sb8pDvpP9a+6RHj0Iod9/Vv2dyKty2pW3i1Fd8d +f7a8vhWLvdfYGE7+j00/WmbPacVL7yl0Y1vxicT7MTdbcdXKHS2NrVhz0uxF +g6f8xzP1tCvcWvGWxhc2u1vxrcLU7LxW/O2Yv65g/x+PWjNym3Er9pv2tcWr +1df/7/va/j9tf07b36Pt79n2c7T9nG2fQ9vn1PY5tn3Obd9D2/fU9j22fc9t +z0Hbc9L2HOGc4dzhHOJc/ntO/zm3OMc41zjnOPe4B7gXuCe4N7hHuFe4Z7h3 +uIe4l7inuLe4x7jXuOe495gDmAuYE5gbmCOYK5gzmDuYQ5hLmFOYW5hjmGuY +c5h7mIOYi5iTmJuYo5irmLOYu5jDmMuY05jbmOOY65jzmPvYA9gL2BPYG9gj +2CvYM9g72EPYS9hT2FvYY9hr2HPYe9iD2IvYk9ib2KPYq9iz2LvYw9jL2NPY +29jj2OvY89j70AHQBdAJ0A3QEdAV0BnQHdAh0CXQKdAt0DHQNdA50D3QQdBF +0EnQTdBR0FXQWdBd0GHQZdBp0G3QcdB10HnQfdCB0IXQidCN0JHQldCZ0J3Q +odCl0KnQrdCx0LXQudC90MHQxdDJ0M3Q0dDV0NnQ3dDh0OXQ6dDt0PHQ9dD5 +0P3wAfAF8AnwDfAR8BXwGfAd8CHwJfAp8C3wMfA18DnwPfBB8EXwSfBN8FHw +VfBZ8F3wYfBl8GnwbfBx8HXwefB98IHwhfCJ8I3wkfCV8JnwnfCh8KXwqfCt +8LHwtfC58L3wwfDF8MnwzfDR8NXw2fDd8OHw5fDp8O3w8fD18Pnw/cgBkAv8 +mxP8kxsgR0CugJwBuQNyCOQSyCmQWyDHQK6BnAO5B3IQ5CLISZCbIEdBroKc +BbkLchjkMshpkNsgx0Gug5wHuQ9yIORCyImQGyFHQq6EnAm5E3Io5FLIqZBb +IcdCroWcC7kXcjDkYsjJkJshR0OuhpwNuRtyOORyyOmQ2yHHQ66HnA+5H3JA +5ILICZEbIkdEroicEbkjckjkksgpkVsix0SuiZwTuSdyUOSiyEmRmyJHRa6K +nBW5K3JY5LL/5rT/5LbIcZHrIudF7oscGLkwcmLkxsiRkSsjZ0bujBwauTRy +auTWyLGRayPnRu6NHBy5OHJy5ObI0ZGrI2dH7o4cHrk8cnrk9sjxkesj50fu +jx4AvQB6AvQG6BHQK6BnQO+AHgK9BHoK9BboMdBroOdA74EeBL0IehL0JuhR +0KugZ0Hvgh4GvQx6GvQ26HHQ66DnQe+DHgi9EHoi9EbokdAroWdC74QeCr0U +eir0Vuix0Guh50LvhR4Mvdi/Pdk/vRl6NPRq6NnQu6GHQy+Hng69HXo89Hro ++dD7oQdEL4ieEL0hekT0iugZ0Tuih0QviZ4SvSV6TPSa6DnRe6IHRS+KnhS9 +KXpU9KroWdG7oodFL4ueFr0telz0uuh50fuiB0YvjJ4YvTF6ZPTK6JnRO6OH +Ri+Nnhq9NXps9NroudF7/x+NNEDb "]]}, Annotation[#, "Charting`Private`Tag#2"]& ], TagBox[ @@ -8913,325 +9024,320 @@ ig== NCache[ Rational[1, 360], 0.002777777777777778]], AbsoluteThickness[2], LineBox[CompressedData[" -1:eJxNnXlcjW33t/d17akkUaQQMiSERBHSMiUNigoZM1QohCgkQ1HGyhxpREUD -lXnOUClDyFiZMhaZQkLvunfP9/d5n398jsd9u1N7r+s81/quYxvOWDDWU5RI -JIYKieS/X28W/fc/NZLd//b8e6CEbvwqG1XCHGTUNPU/7jT57JOXV9Xo+J8S -3a7LJGTUaf+uX+fU6OPdfaFTmCdsVC7WPa5GRqnTv0YxPyqJ9ByUrkZTV3Xx -uM4c2vfFzLkH1Wi328ebv5mjd2TNjN+vRne6Zw/stVxCh4PvTCzfqUZq4rLU -mcy11S2tO21VoyGPBrfcw2xhHqBYtF6NlmXI1hUxR1/7eCgvWI2yQm98layQ -0OS2m3U7B6jRh4mRHubMUbGL7TcuUKOOvcfdmsPsOvPBwJ/eajRJ2WZQLLN7 -p59lPh5qtKPsRepd5ntNuxq/m6BGRdnJLZVBEspJu93Ud4wayTfOWzeQ2TZj -6tafo9TIyqPPtwXMBqXuuzcOVaOlFrUeB5idK107dB6oRhmNL956xNx+6rfO -eX3U6O3L0EGaKyX0bMa7PX4matTutN3hIcy9s38sNOysRhMimuotZY5d/Dn5 -sYEaRXo+WHeYeanOyd7RumpUMDDmWzmzosdAhYeWGonaM6brBEtIzyuoTU81 -NRrwrsvtkcxXnTf4SAU1Wnzh46Ag5kiHVR+e1SrpyI7sw0eZn3pvjLzyVUkV -c5fpvWbePuS1a0alktoMsV6vv0pC5pWPesZXKMmtpfy7I7NB4bkW0WVK2vLx -xvS1zM1X/ZBEP1DS9SuRt08w97lY+zbutpL+RY+zqmSWD7HNTc9XUj+/Nkfa -rZbQ570Lw3IvK2mBzUs9V+YPXXR6lZ9RUkqblPXhzAsqHx6V5Cjp+dd5388x -n1oSKOuWriT9gj4zvjBb558xnHhISWPiam93XiOhZQMWSaLilLRxyUWricwv -p67ac2uPknLt1x3Zyjzg3e0X2tuUVGdor3+FWSti6v0pm5TU51fTsJ/Ma3+a -zc4MVZLvrQffu6+VkP3u6TuVwUo6eCBmhgfzn30arl4BSipbPuPODua1xVNj -Cv2UpDvGeHAB89vwnV795ippdJdPR/4yj1z143DqTCWF/c3WNwuRkOa1+9M7 -TFHSxXvLwryYPQ5GhCSMU9KvVOuavcz3tmxT6+KsJNPV8pm3mR1+uL7PGqWk -OeMK70hD+fUyamLbEcOUlGASNbg/86LC3vFlg5T0RByf5st8Yd1S7yALJWk/ -btMqgfmAyW1fQ1Ml2We+DCthfqv+KaWoq5JC1qXUqK/j338d2Ty4o5LOTZo/ -czDz6erVKeYGSvreu2/xIua5qdumfNNVUg+134OTmfvcPmhysqmSPMsvpj1l -vjf0YJM1jZQUm7OuVdP1EgqrWf/HWaakhxvtw4czB961rzb6pyCt6c1+BDJ7 -pNY/E38pyLbfw5npzJP1T+dVfFHQas39xS+YP6+IjiuqVNDpVzOsdcMkNPhO -kceZ1wr6cto43Y55zqENsoxnCuoW+anVKuZeGs1Ckx8raIZXTng28+HFGY8O -3VPQvkHLf7xltkk9WXfkpoLuadOsNuH8eji++c2JPAU1fi+/68zc9s7ubXmX -FTT8YqH1OuanIx1ry84qaOXOqPTTzBWLujf/fVxBx33Gt/7EfDn6TGnrowr6 -NMRgQ4cNEjpbsdlh2GEFGem9+jGOWXPU4Cl+BxQ07VPKrE3MFkv91ZJiFbT7 -6vy7F5lXXSkf+XSPgu7s7UvfmQ8bWLTQ364gtYW/04038vvz+6C5k7coaMjI -S62nMBt3u0gHwxS03GD9hijm1H9R276tUVDWN/uf15jLJTvcRwYpqLKgmedv -5vi6tIj4pQrqGP/wbs9NEkqpuNmz3k9Bk5fup5nMEwo/m870UdAOh5kZu5mT -8/QiizwVdLND1zZFzP3fj7EZ6KEgee2nDZLNEtpldMwxc6KCBt/O+dmXOcLB -Nd7YTUFLDy73nMN86eP0/slOCspcQff2Mw8Yq960u52C3o5RDLnL7Oq91jBn -uILaGxdlKLZIKCZT03uotYIm/ItqM5D5o9n3JyWWCoq6P37jAua0+WEB8/sq -qOCwwa8k5vY2hv0a91KQuOaV5yPmmq8dm2d2VdCA8an3Gm+VUFlNrdr4Tgpa -3GPBkCHMY5W6TWXtFHREap65hHmF2reOJ/QVVPH4d5vDzBbfdaznNVeQwdFL -G8uZB92RTu6qpSC39et/aUdIyDvWbckHdQVtnezgNZK5w+gD647KFHTdTPv+ -CuY36dvCVtTLqV7t0ZCjzB8nFy6x/y2nfs/2Z1Ywfz4nsW9fIye/4zMN9CMl -1KyiSvhdLaeUTV03OTK/2Dpm56MPcnoxvfrXGubV2r/qz76Wk37/414n/vv9 -0ccGHXgup7FNVtz/wNwpwc0m6qmcNlbQ0HZREmr14GrLkAdyunJGcdSF+XGb -N0eWFcupLrLIIJx5UW3yX/8iOfX13rbpHPONfhK1JXly8rWaUPuZeW155bVl -uXI6qNPWu/M2Cal3WGAWcl5OZe9f3XdnvjR+p23UKTnpXkodupV50Hs/6YFs -OTntWnA0lzllZOupZzPkFOZr3vYn88BnOS4PU+V0aWjdpu7bJVTUyPPZzwNy -+qV3uXYac4hy4p828XLqXb3eewfz/nf5B232yWnONYeSfGaXTR8f+O+SU+I+ -7WF/mUs2NtqUHCWnJwsfHe29g+tD3znnyzfLScc2tq0Xs8cK9zmtwuVk33bW -5r3Mjz723jgxRE6h37v+vsWckOLUOi5YTuduVHtLd0rom72u3rtlcqqJP17S -j/l7dfUK8yVy6hGwYpgvs4e+49AwPzl5OQ45Fs88OuOAV5mPnGI7KtuVMIuV -iyv6ecvpYW3RZvVdXA/GDT65a4actO5s+23FvPb0lie1U+Rke2jC7EXMWVpf -R013l9PqoLYPDjFfWS0IN13ldHpsxbCnzDdcJtQNcpbTV+PDx7R28/Pw9Z6+ -x+zl1K1+QbvhzM77fFK6jpTTzBLzLYHMx8qCxx4aKqd9R+p+pzGL6mE9uwyW -0/01l2e/YI7zHNw/zVJOjSeEPWixR0JWBp4+5uZyGtHTcbgdc57p5Su5pnJa -KdPJCmYeP7+tlauJnE48edQum3mY9+h777vI6dPR2C1vmQd6Ga8N6SinLmGz -6lpHS2iN54YRhu3kNG1KtznOzD3lrvpXWslpT5/PD0KZt6/xq52tK6c76ieG -n2Y+lFr0QltbTurPV2R9ZF5XMunWJU05DTkxpH2HvRLSKdM9u0hdTss3K7eO -Y45u8ifJWC6nrBk36zYyb+mste6lRE6V/bfPucg8eYj7xPg/Muqk5f7wG7ND -6bt2M37JaPLrtiOM9/H5J7e4uMt3Ge08W5E1mblArYfvl2oZ3Yw63D6KuZNM -v/JCpYwUs/22XmNeR6ftIt/KaPBgiz+1zEMCLcI8X8kooPmfOT1jJOS26ULM -4Gcyyvxw+eEM5ryloWGtn8ro3aWwEbuZ9RwuDfvzQEbtdztmFzLnGmfefH5X -Ru7zdAwl+/l52GO7YcEtGUUNe7y1L/OGgOyBx2/I6IZ+3J/ZzFotJusdvC4j -8fOsufuZB0nKs/fkymjg9W6Pipnnt4hoFHlBRotjPo9QxErIR+OG3qYzMkpb -dCJ7APMUn09PNpyQUYVtkOEC5vvhHo6bs2Rk0G5oRBLz02UbfLdlyMitRvn3 -IXNHrYd9Yw7LaGvhzbmN4/j5XXQ2MfWQjPIStj8i5rRnGVlnEmVUH+Bus4Q5 -sbXJ9NuxMuo/ul1OKvPPj9mH3+6VkV+n14blzCUTCjdJd8so9ffhCO14Pt9X -1kk6bpfRizt+f22Yu5++p7CJkFGrZAufFcw6bq+jfTfJaOzKP48ymQ/n5Z3Y -FSajTS65NhXMzTfoTrwaIqMrXcNz9BL4ebNs4eqaVTL6U+/YwZHZ+0mQUbcg -GfV9oBO5hjnW5oXtjEAZzUt7/Pc4s36afcV+fxkdXBvn84E5fPi8mlI/GZVP -8HzcNpHr4da6wHbzZKTbq/tIF2YXm6M+nnNk5CT/khPGfG3aqBsZnjIKe3qi -wznmnH/hUXXTZXTpWFDkZ+YEP/ML9lNlVBs29F+nJAl97azvGDdRRr2nqvm6 -M9sfEQf+GCejuX1vPd7C/Cfxaqizi4wSG+0Ymcu86IJ5lwwnGT197n78B/PZ -k6bttBxkpHOyXcfuBySka79jzmJbGTlseR05jXmT6TDp0+EyCp155N925m0t -Or0fMURG5y0X+uYz39hlqJdjJaMarX5P/jBnWXbb0nmAjHq++TOy90E+b3mZ -jthrISOvc7nHPZlvT+9mpd1HRnHbwjvuZS620V60pZeMHs4eHXWL+YPkzXMN -Exk1tW5eLx7iejoief0WYxnZtnji2485JWKSh3ZnGa2pjHviw1yo29hnr6GM -Tl/2tI1n7lV0LalzWxl93d39xH1mL5doZU4rGXWb/6WjejL/eX/2bh/RUkYz -h5+MsmKuu/hy+BMdGcW0Wlm/kDnWfLPeoqYyuv956LxDzAO3ndDQ1JSRZp7a -0yfMTvGhrY+oy2jE/lu2Win8fjvTZoSDQkbBi3ecGMY8OS9l3WdRRidGTewU -yDyg97gnu+ulVN2u/bY0ZvdXbjT0j5S6/Hhd/5y5w7DSnOpfUvIoOjKvRaqE -lN0NzeNrpLQnceHTUcydX0+74PJVSsWB/UYFM3/u/NCxUbWU1J3+nshirlYU -PL9SKaWhna90esu8XFjhv/qdlJbXhW9rfVhC69+bK+i1lLKLR0ucmQPfjdgu -vpRSZXLz+aHMisDfevnlUuoU/OTpKebWUw7tiHwqpcmu8aM+MhcmxkknP5LS -zm5eJw2P8Otrp/XMbiVSuikx6TyO+fu5l0friqWkePhl20Zm58fv3t++JSXr -9JOSi8y9SnM0kgulFBCycv435ryKNJ01+VI66j6stEuahB4OGFA/5ZqU3vVS -t5vM/GRUQaFVrpQMFbdPRjIPiSlY2v6ilNxLd3S+xpz5IP2v/JyUtmVN3F7L -PCq7csqnU1K6Ed5e6JkuIdnfuh2Pj0tJOu3N/BnMkk0T4/OypDTQPK10F/Pn -getXnsqUkr/GIrtC5uAvkm5paVJKe9HvVD3z9U1OSYmpUnp98m/nvhn896+o -fbPvkJQMtl7ZPptZUrTx6+4kKY2btUHYz3xPiLyyK15KWwc4LShmtu6zd/ye -/VLKa9qiTJ7J94OaQWkxe6VU/+aJ3QDm4ZebXEzaLaX+5+NPzWceVJ2yJX2H -lBZu9zJKYv6QldziTJSUUueY7HjIfFP3sGvBVim9tP4qND4qoca/xtg+3SSl -VrqnFhDzMHH4p+pwKblUrSzzZx5zpMtw5XopbcodZp/K3KdX8kjDECld3aN+ -uoz55aYFP6xWS+nP/NtG2sf49b3SdPSUlVIyH7Fzhw3z58AYh1XLpTSv9SRx -BfOyw7OrkwKkdOhLe79MZu1qh76F/lIqz3tT9or5SrFUv2ahlFrGptnrZfH7 -Lcxun+ECKTn5LzrtwHzqw/NTzr5SCrfr32UNc2DghgVr50jpUvt/O44zr7RX -P3/CS0q1P66IH5jf6BnHfZwppd43N/i1zeb7lslRnS7TpTQ3yal8LHPOzPl6 -M6dKKXFZC4cw5nEmZkcSJknpqdPT02eZnYJvFrycIKXmRgldPjObPG6+yGic -lBz+eO3slCOh3vQswddFSuvumkjdmQ9aKMYfd5bS+ZSvfluYe53zjJCMltKP -4FPll5ktR5XajraXUk+3YIcfzC6FdmtibaXk3X34mW7HuR4n7LD4MkJKcUIj -42nMo6PjvGyGSenRw9s7tzMrP7hoxZKUmmbslOYzLzWL6fnLSkqjQict/MN8 -098z13WglNZMNHxmeoJfzzpx+dn9pXTG9K2DJ/ONogHWLSyk9FWRfiaaefZp -k07L+kipe9ki41vMmiN9ljwzldLM7P67xJN8HrCoNrXtKaWYDf+k/ZjVd2W7 -ZneX0v1pVxf6MHfNPV7evquUNC02Potjtp5aUxRpJCWbxs6O95lHu/gbSDtJ -Kfhli7Nqp/jrKbK4FWAopZOnnhpbMb80G1b2qS3Xs60JuxYy25kk2s5uIyVj -T2/ZIWbFrqlNKvS5ng3ssegJ86W160xmtJRSdLNvz5qcllC7fkYJL5tzPXt7 -ynEY8xGjsXM9taXU6ELw2QDm1M9t1n/Q4nq2Y3jXNGaNKTFfF2pKacXcRruf -M09yf5de14jrGd2RtTgjofSaVifC1KRUpbtr0Sjm6OnO6roKrmcfJz1fyWz5 -/tDBQ1IpTbliODqLuevXwRssBa5n0W/PvmGO+DUg69Y/kW4tSO/a+izfbzdf -bOv1RySFzeLdTszujt+K6mtFsm5jKQ9lHvbh35l9P0UK+Ppv0SnmZ60131rW -iHQ0/+rzKuY2SXZOT76K9D5242jDc/z9sHnzJeizSIZLnM+5MX8oanrT8JNI -E+11u21kDq//U55fKdI2w9LdF5iHJj7rvOi9SIU/E+TfmF0XV8cZvBVJest7 -cZfz/P439rQvrBBp0IEeLyYxa81dYbTipUj+y7+NjmTec39+rx7PRUp3Pn3u -KvPlLytnvSgT6bXRqm61zPf6vb+y+6lIbf8O39PjgoR2KL7ZOz8Wady9RooZ -zLEHnv1u9FCkiNQ7i3cxnxxUcyvvvkh5q3a9uMHc++mK6+vviiQZN9mpntne -5/yzkXdE6m/S4XyfixLanSPX17gl0kLxXbfZzJ4TEv3uFIqU+ih9T8zF//o1 -Lyt2F4j0MmOxopi5rZee//Q8kVqts/SXX5LQhEG72vS4JpLLpPoXlsyH6Fjp -71yRNve+5jSf+UnPS1k3Lol0VbnpfCLzpC2t98dcEOlvmXP3h8zJhw32+p0T -yTxHN1rjMr9e93ZIsTkj0vyNpQpi9jAPv9b2lEiHPBL9/ZkHaGd8/nVcpGcW -s1+mML8Kq+lSki1SS82ezmXMV1Muz8k+JpLzq2/nm+Xy+ZYCcrZnihR++nR3 -G+ah94IUS9NFuhyxKno5s9aeAVMnHhGp1nOEMpM5d1mrM5QqktkgjSWvmDV1 -wvW6Jos0V7v4ZcsrXP/SPgfoHBQp6d0uZwdm0wFXHtQnivT0wuQLq5m3uPv1 -+RQvUvOdHUyOM9eOnru5PFYkB5930e+ZY6Sdn9+JEWndkAxl26v8+pPq9ri2 -V6QLLf2XjGX2Xpaz8OwekX58tHy1nnmp6bK07F0i9bpa73yWud3W8qfpO0Ty -3nvtQjVzWZTHv9RtIsX7bTLpdI3fj3eDtFMiRXpkM2bvBOaCoCzdlK0iNTNo -qbaFOdNprfrhzSKN+la65DJz8b7579M3irS2IPFVDfMGqsvJDhfpTNzsMd2u -89efmj737HqRvi3peXEqc/WtxurXQkXq7vDdZDvzrZ4JW++sFWlWhzN785iD -bn+vLVstUsyvVWp/mB0Hbh/1MVikklsjlprmSehXsHrQvyCRNA9qVMxi3tLl -TUSzFSLZrCgeE808h06HGC0TKXjM7os3mS3GNB9nFSDSyS5Teoj5fH+etFE+ -bolI1X877LNgzniSGem3WCTj++/UfJgNLrT6sXmhSNMPZyyNY9b0mdH3yAKR -olf7V9xjPnmqnV3hPJHujhswVq2A32+fqsw/+ojUqIfk0iBm2yueP5rOFWmY -9HqPhcw/J3TZaDFbpBWPN+07yNzS6k71FC+RcjLHqD9hPuIpMQqbJVLVupYB -TW5wfejl3j1rhkidJ5dVDGVeNHnlv3IPkaaYJY0NYB7UrFms5jSRdqnNuXSE -uereabXBU7ielffs+Zy5fENbK79JIimPf9/XvJB/f8lbywPuXM82nVEfxbzb -4sLfx+NFCpy+OmAlc/+rjmHNxnE962fz+hhz1wVDS+xcuZ5pNnZ5w/yvbNSb -dWO5nlUUX2pVxOd9DZ3Tuc5cz87s7unEXDFitIPgJNL2yCkxIcyNu6fHDnHk -eubVsdEp5tMpLzNC7EWSWb0PqGK+VZu4Im8U1zOdzNftb/L77UCSVNNWpCXv -/V3cmN8v2zfC1Ybr2cUBlzcwH4kaSvuHi/Rmp6TXBeandmO/vh3K9cz3esxX -5p+26yb2HSLS+KGbG3W5xeeXRbsD1lpzPdMbGziJuVP1CNu7ViLlf2r5JoJ5 -rJFTYcdBXM+ulblcZXY4v6h+6QCRLPclXf7FHL1z4avC/lzPFs7p1eO2hCYW -ai7t0E+kwyN77Z/OnJTd6MRyc65nBjWNdjHffWKSeL+PSK2/nwm8wfxNHGBp -asb17MbqN/+Y9TrULttiyvUs3sa1zx3++3qYzazqyfVsaeNcb2ZbvcxvDj24 -njnc7RXD3LXYsltmd5EsOu7Zf4d585BYuU43rme1UzTkxRLab58aGmgsUvLt -jsssmevqjA89M+J6dvD9m3nMRuFVs207i6QXlOmayFztcLUwqyPXs7FLch8U -//c8WnOzbQeRNhgPNNW4y8+zjJ++m9tzPfsnibVmHnGuNqWurUi/71/X8Gc+ -+mzyal8DrmdHNi9LYXbt+PNLeWuRfNaMfVvKvDwz7s/YVlzPxuu5NbvHr5f8 -nnH5eiKV9ijPHcFcdHvlI+uWXM9kB0yXM8+08k4+1UIkxydzYjOY3ZKuN+rT -nOvZ0V6NX/33z6cGCpnaXM/W1yxreZ9fT00mbTRpxvVs8tm39sz/4h0OHNHi -etZnjdtq5hMjeow2aSLSbPWRV3L++/3qsvUZjbmePWvc+z3zi0RyNNMQ6fHx -u7EGJVz/F/SPP6nO9WzznsZjmYctSg0erCaS3Yypy9czd7gf+Pa6gutZ/07v -zjCvur75sbNcpLNNPrhVM7cMKXIplXI9q8i80vEB1ye79m5zRJFMzi7pPYE5 -f/rC0p8SrmdRA+M2M0t1Dr8Lqxdov7egeZm5MvV4oP4/gUqs8pbXMAcsXr0p -7Y9ATZpvedf1oYRGnvvZbkidQDYfxo6byjzktrr5w1qBVl3Su7qN2eT7wYL5 -vwQ6uau8dx6z2/xzpcqfAn32PRBXx9xzxeB5iTUCGQ+bq2n6iM/3zm2XD/4u -0HR90xWzmMnASSz9KlB0dc27Pcwl0muyFV8Eunvt7LibzG0Mlqxu/VkgjZg1 -V4XH/Hz0d/M//0ng79NIMwvmv2pTnnl8FCjIVjN+LvPnvJBL8iqBctre04xj -jo3I1U37INDH73tW3GP+2l3nhct7gToXTn2vfCKhTW5+bf++FWhqQqfxg5jn -HS25mfxGoF0BH676MWfesP7k8lqg245HzQ4yd2+dFixUCKTstDT+MXMviX7w -0ZcC0e+BTZo8lZDZhXWVHi8ECrwjBA1lXh389Zr2c4GOHcp7v5T5l6NH4+vl -Ar0P2jL+CPPJ1sXnl5cJ1MHF5doz5ocnRz42LRVoYlf9Ps1L+e9/N2/KuycC -ba8vj7dlPvHLzS7hsUCFJQearGSu3vVz/6RHAsnS5gYdY676ljW+5UOBBq01 -/fCaeUbviKX3SwRaMuHH+FZlfH+w21G77b5AGT3PXRvNfL1Z4bOx9wR6I1vb -J4Q5vLeVcfO7ArV7OjLhJHOFcU3xgzsCjT+mqVXFPMP+39O9twWKDLsX1L5c -QqEXZ43wuCVQ/pToD67/8UpzzS43BRL6TpuwgbnF6GCz6kKBLBt1vn6e2bDA -MefUDYEWPf/Q5yvzOtfsqJACgQ6fOJpg9ExCjztcLHDKF+jV5qVak5i7mq2d -ZJAnUOuZg1ZGMJ+3a2JTdU0gV0ux8gpzyd8l4eeuCrRZK3/CL2afA0WGW68I -dO31lusmzyX0e4pRs+m5Av0969J3OvMgrT1u5pcFstimn7iT+ZNHv0+NLgk0 -f/YzrRvMURdaPXlxQaDkwQdX/mPu7eaud+a8QM+b+1SaveB6pq2Rsv2cQHqV -pu7ezCUJtuHzzwo05vKP6/uYA+d3P2V3RqANu8/1vcNcFnvTwvi0QLnz1ibK -XvLrpYWdVHlKoN/DbJtaMmfNO9fm7QmB+rRqEjyPeetfWpt/XCCfz/cqE/7j -4u9mR3IEOnA92v0B86u0mh4R2QKVxkzLa/SK66dyxiL/LIFaLO5sbs1c1cS9 -fuIxgRxHVSYuZn4d//ve0KMCrW93rGkKs/Vo7+rumQJdqFkaXMocO/6Ss26G -QD8LB1U1reDze1qXn0K6QL0SxYkjmIM/XHzx6YhAswPz85Yx609K0yo7LFD8 -6K3mGczzvjVdXZQq0ONOrkkvmZeM1TY7nyJQszr9Zi1f89d3saRTZrJAdsXP -gu2Za7utGZ94SKCQ5INVq5jVuw4s2HVQoLMrfSbmMC/53m3Z5gMCfXfpnf+O -eZRPoFdIkkAm3X6aG7yRkKSJQ+SKRIE8JeeTxjBb/btV45/A9ezB2mbrmTf8 -7bZrQbxAD9JsV51hVvfd6OcTx/UspMnHT8yWI/VCZ8cKNNL9/sSOb/n+bSy5 -47Wf61mvvfnjmfcPn+/iFSPQKbmHxWbmqtkRmt77uJ497XzgEvOWusi/s/cK -1DWrslkN86Ta+A6+0VzPwo+t6vpOQoXfP67w2yPQ3qkBH6cwb2+erLZ0N9ez -vlaTtjF7aP/JC9rF9UxDWnCdea2lwenQnVzPXuRb1DFHew58umUH17OTWw/0 -es8/LyG8x57tAh3f4qo9i/mYzDwzaRvXs5mtVu9hXv7df9rRKIGMBjz/WMTc -4vlyqwuRXM+aHpokfOD7lcdy25sRAu1+41Ngzjxkd/Kqsq1cz8717jeX2dqk -38tPWwRS2/7zQCyzsePUBQIzzTmvfY857chYoxabBVpmHbJaWSmhLkF2im6b -uJ61GPVpIPMg/6AmtFGgD5VNJvsxzy1oN3j8Bq5nufcLDjAn9fLdsSBcoEl7 -9vZ7zFzyMLrphjCuZ/M9DmpWSShk/otjSesFKhpupDOU2bZVUMDFdVzPWlet -Xso8e3mSR2moQFZfjn06zOx8MMr3dwjXs7yAyc+Y23VZs1efOWO/1Q2dj/z+ -lKS/t1zL9WyxtL8ts2eSs/ukNVzP7AoOBjHLapLfrVwt0IT2ETrHmO/ZVu9K -WMX17IfrmtfM2R4zZ14PFqigqFW1/icJ6fgMcaxayfUs6fnk0cyuQp6LDvOA -ZYdurGUeaGS2dGAQ1zMn3/4nmV2GX86etUKgI53NDlX+xybZGhHLuZ7V/dRp -X833CZ2RK88sE7iun1/jyvw16pzybSDXs5SQ6nBm/QSXw82ZtwSPmnKeuSLa -YdawAK5nrlqFX5g79XnXd/FSgf51K+lv9Jm/n6u8Wx9YwvVM2HdoIvOMjxot -H/gLtOChR/MI5jdDWnZRZ05ON1p7hXne3kI7q8Vcz0Kqqn8yG8/xWbNoEdez -iVlTTL5IKHGx5Y2UhVzPTAMLPZir7gR2eu7H9Uwx2HIn8423vhF6zLml0uQC -5ru+7o3GLhCoLqug+T/mCI+1OzbP53q2IWKt2Vd+/Wma9MifJ5DvNLfPXsw7 -FfvuyZgPmLeeuo95QafmYUN9BSrTeFF4m9kstNRmjQ/Xs5eHLGXf+HmxzlL7 -8lyBRp/yTe7PnH7d753AvH6rWYt5zHOM8vOHzRHo4qxfaxOYf59fl7V+Ntez -ARc+l/zHz6sP3PAWyLRZ6NRG3/m83soxTot59ttRRYOZL5tUxLt5CZRwXmvA -YmYXjT8pMZ5cz7aXJCczh5Q+PVExSyDtuftalDKPq7lR0IPZjqaHNK2RUNzD -pi8CZnI90+3yZThzZq+autwZXM+qqqYuY5bfvaivxfw9N6sonbn61CnLydMF -6hEdOOAlc1fReNJhD65nCwan6P7g51eV28raaQLFjpDp2jP/ur8xbhTzg9Y3 -QlYxG5hrXd47VSCtrxFfsplT47q/qJrC9Szfbdo75qkXjOutmVfHtr7Z5qeE -Jjg5tdoxmeuZ/4sBY5g9O7zr/X6SQF/sklPWMU/WHTTCmrmr4TzdM8yzdHe4 -7Joo0IyfZqGfmM1aWk7+5M717OavLx1+cb1o7j91JPO9pAvTxjN/abzVPWEC -17PloTc3MZ8V7jj8GS/QcGe7gZeYTb+s7TeBWZWHY9YsqdY7Pk5oyMPVcj2O -m/ZZm1mVh2POsWh9fqGb0JCHYw7x9wkudhUa8nDM4e2j+5gxq/JwzGM+VT3d -7iI05OF+831zWebSH2OFhjwc8/jhXaUTmVV5OOYTRxNXXxgjNOThmL0lsz51 -ZFbl4eokdN/puP1GZ6EhD8dcva189xcnoSEPx5wc1eWuO7MqD8fsXPGwNne0 -0JCHY66vtmjSg1mVh/vDz/+Xm5rscRQa8nDMM48a/JYyq/JwzFs0+9zxcxAa -8nDM0nnakeX2QkMejrlHnWDpyKzKw/3l+8LekTfO2QkNeTjmtuXGw3owq/Jw -f//Ld1Qmxo4SGvJwzKtk9941ZVbl4ZhzZnRuHmorNOTh/knogqtRp18jhYY8 -HHOTVH29ecyqPBzz+utDq1/aCA15OGb1lIoUd2ZVHo5Z8WjI8OIRQkMerp6f -9z4xl0Yxq/JwzFvrzQ2uDBca8nDMm446uVsxq/JwzBv0u/mfGiY05OGYgxzl -8/oyq/JwEoHu320/7NhQoSEPx7w/9mxNT2ZVHo45Sqt5aPoQoSEPx9zpvfdH -E2ZVHo45YPR303QSGvJwgkAjztc49mRW5eGY89VShh21FhrycMzrXW2a9WFW -5eGYW2tpnDgxWGjIwzH/qOrVeyCzKg8nCtTo1cc1l6yEhjwc81LDlck2zKo8 -HHPHJi0Sbg4SGvJwzG7WVfPcmFV5OGarpf01ywcKDXk4Kb9PonsGezOr8nDM -8ZnipS8DhIY8HHPM47fFQcyqPByztWPTbDVmVR5OxnXDKX3GTkuhIQ/HHN6r -+lkHZlUejvm9tbzbsf5CQx6OedBdAyJmVR6O+Yupl+GdfkJDHk7O/150o5se -zKo8HHNCf4uhXy2Ehjwcs6WhzupQZlUejnmS3Y11LZlVeThmjfCQsUfMhYY8 -nILrzHrP19bMqjwcs+LKTquSvkJDHo5Ze2P/iT7Mqjwcc8QnvwEisyoPxzzp -ukdZdB+hIQ+nFKj4gPFQM2ZVHo75VMlb70IzoSEPx+wy4ZyjJ7MqD8cc+iT3 -a31voSEPx9wiR3fcPmZVHk6NXzcvi5f2Y1bl4ZgDRE3X+6ZCQx6OebvTs6qF -zKo8HLNxzFRqyqzKwzHbOMU5ZvYSGvJw6gKt8cjRcWJW5eGYXV0zo6p7Cg15 -OObj/eOvRzKr8nDMrxN2HjNjVuXhmBclx4wp6SE05OEa8evzxaWDgcyqPBzz -HK/G6W2YVXk4Ztf8MK/LJkJDHo45VGdAsRezKg/HHF9kXNWYWZWH0xDIu3r8 -iezuQkMejvncx4Kek5hVeTjmPxmrXKXMqjwc88mIQKO0bkJDHq4xn0umZyW5 -MavycMwnfbsW1ncVGvJwzNnzH+07zKzKwzHn7D/VfByzKg/HbJZ6ua/IrMrD -afLr+dz73xnGQkMejrnx6s5ek5lVeTjmD21nL2nErMrDMZ8emdTldBehIQ/H -/KR33orZzKo8XBP+9xJy/fSYVXk45qqqtfICI6EhD8dsLHzvv5xZlYdj3jlb -0siEWZWHY5aMiQoo7yw05OG0BIrbtnV1FLMqD8e8+mR5xxHMqjwc8zqpt0dt -J6EhD8dcFqRhnsGsysMxa9RkxM9kVuXhmgo0T7tPoj6zKg/H7DwxsP+djkJD -Ho45dODUGWHMqjwc8yL9K22tmVV5OObT40N9f3YQGvJwzfhc4hVsd5RZlYdj -ltzafHIOsyoPx3zSamNWR2ZVHo754W7nAeWGQkMejnm85LRjNLMqD6fNP5/K -fZWuzKo8HPOo7sXazZhVeTjmNME092Z7oSEPx2zXI+LXRmZVHo753++rObbM -qjycDp/L3JJrFMyqPByz/yONM9faCQ15OObbpXmSdcyqPBxz4daj+cOZVXk4 -5u5/9zaVM6vycM0FCu4++eG1tkJDHo65Q6eC1mHMqjwc8/xGJ0ttmVV5OGb1 -HnV6GsyqPFwLgdz1fG7fNBAa8nDM6qml/yKZVXk45oS2RodcmVV5OObOPdte -1WNW5eGYU5vHjC9rIzTk4XT5fZ8aMC2RWZWHY365aMMTb2ZVHo5ZI+dwXg9m -VR6OuSTkeOfvrYWGPBzzudLQb2eYVXm4lgINzfzeay2zKg/X8r/39YvHo5hV -eTjmjLPdPjdjVuXhmP2GZSx80kpoyMMxF4qOU5KYVXk4PT7Xnn93zJdZlYdj -Hrdz1nwLZlUejnmf7sEoCbMqD8c8wj6yVaG+0JCHY56br6m2i1mVh+Nffc8r -3Kfzr6o83P/3K/5//HP49/Dn4M/Ffwf/XXwd+LrwdeLrxt8Dfy/8PfH3xvcB -3xd8n/B9w/cR31d8n/F9x88BPxf8nPBzw88RP1f8nPFzx+sArwu8TvC6wesI -ryu8zvC6w+sQr0u8TvG6xesYr2u8zvG6x/sA7wu8T/C+wfsI7yu8z/C+w/sQ -70u8T/G+xfsY72u8z/G+Rx1AXUCdQN1AHUFdQZ1B3UEdQl1CnULdQh1DXUOd -Q91DHURdRJ1E3UQdRV1FnUXdRR1GXUadRt1GHUddR51H3cdzAM8FPCfw3MBz -BM8VPGfw3MFzCM8lPKfw3MJzDM81POfw3MNzEM9FPCfx3MRzFM9VPGfx3MVz -GM9lPKfx3MZzHM91POfx3Mc5AOcCnBNwbsA5AucKnDNw7sA5BOcSnFNwbsE5 -BucanHNw7sE5COcinJNwbsI5CucqnLNw7sI5DOcynNNwbsM5Duc6nPNw7sM5 -EOdCnBNxbsQ5EudKnDNx7sQ5FOdSnFNxbsU5FudanHNx7sU5GOdinJNxbsY5 -GudqnLNx7sY5HOdynNNxbsc5Hud6nPNx7sc9APcC3BNwb8A9AvcK3DNw78A9 -BPcS3FNwb8E9Bvca3HNw78E9CPci3JNwb8I9Cvcq3LNw78I9DPcy3NNwb8M9 -Dvc63PNw78M9EPdC3BNxb8Q9EvdK3DNx78Q9FPdS3FNxb8U9Fvda3HNx78U9 -GPdi3JNxb8Y9Gvdq3LNx78Y9HPdy3NNxb8c9Hvd63PNx70cfAH0B9AnQN0Af -AX0F9BnQd0AfAn0J9CnQt0AfA30N9DnQ90AfBH0R9EnQN0EfBX0V9FnQd0Ef -Bn0Z9GnQt0EfB30d9HnQ90EfCH0h9InQN0IfCX0l9JnQd0IfCn0p9KnQt0If -C30t9LnQ90IfDH0x9MnQN0MfDX019NnQd0MfDn059OnQt0MfD3099PnQ90Mf -EH1B9AnRN0QfEX1F9BnRd0QfEn1J9CnRt0QfE31N9DnR90QfFH1R9EnRN0Uf -FX1V9FnRd0UfFn1Z9GnRt0UfF31d9HnR90UfGH1h9InRN0YfGX1l9JnRd0Yf -Gn1p9KnRt0YfG33t/+tz/6/vjT44+uLok6Nvjj46+uros6Pvjj48+vLo06Nv -jz4++vro86PvjzkA5gKYE2BugDkC5gqYM2DugDkE5hKYU2BugTkG5hqYc2Du -gTkI5iKYk2BugjkK5iqYs2DugjkM5jKY02BugzkO5jr/N+f539wHcyDMhTAn -wtwIcyTMlTBnwtwJcyjMpTCnwtwKcyzMtTDnwtwLczDMxTAnw9wMczTM1TBn -w9wNczjM5TCnw9wOczzM9TDnw9wPc0DMBTEnxNwQc0TMFTFnxNwRc0jMJTGn -xNwSc0zMNTHnxNwTc1DMRTEnxdwUc1TMVTFnxdwVc1jMZTGnxdwWc1zMdTHn -xdwXc2DMhTEnxtwYc2TMlTFnxtwZc2jMpTGnxtwac2zMtTHnxtwbc3DMxTEn -x9wcc3TM1TFnx9wdc3jM5TGnx9wec3zM9THnx9wfOQDkApATQG4AOQLkCpAz -QO4AOQTkEpBTQG4BOQbkGpBzQO4BOQjkIpCTQG4COQrkKv4vZ/G/3AVyGMhl -IKeB3AZyHMh1IOeB3AdyIMiFICeC3AhyJMiVIGeC3AlyKMilIKeC3ApyLMi1 -IOeC3AtyMMjFICeD3AxyNMjVIGeD3A1yOMjlIKeD3A5yPMj1IOeD3M//5YD+ -lwtCTgi5IeSIkCtCzgi5I+SQkEtCTgm5JeSYkGtCzgm5J+SgkItCTgq5KeSo -kKtCzgq5K+SwkMtCTgu5LeS4kOtCzgu5L+TAkAtDTgy5MeTIkCtDzgy5M+TQ -kEtDTg25NeTYkGtDzg25N+TgkItDTg65OeTokKtDzg65O+TwkMtDTg+5PeT4 -kOtDzg+5P+QAkQtEThC5QeQIkStEzhC5Q+QQkUtEThG5ReQYkWtEzhG5R+Qg -kYtEThK5SeQokatEzhK5S+QwkctEThO5TeQ4ketEzhO5T+RAkQtFThS5UeRI -kStFzhS5U+RQkUtFThW5VeRYkWtFzhW5V+RgkYtFTha5WeRokatFzha5W+Rw -kctFThe5XeR4ketFzhe5X+SAkQtGThi5YeSIkStGzhi5Y+SQkUtGThm5ZeSY -kWtGzhm5Z+SgkYtGThq5aeSokatGzhq5a+SwkctGThu5beS4ketGzhu5b+TA -kQtHThy5ceTIkStHzhy5c+TQkUtHTh25deTYkWtHzh25d+TgkYtHTh65eeTo -katHzh65e+TwkctHTh+5feT4ketHzh+5f+wBYC8AewLYG8AeAfYKsGeAvQPs -IWAvAXsK2FvAHgP2GrDngL0H7EFgLwJ7EtibwB4F9iqwZ4G9C+xhYC8DexrY -28AeB/Y6sOeBvQ/sgWAvBHsi2BvBHgn2SrBngr0T7KFgLwV7KthbwR4L9lqw -54K9F+zBYC8GezLYm8EeDfZqsGeDvRvs4WAvB3s62NvBHg/2erDng70f7AFh -Lwh7Qtgbwh4R9oqwZ4S9I+whYS8Je0rYW8IeE/aasOeEvSfsQWEvCntS2JvC -HhX2qrBnhb0r7GFhLwt7Wtjbwh4X9rqw54W9L+yBYS8Me2LYG8MeGfbKsGeG -vTPsoWEvDXtq2FvDHhv22rDnhr037MFhLw57ctibwx4d9uqwZ4e9O+zhYS8P -e3rY28MeH/b6sOeHvT/sAWIvEHuC2BvEHiH2CrFniL1D7CFiLxF7ithbxB4j -9hqx54i9R+xBYi8Se5LYm8QeJfYqsWeJvUvsYWIvE3ua2NvEHif2OrHnib1P -7IFiLxR7otgbxR4p9kqxZ4q9U+yhYi8Ve6rYW8UeK/ZaseeKvVfswWIvFnuy -2JvFHi32arFni71b7OFiLxd7utjbxR4v9nqx54u9X+wBYy8Ye8LYG8YeMfaK -sWeMvWPsIWMvGXvK2FvGHjP2mrHnjL1n7EFjLxp70tibxh419qqxZ429a+xh -Yy8be9rY28YeN/a6seeNvW/sgWMvHHvi2BvHHjn2yrFnjr1z7KFjLx176thb -xx479tqx5469d+zBYy8ee/LYm8cePfbqsWePvXvs4WMvH3v62NvHHj/2+rHn -j71/eADgBYAnAN4AeATgFYBnAN4BeAjgJYCnAN4CeAzgNYDnAN4DeBDgRYAn -Ad4EeBTgVYBnAd4FeBjgZYCnAd4GeBzgdYDnAd4HeCDghYAnAt4IeCTglYBn -At4JeCjgpYCnAt4KeCzgtYDnAt4LeDDgxYAnA94MeDTg1YBnA94NeDjg5YCn -A94OeDzg9YDnA94PeEDgBYEnBN4QeETgFYFnBN4ReEjgJYGnBN4SeEzgNYHn -BN4TeFDgRYEnBd4UeFTgVYFnBd4VeFjgZYGnBd4WeFzgdYHnBd4XeGDghYEn -Bt4YeGTglYFnBt4ZeGjgpYGnBt4aeGzgtYHnBt4beHDgxYEnB94ceHTg1YFn -B94deHjg5YGnB94eeHzg9YHnB94feIDgBYInCN4geITgFYJnCN4heIjgJYKn -CN4ieIzgNYLnCN4jeJDgRYInCd4keJTgVYJnCd4leJjgZYKnCd4meJzgdYLn -Cd4neKDghYInCt4oeKTglYJnCt4peKjgpYKnCt4qeKzgtYLnCt4reLDgxYIn -C94seLTg1YJnC94teLjg5YKnC94ueLzg9YLnC94veMDgBYMnDN4weMTgFYNn -DN4xeMjgJYOnDN4yeMzgNYPnDN4zeNDgRYMnDd40eNTgVYNnDd41eNjgZYOn -Dd42eNzgdYPnDd43eODghYMnDt44eOTglYNnDt45eOjgpYOnDt46eOzgtYPn -Dt47ePDgxYMnD948ePTg1YNnD949ePjg5YOnD94+ePzg9YPnD94/eADhBYQn -EN5AeAThFYRnEN5BeAjhJYSnEN5CeAzhNYTnEN5DeBDhRYQnEd5EeBThVYRn -Ed5FeBjhZYSnEd5GeBzhdYTnEd5HeCDhhYQnEt5IeCThlYRnEt5JeCjhpYSn -Et5KeCzhtYTnEt5LeDDhxYQnE95MeDTh1YRnE95NeDjh5YSnE95OeDzh9YTn -E95PeEDhBYUnFN5QeEThFYVnFN5ReEjhJYWnFN5SeEzhNYXnFN5TeFDhRYUn -Fd5UeFThVYVnFd5VeFjhZYWnFd5WeFzhdYXnFd5XeGDhhYUnFt5YeGThlYVn -Ft5ZeGjhpYWnFt5aeGzhtYXnFt5beHDhxYUnF95ceHTh1YVnF95deHjh5YWn -F95eeHzh9YXnF95feIDhBYYnGN5geIThFYZnGN5heIjhJYanGN5ieIzhNYbn -GN5jeJDhRYYnGd5keJThVYZnGd5leJjhZYanGd5meJzhdYbnGd5neKDhhYYn -Gt5oeKThlYZnGt5peKjhpYanGt5qeKzhtYbnGt5reLDhxYYnG95seLTh1YZn -G95teLjh5YanG95ueLzh9YbnG95veMDhBYcnHN5weMThFYdnHN5xeMjhJYen -HN5yeMzhNYfnHN5zeNDhRYcnHd50eNThVYdnHd51eNjhZYenHd52eNzhdYfn -Hd53eODhhYcnHt54eOThlYdnHt55eOjhpYenHt56eOzhtYfnHt57ePDhxYcn -H958ePTh1YdnH959ePjh5YenH95+ePzh9YfnH95/fA4APhcAnxOAzw3A5wjg -cwXwOQP43AF8DgE+lwCfU4DPLcDnGOBzDfA5B/jcA3wOAj4XAZ+TgM9NwOco -4HMV8DkL+NwFfA4DPpcBn9OAz23A5zjgcx0urW/64r/PecDnQPw/PvMxTQ== - +1:eJx1nXlYjV3bxvd976mQKFIIGRJCogjpMpQ0KCpkzFChEJKQDEUZK3OkERUp +KvOcoVJmmStD5sgUEvquZ+/v/N7n+I7jff9x/N5nou697rWudZ6/jKbMGekt +SiQSPYVE8s+v14r/+Z8Gye5+ffotWEJXf5YOK2EOMW6U/m8+8rtEr9Oi//CH +27vCJ/yLjdMnf4n5F09c1tHryr94u8eHa7/+xTe75PTrvvg/rCEuSp/6Lx74 +YECzHf/iRZmyVcX/4uzwq18kS/7D78ZGe1kwx8TPd1w7R4Pa9Rh1fQaz+9R7 +/X74atA4Zcv+8cye7X+U+nlp0JbSZ+m3me806mTyZowGFeekNlOGSCg340Yj +/xEaJF87a1U/ZvvMiRt/DNMga6+eX+cwGz7x3L52kAYFWdZ47WF2fe/etkM/ +DcpscO76A+Y2E792yO+pQa+fh/fXWiqh8ilvdgSYalDrEw77BzL3yPk+16iD +Bo2JaqQfxBw//1PqQ0MNiva+t2o/c5DusR6xehpU2C/uaxmzoms/hZe2Bok6 +UybrhkpI3yekZTcNDer7puONocyXXNf4SQUNmn/2Q/8Q5minZe/Ka5R0YEvO +/kPMj33XRl/8oqSKmYv0XzJvHvjSPfO9kloOtFltsExCFu8fdEusUJJHM/k3 +Z2bDotNNY0uVtOHD1ckrmZss+y6JvaekKxejbxxl7nmu5nXCDSX9jR1l/Z5Z +PtA+72CBknoHtDzQermEPu2cG5F3QUlz7J7ruzO/66jbveykktJapq2OZJ7z +/v4hSa6Snn6Z9e008/EFwbLOB5VkUNhzymdmm4KTRmP3KWlEQs2NDisktKjv +PElMgpLWLjhnPZb5+cRlO67vUFKe46oDG5n7vrnxTGeTkmqNHA0uMmtHTbw7 +YZ2Sev5sFPGDeeUP8+lZ4Uryv37vW5eVEnLcPnmrMlRJe/fETfFi/r2rvrvP +QiWVLp5ycwvzylsT44oClKQ3wmRAIfPryK0+vWcqaXjHjwf+MA9d9n1/+lQl +RfzJMTAPk5DW5buT205Q0rk7iyJ8mL32RoUljVLSz3Sb6p3MdzZs0ujoqiSz +5fKpN5idvru/zR6mpBmjim5Kw/l5GTa2le1gJSWZxgzowzyvqEdiaX8lPRJH +Z/gzn10V5BtiqSSdhy2bJzHvMb3hb2SmJMes5xElzK81P6YVd1JS2Kq0as1V +/NdfRjcJbaek0+NmTx3AfKJqeZqFoZK+9eh1ax7zzPRNE77qKamrxq8Bqcw9 +b+w1PdZISd5l5zIeM98ZtLfhinpKis9d1bzRaglFVK/+7SpT0v21jpFDmINv +O1YZ/1WQ9uTG34OZvdLrysWfCrLvfX/qQebxBifyKz4raLnW7lvPmD8tiU0o +fq+gEy+m2OhFSGjAzWKvky8V9PmEyUEH5hn71sgyyxXUOfpj82XM3es3Dk99 +qKApPrmROcz752c+2HdHQbv6L/7+mtku/VjtgWsKuqND01pG8vNwZP2ro/kK +avBWftuVudXN7ZvyLyhoyLkim1XMj4c615SeUtDSrTEHTzBXzOvS5NcRBR3x +G93iI/OF2JNPWhxS0MeBhmvarpHQqYr1ToP3K8hY/8X3UcxawwZMCNijoEkf +06atY7YMCtRIiVfQ9kuzb59jXnaxbOjjHQq6ubMXfWPeb2jZ1GCzgjTm/jpo +spY/n9/6zxy/QUEDh55vMYHZpPM52huhoMWGq9fEMKf/jdn0dYWCsr86/rjM +XCbZ4jk0REHvCxt7/2JOrM2ISgxSULvE+7e7rZNQWsW1bnUBChoftJumMo8p ++mQ21U9BW5ymZm5nTs3Xjy72VtC1tp1aFjP3eTvCrp+XguQ1H9dI1ktom/Fh +56yxChpwI/dHL+YoJ/dEEw8FBe1d7D2D+fyHyX1SXRSUtYTu7GbuO1KzURcH +Bb0eoRh4m9ndd6VR7hAFtTEpzlRskFBclpbvIBsFjfkb07If8wfzb49KrBQU +c3f02jnMGbMjFs7upaDC/YY/U5jb2Bn1btBdQeKKF94PmKu/tGuS1UlBfUen +32mwUUKl1TUao9sraH7XOQMHMo9U6jWStVbQAalF1gLmJRpf2x01UFDFw18t +9zNbftO1mdVEQYaHzq8tY+5/Uzq+k7aCPFav/qkTJSHfeI8F7zQVtHG8k89Q +5rbD96w6JFPQFXOdu0uYXx3cFLGkTk51Gg8GHmL+ML5ogeMvOfUu351Vwfzp +tMSxTbWcAo5MNTSIllDjikrhV5Wc0tZ1WufM/GzjiK0P3snp2eSqnyuYl+v8 +rDv1Uk4GfY74HP3nrw8/3H/PUzmNbLjk7jvm9kkedjGP5bS2gga1jpFQ83uX +moXdk9PFk4pDbswPW746sOiWnGqjiw0jmefVpP4JLJZTL99N604zX+0t0ViQ +Lyd/6zE1n5hXlr2/vChPTnt1W/l22CQhzbZzzMPOyKn07Yu7nsznR2+1jzku +J73z6YM2Mvd/GyDdkyMnl21zDuUxpw1tMfFUppwi/C1a/WDuV57rdj9dTucH +1a7rsllCxfW8y3/skdNP/Qs1k5jDlGN/t0yUU4+q1b5bmHe/Kdhrt0tOMy47 +lRQwu637cC9wm5ySd+kM/sNcsrbeutQYOT2a++BQjy28PvSacaZsvZx07eNb ++TB7LfGc0TxSTo6tpq3fyfzgQ4+1Y8PkFP6t06/rzElpLi0SQuV0+mqVr3Sr +hL466um/WSSn6sQjJb2Zv1VVLbFYIKeuC5cM9mf2MnAeFBEgJx/ngYcTmYdn +7vEp9ZNTfDtl6xJm8f38it6+crpfU7xecxuvB6MGHNs2RU7aNzf9smZeeWLD +o5oJcrLfN2b6POZs7S/DJnvKaXlIq3v7mC8uF4Rr7nI6MbJi8GPmq25javu7 +yumLyf7D2tv5ffhyR6/DjnLqXDen9RBm111+aZ2GymlqicWGYObDpaEj9w2S +064Dtb8ymEXNiG4dB8jp7ooL058xJ3gP6JNhJacGYyLuNd0hIWtDbz8LCznZ +dnMe4sCcb3bhYp6ZnJbKdLNDmUfPbmXtbiqno48etM5hHuw7/M7bjnL6eCh+ +w2vmfj4mK8PayaljxLTaFrESWuG9xtaotZwmTeg8w5W5m9zd4GJzOe3o+ele +OPPmFQE10/XkdFPz6JATzPvSi5/p6MhJ8+mS7A/Mq0rGXT+vJaeBRwe2abtT +Qrqleqfmacpp8XrlxlHMsQ1/p5jI5ZQ95VrtWuYNHbRXPZfI6X2fzTPOMY8f +6Dk28beM2mt73v/K7PTkTespP2U0/mUrW5NdvP/Ju3Wr4zcZbT1VkT2euVCj +q//nKhldi9nfJoa5vczg/dn3MlJMD9h4mXkVnXCIfi2jAQMsf9cwDwy2jPB+ +IaOFTX7P6BYnIY91Z+MGlMso692F+1OY84PCI1o8ltGb8xG225n1nc4P/n1P +Rm22O+cUMeeZZF17eltGnrN0jSS7+X3YdbNR4XUZxQx+uLEX85qFOf2OXJXR +VYOE39OZtZuO1997RUbip2kzdzP3l5Tl7MiTUb8rnR/cYp7dNKpe9FkZzY/7 +ZKuIl5Bf/av6607KKGPe0Zy+zBP8Pj5ac1RGFfYhRnOY70Z6Oa/PlpFh60FR +KcyPF63x35QpI49q5Z/7zO207/eK2y+jjUXXZjZI4Pd38ank9H0yyk/a/ICY +M8ozs08my6huoafdAubkFqaTb8TLqM/w1rnpzD8+5Ox/vVNGAe1fGpUxl4wp +WifdLqP0X/ujdBIlZPy+VtJus4ye3Qz4Y8fc5cQdhV2UjJqnWvotYdb1eBnr +v05GI5f+fpDFvD8//+i2CBmtc8uzq2BuskZv7KUwGV3sFJmrn8Tvm0Vzl1cv +k9HvOue2zsy+j0KMO4fIqNc93egVzPF2z+ynBMtoVsbDP0eYDTIcK3YHymjv +ygS/d8yRQ2ZVPwmQUdkY74etknk93Fgb3HqWjPS6dxnqxuxmd8jPe4aMXOSf +cyOYL08adjXTW0YRj4+2Pc2c+zcypnayjM4fDon+xJwUYHHWcaKMaiIG/W2f +IqEvHQycE8bKqMdEDX9PZscDYr/vo2Q0s9f1hxuYfydfCnd1k1FyvS1D85jn +nbXomOkio8dPPY98Zz51zKy1tpOMdI+1btdlj4T0HLfMmG8vI6cNL6MnMa8z +Gyx9PERG4VMP/N3MvKlp+7e2A2V0xmqufwHz1W1G+rnWMqrW7v3oN3O2VecN +HfrKqNur30N77OX9lo+Z7U5LGfmczjvizXxjcmdrnZ4yStgU2W4n8y07nXkb +usvo/vThMdeZ30lePa1vKqNGNk3qxH28ntqmrt5gIiP7po/8ezOnRY3z0ukg +oxXvEx75MRfpNfDbaSSjExe87ROZuxdfTunQSkZftnc5epfZxy1WmdtcRp1n +f26nmcr/vt87N9s2k9HUIcdirJlrzz0f8khXRnHNl9bNZY63WK8/r5GM7n4a +NGsfc79NR+traclIK1/j8SNml8TwFgc0ZWS7+7q9dhp/3k62tHVSyCh0/paj +g5nH56et+iTK6Oiwse2Dmfv2GPVoe52Uqlq32ZTB7PnCgwb9llLH7y/rnjK3 +Hfwkt+qnlLyKD8xqmi4hZRcji8RqKe1Invt4GHOHl5POun2R0q3g3sNCmT91 +uO9cr0pKmi5/jmYzVykKn158L6VBHS62f828WFgSuPyNlBbXRm5qsV9Cq99a +KOillHJuDZe4Mge/sd0sPpfS+9Qms8OZFcG/9AvKpNQ+9NHj48wtJuzbEv1Y +SuPdE4d9YC5KTpCOfyClrZ19jhkd4Odrq83UziVSuiYx7TCK+dvp54dqb0lJ +cf/zprXMrg/fvL1xXUo2B49JzjF3f5JbP7VISgvDls7+ypxfkaG7okBKhzwH +P+mYIaH7ffvWTbgspTfdNR3GMz8aVlhknSclI8WNY9HMA+MKg9qck5Lnky0d +LjNn3Tv4R35aSpuyx26uYR6W837Cx+NSuhrZRuh2UEKyP7VbHh6RknTSq9lT +mCXrxibmZ0upn0XGk23Mn/qtXno8S0qB9ec5FDGHfpZ0zsiQUsaz3sfrmK+s +c0lJTpfSy2N/OvTK5D9/Rc2rXfukZLjx4ubpzJLitV+2p0hp1LQ1wm7mO0L0 +xW2JUtrY12XOLWabnjtH79gtpfxGTUvlWXw+qO6fEbdTSnWvHjn0ZR5yoeG5 +lO1S6nMm8fhs5v5VaRsObpHS3M0+xinM77JTm56MkVL6DNMt95mv6e13L9wo +pec2X4QGhyTU4OcI+8frpNRc7/gcYh4sDvlYFSklt8qlpYHMIw50HKJcLaV1 +eYMd05l7dk8dahQmpUs7NE+UMj9fN+e79XIp/Z59w1jnMD/fS82GT1gqJQvb +rVvsmD8FxzktWyylWS3GiUuYF+2fXpWyUEr7PrcJyGLWqXLqVRQopbL8V6Uv +mC/ekhpUz5VSs/gMR/1s/rxFOOwymiMll8B5J5yYj797etzVX0qRDn06rmAO +Dl4zZ+UMKZ1v83fLEealjppnjvpIqeb7RfEd8yt9k4QPU6XU49qagFY5fN4y +PaTbcbKUZqa4lI1kzp06W3/qRCklL2rqFME8ytT8QNI4KT12eXziFLNL6LXC +52Ok1MQ4qeMnZtOHTeYZj5KS02+fre1zJdSDypP83aS06rap1JN5r6Vi9BFX +KZ1J+xKwgbn7ae8oyXApfQ89XnaB2WrYE/vhjlLq5hHq9J3ZrchhRby9lHy7 +DDnZ+Qivx0lbLD/bSilBqGcyiXl4bIKP3WApPbh/Y+tmZuU7N+14klKjzK3S +AuYg87huP62lNCx83NzfzNcCvfPc+0lpxVijcrOj/DzrJhTk9JHSSbPXTt7M +V4v72jS1lNIXxcGTsczTT5i2X9RTSl1K55lcZ9Ya6reg3ExKU3P6bBOP8X7A +ssrMvpuU4tb8lfZm1tyW457TRUp3J12a68fcKe9IWZtOUtKyXFuewGwzsbo4 +2lhKdg1cne8yD3cLNJS2l1Lo86anNI7z76fY8vpCIykdO/7YxJr5ufng0o+t +eD3bmLRtLrODabL99JZSMvH2le1jVmyb2LDCgNezfl3nPWI+v3KV6ZRmUopt +/LW84QkJte5tnPS8Ca9nr487D2Y+YDxypreOlOqdDT21kDn9U8vV77R5Pdsy +pFMGc/0JcV/maklpycx6258yj/N8c7C2Hq9ndFPW9KSEDlY3PxqhIaVKvW3z +hjHHTnbV1FPwevZh3NOlzFZv9+3dJ5XShItGw7OZO30ZsMZK4PUs9vWpV8xR +P/tmX/8r0vU5Bzu1OMXn2/XnWvn8FklhN3+7C7On89fiuhqRbFpaycOZB7/7 +e3LXD5EWfvk77zhzeQut11bVIh0quPS0krllioPLoy8ivY1fO9zoNH897F59 +DvkkktEC19MezO+KG10z+ijSWEe9zmuZI+t+lxW8F2mT0ZPtZ5kHJZd3mPdW +pKIfSfKvzO7zqxIMX4skve47v+MZ/vybeDsWVYjUf0/XZ+OYtWcuMV7yXKTA +xV+HRzPvuDu7e9enIh10PXH6EvOFz0unPSsV6aXxss41zHd6v724/bFIrf4M +2dH1rIS2KL46uj4UadSdeoopzPF7yn/Vuy9SVPrN+duYj/Wvvp5/V6T8Zdue +XWXu8XjJldW3RZKMGu9Sx+zod6Z86E2R+pi2PdPznIS258oN6l8Xaa74pvN0 +Zu8xyQE3i0RKf3BwR9y5f+Y1zyu2F4r0PHO+4hZzKx/9wMn5IjVfZRUoPy+h +Mf23tex6WSS3cXXPrJj30eEnv/JEWt/jssts5kfdzmdfPS/SJeW6M8nM4za0 +2B13VqQ/pa5d7jOn7jfcGXBaJItcvdj6F/h53dk2ze6kSLPXPlEQs5dF5OVW +x0Xa55UcGMjcVyfz088jIpVbTn+exvwiorpjSY5IzbS6uZYyX0q7MCPnsEiu +L76eaZzH+1tamLs5S6TIEye62DEPuhOiCDoo0oWoZbGLmbV39J049oBINd62 +yizmvEXNT1K6SOb96y94waylG6nfKVWkmTq3nje7yOtfxqeFuntFSnmzzdWJ +2azvxXt1ySI9Pjv+7HLmDZ4BPT8mitRka1vTI8w1w2euL4sXycnvTexb5jhp +h6c340RaNTBT2eoSP39Sva6Xd4p0tlnggpHMvoty557aIdL3D1YvVjMHmS3K +yNkmUvdLda6nmFtvLHt8cItIvjsvn61iLo3x+pu+SaTEgHWm7S/z5/F2iE5a +tEgP7EbsHMNcGJKtl7ZRpMaGzTQ2MGe5rNTcv16kYV+fLLjAfGvX7LcH14q0 +sjD5RTXzGqrNzYkU6WTC9BGdr/DvP/3gzFOrRfq6oNu5icxV1xtoXg4XqYvT +N9PNzNe7JW28uVKkaW1P7sxnDrnxraZ0uUhxP5dp/GZ27rd52IdQkUqu2waZ +5UvoZ6hmyN8QkbT21q+Yxryh46uoxktEsltya0Qs8ww6EWa8SKTQEdvPXWO2 +HNFklPVCkY51nNBVLODz87i18lELRKr603aXJXPmo6zogPkimdx9o+HHbHi2 ++ff1c0WavD8zKIFZy29KrwNzRIpdHlhxh/nY8dYORbNEuj2q70iNQv68fay0 ++OAnUr2ukvP9me0ven9vNFOkwdIrXecy/xjTca3ldJGWPFy3ay9zM+ubVRN8 +RMrNGqH5iPmAt8Q4YppIlauaLWx4ldeH7p5dsqeI1GF8acUg5nnjl/4t8xJp +gnnKyIXM/Rs3jteaJNI2jRnnDzBX3jmhMWACr2dl3bo9ZS5b08o6YJxIyiPf +djUp4r++4LXVHk9ez9ad1BzGvN3y7J+Ho0UKnrx84VLmPpecIxqP4vWst93L +w8yd5gwqcXDn9Uyrgdsr5r+lw16tGsnrWcWt882Leb9fX/dEniuvZye3d3Nh +rrAd7iS4iLQ5ekJcGHODLgfjBzrzeubTrt5x5hNpzzPDHEWSWb9dWMl8vSZ5 +Sf4wXs90s162ucaftz0pUi17kRa8DXTzYH67aJetux2vZ+f6XljDfCBmEO0e +ItKrrZLuZ5kfO4z88noQr2f+V+K+MP+wXzW210CRRg9aX6/jdd6/zNu+cKUN +r2f6I4PHMbevsrW/bS1Swcdmr6KYRxq7FLXrz+vZ5VK3S8xOZ+bVBfUVyWpX +yoWfzLFb574o6sPr2dwZ3bvekNDYIq2gtr1F2j+0++7JzCk59Y4utuD1zLC6 +3jbm249Mk+/2FKnFt5PBV5m/in2tzMx5Pbu6/NVfZv22NYs2mPF6lmjn3vMm +/3m9zKdWduP1LKhBni+zvX7WV6euvJ453e4ex9zpllXnrC4iWbbbsfsm8/qB +8XLdzrye1UyoL78lod2O6eHBJiKl3mi3yIq5ttZkX7kxr2d7376axWwcWTnd +voNI+iFZ7snMVU6XirLb8Xo2ckHevVv/vI9WXGvVVqQ1Jv3M6t/m91nmD//1 +bXg9+yuJt2G2PV2TVttKpF93r9QPZD5UPn65vyGvZwfWL0pjdm/343NZC5H8 +Vox8/YR5cVbC75HNeT0bre/R+A4/LwXdEgr0RXrStSzPlrn4xtIHNs14PZPt +MVvMPNXaN/V4U5GcH82Iz2T2SLlSr2cTXs8OdW/w4p+/Pz1YyNLh9Wx19aJm +d/l5ajhurWljXs/Gn3rtyPw30WnPAW1ez3qu8FjOfNS263DThiJN1xx6Mfef +v15VujqzAa9n5Q16vGV+lkzO5vVFenjkdrxhCa//c/okHtPk9Wz9jgYjmQfP +Sw8doCGSw5SJi1czt70b/PqKgtezPu3fnGRedmX9Q1e5SKcavvOoYm4WVuz2 +RMrrWUXWxXb3eH1yaOMxQxTJ9NSCHmOYCybPffJDwutZTL+E9cxS3f1vIuoE +2u0raF1gfp9+JNjgr0Al1vmLq5kXzl++LuO3QA2bbHjT6b6Ehp7+0XpgrUB2 +70aOmsg88Iamxf0agZad17+0idn0297C2T8FOratrEc+s8fs00+UPwT65L8n +oZa525IBs5KrBTIZPFPL7AHv711bLR7wTaDJBmZLpjGToYv45ItAsVXVb3Yw +l0gvy5Z8Fuj25VOjrjG3NFywvMUngerHrbgkPOT3Y6BH4JmPAn+dhppbMv/R +mFDu9UGgEHutxJnMn/LDzssrBcptdUcrgTk+Kk8v451AH77tWHKH+UsX3Wdu +bwXqUDTxrfKRhNZ5BLT681qgiUntR/dnnnWo5FrqK4G2LXx3KYA566rNR7eX +At1wPmS+l7lLi4xQoUIgZfugxIfM3SUGoYeeC0S/+jVs+FhC5mdXvfd6JlDw +TSFkEPPy0C+XdZ4KdHhf/tsg5p/OXg2ulAn0NmTD6APMx1rcOrO4VKC2bm6X +y5nvHxv60OyJQGM7GfRs8oT//LfzJ7x5JNDmurJEe+ajPz0ckh4KVFSyp+FS +5qptP3aPeyCQLGNmyGHmyq/Zo5vdF6j/SrN3L5mn9IgKulsi0IIx30c3L+Xz +g8OWmk13BcrsdvrycOYrjYvKR94R6JVsZc8w5sge1iZNbgvU+vHQpGPMFSbV +t+7dFGj0YS3tSuYpjn8f77whUHTEnZA2ZRIKPzfN1uu6QAUTYt+5/8NLLbQ6 +XhNI6DVpzBrmpsNDzauKBLKq1+HKGWajQufc41cFmvf0Xc8vzKvcc2LCCgXa +f/RQknG5hB62PVfoUiDQi/VB2uOYO5mvHGeYL1CLqf2XRjGfcWhoV3lZIHcr +8f1F5pI/CyJPXxJovXbBmJ/MfnuKjTZeFOjyyw1XTJ9K6NcE48aT8wT6c8qt +12Tm/to7PCwuCGS5ySB5K/NHr94f650XaPb0cu2rzDFnmz96dlag1AF7l/5l +7uHhqX/yjEBPm/i9N3/G65lO/bTNpwXSf2/m6ctckmQfOfuUQCMufL+yizl4 +dpfjDicFWrP9dK+bzKXx1yxNTgiUN2tlsuw5Py9NHaTK4wL9GmzfyIo5e9bp +lq+PCtSzecPQWcwb/9DKgiMC+X268z7pH771zfxArkB7rsR63mN+kVHdNSpH +oCdxk/LrveD1UzllXmC2QE3nd7CwYa5s6Fk39rBAzsPeJ89nfpn4686gQwKt +bn24URqzzXDfqi5ZAp2tDgp9whw/+ryrXqZAP4r6Vzaq4P17RscfwkGBuieL +Y22ZQ9+de/bxgEDTgwvyFzEbjMvQLt0vUOLwjRaZzLO+NlpenC7Qw/buKc+Z +F4zUMT+TJlDjWoPGzV7y7+9cSfusVIEcbpWHOjLXdF4xOnmfQGGpeyuXMWt2 +6le4ba9Ap5b6jc1lXvCt86L1ewT65taj4A3zML9gn7AUgUw7/7AwfCUhSUOn +6CXJAnlLzqSMYLb+e706MInXs3srG69mXvOn87Y5iQLdy7BfdpJZ039tgF8C +r2dhDT98ZLYaqh8+PV6goZ53x7Z7zedvE8lNn928nnXfWTCaefeQ2W4+cQId +l3tZrmeunB6l5buL17PHHfacZ95QG/1n+k6BOmW/b1zNPK4msa1/LK9nkYeX +dXojoaJvH5YE7BBo58SFHyYwb26SqhG0ndezXtbjNjF76fzOD9nG61l9aeEV +5pVWhifCt/J69qzAspY51rvf4w1beD07tnFP97f8/RIiu+7YLNCRDe4605gP +yyyyUjbxeja1+fIdzIu/BU46FCOQcd+nH4qZmz5dbH02mtezRvvGCe/4fOW1 +2P5alEDbX/kVWjAP3J66rHQjr2ene/SeyWxj2vv5xw0CaWz+sSee2cR54hyB +mWac0bnDnHFgpHHT9QItsglbrnwvoY4hDorO63g9azrsYz/m/oEhDWmtQO/e +NxwfwDyzsPWA0Wt4Pcu7W7iHOaW7/5Y5kQKN27Gz90PmkvuxjdZE8Ho222uv +VqWEwmY/O5yyWqDiIca6g5jtm4csPLeK17MWlcuDmKcvTvF6Ei6Q9efDH/cz +u+6N8f8VxutZ/sLx5cytO67YacCcudv6qu4H/nxKDr61Wsnr2XxpH3tm7xRX +z3EreD1zKNwbwiyrTn2zdLlAY9pE6R5mvmNftS1pGa9n391XvGTO8Zo69Uqo +QIXFzasMPkpI12+gc+VSXs9Sno4fzuwu5LvpMvddtO/qSuZ+xuZB/UJ4PXPx +73OM2W3IhZxpSwQ60MF83/t/2DSnftRiXs9qf+i2qeLzhO7QpScXCbyun1nh +zvwl5rTydTCvZ2lhVZHMBklu+5swbwgdNuEMc0Ws07TBC3k9c9cu+szcvueb +XvODBPrbuaSP8Sf+ei7zbbFnAa9nwq59Y5mnfKjf7F6gQHPuezWJYn41sFlH +TebUg8YrLzLP2lnkYD2f17OwyqofzCYz/FbMm8fr2djsCaafJZQ83+pq2lxe +z8yCi7yYK28Gt38awOuZYoDVVuarr/2j9JnznkhTC5lv+3vWGzlHoNrswiZ/ +maO8Vm5ZP5vXszVRK82/8POnZdq1YJZA/pM8Pvkwb1XsuiNj3mPRYuIu5jnt +m0QM8heotP6zohvM5uFP7Fb48Xr2fJ+V7Cu/L1ZZ6VyYKdDw4/6pfZgPXgl4 +IzCv3mjedBbzDOOCgsEzBDo37efKJOZfZ1Zlr57O61nfs59K/uGnVXuu+gpk +1jh8Yr1vvF9v7pygzTz99bDiAcwXTCsSPXwESjqj3Xc+s1v932lx3ryebS5J +TWUOe/L4aMU0gXRm7mr6hHlU9dXCrswONDmsUbWEEu43erZwKq9neh0/D2HO +6l5dmzeF17PKyomLmOW3zxloM3/Lyy4+yFx1/LjV+MkCdY0N7vucuZNoMm6/ +F69ncwak6X3n91elx9KaSQLF28r0HJl/3l2bMIz5XourYcuYDS20L+ycKJD2 +l6jPOczpCV2eVU7g9azAY9Ib5olnTepsmJfHt7jW8oeExri4NN8yntezwGd9 +RzB7t33T4+04gT47pKatYh6v19/WhrmT0Sy9k8zT9La4bRsr0JQf5uEfmc2b +WY3/6Mnr2bWfn9v+5PWiSeDEocx3Us5OGs38ucFGz6QxvJ4tDr+2jvmUcNPp +92iBhrg69DvPbPZ5Ze8xzKo8HLNWSZX+kVGCOg9Xw+txwqRPOsyqPBxzrmWL +M3M9BHUejjks0C/0lrugzsMxR7aJ7WnOrMrDMY/4WPl4s5ugzsP94vPmoqyg +7yMFdR6OefSQTtKxzKo8HPPRQ8nLz44Q1Hk4Zl/JtI/tmFV5uFoJ3XU54rjW +VVDn4ZirNpVt/+wiqPNwzKkxHW97MqvycMyuFfdr8oYL6jwcc12VZcOuzKo8 +3G9+/z9f13CHs6DOwzFPPWT4S8qsysMxb9DqeTPASVDn4Zils3SiyxwFdR6O +uWutYOXMrMrD/eHzws6hV087COo8HHOrMpPBXZlVebg//+Q73ifHDxPUeTjm +ZbI7bxoxq/JwzLlTOjQJtxfUebi/Ejrrbtz+51BBnYdjbphuoD+LWZWHY159 +ZVDVcztBnYdj1kyrSPNkVuXhmBUPBg65ZSuo83B1/L73izs/jFmVh2PeWGdh +eHGIoM7DMa875OJpzazKwzGvMegceHywoM7DMYc4y2f1Ylbl4SQC3b3dZvDh +QYI6D8e8O/5UdTdmVR6OOUa7SfjBgYI6D8fc/q3vB1NmVR6OeeHwb2YHSVDn +4QSBbM9UO3djVuXhmAs00gYfshHUeTjm1e52jXsyq/JwzC206x89OkBQ5+GY +v1d279GPWZWHEwWq9+LDivPWgjoPxxxktDTVjlmVh2Nu17Bp0rX+gjoPx+xh +UznLg1mVh2O2DuqjVdZPUOfhpPw5ie0W6susysMxJ2aJ5z/3FdR5OOa4h69v +hTCr8nDMNs6NcjSYVXk4Ga8bLgenbLUS1Hk45sjuVeVtmVV5OOa3NvLOh/sI +6jwcc//bhkTMqjwc82czH6ObvQV1Hk7O/1xsvWtezKo8HHNSH8tBXywFdR6O +2cpId3k4syoPxzzO4eqqZsyqPBxz/ciwkQcsBHUeTsHrzGrvlzbMqjwcs+Li +VuuSXoI6D8ess7bPWD9mVR6OOepjQF+RWZWHYx53xas0tqegzsMpBbq1x2SQ +ObMqD8d8vOS1b5G5oM7DMbuNOe3szazKwzGHP8r7UtdDUOfhmJvm6o3axazK +w2nwc/P8VlBvZlUejnmhqOV+10xQ5+GYN7uUV85lVuXhmE3iJlIjZlUejtnO +JcE5q7ugzsNpCrTCK1fXhVmVh2N2d8+KqeomqPNwzEf6JF6JZlbl4ZhfJm09 +bM6sysMxz0uNG1HSVVDn4erx8/ns/N5gZlUejnmGT4ODLZlVeThm94IInwum +gjoPxxyu2/eWD7MqD8ecWGxS2YBZlYerL5Bv1eijOV0EdR6O+fSHwm7jmFV5 +OObfmcvcpcyqPBzzsahg44zOgjoP14D3JZOzUzyYVXk45mP+nYrqOgnqPBxz +zuwHu/Yzq/JwzLm7jzcZxazKwzGbp1/oJTKr8nBa/Dyffvsr00RQ5+GYGyzv +4DOeWZWHY37XavqCesyqPBzziaEpHU90FNR5OOZHPfKXTGdW5eEa8j+XlBeg +z6zKwzFXVq6UFxoL6jwcs4nwrc9iZlUejnnrdEk9U2ZVHo5ZMiJmYVkHQZ2H +0xYoYdPG5THMqjwc8/JjZe1smVV5OOZVUl+vmvaCOg/3L1bl4ZjrV2cmTmVW +5eEaCTRLp2eyAbMqD/cvVuXhmMP7TZwS0U5Q5+GY5xlcbGXDrMrDMZ8YHe7/ +o62gzsM15n2JT6jDIWZVHo5Zcn39sRnMqjwc8zHrtdntmFV5OOb72137lhkJ +6jwc82jJCedYZlUeTuc/rMrD/YtVeTjmDMEs71obQZ2HY764rbuKVXk45r+/ +LuXaM6vycLq8L/NIrVYwq/JwzIEP6p+83FpQ5+H+xao8HHPRxkMFQ5hVeTjm +Ln92NpIzq/JwTf7Dqjzcv1iVh/sXq/JwzJpda/XrtxLUebimAnnq+924Ziio +83DMmulP/kYzq/JwzEmtjPe5M6vycMwdurW6pM+sysMxpzeJG13aUlDn4fT4 +c5++cFIysyoPx/x83ppHvsyqPBxz/dz9+V2ZVXk45pKwIx2+tRDUeTjm00/C +v55kVuXhmgk0KOtb95XMqjxcs38+188eDmNW5eGYM091/tSYWZWHYw4YnDn3 +UXNBnYdjLhKdJ6Qwq/Jw+ryvPfPmsD+zKg/HPGrrtNmWzKo8HPMuvb0xEmZV +Ho7Z1jG6eZGBoM7DMc8s0NLYxqzKw/Gv/mcUnpP5V1Ue7l+/4v/H34d/Dv8e +/Hvx38F/F78P/L7w+8TvG38O/Lnw58SfG18HfF3wdcLXDV9HfF3xdcbXHd8H +fF/wfcL3Dd9HfF/xfcb3Hc8Bngs8J3hu8BzhucJzhucOzyGeSzyneG7xHP+3 +5/z/fw7+/+cEnyN8rvA5+2+fQ3xO8bnF5xifa3zO8bnHOoB1AevEf1tH/v86 +g3UI6xLWKaxbWMewrmGdw7qHdRDrItZJrJtYR7GuYp39b+sw1mms21jH/9s6 +j/cA3gt4T+C9gfcI3it4z+C9g/cQ3kt4T+G9hfcY3mt4z+G9h/cg3ot4T+K9 +ifco3qt4z+K9i/cw3st4T+O9jfc43ut4z+O9j30A9gXYJ2DfgH0E9hXYZ2Df +gX0I9iXYp2Dfgn0M9jXY52Dfg30Q9kXYJ2HfhH0U9lXYZ2HfhX0Y9mXYp2Hf +hn0c9nXY52Hfh30g9oXYJ2LfiH0k9pXYZ2LfiX0o9qXYp2Lfin0s9rXY52Lf +i30w9sXYJ2PfjH009tXYZ2PfjX049uXYp2Pfjn089vXY52Pfj3MAzgU4J+Dc +gHMEzhU4Z+DcgXMIziU4p+DcgnMMzjU45+Dcg3MQzkU4J+HchHMUzlU4Z+Hc +hXMYzmU4p+HchnMcznU45+Hch3MgzoU4J+LciHMkzpU4Z+LciXMozqU4p+Lc +inMszrU45+Lci3MwzsU4J+PcjHM0ztU4Z+PcjXM4zuU4p+PcjnM8zvU45+Pc +jzkA5gKYE2BugDkC5gqYM2DugDkE5hKYU2BugTkG5hqYc2DugTkI5iKYk2Bu +gjkK5iqYs2DugjkM5jKY02BugzkO5jqY82DugzkQ5kKYE2FuhDkS5kqYM2Hu +hDkU5lKYU2FuhTkW5lqYc2HuhTkY5mKYk2Fuhjka5mqYs2Huhjkc5nKY02Fu +hzke5nqY82Huhzkg5oKYE2JuiDki5oqYM2LuiDkk5pKYU2JuiTkm5pqYc2Lu +iTko5qKYk2Juijkq5qqYs2Luijks5rKY02Juizku5rqY82Luizkw5sKYE2Nu +jDky5sqYM2PujDk05tKYU2NujTk25tr/N+f+37k35uCYi2NOjrk55uiYq2PO +jrk75vCYy2NOj7k95viY62POj7k/7gFwL4B7Atwb4B4B9wq4Z8C9A+4hcC+B +ewrcW+AeA/cauOfAvQfuQXAvgnsS3JvgHgX3Krhnwb0L7mFwL4N7Gtzb4B4H +9zr/d8/zv/c+uAfCvRDuiXBvhHsk3Cvhngn3TriHwr0U7qlwb4V7LNxr4Z4L +9164B8O9GO7JcG+GezTcq+GeDfduuIfDvRzu6XBvh3s83Ovhng/3frgHxL0g +7glxb4h7RNwr4p4R9464h8S9JO4pcW+Je0zca+KeE/eeuAfFvSjuSXFvintU +3KvinhX3rriHxb0s7mlxb4t7XNzr4p4X9764B8a9MO6JcW+Me2TcK+OeGffO +uIfGvTTuqXFvjXts3Gvjnhv33rgHx7047slxb457dNyr454d9+64h8e9PO7p +cW+Pe3zc6+OeH/f+yAEgF4CcAHIDyBEgV4CcAXIHyCEgl4CcAnILyDEg14Cc +A3IPyEEgF4GcBHITyFEgV/F/OYv/zV0gh4FcBnIayG0gx4FcB3IeyH0gB4Jc +CHIiyI0gR4JcCXImyJ0gh4JcCnIqyK0gx4JcC3IuyL0gB4NcDHIyyM0gR4Nc +DXI2yN0gh4NcDnI6yO0gx4NcD3I+yP38Xw7of3NByAkhN4QcEXJFyBkhd4Qc +EnJJyCkht4QcE3JNyDkh94QcFHJRyEkhN4UcFXJVyFkhd4UcFnJZyGkht4Uc +F3JdyHkh94UcGHJhyIkhN4YcGXJlyJkhd4YcGnJpyKkht4YcG3JtyLkh94Yc +HHJxyMkhN4ccHXJ1yNkhd4ccHnJ5yOkht4ccH3J9yPkh94ccIHKByAkiN4gc +IXKFyBkid4gcInKJyCkit4gcI3KNyDki94gcJHKRyEkiN4kcJXKVyFkid4kc +JnKZyGkit4kcJ3KdyHki94kcKHKhyIkiN4ocKXKlyJkid4ocKnKpyKkit4oc +K3KtyLki94ocLHKxyMkiN4scLXK1yNkid4scLnK5yOkit4scL3K9yPki94sc +MHLByAkjN4wcMXLFyBkjd4wcMnLJyCkjt4wcM3LNyDkj94wcNHLRyEkjN40c +NXLVyFkjd40cNnLZyGkjt40cN3LdyHkj940cOHLhyIkjN44cOXLlyJkjd44c +OnLpyKkjt44cO3LtyLkj944cPHLxyMkjN48cPXL1yNkjd48cPnL5yOkjt48c +P3L9yPkj948eAHoB6AmgN4AeAXoF6Bmgd4AeAnoJ6Cmgt4AeA3oN6Dmg94Ae +BHoR6EmgN4EeBXoV6Fmgd4EeBnoZ6Gmgt4EeB3od6Hmg94EeCHoh6ImgN4Ie +CXol6Jmgd4IeCnop6Kmgt4IeC3ot6Lmg94IeDHox6MmgN4MeDXo16Nmgd4Me +Dno56Omgt4MeD3o96Pmg94MeEHpB6AmhN4QeEXpF6Bmhd4QeEnpJ6Cmht4Qe +E3pN6Dmh94QeFHpR6EmhN4UeFXpV6Fmhd4UeFnpZ6Gmht4UeF3pd6Hmh94Ue +GHph6ImhN4YeGXpl6Jmhd4YeGnpp6Kmht4YeG3pt6Lmh94YeHHpx6MmhN4ce +HXp16Nmhd4ceHnp56Omht4ceH3p96Pmh94ceIHqB6AmiN4geIXqF6Bmid4ge +InqJ6Cmit4geI3qN6Dmi94geJHqR6EmiN4keJXqV6Fmid4keJnqZ6Gmit4ke +J3qd6Hmi94keKHqh6ImiN4oeKXql6Jmid4oeKnqp6Kmit4oeK3qt6Lmi94oe +LHqx6MmiN4seLXq16Nmid4seLnq56Omit4seL3q96Pmi94seMHrB6AmjN4we +MXrF6Bmjd4weMnrJ6Cmjt4weM3rN6Dmj94weNHrR6EmjN40eNXrV6Fmjd40e +NnrZ6Gmjt40eN3rd6Hmj940eOHrh6ImjN44eOXrl6Jmjd44eOnrp6Kmjt44e +O3rt6Lmj944ePHrx6MmjN48ePXr16Nmjd48ePnr56Omjt48eP3r96Pmj9w8P +ALwA8ATAGwCPALwC8AzAOwAPAbwE8BTAWwCPAbwG8BzAewAPArwI8CTAmwCP +ArwK8CzAuwAPA7wM8DTA2wCPA7wO8DzA+wAPBLwQ8ETAGwGPBLwS8EzAOwEP +BbwU8FTAWwGPBbwW8FzAewEPBrwY8GTAmwGPBrwa8GzAuwEPB7wc8HTA2wGP +B7we8HzA+wEPCLwg8ITAGwKPCLwi8IzAOwIPCbwk8JTAWwKPCbwm8JzAewIP +Crwo8KTAmwKPCrwq8KzAuwIPC7ws8LTA2wKPC7wu8LzA+wIPDLww8MTAGwOP +DLwy8MzAOwMPDbw08NTAWwOPDbw28NzAewMPDrw48OTAmwOPDrw68OzAuwMP +D7w88PTA2wOPD7w+8PzA+wMPELxA8ATBGwSPELxC8AzBOwQPEbxE8BTBWwSP +EbxG8BzBewQPErxI8CTBmwSPErxK8CzBuwQPE7xM8DTB2wSPE7xO8DzB+wQP +FLxQ8ETBGwWPFLxS8EzBOwUPFbxU8FTBWwWPFbxW8FzBewUPFrxY8GTBmwWP +Frxa8GzBuwUPF7xc8HTB2wWPF7xe8HzB+wUPGLxg8ITBGwaPGLxi8IzBOwYP +Gbxk8JTBWwaPGbxm8JzBewYPGrxo8KTBmwaPGrxq8KzBuwYPG7xs8LTB2waP +G7xu8LzB+wYPHLxw8MTBGwePHLxy8MzBOwcPHbx08NTBWwePHbx28NzBewcP +Hrx48OTBmwePHrx68OzBuwcPH7x88PTB2wePH7x+8PzB+wcPILyA8ATCGwiP +ILyC8AzCOwgPIbyE8BTCWwiPIbyG8BzCewgPIryI8CTCmwiPIryK8CzCuwgP +I7yM8DTC2wiPI7yO8DzC+wgPJLyQ8ETCGwmPJLyS8EzCOwkPJbyU8FTCWwmP +JbyW8FzCewkPJryY8GTCmwmPJrya8GzCuwkPJ7yc8HTC2wmPJ7ye8HzC+wkP +KLyg8ITCGwqPKLyi8IzCOwoPKbyk8JTCWwqPKbym8JzCewoPKryo8KTCmwqP +Kryq8KzCuwoPK7ys8LTC2wqPK7yu8LzC+woPLLyw8MTCGwuPLLyy8MzCOwsP +Lby08NTCWwuPLby28NzCewsPLry48OTCmwuPLry68OzCuwsPL7y88PTC2wuP +L7y+8PzC+wsPMLzA8ATDGwyPMLzC8AzDOwwPMbzE8BTDWwyPMbzG8BzDewwP +MrzI8CTDmwyPMrzK8CzDuwwPM7zM8DTD2wyPM7zO8DzD+wwPNLzQ8ETDGw2P +NLzS8EzDOw0PNbzU8FTDWw2PNbzW8FzDew0PNrzY8GTDmw2PNrza8GzDuw0P +N7zc8HTD2w2PN7ze8HzD+w0POLzg8ITDGw6POLzi8IzDOw4PObzk8JTDWw6P +Obzm8JzDew4POrzo8KTDmw6POrzq8KzDuw4PO7zs8LTD2w6PO7zu8LzD+w4P +PLzw8MTDGw+PPLzy8MzDOw8PPbz08NTDWw+PPbz28NzDew8PPrz48OTDmw+P +Prz68OzDuw8PP7z88PTD2w+PP7z+8PzD+4+fA4CfC4CfE4CfG4CfI4CfK4Cf +M4CfO7Bks4f3Pz+HAD9X4X8AHrnzxw== "]]}, Annotation[#, "Charting`Private`Tag#3"]& ], TagBox[ @@ -12287,445 +12393,446 @@ Hw7f16AFR4qdssUPh8/XiNLT9oC1H85Ql3u96137tC1+OEMNufWwyz9g7YfD NCache[ Rational[1, 360], 0.002777777777777778]], AbsoluteThickness[2], LineBox[CompressedData[" -1:eJx1nXlYTu3+vgs960kKDcpMyhyiNJiWyEwKyZCiEIkyppDMEpW5JENkCElC -SWlQxoQGhcyZSeax32U969rffezj+O1/3uPcvF49w73Wuu/zc10tp8xxmlpD -TU3tq1JN7d8/b1z/9z+lqFXob26ephB3xexN/cf9drTs9Y9bnWonBIKX+Lw4 -OhU8u96Aie3Ap/sdN4oCf0n4nFJyTSm+azhvTT54yFqLFmvAppXWn2tcUIh6 -G2uFWYAn5f6dbAWue85D8fSqUtwRnXPT+9+vV49cEwG+OTek116w5rhrOiJY -OXhkfCH4c9qtPe+vKEWxeYOGmukK8W1LD5vd4MVf7q3pBW4ZtOzeUHDitX2f -/cB3rxmv+XlZKb7eN31KHNineoTNEbCxv1lBGXh0/RpfxoInjPjUq26GQjT8 -YZuiAG8xSYnvBx594vvq5DyleP3nsob+4EttbSd4gmvd6r/2GNjC/a+1HrjX -odpfHoHXDevfPCtXKS5YWjDF4KJCTHleW8cPfGLU9oLB4LJWjhotwBXtJvZe -BtatNtC4eUkpNlczPnYKvGeOi/Yy8NjiFw1fgIt9DJuZgcOPHV/bOFMhGlc5 -Wt3PUYpXVsz74gDW+KIYtwGsPs7GYxXYaI7lSluwbefqgnOZ/16/+8mvspXi -XI1Lvd+B98T/rNwJjr8XcqxllkI87RZmMQj8NHFkI2dwj9mRy79lKcUm6xqs -CwH3LjAsigOPnnT/Szr4/jLNrs7gjRb7PT6Bh8zz2aEBvlTb61abbPx94+w0 -kjOV4t9HZn0mgp/qrgv0BHc/++lYOPjVyZ4/9cBzNqY0ugT2D3ALzr6oFA95 -BK37Abae8aHePPAjG/uvZjkK8fnCN4eNwUb1tDyngJ12Ow2+naEUHSsKbm0H -zyhuVRUMXp+2vc81cPsmk2LNwVmbJx6vBh/3UnN9nK4Uf3oZN7a4pBCbntFs -HgHu1uflOi9wxl//VyJ4lsGJr9Hgdz2Hp1VeUIoH3szzvAU29F69Yy/4QabN -bY1chZizskXgSLDBzuo+tuDw4KbT1cAjZl86Phts7hY44WSaUlzTf0PjWLCv -oY2LOzijkeP6ErDZwTGu9cDfKht808pTiG41C2ZePK8Uu+Td9xTB+maHlvuC -vXbvvz0fPLtpWUwL8L55XuIR8JGb0y8VpCrF0sGdTjwAG/Rx+LwcrNvic2Pd -y/j7Tg/rYA4e8jVl/QBwp35tvB+nKMWV14O+BYDf5RskRYDP77efmgD+qzG+ -ph34s7/Wnafgls+qJlSdU4odHW6JRlfw9536MG0/eKrpjhPDwDqrm7UeBY75 -NbFJMPhyn4QdNcHFt4xDksHzI8Lrnz6rFOsefvntFdhuYeYWT/DAZSemNruK -9/u12MwAvHz0/DtO4PmvtRMvnVGK59rb9l0LPjy3zbCF4I9qagnnwdFBoR9a -g9uVXGpSCa7S7rmrJFkpTjm+IcTkmkJ0bWTpsA4ctdLxuws4ft9CLRvwnXGG -0zaC0/dW33x1GutZlwd3MsGb9G9GR4H7K2L7fgW3//nUbyh4yX2vhPbX8X0d -0cvhd5JSTD7VqakbeH7dMovj4HfrPodsAZ+wSTGeBG7tlvo9D1xwtdSoLniS -5fJpv8HOF20NL57CeqY1oLDLDYVYYnivqR/45mMtu6ng3/kpHY3BynO3EiLB -a58W9buTqBT7btrRNB/sMKqTxyrwYk/XDTXy8fo1yQqxBJ+ybfWjO9ijZ3hq -xUmsZ/VeTfMG30jcUbUD3OrFicI94ISAkq6DwRMuzLcrBDtuGxH4M0Epbt1i -e1J5E++f2u9r8eDrM9Sa9QKPTyk3cQVriLkb/MAZGV9W64B7NQj9cRBcVl/8 -kHFCKS586zi9DOxxIs3dD3wiy7BIp0AhmmydWWYMfrHzgV0/cHXmoImFx7Ge -zYk9uQj8rrtzxWqwi/2MZsfAvz9G+FuBwxt3Dn0Edqz6qfvqGNazj59/6N9S -iKZW4clRYPXLqdMHg69ljHQfBraNWV60FHxkQw+9v/FYz+YP6HcK3CPKIT8B -HD+kTmIF2PDNhojJ4GctbjdrfFshPlv6YaIeuMm3HaEOYA+nxV0uHVWKY264 -/lwJnunVts4i8MbYVl7n/v3+jF8f2oJzF78qegsudKm6V3YE65lDQr+Wd7D+ -dNMqCAVbtV6QOAYc6mB/vTd4zm/b5iHg3ON7CioPK8XDt9U2poMnjmj4YD/4 -0eHcn1XgDPPEj6PBDYNCvdoU4vPlMk1HADuOcSqeAG6UbdUt5ZBSDOlg1D8c -7DHXxN0bnKVenpgDNpreYVtT8K+S2OY//v3+/UNv34zDenZixkazIvz3TFYZ -rgDPWtX512Tw2/d3PC3AB8Z/8doOfl3DNrXiINazLueLr4I3TU42jAQ3EIL7 -V4Pb1LFfOhQ84sGAU92K8XrWevn6zwGluDapTgsvcOmQ3e4nwRnrb2+MBv99 -7FE+BfzdbeevAnD7a7aeBuAu3SfN0ChRiI2VLavyYpXijDomJTbg2CiDdQHg -fU9e9Z8NPrLKsLUZuOxcwqn94E6XTa8/3I/1LGxBixJw/+l9AjaDh07tsUnr -rkJs4OnRxR68sof67z7giovh77/tU4pp9fNmzAdrLs89fRT8+UVoyWHwu9ia -K13BZulO9g/A+p0HjqsHnrrVKKl+Kf48k3Cr7L1Yz2aWtxgAjl39oOlCcLF4 -YFMAOMi5U5124LqGM3+fAK+ODK5xfw/Ws3edZz4FH3IsVgsDL8/+UmJYhtc3 -uINgB06JPG8/DDzLbLnBlxisZ3OCk5aD3cfe6XAY3H7AwJbJYJ2aJkMmgKc0 -0Q57BS7u5uerA95Vdft303tYf9+lxGTuxnp2eedMJ3B01z+F88F19ky6uwac -K9jqtQX3X2Ay4Dx4iu+ccfeileLSoa+TPoB7+EYf2gRObnmypcl9hdhd6+Kf -vuD33xaEuYCH2pdO+LIL61l+jz+h4HXGLzIPg90OqHtngvUOvew8EbwjIO/u -F3CbkvsH64ILRm4c0P4BXs+zWa2yo7CetRl1ehK479DIIwvBff8YGW8Bd9jp -ZtUevPhOeVgeeOp+/RsPIrGeHTnw5xd4x+yzMyPAb4Jmencpx+utPrCePbiV -c5dST/Bnt6wL33cqxYkdvw6IBJdvajvvGHhrjbTTN8C9t/h3cQffuBtsXOOh -Quw4N/GLHlgjYWB4d/CdLrez8nYoxd6rtf/OBC8sLN0RCF444Y73HvCsKXnz -O4MTzCNL74BNH0WOe7od65ngNlD5COvbqJEDdoBblJsk9wTXzHxlOxTscvq1 -sR94buepVtXblGJEyMnwg2DrA5k9ksBX3Bf+LQV3Nv07cDq4hlXPWTqP8Xqf -azixMdhWu0aZHXizh57/za1Kcd7TvIGLwMZmr3etBMenbEyOB3dqvDvPCvws -bFSrR2B1iw6/3mzBejatYYT+E4X4Y+mW7nvBY3o+/DsIvKG6cPFo8Cbdg7OW -gvtlvM9RgnNfzixLBGdmPzS8sFkpVqd3GVQBTtc7NNcPbLXta3Kjpwqx1pl+ -RaZgX++0Vg5g/8TTfcoisJ71XRGxElxf+0fiJvBjw0HVZ8EPb9bt2A/c8L22 -z9t//7769+PfwpWiU86dshbPFOKFQyetjoFDoiIHjQG7XLO+4g7O9nU7sx7c -a17YFAPwrwGmJungirikmlfDlKJF0zcRVeDnPgeOLQPP+nSyuvVz3E/edHft -Bj54ZaHPBHB04QuDl5uwnu3peS/s36+vtC6OBjdYWGNwDjj2uWOMI3jEsMtn -voPL1LvNVoDXGm8yMatQiLsfldmf34j17PuozZPBhiGDTH3B3/Mbqm0Hr1ME -1jEFmx986HMVPHCS36/SUKxngQfv/QVfjGxftQm839F7cLcXCnFB5sHKfuCy -NuZnp4OrHzz++n2DUtT7+9UkGqz1/UGtE+ChhWmbC8CuRpGNPMCrjq5Q03ip -EPMH6lobgdOWD5ptAx4RNsj1RohS/OKsc98H/PibbcgKsJlZ4eD94AMhL9Ot -wNNqRp0tBueNHPnr7XqsZ6VuplqvFGLYKL8++8ElCaZb+oAnRA/ZMBZcd80b -tfngaIt75XXAgyYmzj4MLjM1ts1ah/Ws66L798GnFzfbvQicouw1pP5rhfjA -5qZgBv5YXuOcPbiZb7eAJ2uxniVfNg0Aj2095PMOsMeGTVtOgJdN0104HLxr -8mj1p+Ddthuqa4ALrRrNMXyD6+uxpPBza7Ce6Ty6PxQ8MS+k3Wyw/bODQ5aD -g7bWvdoKvDTV+9xp8L5mfeeWrlaKZ8LNW78C2/g2Mw4Dv5/2bUvTtwqxaEtc -aX9wm14X1J3ARlvv7vy5CuuZ3so5a8AXApPcToJ3vhr0IBUcMaZ7p2ngggyd -oR/AgR3dazUBa24vPNfqHd5PrS5Pbq3EejYrqrULOOzPgby14AA7962h4Ert -9NO9wKeMWtfIBBcODDjyaQXWs/dv5nwBh565e/AIuNWlxAft3ivE4Kl3j7iB -J+5aNHQSuLO7f7IBeKtfr5TN4A6nzl6+Foz1bGDNNnngJtO3PQ0GK5pd2foL -nBVST2EN7v15U40uHxTix7Ztu7xfrhQXXR3t6wneMvze5APghL2NyneCj9Rq -t2s8+OXCR0NvgAeNr3e/HrjF8LgU9Uq8/+PDTfKClOK4VrPadAdX1D88fyk4 -4of5tpngJaHO17uBr978VmMP+EZxVIfXy7CexV3wvQOe8Gfe5r3gHktWlgsf -8frWeaw2FjzPafCwnuD99R8v1AYfa1s31RecbzTvc/ZSrGd/C9scBDfqvH1x -ALhpUdS2UvDCyYMV5uAx8e41daoU4ou0DVEvlmA9C27tZwdeO2Ji9xhw7ti3 -5Qv/cavU0tHgarNTw+LBnQYfWKUFtq7ln/oQXHK9oVVWINazsl5t9T/henK+ -4Ud/8JGTNbcPAtcxiT3VGfx4zZWaS8HpusmBFQFKsZFrmF8iOG3biGG7wU7d -xjx8Ds5PnW0yGrxBs/HwRp9xfQnTr6UFzn74KHUEOMO4z5vMxUrxd3Jc25Xg -6OB3pf5gi9BZ28+CQ1KbFXQG+0zpWustOP3erRsV/ljPrL/7tfiiEFd80riz -G1yuk/5wNNimXurD0eAGz1cOXw8eK777pAV2OD/4/AWw9+aYutmLsJ5F1G1X -BdY3uNE1AHxxetH21l/x85UscjUHf++1q9YEcPMXu8NeLsR6pj95bhjYfHTv -K3vAM163fpQNtjFzqT0WvP/i2+HfwYOCXzvpgO9tP3W+4zeFuNzt8/5LC7Ce -+fi3mwxuWjL/5xLwsH69d2wD+3ybOc4CvKphLY2r4KKbRRlv5ivFCx+uzP0L -vj3ntFks+MulsEddvyvETxUasePBnaLHjJgOftj/SnNd8LS5jdN2gZ0i/8Re -macU9wx63K4A3Ozzvs7B4JJmh3bU+oHvy9TkLGtwvS+zNGzAC353d62ci/Xs -Wtd5PuB6V02rD4GD931/tA9sWr78sBs4ZVH6iGJw5aCB4wzBVcNXpdX+iefZ -Rv71b/phPTMZ0r4P2MBT99YasMfPujvngZ0tDXb2Bu8qKNI4DG65J2jaV1+s -Z3G75t3/x6dG9jwB1l46+XG9X7i/DFrbcBrYflQbB3twcYNWf5uCl7V7l7YY -PCzE+HXRHKxn1afanwAveb3qwUbwhyL/nU/AgYMG37UHtznWW2H4G9+P5Nll -f2YrRfcVteYPBSfafX6aDN7pcvVxEHileulnH/CtTuEOp8HjazbRbg3W1HC+ -8BKcOi6tY7mPUrS717hD0z8KsWeDlFHbwQGJj3c6gsOG1F8xApy09pBiDdhf -mXNWAX7j6jM/FXxrcsHn9FlK0cSi25P34BAvS5tF4Im1fzi0+ov1plPVqs7g -bY/SL4wFD87VuPvCG+vZmVUdQsFRfed03QtWbBwSeRH8/JTZVhdwb496whfw -qo7in3rgRTbF89tV43764kGfKzOV4sm60U9cwXtWuD4PBr98PnnkZrC4apqn -LbhlWpv0XHDQ3YzXVTOwnm1+1+EXuM1mL/948GavpMjOaoKon+Om7Qm+2nux -4AnuGXzgSBNwTYM+C3aCD923HF7khfXsTa2n18ELXul+3wien3l1pLq6IN5L -tT06AHxsR3i6JdjE85hH9XQl7lOcO84En/w+zeQcuGn/JlEx4M8bZrz1BTs3 -eiLcAS81TzrfDryp8tACoYYgvv1tt/nJNKWYl+vztAf4u7qR7y5wdXQ3R1+w -z2jzMaPB1vN+pB8Ad1Ju6qsN9h2c0bEU3NXczDJ3Ktaz5qujtGsK4rqn2l2C -wI+/DFHagR27de5qDW50vd7CheDLFuE9PnoqxVH7i58eBff43XnYUfAG/2jH -h2CdGG1PD3DOiCkZerUEMbVT25VNwL9N2poNAhdkLTtS5KEULX+9i1oC/jy7 -XskmsM+tJGUi+PHA+1qDwHGHFi98Dvaa8nigOrh8aZ9nDTUEcc6dZhtSpyhF -w9EaTiPAHxO2FM0DO7S/lrECXF2nTxsz8Dq1CLOz4Kzq5ssrJmM9K3be9Qa8 -YLfloz3gH8eaaLZQCKL3r2UDx4HNVz5ZOBpcp/OvZF3wzHGHn60DFw8/0uG6 -O9azzrOdLoAn+Kw7vBp8T8Pi4kdw/9gdHfuA9e7/MGst4PXSKD773Q3r2amM -XePBY47YDTkFXr1utWYYuMfB+0+9wRcmDV2UDVavG7vKFPzVov7zb+ALv7d2 -fDgJ65lWiVNHpSBGrkq8txM8/XH0RXdwcdq3CCfwnrNTOm0DXzs/zaEO+O7G -ttFXwE92/NHLdcV65vle8y949/TzD4PAg21PL+qqKYhb+u45ZQMOrhfwfBrY -r+fh0E8TlWJqRZ9Ru8DfZxf5HAdXpWlk3gTXqDR1ng7usOVap1q1BTGgeKd9 -S7DHjIhoa/BUG7Oe9yYoxeg+Y2v7gO93fmKzDVxo0NR/H7jOrTO9HcDab588 -LwLbWBwdogm2zzo8qraWIGb4nnfNHo/1bOfszN5grZhXi5aCz8y26DwPvP9O -t0gr8If+P6MPgVu2i8z8OE4ptm18sfZ9cPczRh/jwe4fV/vXq4Pv3+bENtPA -kXlDK/qDHYunTG0BvrW7/ujFYJPIDkfLXJRi7fklmcfBbT7V/roVbDdkd+cn -4EW/qwc5gANbeOxuoC2I9jc0YzXBSV/bag0Fly1tUytnrFJ8e/29fxB4c2uX -WcvAJrGnK5LAjx9G3bMGuy4OGP0S7JD13vGTM9YzBzGriY4gBlY43TwOzjdV -dHEEG03NHeUFVvy+tns1+IPzoIfG4D63I7RSwY8LS/wejMF6dnjs4vfgJ9/m -ae0En1zW9IVxXUH8fbfxMSfwy9FPR48FO0Tkj9IGt+xwJGsDuL7thhqXRyvF -8epzulwEb3w78twK8OYSi5jPYNOsZgt6ga8d/6nVrp4gjij8ZP19FNazVRcX -u4K39bxZMwncc/yaFxHgaP2TRT7g+V2GjckFN1q47URb8HGFbvZP8IOAZZue -OmE9u1/SpXN9QczrOXNBDLhZ0u4YD3BB0ViPcWDn9R51doIV7gNc9MFhbu0C -roM3fbEYfdMR65nlhxdquoK496Tx2BCwWp3kMZbgDfE6k+3B1k8CsmeAk9W+ -+6mB/c6J5jHg7VcfrD8/EuvZJsWe2+D0VhmHF4KfeF6vI+gJYmHrXfnm4EY9 -Ngf0AG9+7/vrrQPWs/ouL+eAr2zr0/kweMOLps4HwG5Wipke4JwLT7Pvgh3f -Z8c3A//ZcsRcW18QE4oWfS4dgfVs5pw9fcH7lC37bwPPFi21F4I99qdHjQTH -NfgVcBQ8ON3huxb44duLL8vB5xfdmZg3HOtZ9hpnPQNBtHw96PIK8MjIYTkD -wcPME2x7g9fN0e26BHzES+P0j2FKMdP+7p6TYM1jQyySwT8ax2g/B9sZLjvv -C+5a5RHYsIEg9s6NGdwRPPNyu1fDwb8K48tfDFWKsTEfnFeAw9wOBMSC781P -zjkDNl2xtqkbWH9oYNc34D8uo/MagYe17Lu3uaEgzlar7V88BOvZN4XOaPDT -rYc6bwZfuHE9cB34QdeO74eDv8ZufpUG/vR1e5ImuHOAy9iP4Nt/KoIuDcZ6 -NrLZJVMjQezl2XhUMHhv62ddx4NrD+xm1gt89/eRvZvAbbPNdH4MUor178zR -yQZHfdH8eho8+Ijlkm9g/1+5z3zBK4J+verQENeDjx5lHcGpYzLHuoMHf31Y -/HKgUvzUYe2lreBSU9uyA+AONYZ3uwLWjfF75g72vKu77w940ZLVX5qAo0/c -1enaSBAPlM/XLh2gFItWxSyZBh70pHfHbWDtCZ6vo8DtDz5xdAQPMG/vchNs -au+2TBu8TKi8VLOxIHZ4lJR4xV4pnn2Q3M0a3HfrwzerwR+SAvfNAq8KetzR -Dtw2pG/dfeA2F8/N/9sf65m7sLQI7DffMzsVHNn9xmvNJoJ4MfWp0SLw7Tpb -XHqDVydaLugGrv3UJXcueOiicXc/9FOK/VKaWRwCJ7QfYXcMHBj2bN898NTX -ukle4NNTj9at11QQrYri2puC3/bwXdofXLO25pHHdkrRVLf7G39wxiHrTjFg -15e/XI6DF9ywSB0P3p6emfsYbB/1e5ghOH/rWosGzfDnm4VV3OmrFAXv4fuH -gFvEvVkTDu7TV69eELikVf1Ow8H+hqVLk8DquX/vaYJPvot58wLcHs/zuaJS -fJXtOa5Jc9wffOk0bCW4ZVT7vJHgBtlzdETweN9Ki9Vgt24LSn73wXo24Mz+ -FPDJab0PpYCvNVlS7z24xtKrSxeCa37qu8y4hSB6bjea0A3c84rw1hn843ab -PpW9leKCPTfGbQD/dPrW7jj4+IIteRngs93XNJ4Jrhg6zvIzeGvMHb024GbG -zWPbtsT1Lb5c91kvpTj2+7N6ruCEJXFG+8Bh+UeXRYBbWbQ3nQS+fMD37SWw -cZWXdWOwWmD38T/By0omO93tqRRtHH/ndTIWxKYa+vO2gf3aZFl6gP/sWhbl -BD76Z23sDrDZhb2X64Kf3Ble/zq4ZP3iP9d7KMXGR/WC1Frh/WyltAkBj1pe -+tYCvPfo0MCB4FDnPeNngAP79supBc7pOPXybvAAzfd6WbZYz2p06H4bvK3V -0JlBYMvSyliFCa4fp8bl9QTPTjhTvwd4cbFRh582SvHQ6iVBc8D7T63ddhb8 -cILdu1jwIq+DigVgo67KCXfB3xr6LesKHqnMv1zHFNf/V69+f7BWiuvLt3Tv -C/b6rrPiODjz9LgDC8A5Mx5qe4N/hjTXPQo+6DZ+b1tw18nPg8pN/12fl9lU -WClFb6v4d7qtBTFtyrDSWHCstt+EgWCt5MygyeD7T7tfCQTrNSjv2Bysn/q7 -+0nwtsN7H93vrhSHh2cdeAb2DlPuigKvnrZOt2EbQVz5Tn+iCzi954jlw8GP -nue0agD+qqv/Phgcs8uw6o4l1rNXpRPOgF+b18mLAE/P2HPlNbj29X37HcB7 -t021at5WEF02lqzSBt/17nBwFNg+8pjPNQusZ3YfddeBx+q1cF0PHmJ0dnka -uF1z81EDwSveL3lfCfZ5VO6gAT6fYzfRtJ0gvgpoOyq7G9azKOXVceAAXW3X -YHBHv3yrTWDdaxt8+oA9B249mAVOvRy76k9Xpbi76Xi9b+CwzqP3nwcXfWoe -3KE9Xu9W0bmLwTpXn793A++/EvDRCjxgb/zEreB19h+Mv5orxaCFflcvg1+f -/z7+NPjsMCvrP2BHx+2Rc8GVxn8OmnfA97F9XnkXcNsfWXrTwHneIe0/dFGK -k2+uC44Cj7F9uOQ4OPLgiA/54NepOUXe4NuB+q41O+LzqWtr2R5c26nsqhW4 -wbTeu152xnrWdq/1LHBZWYFwCLzk79S4vWD17ZUBU8GnCzvoF3X8d38c/bkV -+N3Rj8GaZvh8zC+c/6QT1rPgsx96gc2ebv+1Fzxp7FLXueBks6fr3MDbzfpd -iwP/WHyuSTPwzZqaNvfAie8Mzt43w3pWlh9Xt5Mgnjjxc+wusHhyq35/8J0n -U6vHgf3XjF/hD25y0vm4EThxYovKY+CdPa9PLumI9axrhetjsM+JS022g401 -j10z6Iy/bwe78tHg8Q/9bIaATe+JcXrgLclWh5aBLz65OP92B6xnG/7oJ/37 -9RmZgyPAtaZkr3gBfr61r+lIcE/r9ZWNuwji4VBRqAteoOMwaSS4w6ILH260 -x3r2TP/6KnC/wLPloeCK1DKbFHBJhlnhUHDziL2H3oFfeDcvqA0eO32agbG5 -IK6J23D7SjulGN6r40pn8MPtfvfWgS/rVVWGgLt6FrweCFZ/fXZSBrjQ8pCa -ALa5uPT6J3CXbl+a5LZVinO397Nt21UQc1em9FkNPjpL8/BEcCeHT179wU/t -bhpEgPUu7NtZE9y44baVl8BWX7Lzs9ooxdEfxn/8AZ7bfJzWCnDopRZunbph -vfdwH9EXfGlXxfUp4K+v7u5QA//xO2a7AzyhLPNFRmul2H3Q3MPXwDqujXoH -gWc3s26gZiGITlGPo3qDD33+s9ICvCK1wd8/pljPrmZ/9ALrVJybfgFstG+9 -227wYvu8kiXgkYscbtwCT1LvO6IneP1wgx4KS0H0tTO99stEKWa1unfYFjzX -fN6I8+CfP/Y2mAO2+9bubgC4W8G0VbHgW2mDvGzB3nEdq0rAbeLz//5opRQP -LKlyq9NdEN3fpO5KAd93OndDBCfE1emzGGzQblmPBeCJiuyX1uDh1f2OHAHn -dnuw87uxUlxTpGlYDp7sMt7hHDg9/uYqXSt83nfb1PEHfwveVjUA7GEWcNMK -3NllgnsguLl548hvLZWiV6eW+QngpNuNZ5wF7631osczsHrPwD6LwKVlx44Y -WeN5e7t1Eytw/cS5hsPBZ7VHVX9tgfVsrfXqYPCwq1dengGvcP1blQz+8nXX -3YXg891y3F+D/164nN8d/FkzJL+ZDZ5nBztc+9oc69kjh56jwIU5nfLPgKee -MTi6Fhw3blrJQvDu0HuGaeCKrl8quoOLp+xbXQkeEVj2+2szrGc20z+Z2Api -vKtBw7PggXXNJo8DP6t1sMcicNDzqvyN4Kpd6zytwOfOn+uZBX4xPGPLt6ZY -zyKWHf0Kfmk/6MpZcDuv/kYdeuDznmCs4Q+e3Lv2GjewQfLwgdbgKP2CT1vA -P1ZcDvveBOvZ622TL4PH999cfg6slTnh5m/wDZOj3RY3kX24nnjedqgbZtNE -9uHAuz5erPzRWPbhwOst011SG8s+HDh+oCIvoLHsw/XC+zF6Z48ejWUfDrx3 -zbwzvxrJPhw4SWuHVVoj2YcDB9StkbGkkezDgYelJw3r1Uj24Xrj/qZ//KM/ -DWUfDlyY/yIgvaHsw4EPrPdqHNRQ9uHAJ/d1zOrTUPbhwGn9us1Rayj7cH3w -PBQdaJxpJPtw4KGlte4HG8k+HPhi6/xddkayDwdudKp4ck0j2YcDrzvctFOO -oezDiXi+tdqvttpQ9uHAVzd4lNobyj4ceOYd93MKQ9mHA5/pEbk7r4Hsw4EH -V2mtX9dA9uH6Yv0zORcwuIHsw4FN1XfPrd1A9uHAeskpvtcMZB8OvGW29oJQ -A9mHAx+fsCNouIHsw9lh/TjqHK5jIPtw4P7rhxy6qS/7cOA+refmhOvLPhz4 -dsL1F476sg8Hnjd6XH09fdmH64frjZ1h30I92YcDGx/RWLRNT/bhwOvOtEpy -1pN9OPDxSN8vhnqyDwf2C37Tq1RX9uH6C2J+9JbQKF3ZhwPfauT1eIKu7MOB -Y9p79WyqK/tw4Dm/Nu8ury/7cODNaS9q7a0v+3D2uJ7tnjp3cn3ZhwMH3NCq -MK4v+3DgIUtK3Z7Vk3048IrSGw8P1pN9uAGCWK7/cur0erIPBzaf1KaqbT3Z -hwNPeR6y6nVd2YcD+5TVb3qsruzDgaf5nD/vU1f24QYK4sL8Ne6d68o+HPie -2TytjzqyDwd+eT4o7ZSO7MOBNY/Ez5uvI/tw4AumX7t015F9uEGCGDll0udv -2rIPBx4U/vRCirbsw4FDH67aGKgt+3CD/u0H9/XopS37cOB+cUZ9quvIPtxg -3M8GabbMrCP7cGD/3nqaK+vIPhz4rZ7lt/51ZB8O3N989htFHdmHA5fmXXh+ -WUv24Ybg+6LZqiJES/bhwKGtd78dpiX7cOCrjh1+6GjJPhx4Vdp1rVu1ZR8O -vHzncpMttWUfbijWH8MB/cbUln04cK53Ey/D2rIPB9bMq7GlVFP24cDBE75n -79KUfTiw+4TfP101ZR9uGJ7Hv2tbt9CUfThwxLSOgU+Usg8HTi52zjmglH04 -cEVgqN50pezDgXPXXfdqp5R9uOG4v+7SIOeNIPtw4CUHvExPCLIPB642yg71 -FWQfDrz+osnProLsw43A9TU/1OeLQvbhwH/m/6w4q5B9OHDfl7OmBShkHw7c -b8LTNz0Vsg8HnqbuuqhaQ/bhHATRRKdUmaUh+3DgOsnOe1dpyD4cOKddUa+B -GrIPBxb2jnqsqSH7cOC4obdCrteSfbiRuN9yH24bVkv24cBxunkfHGvJPhy4 -wfZe8fq1ZB8OXN3s5KySmrIPB97zuKlFVE3Zh3PE51V3jbprTdmHA099/qKw -eU3ZhwMvCLM78aSG7MOB69hv23iwhuzDgYtsH871qiH7cE54/w42n9ShhuzD -gRukjnF4ry77cGCH48sHJKrLPhxYPL2n33x12YcDV9c8NcBKXfbhRgliyq0z -Dj/VZB8OnOR0fNIFNdmHA9unbZ23XE324cAP+s3a1E9N9uHA6s27JSjUZB9u -NK4vK18WXakWVD4c2DtuQ42NYMmHA7dOb2w5Eiz5cODxajt99MCSDwf+tr86 -vvivoPLhxghirfuOlZFgyYcb8+/13WjrCpZ8OPCvV6dCWoAlHw48ucPFR0// -CCofDtzp/umeh8CSD+csiHe7hsfMBEs+HPjlVEdFJ7Dkw4Gr47/N+/hbUPlw -4Ns9Vrw4DZZ8uLGC2HFYpbs/WPLhwB/0+j7qAZZ8OLDe1XlTq38JKh8OHHtw -bWUWWPLhwDkPAoPXgCUfzkUQjx1xMBoClnw4cLxYI1kbLPlwYNOyzWNv/RRU -Phx463E1tW1gyYcDr60acsIFLPlw4/Dfe+Q7pQlY8uHABxP8mjz6Iah8OPCk -HcPux4IlHw58+qba/ulgyYf79++Hb/TpAJZ8uPH4/OhW9f7wXVD5cODEULMG -SWDJhwN3t+7zaSFY8uHALYe3LrYFSz4cuLzmk/S/3wSVDzdBEN9s9TueBZZ8 -OPAD68J9a8CSDwee3FYzeghY8uHAVtF1o3XAkg8HtrxRse/2V0Hlw03E/cTn -jce3gyUfDrxgSK2M8WDJhwPfUg4ubgaWfDhwiNeET0++CCofDlyx37bBIbDk -w7kKYq+Pz3t7gyUfDqy2caJPZ7Dkw4FPJeze9+mzoPLhwJWbD987C5Z8OPBM -3yWNl4AlH24S7meDjSaLYMmHA/dXX3KsFljy4cBz28b9ufxJUPlw4ADz7aM3 -giUfzg3sPDTRESz5cOCDt3L0GoAlHw484IH6krIqQeXDgc8nqb+OAUs+HHhx -WLarB1jy4dwFUTt+QEkbsOTDgQ36hji//SiofDjwkNCN906CJR8OvCjPYdoC -sOTDgYPMCr7agCUfbjK+vz+0N/6tFFQ+3OR/+wXKdtlgyYcDF51Iv7oWLPlw -4Ds6XeYOA0s+HHhS5oTm9cGSDzcF9wvqfW8XfRBUPhz4ktbDkCiw5MOBjzey -HOwGlnw4sO1MO20TsOTDgdt0V5S8fC+ofDgPrL+pQXHHwZIPB17Z9UTgXLDk -w4HvloU7W4ElHw487kNrq9/vBJUPB+5ybE7TTLDkw3kKYvTwmZprwJIPB66q -2+DXELDkw4FjOs+tqguWfDhwi1dLPxS+FVQ+HFhnsXVVJFjy4aYKon6TfT8n -gSUfDvxV56zSBCz5cOANmxY3efVGUPlw4IslLyxPgCUfDhzZRn3MPLDkw03D -/dv5nMXWYMmHAyffND/w57Wg8uHA3vsHFmaBJR8OfNxXo/Y6sOTDgd8vmmk/ -HCz5cNPxuf6yYI0uWPLhwNvbtLlR8kpQ+XDg4UOXNtwNlnw4cEzMIu8pYMmH -8xJELzeD7DZgyYcD7742psW7l4LKhwMPbGm98hRY8uHAq2POv1kElnw4cGjw -w3G9wJIPNwPvmzL2Rg2w5MOBredqDLz8QlD5cOCk3xq5G8GSDweOq4gdMgos -+XDgU7PLC43Akg83UxDD75z2LK8QVD4cWHt065+xYMmH+8edu26bAZZ8OPC6 -2BLLzmDJhwOHVRrc//xcUPlw3vg+jnm7NhUs+XDgl/XG2ywHSz4cOHfKpEp7 -sOTDge1Dvh/TAks+HPhpbps5t54JKh9uFt4nlzfdd4AlHw5cstSulitY8uHA -WxZ1LDEGSz4c2Hr14YSXTwWVDwc+WZG88QRY8uF88Hx8b5TffLDkw/n8Oz8J -Hm8Llnw4sPeK3oPVwJIPB65OWt8r94mg8uHAtgFTrELBkg83G98Dg8vdncCS -Dwf2y03pYQSWfDjwmhvdB5Q/FlQ+HHihd2/nA2DJhwMrHt/0ngmWfLg5eB/n -vF7TBSz5cOAg542Hvj4SVD4ceMLdszfSwJIPB86wnPFjBVjy4XzxOU3Y234w -WPLhwJ/Wuk6uC5Z8OPC06pjdRQ8FlQ8HPjDW8+EusOTDga1uH2s9BSz5cH6C -mHpy0by2YMmHAz+2yLn0vlxQ+XDgRXsjmiaDJR8O7GL5MCAQLPlw4EDLYw/6 -giUfbq4gvn7yzV4Jlnw4cE5QZlL+A0Hlw4H7jlC22QaWfDjw8fBreyaAJR8O -7LW+djNjsOTDzcP7EpCz7+V9QeXDgbMPfW+fAJZ8OPAWp7iUBWDJhwMbpF8f -3hMs+XDgBmbeL2qAJR9uPj6XT5avuXJPUPlwYLuW2h3CwZIPB17UsW6RM1jy -4cDiwDWrmoIlHw5877SfzbMyQeXDLcD6dK7g01Gw5MOBH2/bn+QHlnw4cJfw -Cn9rsOTDgRu+2dWvulRQ+XDgAa8z9XLBkg+3ENf3W2NfhYIlHw68+NnEnFFg -yYcD955ecKARWPLhwDm7E0Me3xVUPhy4xfXqBYfBkg+3CD9v99Rpc8CSDwdu -1vLRxO5gyYcDjyvwdflTIqh8OHD0Ou9xOWDJhwPP2HTTbQNY8uH88ftbR3s7 -gSUfDtxwW8GShmDJhwP7Np+15VGxoPLhwJa1ZyccAks+3GL8+1FFBbPBkg8H -fqK//5slWPLhwG/Sb7f6UySofDjwwQfTxuSAJR8O7HzGNXQDWPLhAgTRddOZ -y05gyYcDt4/3rd0ILPlw4AFOGxwfFwoqHw488opGzGGw5MOBf415+GEOWPLh -AgWxfm/DgVZgyYcD++Udi/17R1D5cP9+3XqPRi5Y8uHAv4rezdoIlnw48MgX -O0pHgyUfbgnW/1PRQ5uAJR8O3HHpr6yntwWVDweevCmpTzxY8uHAkzrmZM4F -Sz4cOHF3x8G2YMmHW4rnybZvi9TBkg8H/qVfw+vKLUHlw4EDDvtUh4MlHw7s -3r5TtAtY8uHAcY/tercASz7cMrx+BvHPXxQIKh8OHF9n2uYEsOTDga/rzOu/ -CCz5cGBdj1u/eoMlHw78bOTycwqw5MMFCWJ686CA/JuCyocDWxre6LsdLPlw -4MplM3QmgSUfDpwQM+qRKVjy4cD26SFn3+ULKh9uOa6npjpbk8GSDwc+0+TB -gqVgyYcDx735OtEeLPlw4J1l4wdrgyUfLhg/h7myR9ENQeXDgXfb/DXfDZZ8 -OPA8256dpoIlHw58e0lmZzOw5MOBnQZv7P7luqDy4Vbge/Yyxu4CWPLhwKti -v4xaDZZ8OPCtrPCZw8GSDwcODJuzxgAs+XD/fr9TxKEH1wSVD7cS9+Fjvtw4 -CJZ8OLDVo6gfPmDJhwOP7RXcvjtY8uHAOcmH3P9eFVQ+HPjjZu3oXLDkw63C -577ZqfubwJIPB07Zt9V4LFjy4cAHp532aQ6WfDhw5Zl66S+uCCofDrz4/mG9 -k2DJh1uN59SWS2b7gyUfDtz25vp8ESz5cGD/Lre6aYIlHw7sEuYYc+uyoPLh -wPrda+tEgSUfbg3uG+b8XDEFLPlw4DOrWv5pD5Z8OPDezGVLPuUJKh9uzb/n -jfrqaWDJhwPn37sbsgos+XBr8X6PKGw4HCz5cOB4vZonDMCSDwdWX+g5sDxX -UPlw4CMXvz2PA0s+HDi3d9r6OWDJh1uHz12PxK7WYMmHA7vVKH6kBpZ8OHB4 -ebutVy4JKh8OvL/xsWGbwZIPB26tMbH2BLDkw63HdabC+kYrsOTDgS3q2G17 -myOofDjwsMyFU5LBkg8H/uRYbLEMLPlwIVhHarvXGQiWfDjwT0u9V3XBkg8H -3tHyw9W72YLKhwP3aPgpcR9Y8uHAPWc0i5kJlny4DfjeTPIN6waWfDhwvf4v -V//OElQ+HPjH9NXBl8CSDwee2WDgik1gyYcDt4ruuG4sWPLhQvH3sbfc0gIs -+XDgB+7usa8yBZUPB863OX7uFFjy4cBPmza+EwiWfDjwsPFHqvqDJR9uI57P -eo411AFLPhzYur5J35KLgsqHA69sXdd3L1jy4cAJVwwPzABLPhzYZVCvB13B -kg+3Ca9j5bLGvzMElQ8HrtS5P+kSWPLhwMurRh3aBJZ8OPCNl88/jwVLPhz4 -fp+IgS3Bkg8XJojX7MfseZ0uqHw48NVB5r+TwJIPBzbeYTJpKVjy4cCdgjpd -GgCWfDiwh8MI83pgyYcLx3XPeeX+0guCyocDL3ly3SgWLPlw4FN27bfOAks+ -HDj5UpR+d7Dkw4GnpDaNqk4TVD5cBF6POadMroAlHw58yMLl9Gaw5MOBZ7jo -DJ6YJqh8OHCH9oVPTMGSD7dZEG1+HA7+cF5Q+XDgz/qhpilgyYcD37m+JH8F -WPLhwJN9A5YMA0s+HNjOYVXnBmDJh9uC611K5IuHqYLKhwO//5Ny4AhY8uHA -M32eTZsHlnw4cORYo069wJIPB15fZ8xPBVjy4bbi+ng/8lpBiqDy4cBOhhX7 -osCSDwc+rW2z1BMs+XDgV3U3u3YCSz4c2Ht2pd33c4LKh9uG92HxKLMssOTD -gRNWpDYJBUs+HPhWqUl9Z7Dkw4FrFETUbgGWfDhw+zNqmq/PCiofbju+Zw98 -65wGSz4ceOr2x/rLwJIPB07s6mQ8CCz5cNv/PQdmWeiCJR8OXDKuy7D7ZwSV -D7cD6/TaaK84sOTD7fh3P6QR4guWfDiw/gnvk7ZgyYcDTxly414tsOTDgUfU -al/nZrKg8uF24jpoFtw3Eiz5cGAvo9uBHmDJhwMHNWhy3gws+XBgzYBJ1d9O -CyofDtxp285BWWDJh4vEOp56ZXsoWPLhwNN7fHzlDJZ8OHAPbx27lmDJhwN3 -jm6x502SoPLhwKUt2qifAUs+XJQgvhja0ms5WPLhwI18dQqHgCUfDjz40bv+ -BmDJhwNP+ZCe+vCUoPLhduHnqVxueRQs+XDgud27Jc8HSz4c+KR+kU0fsOTD -gT3Kp2ZrgiUfDlxR8cyxMFFQ+XDR+BwFOz6PAUs+HLhtjfilM8CSDwcW0iob -WYAlHw5cWcP4wt+TgsqHAx9p39vzCljy4Xbj+re2f72tYMmHA9eeZZE5CSz5 -cODDZtqL2oElHw6s1iLf/HOCoPLhwP13LPyYDpZ8uBi87i80zqwHSz4c+MLU -wKDRYMmHA2dMLR7eHCz5cOABPRu0fH1CUPlw4Mpetj9OgyUfbg8+bxl9i4PA -kg8HXm3Q8dwQsOTDgRts+x5jAJZ8OHD9LXEhj44LKh8OHORpGRgPlny4vXj+ -mHTAdyFY8uHAvYurZvYFSz4cWKtli5l1wJIPB+63tcPskmOCyocDu6zWX7Qf -LPlw+7D+DC5b5QOWfDjwaKslO6zBkg8HDov9caImWPLhwMOfOV7LjxdUPhzY -x2HV20iw5MPtx/2rbbjuVLDkw+3/58fP79UFLPlw4AZvzH1+HRVUPhy49cTc -fblgyYeLFcTuceb3IsCSDwc+1HxeQ1ew5MOBPzQLmdgWLPlw4MifCw58OiKo -fDiwvWb3j+lgyYc7gM/Lvit2IWDJhwNHNOoSOQYs+XDgh1e9PrcASz4cuPiJ -3+i3hwWVD/dfLPlwB7EubfphvBIs+XDgDSvmR4wASz7cf7Hkw/0XSz7cf7Hk -w8X9H0s+3H+x5MOBvy+23qh3SFD5cHH/90/+//x9/78/53//O//79/jfv+f/ -/hz8Oflz83X4/71OfB35uvJ15uvO94HvC98nvm98H/m+8n3m+87PAT8X/Jzw -c8PPET9X/Jzxc8fPIT+X/Jzyc8vPMT/X/Jzzc8/vAb8X/J7we8PvEb9X/J7x -e8fvIb+X/J7ye8vvMb/X/J7ze891gOsC1wmuG1xHuK5wneG6w3WI6xLXKa5b -XMe4rnGd47rHdZDrItdJrptcR7mucp3lust1mOsy12mu21zHua5znee6z+sA -rwu8TvC6wesIryu8zvC6w+sQr0u8TvG6xesYr2u8zvG6x+sgr4u8TvK6yeso -r6u8zvK6y+swr8u8TvO6zes4r+u8zvO6z/sA3hfwPoH3DbyP4H0F7zN438H7 -EN6X8D6F9y28j+F9De9zeN/D+yDeF/E+ifdNvI/ifRXvs3jfxfsw3pfxPo33 -bbyP430d7/N438f7QN4X8j6R9428j+R9Je8zed/J+1Del/I+lfetvI/lfS3v -c3nfy/tg3hfzPpn3zbyP5n0177N53837cN6X8z6d9+28j+d9Pe/zed/P5wA+ -F/A5gc8NfI7gcwWfM/jcwecQPpfwOYXPLXyO4XMNn3P43MPnID4X8TmJz018 -juJzFZ+z+NzF5zA+l/E5jc9tfI7jcx2f8/jcx+dAPhfyOZHPjXyO5HMlnzP5 -3MnnUD6X8jmVz618juVzLZ9z+dzL52A+F/M5mc/NfI7mczWfs/nczedwPpfz -OZ3P7XyO53M9n/P53M99AO4LcJ+A+wbcR+C+AvcZuO/AfQjuS3CfgvsW3Mfg -vgb3ObjvwX0Q7otwn4T7JtxH4b4K91m478J9GO7LcJ+G+zbcx+G+Dvd5uO/D -fSDuC3GfiPtG3EfivhL3mbjvxH0o7ktxn4r7VtzH4r4W97m478V9MO6LcZ+M -+2bcR+O+GvfZuO/GfTjuy3Gfjvt23Mfjvh73+bjvx31A7gtyn5D7htxH5L4i -9xm578h9SO5Lcp+S+5bcx+S+Jvc5ue/JfVDui3KflPum3Eflvir3Wbnvyn1Y -7styn5b7ttzH5b4u93m578t9YO4Lc5+Y+8bcR+a+MveZue/MfWjuS3OfmvvW -3Mfmvjb3ubnvzX1w7otzn5z75txH574699m57859eO7Lc5+e+/bcx+e+Pvf5 -ue/PcwCeC/CcgOcGPEfguQLPGXjuwHMInkvwnILnFjzH4LkGzzl47sFzEJ6L -8JyE5yY8R+G5Cs9ZeO7Ccxiey/Cchuc2PMfhuQ7PeXjuw3MgngvxnIjnRjxH -4rkSz5l47sRzKJ5L8ZyK51Y8x+K5Fs+5eO7FczCei/GcjOdmPEfjuRrP2Xju -xnM4nsvxnI7ndjzH47kez/l47sdzQJ4L8pyQ54Y8R+S5Is8Zee7Ic0ieS/Kc -kueWPMfkuSbPOXnuyXNQnovynJTnpjxH5bkqz1l57spzWJ7L8pyW57Y8x+W5 -Ls95ee7Lc2CeC/OcmOfGPEfmuTLPmXnuzHNonkvznJrn1jzH5rk2z7l57s1z -cJ6L85yc5+Y8R+e5Os/Zee7Oc3iey/Ocnuf2PMfnuT7P+XnuTw+AXgA9AXoD -9AjoFdAzoHdAD4FeAj0Fegv0GOg10HOg90APgl4EPQl6E/Qo6FXQs6B3QQ+D -XgY9DXob9DjoddDzoPdBD4ReCD0ReiP0SOiV0DOhd0IPhV4KPRV6K/RY6LXQ -c6H3Qg+GXgw9GXoz9Gjo1dCzoXdDD4deDj0dejv0eOj10POh90MPiF4QPSF6 -Q/SI6BXRM6J3RA+JXhI9JXpL//GYZK+JnhO9J3pQ9KLoSdGbokdFr4qeFb0r -elj0suhp0duix0Wvi54XvS96YPTC6InRG6NHRq+Mnhm9M3po9NLoqdFbo8dG -r42eG703enD04ujJ0ZujR0evjp4dvTt6ePTy6OnR26PHR6+Pnh+9P3qA9ALp -CdIbpEdIr5CeIb1Deoj0Eukp0lukx0ivkZ4jvUd6kPQi6UnSm6RHSa+SniW9 -S3qY9DLpadLbpMdJr5OeJ71PeqD0QumJ0hulR0qvlJ4pvVN6qPRS6anSW6XH -Sq+Vniu9V3qw9GLpydKbpUdLr5aeLb1berj0cunp0tv9j8cre730fOn90gOm -F0xPmN4wPWJ6xfSM6R3TQ6aXTE+Z3jI9ZnrN9JzpPdODphdNT5reND1qetX0 -rOld08Oml01Pm942PW563fS86X3TA6cXTk+c3jg9cnrl9MzpndNDp5dOT53e -Oj12eu303Om904OnF09Pnt48PXp69fTs6d3Tw6eXT0+f3j49fnr99Pzp/XMO -gHMBnBPg3ADnCDhXwDkDzh1wDoFzCZxT4NwC5xg418A5B849cA6CcxGck+Dc -BOcoOFfBOQvOXXAOg3MZnNPg3AbnODjXwTkPzn1wDoRzIZwT4dwI50g4V8I5 -E86dcA6FcymcU+HcCudYONfCORfOvXAOhnMxnJPh3AznaDhXwzkbzt1wDodz -OZzT4dwO53g418M5H879cA6Ic0GcE+LcEOeIOFfEOSPOHXEOiXNJnFPi3BLn -mDjXxDknzj1xDopzUZyT4twU56g4V8U5K85dcQ6Lc1mc0+LcFue4ONfFOS/O -fXEOjHNhnBPj3BjnyDhXxjkzzp1xDo1zaZxT49wa59g418Y5N869cQ6Oc3Gc -k+PcHOfoOFfHOTvO3XEOj3N5nNPj3B7n+DjXxzk/zv1xDpBzgZwT5Nwg5wg5 -V8g5Q84dcg6Rc4mcU+TcIucYOdfIOUfOPXIOknORnJPk3CTnKDlXyTlLzl1y -DpNzmZzT5Nwm5zg518k5T859cg6Uc6GcE+XcKOdIOVfKOVPOnXIOlXOpnFPl -3CrnWDnXyjlXzr1yDpZzsZyT5dws52g5V8s5W87dcg6Xc7mc0+XcLud4OdfL -OV/O/XIOmHPBnBPm3DDniDlXzDljzh1zDplzyZxT5twy55g518w5Z849cw6a -c9Gck+bcNOeoOVfNOWvOXXMOm3PZnNPm3DbnuDnXzTlvzn1zDpxz4ZwT59w4 -58g5V845c86dcw6dc+mcU+fcOufYOdfOOXfOvXMOnnPxnJPn3Dzn6DlXzzl7 -zt1zDp9z+ZzT59w+5/g51885f879MweAuQDMCWBuAHMEmCvAnAHmDjCHgLkE -zClgbgFzDJhrwJwD5h4wB4G5CMxJYG4CcxSYq8CcBeYuMIeBuQzMaWBuA3Mc -mOvAnAfmPjAHgrkQzIlgbgRzJJgrwZwJ5k4wh4K5FMypYG4FcyyYa8GcC+Ze -MAeDuRjMyWBuBnM0mKvBnA3mbjCHg7kczOlgbgdzPJjrwZwP5n4wB4S5IMwJ -YW4Ic0SYK8KcEeaOMIeEuSTMKWFuCXNMmGvCnBPmnjAHhbkozElhbgpzVJir -wpwV5q4wh4W5LMxpYW4Lc1yY68KcF+a+MAeGuTDMiWFuDHNkmCvDnBnmzjCH -hrk0zKlhbg1zbJhrw5wb5t4wB4e5OMzJYW4Oc3SYq8OcHebuMIeHuTzM6WFu -D3N8mOvDnB/m/jAHiLlAzAlibhBzhJgrxJwh5g4xh4i5RMwpYm4Rc4yYa8Sc -I+YeMQeJuUjMSWJuEnOUmKvEnCXmLjGHiblMzGlibhNznJjrxJwn5j4xB4q5 -UMyJYm4Uc6SYK8WcKeZOMYeKuVTMqWJuFXOsmGvFnCvmXjEHi7lYzMlibhZz -tJirxZwt5m4xh4u5XMzpYm4Xc7yY68WcL+Z+MQeMuWDMCWNuGHPEmCvGnDHm -jjGHjLlkzCljbhlzzJhrxpwz5p4xB425aMxJY24ac9SYq8acNeauMYeNuWzM -aWNuG3PcmOvGnDfmvjEHjrlwzIljbhxz5Jgrx5w55s4xh465dMypY24dc+yY -a8ecO+beMQePuXjMyWNuHnP0mKvHnD3m7jGHj7l8zOljbh9z/Jjrx5w/5v4x -B5C5gMwJZG4gcwSZK8icQeYOMoeQuYTMKWRuIXMMmWvInEPmHjIHkbmIzElk -biJzFJmryJxF5i4yh5G5jMxpZG4jcxyZ68icR+Y+MgeSuZDMiWRuJHMkmSvJ -nEnmTjKHkrmUzKlkbiVzLJlryZxL5l4yB5O5mMzJZG4mczSZq8mcTeZuMoeT -uZzM6WRuJ3M8mevJnE/mfjIHlLmgzAllbihzRJkrypxR5o4yh5S5pMwpZW4p -c0yZa8qcU+aeMgeVuajMSWVuKnNUmavKnFXmrjKHlbmszGllbitzXJnrypxX -5r4yB5a5sMyJZW4sc2SZK8ucWebOMoeWubTMqWVuLXNsmWvLnFvm3jIHl7m4 -zMllbi5zdJmry5xd5u4yh5e5vMzpZW4vc3yZ68ucX+b+MgeYucDMCWZuMHOE -mSvMnGHmDjOHmLnEzClmbjFzjJlrzJxj5h4zB5m5yMxJZm4yc5SZq8ycZeYu -M4eZuczMaWZuM3OcmevMnGfmPjMHmrnQzIlmbjRzpJkrzZxp5k4zh5q51Myp -Zm41c6yZa82ca+ZeMwebudjMyWZuNnO0mavNnG3mbjOHm7nczOlmbjdzvJnr -zZxv5n4zB5y54MwJZ244c8SZK86cceaOM4ecueTMKWduOXPMmWvOnHPmnjMH -nbnozElnbjpz1Jmrzpx15q4zh5257MxpZ247c9yZ686cd+a+MweeufDMiWdu -PHPkmSvPnHnmzjOHnrn0zKlnbj1z7Jlrz5x75t4zB5+5+MzJZ24+c/SZq8+c -febuM4efufzM6WduP3P8mevPnH/m/rMHgL0A7AlgbwB7BNgrwJ4B9g6wh4C9 -BOwpYG8BewzYa8CeA/YesAeBvQjsSWBvAnsU2KvAngX2LrCHgb0M7GlgbwN7 -HNjrwJ4H9j6wB4K9EOyJYG8EeyTYK8GeCfZOsIeCvRTsqWBvBXss2GvBngv2 -XrAHg70Y7MlgbwZ7NNirwZ4N9m6wh4O9HOzpYG8HezzY68GeD/Z+sAeEvSDs -CWFvCHtE2CvCnhH2jrCHhL0k7Clhbwl7TNhrwp4T9p6wB4W9KOxJYW8Ke1TY -q8KeFfausIeFvSzsaWFvC3tc2OvCnhf2vrAHhr0w7Ilhbwx7ZNgrw54Z9s6w -h4a9NOypYW8Ne2zYa8OeG/besAeHvTjsyWFvDnt02KvDnh327rCHh7087Olh -bw97fNjrw54f9v6wB4i9QOwJYm8Qe4TYK8SeIfYOsYeIvUTsKWJvEXuM2Gv0 -n54jufeIPUjsRWJPEnuT2KPEXiX2LLF3iT1M7GViTxN7m9jjxF4n9jyx94k9 -UOyFYk8Ue6PYI8VeKfZMsXeKPVTspWJPFXur2GPFXiv2XLH3ij1Y7MViTxZ7 -s9ijxV4t9myxd4s9XOzlYk8Xe7vY48VeL/Z8sfeLPWDsBWNPGHvD2CPGXjH2 -jLF3jD1k7CVjTxl7y9hjxl4z9pyx94w9aOxFY08ae9PYo8ZeNfassXeNPWzs -ZWNPG3vb2OPGXjf2vLH37T89cHIvHHvi2BvHHjn2yrFnjr1z7KFjLx176thb -xx479tqx5469d+zBYy8ee/LYm8cePfbqsWePvXvs4WMvH3v62NvHHj/2+rHn -j71/7AFkLyB7AtkbyB5B9gqyZ5C9g+whZC8hewrZW8geQ/YasueQvYfsQWQv -InsS2ZvIHkX2KrJnkb2L7GFkLyN7GtnbyB5H9jqy55G9j+yBZC8keyLZG8ke -SfZKsmeSvZPsoWQvJXsq2VvJHkv2WrLnkr2X7MFkLyZ7MtmbyR5N9mqyZ5O9 -m+zhZC8nezrZ28keT/Z6sueTvZ/sAWUvKHtC2RvKHlH2irJnlL2j7CFlLyl7 -Stlbyh5T9pqy55S9p+xBZS8qe1LZm8oeVfaqsmeVvavsYWUvK3ta2dvKHlf2 -urLnlb2v7IFlLyx7Ytkbyx5Z9sqyZ5a9s+yhZS8te2rZW8seW/basueWvbfs -wWUvLnty2ZvLHl326rJnl7277OFlLy97etnbyx5f9vqy55e9v+wBZi8we4LZ -G8weYfYKs2eYvcPsIWYvMXuK2VvMHmP2GrPnmL3H7EFmLzJ7ktmbzB5l9iqz -Z5m9y+xhZi8ze5rZ28weZ/Y6s+eZvc/sgWYvNHui2RvNHmn2SrNnmr3T7KFm -LzV7qtlbzR5r9lqz55q91+zBZi82e7LZm80ebfZqs2ebvdvs4WYvN3u62dvN -Hm/2erPnm73f7AFnLzh7wtkbzh5x9oqzZ5y94+whZy85e8rZW84ec/aas+ec -vefsQWcvOnvS2ZvOHnX2qrNnnb3r7GFnLzt72tnbzh539rqz55297+yBZy88 -e+LZG88eefbKs2eevfPsoWcvPXvq2VvPHnv22rPnnr33kg8HLh2y2/0kWPLh -wIa1Xr7+A5Z8OHCbOvZLhx5Uqny4IoW4aXKyYSRY8uHAr2vYplaAJR8O/Pb9 -HU+LOKXKhwNPNFlluAIs+XDgRvuH3r4Jlny4Qlwvp3fY1vSQUuXDgT3mmrh7 -gyUfDtwo26pbCljy4cDzXabpCIfl3GVwhnnix9GHZR/uDv57Ixo+2H9Y9uHA -ucf3FFQeln04cKiD/fXeR2QfDuzUTasg9Ijsw4ELXarulR2RfbjbCvFZxq8P -bY/KPhx4plfbOouOyj4c2MNpcZdLR2Uf7t/vX/phol687MOBDd9siJgcL/tw -t/D9iHLIT4iXfTjwkQ099P7Gyz4c+FrGSPdhx2QfDmxqFZ4cdUz24cCOVT91 -Xx2TfbgChfj7Y4S/1XHZhwO/6+5csfq47MOBqzMHTSw8LvtwYJOtM8uMT8g+ -HNjjRJq73wnZh7uJ61l98UPGCdmHA2dkfFmtkyD7cODxKeUmrgmyDwfWUft9 -LT5B9uHAjttGBP5MkH24fIWYEFDSdfBJ2YcD30jcUbXjpOzDgT16hqdWnJR9 -OLBdk6wQy0TZhwM7jOrksSpR9uFu4H75aVG/O4myDwf+nZ/S0fiU7MOBSwzv -NfU7JftwYOeLtoYXT8k+3HWFWHC11KhukuzDgU/YpBhPSpJ9OPD8umUWx5Nk -Hw6cMqKXw+8k2YcDt//51G/oadmHu4bvg/7N6KjTsg8HTt9bffPVadmHA8fv -W6hlkyz7cGDXRpYO65JlHw5cpd1zV0my7MNdxXoYFPqh9RnZhwMfnttm2MIz -sg8Hnv9aO/HSGdmHA/u/FpsZnJV9OLDdwswtnmdlH+4Kfn9EeP3TZ2UfDny5 -T8KOmudkHw6ss7pZ61HnZB8ObDb1Ydr+c7IPB275rGpC1TnZh7uM9UNjfE27 -FNmHA7/LN0iKSJF9OHCnfm28H6fIPhzYcHpYB/NU2YcDG/Rx+Lw8Vfbh8vD5 -vzn9UkGq7MOBZzcti2lxXvbhwPpmh5b7npd9OLBbzYKZF8/LPhzY7OAY13pp -sg+XqxB9DW1c3NNkHw5s7hY44WSa7MOBw4ObTle7IPtw4JyVLQJHXpB9OLCh -9+odey/IPtwl/Hw9h6dVXpB9OHDGX/9XYrrsw4GbntFsHpEu+3Dg415qro/T -ZR8uB5+XJpNizTNkHw48o7hVVXCG7MOBnXY7Db6dIftw4OcL3xw2vij7cGDr -GR/qzbso+3DZeL8D3IKzL8o+HPjVyZ4/9TJlHw78VHddoGem7MOBi+PsNJIz -ZR8OPGSezw6NLNmHy1KI95dpdnXOkn04cO8Cw6K4LNmHA/eYHbn8W5bsw4FP -u4VZDMqWfTjwnviflTuzZR8uE9e7cfeTX2XLPhzYaI7lStsc2YcDa3xRjNuQ -I/twYOMqR6v7ObIPBy72MWxmdkn24S7iz5/jor3skuzDgXWrDTRuXpJ9OHBZ -K0eNFrmyDwdOeV5bxy9X9uHA64b1b56VK/twGQrRwv2vtV6e7MOBL7W1neCZ -J/tw4NEnvq9OzpN9OLDhD9sUxWXZh/v36/VrfBl7Wfbh0hWiT/UImyOXZR8O -fPea8Zqfl2UfDtwyaNm9oVdkHw78tqWHze4rsg8H/px2a8/7K7IPd+Hf63dN -R7wq+3BgveqRayKuyj4cuO45D8XTq7IP9+/XN9YKs7gm+3DgIWstWqy5Jvtw -aQrxS8LnlJJrsg8Hnl1vwMR212UfDtzqVDsh8Lrsw4F3xexNvQ7WKvQ3/8c3 -rv/7n1L8f4a6hHw= +1:eJxFnXdcTv//xgvd504KDWWTskO0rSOySSEZKQrRJ8pMIdkSlV0qIzJCSCgp +DWVWaCh7ZZPs2e9y7nN9f99/Po/n177H+5zzfj9f19V66hznabXU1NS+KtXU +/v33xvV//1OKWsUB5ubpCnFX3J60f9x/R+ve/7jNqQ5CEHiJ74sj08CzGwyc +1AF8uv8xo2jwl6TPqWXXlOK7xvPWFICHrrVotQZsWmXzudYFhai3sU64BXhy +3t8p1uD65zwVT68qxR0xuYU+/368ZtSaSHDh3NDee8Ca46/piGDlkFGJxeDP +6Td3v7+iFMWWjRprZijEt609bWPBi7/cXdMb3Dp42d1h4JPX9n72B9+5Zrzm +52Wl+HrvjKkJYN+akbaHwcYBZkUV4DENa30ZB5448lPv+pkK0fCHXaoCvMUk +NbE/eMzx76tT8pXi9Z/LGgeAL7W3m+gFrnNzwNqjYAuPvzZ64N4H6355BF43 +fEDL7DyluGBp0VSDiwox9XldHX/w8dHbi4aAK9o4abQCV3aY1GcZWLfGQKPw +klJsqWZ89BR49xxX7WXgcaUvGr8Al/oatjADRxw9trZplkI0rnayvperFK+s +mPfFEazxRTF+A1h9vK3nKrDRHMuVdmC7rjVF57L+vX73Ul7lKMW5Gpf6vAPv +TvxZtROceDf0aOtshXjaPdxiMPjpyVFNXMA9Z0ct/5atFJuta7QuFNynyLAk +ATxm8r0vGeB7yzS7u4A3Wuzz/AQeOs93hwb4Ul3vm+1y8PdNsNdIyVKKfx+Z +9Z0Efqq7LsgLbHX209EI8KsTvX7qgedsTG1yCRwQ6B6Sc1EpHvQMXvcDbDPz +Q4N54Ee2Dl/NchXi84VvDhmDjRpoeU0FO8c6D7mVqRSdKotubgfPLG1THQJe +n7697zVwx2aT483B2ZsnHasBH/NWc3ucoRR/ehs3tbikEJuf0WwZCe7R9+U6 +b3Dm34BXIvg/g+NfY8Dveo1Ir7qgFPe/med1E2zos3rHHvD9LNtbGnkKMXdl +q6BRYIOdNX3twBEhzWeogUfOvnRsNtjcPWjiiXSluGbAhqbxYD9DW1cPcGYT +p/VlYLMDY90agL9VNfqmla8Q3WsXzbp4Xil2y7/nJYL1zQ4u9wN7x+67NR88 +u3lFXCvw3nne4mHw4cIZl4rSlGL5kC7H74MN+jp+Xg7WbfW5qe5l/H1nhHcy +Bw/9mrp+ILhL/3Y+j1OV4srrwd8Cwe8KDJIjwef3OUxLAv/VmFDbHvw5QOv2 +U3DrZ9UTq88pxc6ON0WjK/j7TnuYvg88zXTH8eFgndUt2o4Gx/2a1CwEfLlv +0o7a4NKbxqEp4PmREQ1Pn1WK9Q+9/PYKbL8wa4sXeNCy49NaXMX7/VpsYQBe +Pmb+bWfw/NfaJy+dUYrnOtr1Wws+NLfd8IXgj2pqSefBMcFhH9qCO5RdalYF +rtbutassRSlOPbYh1OSaQnRrYum4Dhy90um7Kzhx70ItW/Dt8YbTN4Iz9tQU +vjqN9azb/dtZ4E36hTHR4AGK+H5fwR1/PvUfBl5yzzup43V8X0f2dvydrBRT +TnVp7g6eX7/C4hj43brPoVvAx21TjSeD27qnfc8HF10tN6oPnmy5fPpvsMtF +O8OLp7CeaQ0s7nZDIZYZ3m3uDy58rGU/Dfy7ILWzMVh57mZSFHjt05L+t08q +xX6bdjQvADuO7uK5CrzYy21DrQK8fs2yQy3Bp+za/LACe/aKSKs8gfWswavp +PuAbJ3dU7wC3eXG8eDc4KbCs+xDwxAvz7YvBTttGBv1MUopbt9idUBbi/VP7 +fS0RfH2mWove4AmpD0zcwBpi3gZ/cGbml9U64N6Nwn4cAFc0FD9kHleKC986 +zagAex5P9/AHH882LNEpUogmW2dVGINf7Lxv3x9ckzV4UvExrGdz4k8sAr+z +cqlcDXZ1mNniKPj3x8gAa3BE065hj8BO1T91Xx3Fevbx8w/9mwrR1DoiJRqs +fjltxhDwtcxRHsPBdnHLS5aCD2/oqfc3EevZ/IH9T4F7RjsWJIETh9Y7WQk2 +fLMhcgr4WatbLZreUojPln6YpAdu9m1HmCPY03lxt0tHlOLYG24/V4Jnebev +twi8Mb6N97l/Pz/z14f24LzFr0regotdq+9WHMZ65pjUv/VtrD89tIrCwNZt +F5wcCw5zdLjeBzznt13LUHDesd1FVYeU4qFbahszwJNGNr6/D/zoUN7PanCm ++cmPY8CNg8O82xXj8+U6XUcAO411Lp0IbpJj3SP1oFIM7WQ0IALsOdfEwwec +rf7gZC7YaEanbc3Bv8riW/749/P3DbtVmID17PjMjWYl+PNMVhmuAP+3quuv +KeC37297WYD3T/jivR38upZdWuUBrGfdzpdeBW+akmIYBW4khAyoAber57B0 +GHjk/YGnepTi9azz8vWf/UpxbXK9Vt7g8qGxHifAmetvbYwB/33s+WAq+Lv7 +zl9F4I7X7LwMwN2sJs/UKFOITZWtq/PjleLMeiZltuD4aIN1geC9T14NmA0+ +vMqwrRm44lzSqX3gLpdNrz/ch/UsfEGrMvCAGX0DN4OHTeu5SeuOQmzk5dnN +Abyyp/rvvuDKixHvv+1ViukN82fOB2suzzt9BPz5RVjZIfC7+Nor3cBmGc4O +98H6XQeNbwCettUouWE5fj+TCOucPVjPZj1oNRAcv/p+84XgUnH/pkBwsEuX +eh3A9Q1n/T4OXh0VUuvebqxn77rOego+6FSqFg5envOlzLACr29IJ8EenBp1 +3mE4+D+z5QZf4rCezQlJXg72GHe70yFwx4GDWqeAdWqbDJ0IntpMO/wVuLSH +v58OeFf1rd/N72L9fZcalxWL9ezyzlnO4Jjuf4rng+vtnnxnDThPsNNrDx6w +wGTgefBUvznj78YoxaXDXid/APf0izm4CZzS+kRrk3sK0Urr4p9+4PffFoS7 +goc5lE/8sgvrWUHPP2HgdcYvsg6B3fer+2SB9Q6+7DoJvCMw/84XcLuyewfq +g4tGbRzY8T5ez7PZbXKisZ61G316MrjfsKjDC8H9/hgZbwF32ulu3RG8+PaD +8HzwtH36N+5HYT07vP/PL/CO2WdnRYLfBM/y6fYAr7f6oAYO4DYu3cq9wJ/d +sy9836kUJ3X+OjAK/GBT+3lHwVtrpZ++Ae6zJaCbB/jGnRDjWg8VYue5J7/o +gTWSBkVYgW93u5Wdv0Mp9lmt/XcWeGFx+Y4g8MKJt312g/+bmj+/KzjJPKr8 +Ntj0UdT4p9uxngnug5SPsL6NHjVwB7jVA5OUXuDaWa/shoFdT7829gfP7TrN +umabUowMPRFxAGyzP6tnMviKx8K/5eCupn8HzQDXsu71n85jvN7nGk9qCrbT +rlVhD97sqRdQuFUpznuaP2gR2Njs9a6V4MTUjSmJ4C5NY/Otwc/CR7d5BFa3 +6PTrzRasZ9MbR+o/UYg/lm6x2gMe2+vh38HgDTXFi8eAN+ke+G8puH/m+1wl +OO/lrIqT4Kych4YXNivFmoxugyvBGXoH5/qDrbd9TWnyVCHWOdO/xBTs55Pe +xhEccPJ034pIrGf9VkSuBDfU/nFyE/ix4eCas+CHhfU79wc3fq/t+/bfr1f/ +fuxbhFJ0zr1d0eqZQrxw8IT1UXBodNTgsWDXazZXPMA5fu5n1oN7zwufagD+ +NdDUJANcmZBc+2q4UrRo/iayGvzcd//RZeD/Pp2oafsc95OFHm49wAeuLPSd +CI4pfmHwchPWs9297ob/+/GVNqUx4EYLaw3JBcc/d4pzAo8cfvnMd3CFeo/Z +CvBa400mZpUKMfZRhcP5jVjPvo/ePAVsGDrY1A/8vaCx2nbwOkVQPVOw+YGH +vlfBgyb7/yoPw3oWdODuX/DFqI7Vm8D7nHyG9HihEBdkHajqD65oZ352Brjm +/uOv3zcoRb2/X01iwFrf79c5Dh5WnL65COxmFNXEE7zqyAo1jZcKsWCQro0R +OH354Nm24JHhg91uhCrFLy4693zBj7/Zha4Am5kVD9kH3h/6MsMaPL129NlS +cP6oUb/ersd6Vu5uqvVKIYaP9u+7D1yWZLqlL3hizNAN48D117xRmw+Osbj7 +oB548KSTsw+BK0yN7bLXYT3rvujePfDpxS1iF4FTlb2HNnytEO/bFgpm4I8P +ap1zALfw6xH4ZC3Ws5TLpoHgcW2Hft4B9tywactx8LLpugtHgHdNGaP+FBxr +t6GmFrjYuskcwze4vh5Njji3BuuZzqN7w8CT8kM7zAY7PDswdDk4eGv9q23A +S9N8zp0G723Rb275aqV4JsK87SuwrV8L43Dw++nftjR/qxBLtiSUDwC3631B +3RlstPXOzp+rsJ7prZyzBnwhKNn9BHjnq8H308CRY626TAcXZeoM+wAO6uxR +pxlYc3vxuTbv8H5qdXtycyXWs/+i27qCw//sz18LDrT32BoGrtLOON0bfMqo +ba0scPGgwMOfVmA9e/9mzhdw2Jk7Bw6D21w6eb/De4UYMu3OYXfwpF2Lhk0G +d/UISDEAb/XvnboZ3OnU2cvXQrCeDardLh/cbMa2pyFgRYsrW3+Bs0MbKGzA +fT5vqtXtg0L82L59t/fLleKiq2P8vMBbRtydsh+ctKfJg53gw3U67JoAfrnw +0bAb4METGtxrAG41IiFVvQrv/4QIk/xgpTi+zX/trMCVDQ/NXwqO/GG+bRZ4 +SZjL9R7gq4Xfau0G3yiN7vR6GdazhAt+t8ET/8zbvAfcc8nKB8JHvL71HquN +A89zHjK8F3hfw8cLtcFH29dP8wMXGM37nLMU69nf4nYHwE26bl8cCG5eEr2t +HLxwyhCFOXhsokdtnWqF+CJ9Q/SLJVjPQtr624PXjpxkFQfOG/f2wcJ/3Cat +fAy4xuzU8ERwlyH7V2mBbeoEpD0El11vbJ0dhPWsond7/U+4npxv/DEAfPhE +7e2DwfVM4k91BT9ec6X2UnCGbkpQZaBSbOIW7n8SnL5t5PBYsHOPsQ+fgwvS +ZpuMAW/QbDqiyWdcX8L162iBcx4+ShsJzjTu+yZrsVL8nZLQfiU4JuRdeQDY +Iuy/7WfBoWktirqCfad2r/MWnHH35o3KAKxnNt/9W31RiCs+adyOBT/QyXg4 +BmzbIO3hGHCj5ytHrAePE9990gI7nh9y/gLYZ3Nc/ZxFWM8i63eoBusb3Oge +CL44o2R726/495UtcjMHf++9q85EcMsXseEvF2I9058yNxxsPqbPld3gma/b +PsoB25q51h0H3nfx7Yjv4MEhr511wHe3nzrf+ZtCXO7+ed+lBVjPfAM6TAE3 +L5v/cwl4eP8+O7aBfb/NGm8BXtW4jsZVcElhSeab+Urxwocrc/+Cb805bRYP +/nIp/FH37wrxU6VG/ARwl5ixI2eAHw640lIXPH1u0/RdYOeoP/FX5inF3YMf +dygCt/i8t2sIuKzFwR11fuD7Mi0l2wbc4Mt/GrbgBb+t3KrmYj271n2eL7jB +VdOag+CQvd8f7QWbPlh+yB2cuihjZCm4avCg8Ybg6hGr0uv+xPNsk4CGhf5Y +z0yGduwLNvDSvbkG7Pmz/s55YBdLg519wLuKSjQOgVvvDp7+1Q/rWcKueff+ +8alRvY6DtZdOedzgF+4vg9c2ng52GN3O0QFc2qjN3+bgZR3epS8GDw81fl0y +B+tZzamOx8FLXq+6vxH8oSRg5xNw0OAhdxzA7Y72URj+xvcjZXbFn9lK0WNF +nfnDwCftPz9NAe90vfo4GLxSvfyzL/hmlwjH0+AJtZtptwVrarhceAlOG5/e ++YGvUrS/27RT8z8KsVej1NHbwYEnH+90AocPbbhiJDh57UHFGnCAMvesAvzG +zXd+GvjmlKLPGf8pRROLHk/eg0O9LW0XgSfV/eHY5i/Wmy7Vq7qCtz3KuDAO +PCRP484LH6xnZ1Z1CgNH95vTfQ9YsXFo1EXw81NmW13BfTwbCF/AqzqLfxqA +F9mWzu9Qg/vpiwd8r8xSiifqxzxxA+9e4fY8BPzy+ZRRm8HiquleduDW6e0y +8sDBdzJfV8/Eerb5Xadf4HabvQMSwZu9k6O6qgmifq67thf4ap/Fghe4V8j+ +w83AtQ36LtgJPnjPckSJN9azN3WeXgcveKX7fSN4ftbVUerqgng3ze7IQPDR +HREZlmATr6OeNTOUuE9x6TwLfOL7dJNz4OYDmkXHgT9vmPnWD+zS5IlwG7zU +PPl8B/CmqoMLhFqC+Pa3/eYn05Vifp7v057g7+pGfrvANTE9nPzAvmPMx44B +28z7kbEf3EW5qZ822G9IZudycHdzM8u8aVjPWq6O1q4tiOueancLBj/+MlRp +D3bq0bW7DbjJ9QYLF4IvW0T0/OilFEfvK316BNzzd9fhR8AbAmKcHoJ14rS9 +PMG5I6dm6tURxLQu7Vc2A/82aW82GFyUvexwiadStPz1LnoJ+PPsBmWbwL43 +k5UnwY8H3dMaDE44uHjhc7D31MeD1MEPlvZ91lhDEOfcbrEhbapSNByj4TwS +/DFpS8k8sGPHa5krwDX1+rYzA69TizQ7C86uabm8cgrWs1KXXW/AC2ItH+0G +/zjaTLOVQhB9fi0bNB5svvLJwjHgel1/peiCZ40/9GwduHTE4U7XPbCedZ3t +fAE80XfdodXguxoWFz+CB8Tv6NwXrHfvh1lbAa+XRunZ7+5Yz05l7poAHnvY +fugp8Op1qzXDwT0P3HvqA74wediiHLB6/fhVpuCvFg2ffwNf+L2188PJWM+0 +ypw7KwUxatXJuzvBMx7HXPQAl6Z/i3QG7z47tcs28LXz0x3rge9sbB9zBfxk +xx+9PDesZ17vNf+CY2ecfxgMHmJ3elF3TUHc0m/3KVtwSIPA59PB/r0OhX2a +pBTTKvuO3gX+PrvE9xi4Ol0jqxBcq8rUZQa405ZrXerUFcTA0p0OrcGeMyNj +bMDTbM163Z2oFGP6jqvrC77X9YntNnCxQfOAveB6N8/0cQRrv33yvARsa3Fk +qCbYIfvQ6Lpagpjpd94tZwLWs52zs/qAteJeLVoKPjPbous88L7bPaKswR8G +/Iw5CG7dISrr43il2L7pxbr3wFZnjD4mgj0+rg5oUA/fv80n200HR+UPqxwA +diqdOq0V+GZswzGLwSZRnY5UuCrFuvPLso6B232q+3Ur2H5obNcn4EW/awY7 +goNaecY20hZEhxua8Zrg5K/ttYaBK5a2q5M7Tim+vf4+IBi8ua3rf8vAJvGn +K5PBjx9G37UBuy0OHPMS7Jj93umTC9YzRzG7mY4gBlU6Fx4DF5gqujmBjabl +jfYGK35fi10N/uAy+KExuO+tSK008OPiMv/7Y7GeHRq3+D34ybd5WjvBJ5Y1 +f2FcXxB/32l61Bn8cszTMePAjpEFo7XBrTsdzt4Abmi3odblMUpxgvqcbhfB +G9+OOrcCvLnMIu4z2DS7xYLe4GvHfmp1aCCII4s/2XwfjfVs1cXFbuBtvQpr +J4N7TVjzIhIco3+ixBc8v9vwsXngJgu3HW8PPqbQzfkJvh+4bNNTZ6xn98q6 +dW0oiPm9Zi2IA7dIjo3zBBeVjPMcD3ZZ71lvJ1jhMdBVHxzu3iHwOnjTF4sx +hU5Yzyw/vFDTFcQ9J4zHhYLV6qWMtQRvSNSZ4gC2eRKYMxOcovbdXw3sf040 +jwNvv3p//flRWM82KXbfAme0yTy0EPzE63o9QU8Qi9vuKjAHN+m5ObAnePN7 +v19vHbGeNXR9OQd8ZVvfrofAG140d9kPdrdWzPIE5154mnMH7PQ+J7EF+M+W +w+ba+oKYVLLoc/lIrGez5uzuB96rbD1gG3i2aKm9EOy5LyN6FDih0a/AI+Ah +GY7ftcAP3158+QB8ftHtSfkjsJ7lrHHRMxBEy9eDL68Aj4oanjsIPNw8ya4P +eN0c3e5LwIe9NU7/GK4Usxzu7D4B1jw61CIF/KNpnPZzsL3hsvN+4O7VnkGN +Gwlin7y4IZ3Bsy53eDUC/Ks48cGLYUoxPu6DywpwuPv+wHjw3fkpuWfApivW +NncH6w8L6v4G/Md1TH4T8PDW/fa0NBTE2Wp1A0qHYj37ptAZA3669WDXzeAL +N64HrQPf7975/Qjw1/jNr9LBn75uT9YEdw10HfcRfOtPZfClIVjPRrW4ZGok +iL29mo4OAe9p+6z7BHDdQT3MeoPv/D68ZxO4fY6Zzo/BSrHh7Tk6OeDoL5pf +T4OHHLZc8g0c8CvvmR94RfCvV50a43rw0bOiMzhtbNY4D/CQrw9LXw5Sip86 +rb20FVxualexH9yp1ogeV8C6cf7PPMBed3T3/gEvWrL6SzNwzPE7Ot2bCOL+ +B/O1ywcqxZJVcUumgwc/6dN5G1h7otfraHDHA0+cnMADzTu6FoJNHdyXaYOX +CVWXajcVxE6Pkk9ecVCKZ++n9LAB99v68M1q8IfkoL3/gVcFP+5sD24f2q/+ +XnC7i+fm/x2A9cxDWFoC9p/vlZMGjrK68VqzmSBeTHtqtAh8q94W1z7g1Sct +F/QA133qmjcXPGzR+Dsf+ivF/qktLA6CkzqOtD8KDgp/tvcueNpr3WRv8Olp +R+o3aC6I1iUJHU3Bb3v6LR0Arl1X8/Bje6Voqmv1JgCcedCmSxzY7eUv12Pg +BTcs0iaAt2dk5T0GO0T/Hm4ILti61qJRC/z+ZuGVt/spRcFnxL6h4FYJb9ZE +gPv202sQDC5r07DLCHCAYfnSZLB63t+7muAT7+LevAB3xPN8nqgUX+V4jW/W +EvcHX7oMXwluHd0xfxS4Uc4cHRE8wa/KYjXYvceCst99sZ4NPLMvFXxiep+D +qeBrzZY0eA+utfTq0oXg2p/6LTNuJYhe240m9gD3uiK8dQH/uNWub1Ufpbhg +943xG8A/nb91OAY+tmBLfib4rNWaprPAlcPGW34Gb427rdcO3MK4ZXz71ri+ +JT7QfdZbKY77/qyBGzhpSYLRXnB4wZFlkeA2Fh1NJ4Mv7/d7ewlsXO1t0xSs +FmQ14Sd4WdkU5zu9lKKt0+/8LsaC2FxDf942sH+7bEtP8J9dy6KdwUf+rI3f +ATa7sOdyffCT2yMaXgeXrV/853pPpdj0iF6wWhu8n22UtqHg0cvL31qA9xwZ +FjQIHOaye8JMcFC//rl1wLmdp12OBQ/UfK+XbYf1rFYnq1vgbW2GzQoGW5ZX +xStMcP04NT6/F3h20pmGPcGLS406/bRVigdXLwmeA953au22s+CHE+3fxYMX +eR9QLAAbdVdOvAP+1th/WXfwKGXB5XqmuP6/evX7g41SXP9gi1U/sPd3nRXH +wFmnx+9fAM6d+VDbB/wztKXuEfAB9wl72oO7T3ke/MD03/V5mW2ltVL0sU58 +p9tWENOnDi+PB8dr+08cBNZKyQqeAr731OpKEFiv0YPOLcH6ab+tToC3Hdrz +6J6VUhwRkb3/GdgnXLkrGrx6+jrdxu0EceU7/Umu4IxeI5ePAD96ntumEfir +rv77EHDcLsPq25ZYz16VTzwDfm1eLz8SPCNz95XX4LrX9+5zBO/ZNs26ZXtB +dN1YtkobfMen04HRYIeoo77XLLCe2X/UXQcep9fKbT14qNHZ5engDi3NRw8C +r3i/5H0V2PfRA0cN8Plc+0mmHQTxVWD70Tk9sJ5FK6+OBwfqaruFgDv7F1hv +Aute2+DbF+w1aOuBbHDa5fhVf7orxdjmE/S+gcO7jtl3HlzyqWVIp454vdvE +5C0G61x9/t4dvO9K4Edr8MA9iZO2gtc5fDD+aq4Ugxf6X70Mfn3++4TT4LPD +rW3+gJ2ctkfNBVcZ/zlg3gnfx475D7qB2//I1psOzvcJ7fihm1KcUrguJBo8 +1u7hkmPgqAMjPxSAX6fllviAbwXpu9XujM+nrp1lR3Bd54qr1uBG0/vsetkV +61n7PTb/gSsqioSD4CV/pyXsAatvrwqcBj5d3Em/pPO/++OYz23A7458DNE0 +w+djfvH8J12wnoWc/dAbbPZ0+6894MnjlrrNBaeYPV3nDt5u1v9aAvjH4nPN +WoALa2va3gWffGdw9p4Z1rOKgoT6XQTx+PGf43aBxRNb9QeAbz+ZVjMeHLBm +wooAcLMTLseMwCcntao6Ct7Z6/qUss5Yz7pXuj0G+x6/1Gw72Fjz6DWDrvj7 +drJ/MAY84aG/7VCw6V0xQQ+8JcX64DLwxScX59/qhPVswx/95H8/PjNrSCS4 +ztScFS/Az7f2Mx0F7mWzvqppN0E8FCYK9cELdBwnjwJ3WnThw42OWM+e6V9f +Be4fdPZBGLgyrcI2FVyWaVY8DNwycs/Bd+AXPi2L6oLHzZhuYGwuiGsSNty6 +0kEpRvTuvNIF/HC7/9114Mt61VWh4O5eRa8HgdVfn52cCS62PKgmgG0vLr3+ +Cdytx5dmee2V4tzt/e3adxfEvJWpfVeDj/yneWgSuIvjJ+8B4Kf2hQaRYL0L +e3fWBjdtvG3lJbD1l5yC7HZKccyHCR9/gOe2HK+1Ahx2qZV7lx5Y7z09RvYD +X9pVeX0q+OurOzvUwH/8j9rtAE+syHqR2VYpWg2ee+gaWMetSZ9g8OwWNo3U +LATROfpxdB/wwc9/VlqAV6Q1+vvHFOvZ1ZyP3mCdynMzLoCN9q53jwUvdsgv +WwIetcjxxk3wZPV+I3uB148w6KmwFEQ/e9Nrv0yUYnabu4fswHPN5408D/75 +Y0+jOWD7bx3uBIJ7FE1fFQ++mT7Y2w7sk9C5ugzcLrHg7482SnH/kmr3elaC +6PEmbVcq+J7zuRsiOCmhXt/FYIMOy3ouAE9S5Ly0AY+o6X/4MDivx/2d342V +4poSTcMH4CmuExzPgTMSC1fpWuPzHmtbLwD8LWRb9UCwp1lgoTW4q+tEjyBw +S/OmUd9aK0XvLq0LksDJt5rOPAveU+dFz2dg9V5BfReByyuOHjaywfP2dptm +1uCGJ+cajgCf1R5d87UV1rO1NqtDwMOvXnl5BrzC7W91CvjL1113FoLP98j1 +eA3+e+FygRX4s2ZoQQtbPM8Ocbz2tSXWs0eOvUaDi3O7FJwBTztjcGQtOGH8 +9LKF4Niwu4bp4MruXyqtwKVT966uAo8Mqvj9tQXWM9sZn0zsBDHRzaDxWfCg ++mZTxoOf1TnQcxE4+Hl1wUZw9a51Xtbgc+fP9coGvxiRueVbc6xnkcuOfAW/ +dBh85Sy4g/cAo0498XlPMtYIAE/pU3eNO9ggZcQgG3C0ftGnLeAfKy6Hf2+G +9ez1timXwRMGbH5wDqyVNbHwN/iGyZEei5vJPlwvPG871g+3bSb7cOBdHy9W +/Wgq+3Dg9ZYZrmlNZR8OnDhIkR/YVPbheuP9GLOzZ8+msg8H3rNm3plfTWQf +DpystcM6vYnsw4ED69fKXNJE9uHAwzOSh/duIvtwfXB/MyDx0Z/Gsg8HLi54 +EZjRWPbhwPvXezcNbiz7cOATeztn920s+3Dg9P495qg1ln24vngeigkyzjKS +fTjwsPI690KMZB8OfLFtwS57I9mHAzc5VTqltpHsw4HXHWreJddQ9uFEPN9a +71NbbSj7cOCrGzzLHQxlHw4867bHOYWh7MOBz/SMis1vJPtw4CHVWuvXNZJ9 +uH5Y/0zOBQ5pJPtwYFP12Ll1G8k+HFgvJdXvmoHsw4G3zNZeEGYg+3DgYxN3 +BI8wkH04e6wfR1widAxkHw48YP3Qg4X6sg8H7tt2bm6EvuzDgW8lXX/hpC/7 +cOB5Y8Y31NOXfbj+uN7YG/Yr1pN9OLDxYY1F2/RkHw687kybZBc92YcDH4vy ++2KoJ/twYP+QN73LdWUfboAgFsRsCYvWlX048M0m3o8n6so+HDiuo3ev5rqy +Dwee82tz7IOGsg8H3pz+os6ehrIP54DrWey0uVMayj4cOPCGVqVxQ9mHAw9d +Uu7+rIHsw4FXlN94eKCB7MMNFMQH+i+nzWgg+3Bg88ntqts3kH048NTnoate +15d9OLBvRcPmR+vLPhx4uu/58771ZR9ukCAuLFjj0bW+7MOB75rN0/qoI/tw +4Jfng9NP6cg+HFjzcOK8+TqyDwe+YPq1m5WO7MMNFsSoqZM/f9OWfTjw4Iin +F1K1ZR8OHPZw1cYgbdmHG/xvP7ifZ29t2YcD908w6ltTT/bhhuB+NlizdVY9 +2YcDB/TR01xZT/bhwG/1LL8NqCf7cOAB5rPfKOrJPhy4PP/C88tasg83FN8X +zTaVoVqyDwcOaxv7driW7MOBrzp1+qGjJftw4FXp17Vu1pV9OPDynctNttSV +fbhhWH8MB/YfW1f24cB5Ps28DevKPhxYM7/WlnJN2YcDh0z8nrNLU/bhwB4T +f/9005R9uOF4Hv+ubdNKU/bhwJHTOwc9Uco+HDil1CV3v1L24cCVQWF6M5Sy +DwfOW3fdu4NS9uFG4P66W6PcN4Lsw4GX7Pc2PS7IPhy4xignzE+QfTjw+osm +P7sLsg83EtfXgjDfLwrZhwP/mf+z8qxC9uHA/V7+Nz1QIftw4P4Tn77ppZB9 +OPB0dbdFNRqyD+coiCY65cpsDdmHA9dLcdmzSkP24cC5HUp6D9KQfTiwsGf0 +Y00N2YcDJwy7GXq9juzDjcL9lscIu/A6sg8HTtDN/+BUR/bhwI22907UryP7 +cOCaFif+K6st+3Dg3Y+bW0TXln04J3xeddeou9WWfTjwtOcvilvWln048IJw +++NPask+HLiew7aNB2rJPhy4xO7hXO9asg/njPfvQMvJnWrJPhy4UdpYx/fq +sg8Hdjy2fOBJddmHA4und/efry77cOCa2qcGWqvLPtxoQUy9ecbxp5rsw4GT +nY9NvqAm+3Bgh/St85aryT4c+H7//zb1V5N9OLB6yx5JCjXZhxuD68vKlyVX +agSVDwf2SdhQayNY8uHAbTOaWo4CSz4ceILaTl89sOTDgb/tq0ks/SuofLix +gljnnlNVFFjy4cb+e3032rmBJR8O/OvVqdBWYMmHA0/pdPHR0z+CyocDd7l3 +utdBsOTDuQjine4RcbPAkg8HfjnNSdEFLPlw4JrEb/M+/hZUPhz4Vs8VL06D +JR9unCB2Hl7lEQCWfDjwB71+j3qCJR8OrHd13rSaX4LKhwPHH1hblQ2WfDhw +7v2gkDVgyYdzFcSjhx2NhoIlHw6cKNZK0QZLPhzYtGLzuJs/BZUPB956TE1t +G1jy4cBrq4cedwVLPtx4/HmP/KY2A0s+HPhAkn+zRz8ElQ8Hnrxj+L14sOTD +gU8Xqu2bAZZ8uH+/PmKjbyew5MNNwOdHt7rPh++CyocDnwwza5QMlnw4sJVN +308LwZIPB249om2pHVjy4cAPaj/J+PtNUPlwEwXxzVb/Y9lgyYcD37cp3rsG +LPlw4CntNWOGgiUfDmwdUz9GByz5cGDLG5V7b30VVD7cJNxPfN54bDtY8uHA +C4bWyZwAlnw48E3lkNIWYMmHA4d6T/z05Iug8uHAlfvsGh0ESz6cmyD2/vi8 +jw9Y8uHAahsn+XYFSz4c+FRS7N5PnwWVDweu2nzo7lmw5MOBZ/ktaboELPlw +k3E/G2I0RQRLPhx4gPqSo3XAkg8Hnts+4c/lT4LKhwMHmm8fsxEs+XDuYJdh +J53Akg8HPnAzV68RWPLhwAPvqy+pqBZUPhz4fLL66ziw5MOBF4fnuHmCJR/O +QxC1EweWtQNLPhzYoF+oy9uPgsqHAw8N23j3BFjy4cCL8h2nLwBLPhw42Kzo +qy1Y8uGm4Pv7Q3vj3ypB5cNN+bdfoOyQA5Z8OHDJ8Yyra8GSDwe+rdNt7nCw +5MOBJ2dNbNkQLPlwU3G/oN7vVskHQeXDgS9pPQyNBks+HPhYE8sh7mDJhwPb +zbLXNgFLPhy4nZWi7OV7QeXDeWL9TQtOOAaWfDjwyu7Hg+aCJR8OfKciwsUa +LPlw4PEf2lr/fieofDhwt6NzmmeBJR/OSxBjRszSXAOWfDhwdf1Gv4aCJR8O +HNd1bnV9sOTDgVu9Wvqh+K2g8uHAOottqqPAkg83TRD1m+39ORks+XDgrzpn +lSZgyYcDb9i0uNmrN4LKhwNfLHtheRws+XDgqHbqY+eBJR9uOu7fzucutgFL +Phw4pdB8/5/XgsqHA/vsG1ScDZZ8OPAxP42668CSDwd+v2iWwwiw5MPNwOf6 +y4I1umDJhwNvb9fuRtkrQeXDgUcMW9o4Fiz5cOC4uEU+U8GSD+ctiN7uBjnt +wJIPB469NrbVu5eCyocDD2pts/IUWPLhwKvjzr9ZBJZ8OHBYyMPxvcGSDzcT +75sy/kYtsOTDgW3magy6/EJQ+XDg5N8aeRvBkg8HTqiMHzoaLPlw4FOzHxQb +gSUfbpYgRtw+7fWgUlD5cGDtMW1/xoMlH+4fd+2+bSZY8uHA6+LLLLuCJR8O +HF5lcO/zc0Hlw/ng+zj27do0sOTDgV82mGC7HCz5cOC8qZOrHMCSDwd2CP1+ +VAss+XDgp3nt5tx8Jqh8uP/wPrm+sdoBlnw4cNlS+zpuYMmHA29Z1LnMGCz5 +cGCb1YeSXj4VVD4c+ERlysbjYMmH88Xz8d3R/vPBkg/n++/8JGSCHVjy4cA+ +K/oMUQNLPhy4Jnl977wngsqHA9sFTrUOA0s+3Gx8DwwuWzmDJR8O7J+X2tMI +LPlw4DU3rAY+eCyofDjwQp8+LvvBkg8HVjwu9JkFlny4OXgf57xe0w0s+XDg +YJeNB78+ElQ+HHjinbM30sGSDwfOtJz5YwVY8uH88DlN2tNxCFjy4cCf1rpN +qQ+WfDjw9Jq42JKHgsqHA+8f5/VwF1jy4cDWt462nQqWfDh/QUw7sWhee7Dk +w4EfW+Reev9AUPlw4EV7IpungCUfDuxq+TAwCCz5cOAgy6P3+4ElH26uIL5+ +8s1BCZZ8OHBucFZywX1B5cOB+41UttsGlnw48LGIa7sngiUfDuy9vm4LY7Dk +w83D+xKYu/flPUHlw4FzDn7vmASWfDjwFueE1AVgyYcDG2RcH9ELLPlw4EZm +Pi9qgSUfbj4+l0+Wr7lyV1D5cGD71tqdIsCSDwde1Ll+iQtY8uHA4qA1q5qD +JR8OfPe0v+2zCkHlwy3A+nSu6NMRsOTDgR9v25fsD5Z8OHC3iMoAG7Dkw4Eb +v9nVv6ZcUPlw4IGvs/TywJIPtxDX95vjXoWBJR8OvPjZpNzRYMmHA/eZUbS/ +CVjy4cC5sSdDH98RVD4cuNX1mgWHwJIPtwj/Xqu06XPAkg8HbtH60SQrsOTD +gccX+bn+KRNUPhw4Zp3P+Fyw5MOBZ24qdN8Alny4APz8tjE+zmDJhwM33la0 +pDFY8uHAfi3/2/KoVFD5cGDLurOTDoIlH24xfn10SdFssOTDgZ/o7/tmCZZ8 +OPCbjFtt/pQIKh8OfOD+9LG5YMmHA7uccQvbAJZ8uEBBdNt05rIzWPLhwB0T +/eo2AUs+HHig8wanx8WCyocDj7qiEXcILPlw4F9jH36YA5Z8uCBBbNjHcJA1 +WPLhwP75R+P/3hZUPty/H7fZrZEHlnw48K+Sd/9tBEs+HHjUix3lY8CSD7cE +6/+pmGHNwJIPB+689Ff201uCyocDT9mU3DcRLPlw4Mmdc7PmgiUfDnwytvMQ +O7Dkwy3F82T7tyXqYMmHA//Sr+V95aag8uHAgYd8ayLAkg8H9ujYJcYVLPlw +4ITH9n1agSUfbhleP4PE5y+KBJUPB06sN31zEljy4cDXdeYNWASWfDiwrufN +X33Akg8HfjZq+TkFWPLhggUxo2VwYEGhoPLhwJaGN/ptB0s+HLhq2UydyWDJ +hwMnxY1+ZAqWfDiwQ0bo2XcFgsqHW47rqanO1hSw5MOBzzS7v2ApWPLhwAlv +vk5yAEs+HHhnxYQh2mDJhwvBv8Nc2bPkhqDy4cCxtn/NY8GSDweeZ9eryzSw +5MOBby3J6moGlnw4sPOQjVZfrgsqH24Fvmcv4+wvgCUfDrwq/svo1WDJhwPf +zI6YNQIs+XDgoPA5awzAkg/37+c7Rx68f01Q+XArcR8+9suNA2DJhwNbP4r+ +4QuWfDjwuN4hHa3Akg8Hzk056PH3qqDy4cAfN2vH5IElH24VPvctTt3bBJZ8 +OHDq3q3G48CSDwc+MP20b0uw5MOBq840yHhxRVD5cODF9w7pnQBLPtxqPKe2 +XjI7ACz5cOD2hesLRLDkw4EDut3soQmWfDiwa7hT3M3LgsqHA+tb1dWJBks+ +3BrcN8z5uWIqWPLhwGdWtf7TESz5cOA9WcuWfMoXVD7cmn/PGw3V08GSDwcu +uHsndBVY8uHW4v0eWdx4BFjy4cCJerWPG4AlHw6svtBr0IM8QeXDgQ9f/PY8 +ASz5cOC8Punr54AlH24dPnc9T3a3AUs+HNi9VukjNbDkw4EjHnTYeuWSoPLh +wPuaHh2+GSz5cOC2GpPqTgRLPtx6XGcqbW60AUs+HNiinv22t7mCyocDD89a +ODUFLPlw4E9OpRbLwJIPF4p1pK5HvUFgyYcD/7TUe1UfLPlw4B2tP1y9kyOo +fDhwz8afTu4FSz4cuNfMFnGzwJIPtwHfm8l+4T3Akg8HbjDg5erf2YLKhwP/ +mLE65BJY8uHAsxoNWrEJLPlw4DYxndeNA0s+XBj+Pg6WW1qBJR8OfN/DI/5V +lqDy4cAFtsfOnQJLPhz4afOmt4PAkg8HHj7hcPUAsOTDbcTzWa9xhjpgyYcD +2zQ06Vd2UVD5cOCVbev77QFLPhw46Yrh/plgyYcDuw7ufb87WPLhNuF1rFrW +9HemoPLhwFU69yZfAks+HHh59eiDm8CSDwe+8fL553FgyYcD3+sbOag1WPLh +wgXxmsPY3a8zBJUPB7462Px3Mljy4cDGO0wmLwVLPhy4S3CXSwPBkg8H9nQc +ad4ALPlwEbjuuazcV35BUPlw4CVPrhvFgyUfDnzKvuPW/8CSDwdOuRStbwWW +fDjw1LTm0TXpgsqHi8TrMeeUyRWw5MOBD1q4nt4Mlnw48ExXnSGT0gWVDwfu +1LH4iSlY8uE2C6Ltj0MhH84LKh8O/Fk/zDQVLPlw4NvXlxSsAEs+HHiKX+CS +4WDJhwPbO67q2ggs+XBbcL1LjXrxME1Q+XDg939S9x8GSz4ceJbvs+nzwJIP +B44aZ9SlN1jy4cDr6439qQBLPtxWXB/vRV0rShVUPhzY2bBybzRY8uHAp7Vt +l3qBJR8O/Kr+ZrcuYMmHA/vMrrL/fk5Q+XDb8D4sHm2WDZZ8OHDSirRmYWDJ +hwPfLDdp6AKWfDhwraLIuq3Akg8H7nhGTfP1WUHlw23H9+y+X73TYMmHA0/b +/lh/GVjy4cAnuzsbDwZLPtz2f8+B2Ra6YMmHA5eN7zb83hlB5cPtwDq9NsY7 +ASz5cDv+3Q9phPqBJR8OrH/c54QdWPLhwFOH3rhbByz5cOCRdTrWK0wRVD7c +TlwHzUL6RYElHw7sbXQryBMs+XDg4EbNzpuBJR8OrBk4uebbaUHlw4G7bNs5 +OBss+XBRWMfTrmwPA0s+HHhGz4+vXMCSDwfu6aNj3xos+XDgrjGtdr9JFlQ+ +HLi8VTv1M2DJh4sWxBfDWnsvB0s+HLiJn07xULDkw4GHPHo3wAAs+XDgqR8y +0h6eElQ+3C78e6qWWx4BSz4ceK5Vj5T5YMmHA5/QL7HtC5Z8OLDng2k5mmDJ +hwNXVj5zKj4pqHy4GHyOQpyex4ElHw7cvlbi0plgyYcDC+lVTSzAkg8Hrqpl +fOHvCUHlw4EPd+zjdQUs+XCxuP6tHdBgK1jy4cB1/7PImgyWfDjwITPtRR3A +kg8HVmtVYP45SVD5cOABOxZ+zABLPlwcXvcXGmfWgyUfDnxhWlDwGLDkw4Ez +p5WOaAmWfDjwwF6NWr8+Lqh8OHBVb7sfp8GSD7cbn7fMfqXBYMmHA6826Hxu +KFjy4cCNtn2PMwBLPhy44ZaE0EfHBJUPBw72sgxKBEs+3B48f0ze77cQLPlw +4D6l1bP6gSUfDqzVutWsemDJhwP339ppdtlRQeXDgV1X6y/aB5Z8uL1Yf4ZU +rPIFSz4ceIz1kh02YMmHA4fH/zheGyz5cOARz5yuFSQKKh8O7Ou46m0UWPLh +9uH+1S5CdxpY8uH2/fPj5/fuBpZ8OHCjN+a+v44IKh8O3HZS3t48sOTDxQui +VYL53Uiw5MOBD7ac19gNLPlw4A8tQie1B0s+HDjq54L9nw4LKh8O7KBp9TED +LPlw+/F52XvFPhQs+XDgyCbdosaCJR8O/PCq9+dWYMmHA6/TnDfm7SFB5cOB +d5qNTD0Llny4A1iXNv0wXgmWfDjwhhXzI0eCJR8O/HFKRp0mYMmHA19aWbrk ++UFB5cOBg/um/zgBlny4BNxfvZ0dtAQs+XDgt0/eqQ8GSz4c+Ptim416YMmH +S/j///L/58/jr+Pvw9+Xfw7/XP49+Pfi35N/b/47+O/iv5P/br4OfF34OvF1 +4+vI15WvM193vg98X/g+8X3j+8j3le8z33d+Dvi54OeEnxt+jvi54ueMnzt+ +Dvm55OeUn1t+jvm55uecn3t+D/i94PeE3xt+j/i94veM3zt+D/m95PeU31t+ +j/m95vec33uuA1wXuE5w3eA6wnWF6wzXHa5DXJe4TnHd4jrGdY3rHNc9roNc +F7lOct3kOsp1less112uw1yXuU5z3eY6znWd6zzXfV4HeF3gdYLXDV5HeF3h +dYbXHV6HeF3idYrXLV7HeF3jdY7XPV4HeV3kdZLXTV5HeV3ldZbXXV6HeV3m +dZrXbV7HeV3ndZ7Xfd4H8L6A9wm8b+B9BO8reJ/B+w7eh/C+hPcpvG/hfQzv +a3ifw/se3gfxvoj3Sbxv4n0U76t4n8X7Lt6H8b6M92m8b+N9HO/reJ/H+z7e +B/K+kPeJvG/kfSTvK3mfyftO3ofyvpT3qbxv5X0s72t5n8v7Xt4H876Y98m8 +b+Z9NO+reZ/N+27eh/O+nPfpvG/nfTzv63mfz/t+PgfwuYDPCXxu4HMEnyv4 +nMHnDj6H8LmEzyl8buFzDJ9r+JzD5x4+B/G5iM9JfG7icxSfq/icxecuPofx +uYzPaXxu43Mcn+v4nMfnPj4H8rmQz4l8buRzJJ8r+ZzJ504+h/K5lM+pfG7l +cyyfa/mcy+dePgfzuZjPyXxu5nM0n6v5nM3nbj6H87mcz+l8budzPJ/r+ZzP +537uA3BfgPsE3DfgPgL3FbjPwH0H7kNwX4L7FNy34D4G9zW4z8F9D+6DcF+E ++yTcN+E+CvdVuM/CfRfuw3Bfhvs03LfhPg73dbjPw30f7gNxX4j7RNw34j4S +95W4z8R9J+5DcV+K+1Tct+I+Fve1uM/FfS/ug3FfjPtk3DfjPhr31bjPxn03 +7sNxX477dNy34z4e9/W4z8d9P+4Dcl+Q+4TcN+Q+IvcVuc/IfUfuQ3JfkvuU +3LfkPib3NbnPyX1P7oNyX5T7pNw35T4q91W5z8p9V+7Dcl+W+7Tct+U+Lvd1 +uc/LfV/uA3NfmPvE3DfmPjL3lbnPzH1n7kNzX5r71Ny35j4297W5z819b+6D +c1+c++TcN+c+OvfVuc/OfXfuw3Nfnvv03LfnPj739bnPz31/ngPwXIDnBDw3 +4DkCzxV4zsBzB55D8FyC5xQ8t+A5Bs81eM7Bcw+eg/BchOckPDfhOQrPVXjO +wnMXnsPwXIbnNDy34TkOz3V4zsNzH54D8VyI50Q8N+I5Es+VeM7EcyeeQ/Fc +iudUPLfiORbPtXjOxXMvnoPxXIznZDw34zkaz9V4zsZzN57D8VyO53Q8t+M5 +Hs/1eM7Hcz+eA/JckOeEPDfkOSLPFXnOyHNHnkPyXJLnlDy35DkmzzV5zslz +T56D8lyU56Q8N+U5Ks9Vec7Kc1eew/Jclue0PLflOS7PdXnOy3NfngPzXJjn +xDw35jkyz5V5zsxzZ55D81ya59Q8t+Y5Ns+1ec7Nc2+eg/NcnOfkPDfnOTrP +1XnOznN3nsPzXJ7n9Dy35zk+z/V5zs9zf3oA9ALoCdAboEdAr4CeAb0Degj0 +Eugp0Fugx0CvgZ4DvQd6EPQi6EnQm6BHQa+CngW9C3oY9DLoadDboMdBr4Oe +B70PeiD0QuiJ0BuhR0KvhJ4JvRN6KPRS6KnQW6HHQq+Fngu9F3ow9GLoydCb +oUdDr4aeDb0bejj0cujp0Nuhx0Ovh54PvR96QPSC6AnRG6JHRK+InhG9I3pI +9JLoKdFb+p/HJHtN9JzoPdGDohdFT4reFD0qelX0rOhd0cOil0VPi94WPS56 +XfS86H3RA6MXRk+M3hg9Mnpl9MzondFDo5dGT43eGj02em303Oi90YOjF0dP +jt4cPTp6dfTs6N3Rw6OXR0+P3h49Pnp99Pzo/dEDpBdIT5DeID1CeoX0DOkd +0kOkl0hPkd4iPUZ6jfQc6T3Sg6QXSU+S3iQ9SnqV9CzpXdLDpJdJT5PeJj1O +ep30POl90gOlF0pPlN4oPVJ6pfRM6Z3SQ6WXSk+V3io9Vnqt9FzpvdKDpRdL +T5beLD1aerX0bOnd0sOll0tPl97u/zxe2eul50vvlx4wvWB6wvSG6RHTK6Zn +TO+YHjK9ZHrK9JbpMdNrpudM75keNL1oetL0pulR06umZ03vmh42vWx62vS2 +6XHT66bnTe+bHji9cHri9MbpkdMrp2dO75weOr10eur01umx02un507vnR48 +vXh68vTm6dHTq6dnT++eHj69fHr69Pbp8dPrp+dP759zAJwL4JwA5wY4R8C5 +As4ZcO6AcwicS+CcAucWOMfAuQbOOXDugXMQnIvgnATnJjhHwbkKzllw7oJz +GJzL4JwG5zY4x8G5Ds55cO6DcyCcC+GcCOdGOEfCuRLOmXDuhHMonEvhnArn +VjjHwrkWzrlw7oVzMJyL4ZwM52Y4R8O5Gs7ZcO6Gczicy+GcDud2OMfDuR7O ++XDuh3NAnAvinBDnhjhHxLkizhlx7ohzSJxL4pwS55Y4x8S5Js45ce6Jc1Cc +i+KcFOemOEfFuSrOWXHuinNYnMvinBbntjjHxbkuznlx7otzYJwL45wY58Y4 +R8a5Ms6Zce6Mc2icS+OcGufWOMfGuTbOuXHujXNwnIvjnBzn5jhHx7k6ztlx +7o5zeJzL45we5/Y4x8e5Ps75ce6Pc4CcC+ScIOcGOUfIuULOGXLukHOInEvk +nCLnFjnHyLlGzjly7pFzkJyL5Jwk5yY5R8m5Ss5Zcu6Sc5icy+ScJuc2OcfJ +uU7OeXLuk3OgnAvlnCjnRjlHyrlSzply7pRzqJxL5Zwq51Y5x8q5Vs65cu6V +c7Cci+WcLOdmOUfLuVrO2XLulnO4nMvlnC7ndjnHy7lezvly7pdzwJwL5pww +54Y5R8y5Ys4Zc+6Yc8icS+acMueWOcfMuWbOOXPumXPQnIvmnDTnpjlHzblq +zllz7ppz2JzL5pw257Y5x825bs55c+6bc+CcC+ecOOfGOUfOuXLOmXPunHPo +nEvnnDrn1jnHzrl2zrlz7p1z8JyL55w85+Y5R8+5es7Zc+6ec/icy+ecPuf2 +OcfPuX7O+XPunzkAzAVgTgBzA5gjwFwB5gwwd4A5BMwlYE4BcwuYY8BcA+Yc +MPeAOQjMRWBOAnMTmKPAXAXmLDB3gTkMzGVgTgNzG5jjwFwH5jww94E5EMyF +YE4EcyOYI8FcCeZMMHeCORTMpWBOBXMrmGPBXAvmXDD3gjkYzMVgTgZzM5ij +wVwN5mwwd4M5HMzlYE4HczuY48FcD+Z8MPeDOSDMBWFOCHNDmCPCXBHmjDB3 +hDkkzCVhTglzS5hjwlwT5pww94Q5KMxFYU4Kc1OYo8JcFeasMHeFOSzMZWFO +C3NbmOPCXBfmvDD3hTkwzIVhTgxzY5gjw1wZ5swwd4Y5NMylYU4Nc2uYY8Nc +G+bcMPeGOTjMxWFODnNzmKPDXB3m7DB3hzk8zOVhTg9ze5jjw1wf5vww94c5 +QMwFYk4Qc4OYI8RcIeYMMXeIOUTMJWJOEXOLmGPEXCPmHDH3iDlIzEViThJz +k5ijxFwl5iwxd4k5TMxlYk4Tc5uY48RcJ+Y8MfeJOVDMhWJOFHOjmCPFXCnm +TDF3ijlUzKViThVzq5hjxVwr5lwx94o5WMzFYk4Wc7OYo8VcLeZsMXeLOVzM +5WJOF3O7mOPFXC/mfDH3izlgzAVjThhzw5gjxlwx5owxd4w5ZMwlY04Zc8uY +Y8ZcM+acMfeMOWjMRWNOGnPTmKPGXDXmrDF3jTlszGVjThtz25jjxlw35rwx +9405cMyFY04cc+OYI8dcOebMMXeOOXTMpWNOHXPrmGPHXDvm3DH3jjl4zMVj +Th5z85ijx1w95uwxd485fMzlY04fc/uY48dcP+b8MfePOYDMBWROIHMDmSPI +XEHmDDJ3kDmEzCVkTiFzC5ljyFxD5hwy95A5iMxFZE4icxOZo8hcReYsMneR +OYzMZWROI3MbmePIXEfmPDL3kTmQzIVkTiRzI5kjyVxJ5kwyd5I5lMylZE4l +cyuZY8lcS+ZcMveSOZjMxWROJnMzmaPJXE3mbDJ3kzmczOVkTidzO5njyVxP +5nwy95M5oMwFZU4oc0OZI8pcUeaMMneUOaTMJWVOKXNLmWPKXFPmnDL3lDmo +zEVlTipzU5mjylxV5qwyd5U5rMxlZU4rc1uZ48pcV+a8MveVObDMhWVOLHNj +mSPLXFnmzDJ3ljm0zKVlTi1za5ljy1xb5twy95Y5uMzFZU4uc3OZo8tcXebs +MneXObzM5WVOL3N7mePLXF/m/DL3lznAzAVmTjBzg5kjzFxh5gwzd5g5xMwl +Zk4xc4uZY8xcY+YcM/eYOcjMRWZOMnOTmaPMXGXmLDN3mTnMzGVmTjNzm5nj +zFxn5jwz95k50MyFZk40c6OZI81caeZMM3eaOdTMpWZONXOrmWPNXGvmXDP3 +mjnYzMVmTjZzs5mjzVxt5mwzd5s53MzlZk43c7uZ481cb+Z8M/ebOeDMBWdO +OHPDmSPOXHHmjDN3nDnkzCVnTjlzy5ljzlxz5pwz95w56MxFZ046c9OZo85c +deasM3edOezMZWdOO3PbmePOXHfmvDP3nTnwzIVnTjxz45kjz1x55swzd545 +9MylZ049c+uZY89ce+bcM/eeOfjMxWdOPnPzmaPPXH3m7DN3nzn8zOVnTj9z ++5njz1x/5vwz9589AOwFYE8AewPYI8BeAfYMsHeAPQTsJWBPAXsL2GPAXgP2 +HLD3gD0I7EVgTwJ7E9ijwF4F9iywd4E9DOxlYE8DexvY48BeB/Y8sPeBPRDs +hWBPBHsj2CPBXgn2TLB3gj0U7KVgTwV7K9hjwV4L9lyw94I9GOzFYE8GezPY +o8FeDfZssHeDPRzs5WBPB3s72OPBXg/2fLD3gz0g7AVhTwh7Q9gjwl4R9oyw +d4Q9JOwlYU8Je0vYY8JeE/acsPeEPSjsRWFPCntT2KPCXhX2rLB3hT0s7GVh +Twt7W9jjwl4X9ryw94U9MOyFYU8Me2PYI8NeGfbMsHeGPTTspWFPDXtr2GPD +Xhv23LD3hj047MVhTw57c9ijw14d9uywd4c9POzlYU8Pe3vY48NeH/b8sPeH +PUDsBWJPEHuD2CPEXiH2DLF3iD1E7CViTxF7i9hjxF6j//Ucyb1H7EFiLxJ7 +ktibxB4l9iqxZ4m9S+xhYi8Te5rY28QeJ/Y6seeJvU/sgWIvFHui2BvFHin2 +SrFnir1T7KFiLxV7qthbxR4r9lqx54q9V+zBYi8We7LYm8UeLfZqsWeLvVvs +4WIvF3u62NvFHi/2erHni71f7AFjLxh7wtgbxh4x9oqxZ4y9Y+whYy8Ze8rY +W8YeM/aaseeMvWfsQWMvGnvS2JvGHjX2qrFnjb1r7GFjLxt72tjbxh439rqx +5429b//rgZN74dgTx9449sixV449c+ydYw8de+nYU8feOvbYsdeOPXfsvWMP +Hnvx2JPH3jz26LFXjz177N1jDx97+djTx94+9vix1489f+z9Yw8gewHZE8je +QPYIsleQPYPsHWQPIXsJ2VPI3kL2GLLXkD2H7D1kDyJ7EdmTyN5E9iiyV5E9 +i+xdZA8jexnZ08jeRvY4steRPY/sfWQPJHsh2RPJ3kj2SLJXkj2T7J1kDyV7 +KdlTyd5K9liy15I9l+y9ZA8mezHZk8neTPZosleTPZvs3WQPJ3s52dPJ3k72 +eLLXkz2f7P1kDyh7QdkTyt5Q9oiyV5Q9o+wdZQ8pe0nZU8reUvaYsteUPafs +PWUPKntR2ZPK3lT2qLJXlT2r7F1lDyt7WdnTyt5W9riy15U9r+x9ZQ8se2HZ +E8veWPbIsleWPbPsnWUPLXtp2VPL3lr22LLXlj237L1lDy57cdmTy95c9uiy +V5c9u+zdZQ8ve3nZ08veXvb4steXPb/s/WUPMHuB2RPM3mD2CLNXmD3D7B1m +DzF7idlTzN5i9hiz15g9x+w9Zg8ye5HZk8zeZPYos1eZPcvsXWYPM3uZ2dPM +3mb2OLPXmT3P7H1mDzR7odkTzd5o9kizV5o90+ydZg81e6nZU83eavZYs9ea +PdfsvWYPNnux2ZPN3mz2aLNXmz3b7N1mDzd7udnTzd5u9niz15s93+z9Zg84 +e8HZE87ecPaIs1ecPePsHWcPOXvJ2VPO3nL2mLPXnD3n7D1nDzp70dmTzt50 +9qizV5096+xdZw87e9nZ087edva4s9edPe/sfWcPPHvh2RPP3nj2yLNXnj3z +7J1nDz176dlTz9569tiz15499+y9l3w4cPnQWI8TYMmHAxvWefn6D1jy4cDt +6jksHXZAqfLhShTipikphlFgyYcDv65ll1YJlnw48Nv3t70sEpQqHw48yWSV +4Qqw5MOBm+wbdqsQLPlwxbhezui0rflBpcqHA3vONfHwAUs+HLhJjnWPVLDk +w4Hnu07XEQ7JucvgTPOTH8cckn242/jzRja+v++Q7MOB847tLqo6JPtw4DBH +h+t9Dss+HNi5h1ZR2GHZhwMXu1bfrTgs+3C3FOKzzF8f2h+RfTjwLO/29RYd +kX04sKfz4m6Xjsg+3L+fv/TDJL1E2YcDG77ZEDklUfbhbuL7Ee1YkJQo+3Dg +wxt66v1NlH048LXMUR7Dj8o+HNjUOiIl+qjsw4Gdqn/qvjoq+3BFCvH3x8gA +62OyDwd+Z+VSufqY7MOBa7IGTyo+JvtwYJOtsyqMj8s+HNjzeLqH/3HZhyvE +9ayh+CHzuOzDgTMzv6zWSZJ9OPCE1AcmbkmyDwfWUft9LTFJ9uHATttGBv1M +kn24AoWYFFjWfcgJ2YcD3zi5o3rHCdmHA3v2ikirPCH7cGD7ZtmhlidlHw7s +OLqL56qTsg93A/fLT0v63z4p+3Dg3wWpnY1PyT4cuMzwbnP/U7IPB3a5aGd4 +8ZTsw11XiEVXy43qJ8s+HPi4barx5GTZhwPPr19hcSxZ9uHAqSN7O/5Oln04 +cMefT/2HnZZ9uGv4PugXxkSfln04cMaemsJXp2UfDpy4d6GWbYrsw4Hdmlg6 +rkuRfThwtXavXWUpsg93FethcNiHtmdkHw58aG674QvPyD4ceP5r7ZOXzsg+ +HDjgtdjC4Kzsw4HtF2Zt8Tor+3BX8PMjIxqePiv7cODLfZN21D4n+3BgndUt +2o4+J/twYLNpD9P3nZN9OHDrZ9UTq8/JPtxlrB8aE2rbp8o+HPhdgUFyZKrs +w4G79G/n8zhV9uHAhjPCO5mnyT4c2KCv4+flabIPl4/Pf+GMS0Vpsg8Hnt28 +Iq7VedmHA+ubHVzud1724cDutYtmXTwv+3BgswNj3Rqkyz5cnkL0M7R19UiX +fTiwuXvQxBPpsg8HjghpPkPtguzDgXNXtgoadUH24cCGPqt37Lkg+3CX8O/r +NSK96oLsw4Ez/wa8EjNkHw7c/Ixmy8gM2YcDH/NWc3ucIftwufi8NJscb54p ++3DgmaVtqkMyZR8O7BzrPORWpuzDgZ8vfHPI+KLsw4FtZn5oMO+i7MPl4P0O +dA/JuSj7cOBXJ3r91MuSfTjwU911QV5Zsg8HLk2w10jJkn048NB5vjs0smUf +Llsh3lum2d0lW/bhwH2KDEsSsmUfDtxzdtTyb9myDwc+7R5uMThH9uHAuxN/ +Vu3MkX24LFzvxt9LeZUj+3BgozmWK+1yZR8OrPFFMX5DruzDgY2rnazv5co+ +HLjU17CF2SXZh7uI33+Oq/ayS7IPB9atMdAovCT7cOCKNk4arfJkHw6c+ryu +jn+e7MOB1w0f0DI7T/bhMhWihcdfG7182YcDX2pvN9ErX/bhwGOOf1+dki/7 +cGDDH3apisuyD/fvxxvW+jLusuzDZShE35qRtocvyz4c+M414zU/L8s+HLh1 +8LK7w67IPhz4bWtP29grsg8H/px+c/f7K7IPd+Hf63dNR7wq+3BgvZpRayKv +yj4cuP45T8XTq7IP9+/HN9YJt7gm+3DgoWstWq25Jvtw6QrxS9Ln1LJrsg8H +nt1g4KQO12UfDtzmVAch6Lrsw4F3xe1Juw7WKg4w/8c3rv/7n1L8P5MEhj4= + "]]}, Annotation[#, "Charting`Private`Tag#8"]& ]}, {{}, {}}}, AspectRatio->1, @@ -12849,12 +12956,12 @@ rv/7n1L8f4a6hHw= 3.9155368604895*^9, 3.915772759432945*^9, 3.9163812145378447`*^9, 3.916386519150815*^9, 3.916388170780579*^9, 3.927268441141471*^9, { 3.927268510562241*^9, 3.9272685441240473`*^9}, {3.927269536179427*^9, - 3.927269574612711*^9}, 3.9272696110843983`*^9, 3.927269963911026*^9, - 3.9272700233691072`*^9, 3.927270070957769*^9, 3.9272702630683527`*^9, + 3.927269574612711*^9}, 3.9272696110843987`*^9, 3.927269963911026*^9, + 3.927270023369107*^9, 3.927270070957769*^9, 3.927270263068353*^9, 3.927270298337522*^9, {3.927270370098089*^9, 3.927270408689001*^9}, { - 3.927270474927936*^9, 3.927270530976882*^9}}, - CellLabel-> - "Out[217]=",ExpressionUUID->"0d7a7567-3ca1-43a1-b591-9936a69f4cc2"] + 3.927270474927936*^9, 3.927270530976882*^9}, 3.9283084778592854`*^9, + 3.9283095916600018`*^9, 3.928310786330997*^9}, + CellLabel->"Out[77]=",ExpressionUUID->"699f22d3-c3d8-4cce-b02c-34ee24abacf9"] }, Open ]] }, Open ]], @@ -12870,8 +12977,19 @@ Cell[BoxData[ RowBox[{"\[ScriptCapitalS]", "=", RowBox[{ RowBox[{ - RowBox[{"-", - FractionBox["1", "2"]}], "2", + FractionBox["1", "4"], + SuperscriptBox[ + SubscriptBox["\[Sigma]", "1"], "2"], + SuperscriptBox[ + SubscriptBox["q", "11"], "2"]}], "+", + RowBox[{ + FractionBox["1", "4"], + SuperscriptBox[ + SubscriptBox["\[Sigma]", "2"], "2"], + SuperscriptBox[ + SubscriptBox["q", "22"], "2"]}], "-", + RowBox[{ + FractionBox["1", "2"], RowBox[{"(", RowBox[{ RowBox[{"\[Lambda]", @@ -12879,19 +12997,9 @@ Cell[BoxData[ RowBox[{ SubscriptBox["q", "11"], "+", SubscriptBox["q", "22"]}], ")"}]}], "-", - RowBox[{ - SuperscriptBox[ - SubscriptBox["\[Sigma]", "1"], "2"], - SuperscriptBox[ - SubscriptBox["q", "11"], "2"]}], "-", RowBox[{ SubscriptBox["\[Omega]", "1"], SubscriptBox["q", "11"]}], "-", - RowBox[{ - SuperscriptBox[ - SubscriptBox["\[Sigma]", "2"], "2"], - SuperscriptBox[ - SubscriptBox["q", "22"], "2"]}], "-", RowBox[{ SubscriptBox["\[Omega]", "2"], SubscriptBox["q", "22"]}], "-", @@ -12918,8 +13026,9 @@ Cell[BoxData[ 3.908957066229992*^9}, {3.908957973678803*^9, 3.908958018879878*^9}, 3.90895818318715*^9, {3.908958253884284*^9, 3.9089582839010677`*^9}, { 3.908958323213801*^9, 3.90895833915803*^9}, {3.908958413719482*^9, - 3.908958448146799*^9}}, - CellLabel->"In[66]:=",ExpressionUUID->"01b4718d-1b06-4ca9-9828-eb7538126c81"], + 3.908958448146799*^9}, {3.928307046481606*^9, 3.928307071561866*^9}, { + 3.928308531158473*^9, 3.92830853898136*^9}}, + CellLabel->"In[58]:=",ExpressionUUID->"01b4718d-1b06-4ca9-9828-eb7538126c81"], Cell[CellGroupData[{ @@ -12942,825 +13051,14 @@ Cell[BoxData[ SubscriptBox["q", "22"], ",", SubscriptBox["q", "12"]}], "}"}]}], "]"}]}]], "Input", CellChangeTimes->{{3.905941903820272*^9, 3.905941962068831*^9}}, - CellLabel->"In[67]:=",ExpressionUUID->"18b98bab-0eb8-4c66-8662-8b5e34efa820"], + CellLabel->"In[59]:=",ExpressionUUID->"18b98bab-0eb8-4c66-8662-8b5e34efa820"], Cell[BoxData[ TemplateBox[<|"shortenedBoxes" -> TagBox[ - RowBox[{"{", - RowBox[{ - RowBox[{"{", - RowBox[{ - RowBox[{ - SubscriptBox["q", "11"], "\[Rule]", - FractionBox[ - RowBox[{ - TemplateBox[{"36"}, "OutputSizeLimit`Skeleton"], "+", - RowBox[{"4", " ", "\[Epsilon]", " ", - SuperscriptBox[ - RowBox[{"Root", "[", - RowBox[{ - RowBox[{ - RowBox[{ - SuperscriptBox["\[Epsilon]", "4"], "+", - RowBox[{"16", " ", - SuperscriptBox["#1", "4"], " ", - SubsuperscriptBox["\[Sigma]", "1", "4"], " ", - SubsuperscriptBox["\[Sigma]", "2", "4"]}], "+", - RowBox[{"32", " ", "\[Epsilon]", " ", - SuperscriptBox["#1", "5"], " ", - SubsuperscriptBox["\[Sigma]", "1", "4"], " ", - SubsuperscriptBox["\[Sigma]", "2", "4"]}], "+", - RowBox[{"#1", " ", - RowBox[{"(", - TemplateBox[{"1"}, "OutputSizeLimit`Skeleton"], ")"}]}], - "+", - RowBox[{ - SuperscriptBox["#1", "3"], " ", - RowBox[{"(", - RowBox[{ - RowBox[{ - RowBox[{"-", "16"}], " ", - SuperscriptBox["\[Epsilon]", "3"], " ", - SubsuperscriptBox["\[Sigma]", "1", "2"], " ", - SubsuperscriptBox["\[Sigma]", "2", "2"]}], "-", - RowBox[{"8", " ", "\[Epsilon]", " ", - SuperscriptBox["\[Lambda]", "2"], " ", - SubsuperscriptBox["\[Sigma]", "1", "2"], " ", - SubsuperscriptBox["\[Sigma]", "2", "2"]}], "+", - RowBox[{"8", " ", "\[Epsilon]", " ", "\[Lambda]", " ", - SubsuperscriptBox["\[Sigma]", "1", "2"], " ", - SubsuperscriptBox["\[Sigma]", "2", "2"], " ", - SubscriptBox["\[Omega]", "1"]}], "+", - RowBox[{"8", " ", "\[Epsilon]", " ", "\[Lambda]", " ", - SubsuperscriptBox["\[Sigma]", "1", "2"], " ", - SubsuperscriptBox["\[Sigma]", "2", "2"], " ", - SubscriptBox["\[Omega]", "2"]}], "-", - RowBox[{"8", " ", "\[Epsilon]", " ", - SubsuperscriptBox["\[Sigma]", "1", "2"], " ", - SubsuperscriptBox["\[Sigma]", "2", "2"], " ", - SubscriptBox["\[Omega]", "1"], " ", - SubscriptBox["\[Omega]", "2"]}]}], ")"}]}], "+", - RowBox[{ - SuperscriptBox["#1", "2"], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"4", " ", - SuperscriptBox["\[Epsilon]", "2"], " ", - SuperscriptBox["\[Lambda]", "2"], " ", - SubsuperscriptBox["\[Sigma]", "1", "2"]}], "+", - RowBox[{"4", " ", - SuperscriptBox["\[Epsilon]", "2"], " ", - SuperscriptBox["\[Lambda]", "2"], " ", - SubsuperscriptBox["\[Sigma]", "2", "2"]}], "-", - RowBox[{"8", " ", - SuperscriptBox["\[Epsilon]", "2"], " ", - SubsuperscriptBox["\[Sigma]", "1", "2"], " ", - SubsuperscriptBox["\[Sigma]", "2", "2"]}], "-", - RowBox[{"8", " ", - SuperscriptBox["\[Epsilon]", "2"], " ", "\[Lambda]", " ", - - SubsuperscriptBox["\[Sigma]", "2", "2"], " ", - SubscriptBox["\[Omega]", "1"]}], "+", - RowBox[{"4", " ", - SuperscriptBox["\[Epsilon]", "2"], " ", - SubsuperscriptBox["\[Sigma]", "2", "2"], " ", - SubsuperscriptBox["\[Omega]", "1", "2"]}], "-", - RowBox[{"8", " ", - SuperscriptBox["\[Epsilon]", "2"], " ", "\[Lambda]", " ", - - SubsuperscriptBox["\[Sigma]", "1", "2"], " ", - SubscriptBox["\[Omega]", "2"]}], "+", - RowBox[{"4", " ", - SuperscriptBox["\[Epsilon]", "2"], " ", - SubsuperscriptBox["\[Sigma]", "1", "2"], " ", - SubsuperscriptBox["\[Omega]", "2", "2"]}]}], ")"}]}]}], - "&"}], ",", "1"}], "]"}], "2"], " ", - SubsuperscriptBox["\[Sigma]", "1", "2"], " ", - SubsuperscriptBox["\[Sigma]", "2", "2"], " ", - SubscriptBox["\[Omega]", "1"], " ", - SubsuperscriptBox["\[Omega]", "2", "2"]}], "-", - RowBox[{"2", " ", - SuperscriptBox["\[Epsilon]", "2"], " ", - RowBox[{"Root", "[", - RowBox[{ - RowBox[{ - RowBox[{ - SuperscriptBox["\[Epsilon]", "4"], "+", - RowBox[{"16", " ", - SuperscriptBox["#1", "4"], " ", - SubsuperscriptBox["\[Sigma]", "1", "4"], " ", - SubsuperscriptBox["\[Sigma]", "2", "4"]}], "+", - RowBox[{"32", " ", "\[Epsilon]", " ", - SuperscriptBox["#1", "5"], " ", - SubsuperscriptBox["\[Sigma]", "1", "4"], " ", - SubsuperscriptBox["\[Sigma]", "2", "4"]}], "+", - RowBox[{"#1", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"2", " ", - SuperscriptBox["\[Epsilon]", "5"]}], "-", - RowBox[{"2", " ", - SuperscriptBox["\[Epsilon]", "3"], " ", - SuperscriptBox["\[Lambda]", "2"]}], "+", - RowBox[{"2", " ", - SuperscriptBox["\[Epsilon]", "3"], " ", "\[Lambda]", " ", - - SubscriptBox["\[Omega]", "1"]}], "+", - RowBox[{"2", " ", - SuperscriptBox["\[Epsilon]", "3"], " ", "\[Lambda]", " ", - - SubscriptBox["\[Omega]", "2"]}], "-", - RowBox[{"2", " ", - SuperscriptBox["\[Epsilon]", "3"], " ", - SubscriptBox["\[Omega]", "1"], " ", - SubscriptBox["\[Omega]", "2"]}]}], ")"}]}], "+", - RowBox[{ - SuperscriptBox["#1", "3"], " ", - RowBox[{"(", - RowBox[{ - RowBox[{ - RowBox[{"-", "16"}], " ", - SuperscriptBox["\[Epsilon]", "3"], " ", - SubsuperscriptBox["\[Sigma]", "1", "2"], " ", - SubsuperscriptBox["\[Sigma]", "2", "2"]}], "-", - RowBox[{"8", " ", "\[Epsilon]", " ", - SuperscriptBox["\[Lambda]", "2"], " ", - SubsuperscriptBox["\[Sigma]", "1", "2"], " ", - SubsuperscriptBox["\[Sigma]", "2", "2"]}], "+", - RowBox[{"8", " ", "\[Epsilon]", " ", "\[Lambda]", " ", - SubsuperscriptBox["\[Sigma]", "1", "2"], " ", - SubsuperscriptBox["\[Sigma]", "2", "2"], " ", - SubscriptBox["\[Omega]", "1"]}], "+", - RowBox[{"8", " ", "\[Epsilon]", " ", "\[Lambda]", " ", - SubsuperscriptBox["\[Sigma]", "1", "2"], " ", - SubsuperscriptBox["\[Sigma]", "2", "2"], " ", - SubscriptBox["\[Omega]", "2"]}], "-", - RowBox[{"8", " ", "\[Epsilon]", " ", - SubsuperscriptBox["\[Sigma]", "1", "2"], " ", - SubsuperscriptBox["\[Sigma]", "2", "2"], " ", - SubscriptBox["\[Omega]", "1"], " ", - SubscriptBox["\[Omega]", "2"]}]}], ")"}]}], "+", - RowBox[{ - SuperscriptBox["#1", "2"], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"4", " ", - SuperscriptBox["\[Epsilon]", "2"], " ", - SuperscriptBox["\[Lambda]", "2"], " ", - SubsuperscriptBox["\[Sigma]", "1", "2"]}], "+", - RowBox[{"4", " ", - SuperscriptBox["\[Epsilon]", "2"], " ", - SuperscriptBox["\[Lambda]", "2"], " ", - SubsuperscriptBox["\[Sigma]", "2", "2"]}], "-", - RowBox[{"8", " ", - SuperscriptBox["\[Epsilon]", "2"], " ", - SubsuperscriptBox["\[Sigma]", "1", "2"], " ", - SubsuperscriptBox["\[Sigma]", "2", "2"]}], "-", - RowBox[{"8", " ", - SuperscriptBox["\[Epsilon]", "2"], " ", "\[Lambda]", " ", - - SubsuperscriptBox["\[Sigma]", "2", "2"], " ", - SubscriptBox["\[Omega]", "1"]}], "+", - RowBox[{"4", " ", - SuperscriptBox["\[Epsilon]", "2"], " ", - SubsuperscriptBox["\[Sigma]", "2", "2"], " ", - SubsuperscriptBox["\[Omega]", "1", "2"]}], "-", - RowBox[{"8", " ", - SuperscriptBox["\[Epsilon]", "2"], " ", "\[Lambda]", " ", - - SubsuperscriptBox["\[Sigma]", "1", "2"], " ", - SubscriptBox["\[Omega]", "2"]}], "+", - RowBox[{"4", " ", - SuperscriptBox["\[Epsilon]", "2"], " ", - SubsuperscriptBox["\[Sigma]", "1", "2"], " ", - SubsuperscriptBox["\[Omega]", "2", "2"]}]}], ")"}]}]}], - "&"}], ",", "1"}], "]"}], " ", - SubsuperscriptBox["\[Sigma]", "1", "2"], " ", - SubsuperscriptBox["\[Omega]", "2", "3"]}]}], - RowBox[{"2", " ", - SuperscriptBox["\[Epsilon]", "3"], " ", - RowBox[{"(", - RowBox[{ - RowBox[{ - SuperscriptBox["\[Lambda]", "2"], " ", - SubsuperscriptBox["\[Sigma]", "1", "2"]}], "-", - RowBox[{ - SuperscriptBox["\[Lambda]", "2"], " ", - SubsuperscriptBox["\[Sigma]", "2", "2"]}], "+", - RowBox[{"2", " ", "\[Lambda]", " ", - SubsuperscriptBox["\[Sigma]", "2", "2"], " ", - SubscriptBox["\[Omega]", "1"]}], "-", - RowBox[{ - SubsuperscriptBox["\[Sigma]", "2", "2"], " ", - SubsuperscriptBox["\[Omega]", "1", "2"]}], "-", - RowBox[{"2", " ", "\[Lambda]", " ", - SubsuperscriptBox["\[Sigma]", "1", "2"], " ", - SubscriptBox["\[Omega]", "2"]}], "+", - RowBox[{ - SubsuperscriptBox["\[Sigma]", "1", "2"], " ", - SubsuperscriptBox["\[Omega]", "2", "2"]}]}], ")"}]}]]}], - ",", - RowBox[{ - SubscriptBox["q", "22"], "\[Rule]", - FractionBox[ - RowBox[{ - RowBox[{ - SuperscriptBox["\[Epsilon]", "3"], " ", "\[Lambda]", " ", - - SubsuperscriptBox["\[Sigma]", "1", "2"]}], "+", - RowBox[{"2", " ", - SuperscriptBox["\[Epsilon]", "4"], " ", "\[Lambda]", " ", - - RowBox[{"Root", "[", - RowBox[{ - RowBox[{ - RowBox[{ - SuperscriptBox["\[Epsilon]", "4"], "+", - RowBox[{"16", " ", - SuperscriptBox["#1", "4"], " ", - SubsuperscriptBox["\[Sigma]", "1", "4"], " ", - SubsuperscriptBox["\[Sigma]", "2", "4"]}], "+", - RowBox[{"32", " ", "\[Epsilon]", " ", - SuperscriptBox["#1", "5"], " ", - SubsuperscriptBox["\[Sigma]", "1", "4"], " ", - SubsuperscriptBox["\[Sigma]", "2", "4"]}], "+", - RowBox[{"#1", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"2", " ", - SuperscriptBox["\[Epsilon]", "5"]}], "-", - RowBox[{"2", " ", - SuperscriptBox["\[Epsilon]", "3"], " ", - SuperscriptBox["\[Lambda]", "2"]}], "+", - RowBox[{"2", " ", - SuperscriptBox["\[Epsilon]", "3"], " ", "\[Lambda]", " ", - - SubscriptBox["\[Omega]", "1"]}], "+", - RowBox[{"2", " ", - SuperscriptBox["\[Epsilon]", "3"], " ", "\[Lambda]", " ", - - SubscriptBox["\[Omega]", "2"]}], "-", - RowBox[{"2", " ", - SuperscriptBox["\[Epsilon]", "3"], " ", - SubscriptBox["\[Omega]", "1"], " ", - SubscriptBox["\[Omega]", "2"]}]}], ")"}]}], "+", - RowBox[{ - SuperscriptBox["#1", "3"], " ", - RowBox[{"(", - RowBox[{ - RowBox[{ - RowBox[{"-", "16"}], " ", - SuperscriptBox["\[Epsilon]", "3"], " ", - SubsuperscriptBox["\[Sigma]", "1", "2"], " ", - SubsuperscriptBox["\[Sigma]", "2", "2"]}], "-", - RowBox[{"8", " ", "\[Epsilon]", " ", - SuperscriptBox["\[Lambda]", "2"], " ", - SubsuperscriptBox["\[Sigma]", "1", "2"], " ", - SubsuperscriptBox["\[Sigma]", "2", "2"]}], "+", - RowBox[{"8", " ", "\[Epsilon]", " ", "\[Lambda]", " ", - SubsuperscriptBox["\[Sigma]", "1", "2"], " ", - SubsuperscriptBox["\[Sigma]", "2", "2"], " ", - SubscriptBox["\[Omega]", "1"]}], "+", - RowBox[{"8", " ", "\[Epsilon]", " ", "\[Lambda]", " ", - SubsuperscriptBox["\[Sigma]", "1", "2"], " ", - SubsuperscriptBox["\[Sigma]", "2", "2"], " ", - SubscriptBox["\[Omega]", "2"]}], "-", - RowBox[{"8", " ", "\[Epsilon]", " ", - SubsuperscriptBox["\[Sigma]", "1", "2"], " ", - SubsuperscriptBox["\[Sigma]", "2", "2"], " ", - SubscriptBox["\[Omega]", "1"], " ", - SubscriptBox["\[Omega]", "2"]}]}], ")"}]}], "+", - RowBox[{ - SuperscriptBox["#1", "2"], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"4", " ", - SuperscriptBox["\[Epsilon]", "2"], " ", - SuperscriptBox["\[Lambda]", "2"], " ", - SubsuperscriptBox["\[Sigma]", "1", "2"]}], "+", - RowBox[{"4", " ", - SuperscriptBox["\[Epsilon]", "2"], " ", - SuperscriptBox["\[Lambda]", "2"], " ", - SubsuperscriptBox["\[Sigma]", "2", "2"]}], "-", - RowBox[{"8", " ", - SuperscriptBox["\[Epsilon]", "2"], " ", - SubsuperscriptBox["\[Sigma]", "1", "2"], " ", - SubsuperscriptBox["\[Sigma]", "2", "2"]}], "-", - RowBox[{"8", " ", - SuperscriptBox["\[Epsilon]", "2"], " ", "\[Lambda]", " ", - - SubsuperscriptBox["\[Sigma]", "2", "2"], " ", - SubscriptBox["\[Omega]", "1"]}], "+", - RowBox[{"4", " ", - SuperscriptBox["\[Epsilon]", "2"], " ", - SubsuperscriptBox["\[Sigma]", "2", "2"], " ", - SubsuperscriptBox["\[Omega]", "1", "2"]}], "-", - RowBox[{"8", " ", - SuperscriptBox["\[Epsilon]", "2"], " ", "\[Lambda]", " ", - - SubsuperscriptBox["\[Sigma]", "1", "2"], " ", - SubscriptBox["\[Omega]", "2"]}], "+", - RowBox[{"4", " ", - SuperscriptBox["\[Epsilon]", "2"], " ", - SubsuperscriptBox["\[Sigma]", "1", "2"], " ", - SubsuperscriptBox["\[Omega]", "2", "2"]}]}], ")"}]}]}], - "&"}], ",", "1"}], "]"}], " ", - SubsuperscriptBox["\[Sigma]", "1", "2"]}], "-", - RowBox[{"2", " ", - SuperscriptBox["\[Epsilon]", "2"], " ", - SuperscriptBox["\[Lambda]", "3"], " ", - RowBox[{"Root", "[", - RowBox[{ - RowBox[{ - RowBox[{ - SuperscriptBox["\[Epsilon]", "4"], "+", - TemplateBox[{"4"}, "OutputSizeLimit`Skeleton"], "+", - RowBox[{ - SuperscriptBox["#1", "2"], " ", - RowBox[{"(", - TemplateBox[{"1"}, "OutputSizeLimit`Skeleton"], ")"}]}]}], - "&"}], ",", "1"}], "]"}], " ", - SubsuperscriptBox["\[Sigma]", "2", "2"]}], "+", - TemplateBox[{"31"}, "OutputSizeLimit`Skeleton"], "+", - RowBox[{"8", " ", - SuperscriptBox["\[Epsilon]", "2"], " ", - SuperscriptBox[ - TemplateBox[{"1"}, "OutputSizeLimit`Skeleton"], "3"], " ", - SubsuperscriptBox["\[Sigma]", "1", "4"], " ", - SubsuperscriptBox["\[Sigma]", "2", "2"], " ", - SubscriptBox["\[Omega]", "2"]}], "+", - RowBox[{"8", " ", "\[Epsilon]", " ", "\[Lambda]", " ", - SuperscriptBox[ - RowBox[{"Root", "[", - RowBox[{ - RowBox[{ - RowBox[{ - SuperscriptBox["\[Epsilon]", "4"], "+", - TemplateBox[{"4"}, "OutputSizeLimit`Skeleton"], "+", - RowBox[{ - SuperscriptBox["#1", "2"], " ", - TemplateBox[{"1"}, "OutputSizeLimit`Skeleton"]}]}], "&"}], - ",", "1"}], "]"}], "2"], " ", - SubsuperscriptBox["\[Sigma]", "1", "2"], " ", - SubsuperscriptBox["\[Sigma]", "2", "2"], " ", - SubscriptBox["\[Omega]", "1"], " ", - SubscriptBox["\[Omega]", "2"]}], "-", - RowBox[{"4", " ", "\[Epsilon]", " ", - SuperscriptBox[ - RowBox[{"Root", "[", - RowBox[{ - RowBox[{ - RowBox[{ - SuperscriptBox["\[Epsilon]", "4"], "+", - RowBox[{"16", " ", - SuperscriptBox["#1", "4"], " ", - SubsuperscriptBox["\[Sigma]", "1", "4"], " ", - SubsuperscriptBox["\[Sigma]", "2", "4"]}], "+", - RowBox[{"32", " ", "\[Epsilon]", " ", - SuperscriptBox["#1", "5"], " ", - SubsuperscriptBox["\[Sigma]", "1", "4"], " ", - SubsuperscriptBox["\[Sigma]", "2", "4"]}], "+", - RowBox[{"#1", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"2", " ", - SuperscriptBox["\[Epsilon]", "5"]}], "-", - RowBox[{"2", " ", - SuperscriptBox["\[Epsilon]", "3"], " ", - SuperscriptBox["\[Lambda]", "2"]}], "+", - RowBox[{"2", " ", - SuperscriptBox["\[Epsilon]", "3"], " ", "\[Lambda]", " ", - - SubscriptBox["\[Omega]", "1"]}], "+", - RowBox[{"2", " ", - SuperscriptBox["\[Epsilon]", "3"], " ", "\[Lambda]", " ", - - SubscriptBox["\[Omega]", "2"]}], "-", - RowBox[{"2", " ", - SuperscriptBox["\[Epsilon]", "3"], " ", - SubscriptBox["\[Omega]", "1"], " ", - SubscriptBox["\[Omega]", "2"]}]}], ")"}]}], "+", - RowBox[{ - SuperscriptBox["#1", "3"], " ", - RowBox[{"(", - RowBox[{ - RowBox[{ - RowBox[{"-", "16"}], " ", - SuperscriptBox["\[Epsilon]", "3"], " ", - SubsuperscriptBox["\[Sigma]", "1", "2"], " ", - SubsuperscriptBox["\[Sigma]", "2", "2"]}], "-", - RowBox[{"8", " ", "\[Epsilon]", " ", - SuperscriptBox["\[Lambda]", "2"], " ", - SubsuperscriptBox["\[Sigma]", "1", "2"], " ", - SubsuperscriptBox["\[Sigma]", "2", "2"]}], "+", - RowBox[{"8", " ", "\[Epsilon]", " ", "\[Lambda]", " ", - SubsuperscriptBox["\[Sigma]", "1", "2"], " ", - SubsuperscriptBox["\[Sigma]", "2", "2"], " ", - SubscriptBox["\[Omega]", "1"]}], "+", - RowBox[{"8", " ", "\[Epsilon]", " ", "\[Lambda]", " ", - SubsuperscriptBox["\[Sigma]", "1", "2"], " ", - SubsuperscriptBox["\[Sigma]", "2", "2"], " ", - SubscriptBox["\[Omega]", "2"]}], "-", - RowBox[{"8", " ", "\[Epsilon]", " ", - SubsuperscriptBox["\[Sigma]", "1", "2"], " ", - SubsuperscriptBox["\[Sigma]", "2", "2"], " ", - SubscriptBox["\[Omega]", "1"], " ", - SubscriptBox["\[Omega]", "2"]}]}], ")"}]}], "+", - RowBox[{ - SuperscriptBox["#1", "2"], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"4", " ", - SuperscriptBox["\[Epsilon]", "2"], " ", - SuperscriptBox["\[Lambda]", "2"], " ", - SubsuperscriptBox["\[Sigma]", "1", "2"]}], "+", - RowBox[{"4", " ", - SuperscriptBox["\[Epsilon]", "2"], " ", - SuperscriptBox["\[Lambda]", "2"], " ", - SubsuperscriptBox["\[Sigma]", "2", "2"]}], "-", - RowBox[{"8", " ", - SuperscriptBox["\[Epsilon]", "2"], " ", - SubsuperscriptBox["\[Sigma]", "1", "2"], " ", - SubsuperscriptBox["\[Sigma]", "2", "2"]}], "-", - RowBox[{"8", " ", - SuperscriptBox["\[Epsilon]", "2"], " ", "\[Lambda]", " ", - - SubsuperscriptBox["\[Sigma]", "2", "2"], " ", - SubscriptBox["\[Omega]", "1"]}], "+", - RowBox[{"4", " ", - SuperscriptBox["\[Epsilon]", "2"], " ", - SubsuperscriptBox["\[Sigma]", "2", "2"], " ", - SubsuperscriptBox["\[Omega]", "1", "2"]}], "-", - RowBox[{"8", " ", - SuperscriptBox["\[Epsilon]", "2"], " ", "\[Lambda]", " ", - - SubsuperscriptBox["\[Sigma]", "1", "2"], " ", - SubscriptBox["\[Omega]", "2"]}], "+", - RowBox[{"4", " ", - SuperscriptBox["\[Epsilon]", "2"], " ", - SubsuperscriptBox["\[Sigma]", "1", "2"], " ", - SubsuperscriptBox["\[Omega]", "2", "2"]}]}], ")"}]}]}], - "&"}], ",", "1"}], "]"}], "2"], " ", - SubsuperscriptBox["\[Sigma]", "1", "2"], " ", - SubsuperscriptBox["\[Sigma]", "2", "2"], " ", - SubsuperscriptBox["\[Omega]", "1", "2"], " ", - SubscriptBox["\[Omega]", "2"]}]}], - RowBox[{"2", " ", - SuperscriptBox["\[Epsilon]", "3"], " ", - RowBox[{"(", - RowBox[{ - RowBox[{ - SuperscriptBox["\[Lambda]", "2"], " ", - SubsuperscriptBox["\[Sigma]", "1", "2"]}], "-", - RowBox[{ - SuperscriptBox["\[Lambda]", "2"], " ", - SubsuperscriptBox["\[Sigma]", "2", "2"]}], "+", - RowBox[{"2", " ", "\[Lambda]", " ", - SubsuperscriptBox["\[Sigma]", "2", "2"], " ", - SubscriptBox["\[Omega]", "1"]}], "-", - RowBox[{ - SubsuperscriptBox["\[Sigma]", "2", "2"], " ", - SubsuperscriptBox["\[Omega]", "1", "2"]}], "-", - RowBox[{"2", " ", "\[Lambda]", " ", - SubsuperscriptBox["\[Sigma]", "1", "2"], " ", - SubscriptBox["\[Omega]", "2"]}], "+", - RowBox[{ - SubsuperscriptBox["\[Sigma]", "1", "2"], " ", - SubsuperscriptBox["\[Omega]", "2", "2"]}]}], ")"}]}]]}], - ",", - RowBox[{ - SubscriptBox["q", "12"], "\[Rule]", - RowBox[{"Root", "[", - RowBox[{ - RowBox[{ - RowBox[{ - SuperscriptBox["\[Epsilon]", "4"], "+", - RowBox[{"16", " ", - SuperscriptBox["#1", "4"], " ", - SubsuperscriptBox["\[Sigma]", "1", "4"], " ", - SubsuperscriptBox["\[Sigma]", "2", "4"]}], "+", - RowBox[{"32", " ", "\[Epsilon]", " ", - SuperscriptBox["#1", "5"], " ", - SubsuperscriptBox["\[Sigma]", "1", "4"], " ", - SubsuperscriptBox["\[Sigma]", "2", "4"]}], "+", - RowBox[{"#1", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"2", " ", - SuperscriptBox["\[Epsilon]", "5"]}], "-", - RowBox[{"2", " ", - SuperscriptBox["\[Epsilon]", "3"], " ", - SuperscriptBox["\[Lambda]", "2"]}], "+", - RowBox[{"2", " ", - SuperscriptBox["\[Epsilon]", "3"], " ", "\[Lambda]", " ", - - SubscriptBox["\[Omega]", "1"]}], "+", - RowBox[{"2", " ", - SuperscriptBox["\[Epsilon]", "3"], " ", "\[Lambda]", " ", - - SubscriptBox["\[Omega]", "2"]}], "-", - RowBox[{"2", " ", - SuperscriptBox["\[Epsilon]", "3"], " ", - SubscriptBox["\[Omega]", "1"], " ", - SubscriptBox["\[Omega]", "2"]}]}], ")"}]}], "+", - RowBox[{ - SuperscriptBox["#1", "3"], " ", - RowBox[{"(", - RowBox[{ - RowBox[{ - RowBox[{"-", "16"}], " ", - SuperscriptBox["\[Epsilon]", "3"], " ", - SubsuperscriptBox["\[Sigma]", "1", "2"], " ", - SubsuperscriptBox["\[Sigma]", "2", "2"]}], "-", - RowBox[{"8", " ", "\[Epsilon]", " ", - SuperscriptBox["\[Lambda]", "2"], " ", - SubsuperscriptBox["\[Sigma]", "1", "2"], " ", - SubsuperscriptBox["\[Sigma]", "2", "2"]}], "+", - RowBox[{"8", " ", "\[Epsilon]", " ", "\[Lambda]", " ", - SubsuperscriptBox["\[Sigma]", "1", "2"], " ", - SubsuperscriptBox["\[Sigma]", "2", "2"], " ", - SubscriptBox["\[Omega]", "1"]}], "+", - RowBox[{"8", " ", "\[Epsilon]", " ", "\[Lambda]", " ", - SubsuperscriptBox["\[Sigma]", "1", "2"], " ", - SubsuperscriptBox["\[Sigma]", "2", "2"], " ", - SubscriptBox["\[Omega]", "2"]}], "-", - RowBox[{"8", " ", "\[Epsilon]", " ", - SubsuperscriptBox["\[Sigma]", "1", "2"], " ", - SubsuperscriptBox["\[Sigma]", "2", "2"], " ", - SubscriptBox["\[Omega]", "1"], " ", - SubscriptBox["\[Omega]", "2"]}]}], ")"}]}], "+", - RowBox[{ - SuperscriptBox["#1", "2"], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"4", " ", - SuperscriptBox["\[Epsilon]", "2"], " ", - SuperscriptBox["\[Lambda]", "2"], " ", - SubsuperscriptBox["\[Sigma]", "1", "2"]}], "+", - RowBox[{"4", " ", - SuperscriptBox["\[Epsilon]", "2"], " ", - SuperscriptBox["\[Lambda]", "2"], " ", - SubsuperscriptBox["\[Sigma]", "2", "2"]}], "-", - RowBox[{"8", " ", - SuperscriptBox["\[Epsilon]", "2"], " ", - SubsuperscriptBox["\[Sigma]", "1", "2"], " ", - SubsuperscriptBox["\[Sigma]", "2", "2"]}], "-", - RowBox[{"8", " ", - SuperscriptBox["\[Epsilon]", "2"], " ", "\[Lambda]", " ", - - SubsuperscriptBox["\[Sigma]", "2", "2"], " ", - SubscriptBox["\[Omega]", "1"]}], "+", - RowBox[{"4", " ", - SuperscriptBox["\[Epsilon]", "2"], " ", - SubsuperscriptBox["\[Sigma]", "2", "2"], " ", - SubsuperscriptBox["\[Omega]", "1", "2"]}], "-", - RowBox[{"8", " ", - SuperscriptBox["\[Epsilon]", "2"], " ", "\[Lambda]", " ", - - SubsuperscriptBox["\[Sigma]", "1", "2"], " ", - SubscriptBox["\[Omega]", "2"]}], "+", - RowBox[{"4", " ", - SuperscriptBox["\[Epsilon]", "2"], " ", - SubsuperscriptBox["\[Sigma]", "1", "2"], " ", - SubsuperscriptBox["\[Omega]", "2", "2"]}]}], ")"}]}]}], - "&"}], ",", "1"}], "]"}]}]}], "}"}], ",", - RowBox[{"{", - RowBox[{ - RowBox[{ - SubscriptBox["q", "11"], "\[Rule]", - FractionBox[ - TemplateBox[{"1"}, "OutputSizeLimit`Skeleton"], - RowBox[{"2", " ", - SuperscriptBox["\[Epsilon]", "3"], " ", - RowBox[{"(", - RowBox[{ - RowBox[{ - SuperscriptBox["\[Lambda]", "2"], " ", - SubsuperscriptBox["\[Sigma]", "1", "2"]}], "-", - RowBox[{ - SuperscriptBox["\[Lambda]", "2"], " ", - SubsuperscriptBox["\[Sigma]", "2", "2"]}], "+", - TemplateBox[{"1"}, "OutputSizeLimit`Skeleton"], "-", - TemplateBox[{"1"}, "OutputSizeLimit`Skeleton"], "-", - RowBox[{"2", " ", "\[Lambda]", " ", - SubsuperscriptBox["\[Sigma]", "1", "2"], " ", - SubscriptBox["\[Omega]", "2"]}], "+", - RowBox[{ - SubsuperscriptBox["\[Sigma]", "1", "2"], " ", - SubsuperscriptBox["\[Omega]", "2", "2"]}]}], ")"}]}]]}], - ",", - RowBox[{ - SubscriptBox["q", "22"], "\[Rule]", - FractionBox[ - TemplateBox[{"1"}, "OutputSizeLimit`Skeleton"], - TemplateBox[{"1"}, "OutputSizeLimit`Skeleton"]]}], ",", - RowBox[{ - SubscriptBox["q", "12"], "\[Rule]", - RowBox[{"Root", "[", - RowBox[{ - RowBox[{ - RowBox[{ - SuperscriptBox["\[Epsilon]", "4"], "+", - TemplateBox[{"4"}, "OutputSizeLimit`Skeleton"], "+", - RowBox[{ - SuperscriptBox["#1", "2"], " ", - RowBox[{"(", - TemplateBox[{"1"}, "OutputSizeLimit`Skeleton"], ")"}]}]}], - "&"}], ",", "2"}], "]"}]}]}], "}"}], ",", - RowBox[{"{", - TemplateBox[{"1"}, "OutputSizeLimit`Skeleton"], "}"}], ",", - RowBox[{"{", - TemplateBox[{"1"}, "OutputSizeLimit`Skeleton"], "}"}], ",", - RowBox[{"{", - RowBox[{ - RowBox[{ - SubscriptBox["q", "11"], "\[Rule]", - FractionBox[ - RowBox[{ - TemplateBox[{"36"}, "OutputSizeLimit`Skeleton"], "+", - TemplateBox[{"1"}, "OutputSizeLimit`Skeleton"], "-", - RowBox[{"2", " ", - SuperscriptBox["\[Epsilon]", "2"], " ", - RowBox[{"Root", "[", - RowBox[{ - RowBox[{ - TemplateBox[{"1"}, "OutputSizeLimit`Skeleton"], "&"}], - ",", "5"}], "]"}], " ", - SubsuperscriptBox["\[Sigma]", "1", "2"], " ", - SubsuperscriptBox["\[Omega]", "2", "3"]}]}], - RowBox[{"2", " ", - SuperscriptBox["\[Epsilon]", "3"], " ", - RowBox[{"(", - RowBox[{ - RowBox[{ - SuperscriptBox["\[Lambda]", "2"], " ", - SubsuperscriptBox["\[Sigma]", "1", "2"]}], "-", - RowBox[{ - SuperscriptBox["\[Lambda]", "2"], " ", - SubsuperscriptBox["\[Sigma]", "2", "2"]}], "+", - RowBox[{"2", " ", "\[Lambda]", " ", - SubsuperscriptBox["\[Sigma]", "2", "2"], " ", - SubscriptBox["\[Omega]", "1"]}], "-", - RowBox[{ - SubsuperscriptBox["\[Sigma]", "2", "2"], " ", - SubsuperscriptBox["\[Omega]", "1", "2"]}], "-", - RowBox[{"2", " ", "\[Lambda]", " ", - SubsuperscriptBox["\[Sigma]", "1", "2"], " ", - SubscriptBox["\[Omega]", "2"]}], "+", - RowBox[{ - SubsuperscriptBox["\[Sigma]", "1", "2"], " ", - SubsuperscriptBox["\[Omega]", "2", "2"]}]}], ")"}]}]]}], - ",", - RowBox[{ - SubscriptBox["q", "22"], "\[Rule]", - FractionBox[ - RowBox[{ - RowBox[{ - SuperscriptBox["\[Epsilon]", "3"], " ", "\[Lambda]", " ", - - SubsuperscriptBox["\[Sigma]", "1", "2"]}], "+", - TemplateBox[{"35"}, "OutputSizeLimit`Skeleton"], "+", - RowBox[{"8", " ", "\[Epsilon]", " ", "\[Lambda]", " ", - TemplateBox[{"2"}, "OutputSizeLimit`Skeleton"], " ", - SubsuperscriptBox["\[Sigma]", "2", "2"], " ", - SubscriptBox["\[Omega]", "1"], " ", - SubscriptBox["\[Omega]", "2"]}], "-", - RowBox[{"4", " ", "\[Epsilon]", " ", - SuperscriptBox[ - RowBox[{"Root", "[", - RowBox[{ - RowBox[{ - RowBox[{ - SuperscriptBox["\[Epsilon]", "4"], "+", - TemplateBox[{"4"}, "OutputSizeLimit`Skeleton"], "+", - TemplateBox[{"1"}, "OutputSizeLimit`Skeleton"]}], "&"}], - ",", "5"}], "]"}], "2"], " ", - SubsuperscriptBox["\[Sigma]", "1", "2"], " ", - SubsuperscriptBox["\[Sigma]", "2", "2"], " ", - SubsuperscriptBox["\[Omega]", "1", "2"], " ", - SubscriptBox["\[Omega]", "2"]}]}], - RowBox[{"2", " ", - SuperscriptBox["\[Epsilon]", "3"], " ", - RowBox[{"(", - RowBox[{ - RowBox[{ - SuperscriptBox["\[Lambda]", "2"], " ", - SubsuperscriptBox["\[Sigma]", "1", "2"]}], "-", - RowBox[{ - SuperscriptBox["\[Lambda]", "2"], " ", - SubsuperscriptBox["\[Sigma]", "2", "2"]}], "+", - RowBox[{"2", " ", "\[Lambda]", " ", - SubsuperscriptBox["\[Sigma]", "2", "2"], " ", - SubscriptBox["\[Omega]", "1"]}], "-", - RowBox[{ - SubsuperscriptBox["\[Sigma]", "2", "2"], " ", - SubsuperscriptBox["\[Omega]", "1", "2"]}], "-", - RowBox[{"2", " ", "\[Lambda]", " ", - SubsuperscriptBox["\[Sigma]", "1", "2"], " ", - SubscriptBox["\[Omega]", "2"]}], "+", - RowBox[{ - SubsuperscriptBox["\[Sigma]", "1", "2"], " ", - SubsuperscriptBox["\[Omega]", "2", "2"]}]}], ")"}]}]]}], - ",", - RowBox[{ - SubscriptBox["q", "12"], "\[Rule]", - RowBox[{"Root", "[", - RowBox[{ - RowBox[{ - RowBox[{ - SuperscriptBox["\[Epsilon]", "4"], "+", - RowBox[{"16", " ", - SuperscriptBox["#1", "4"], " ", - SubsuperscriptBox["\[Sigma]", "1", "4"], " ", - SubsuperscriptBox["\[Sigma]", "2", "4"]}], "+", - RowBox[{"32", " ", "\[Epsilon]", " ", - SuperscriptBox["#1", "5"], " ", - SubsuperscriptBox["\[Sigma]", "1", "4"], " ", - SubsuperscriptBox["\[Sigma]", "2", "4"]}], "+", - RowBox[{"#1", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"2", " ", - SuperscriptBox["\[Epsilon]", "5"]}], "-", - RowBox[{"2", " ", - SuperscriptBox["\[Epsilon]", "3"], " ", - SuperscriptBox["\[Lambda]", "2"]}], "+", - RowBox[{"2", " ", - SuperscriptBox["\[Epsilon]", "3"], " ", "\[Lambda]", " ", - - SubscriptBox["\[Omega]", "1"]}], "+", - RowBox[{"2", " ", - SuperscriptBox["\[Epsilon]", "3"], " ", "\[Lambda]", " ", - - SubscriptBox["\[Omega]", "2"]}], "-", - RowBox[{"2", " ", - SuperscriptBox["\[Epsilon]", "3"], " ", - SubscriptBox["\[Omega]", "1"], " ", - SubscriptBox["\[Omega]", "2"]}]}], ")"}]}], "+", - RowBox[{ - SuperscriptBox["#1", "3"], " ", - RowBox[{"(", - RowBox[{ - RowBox[{ - RowBox[{"-", "16"}], " ", - SuperscriptBox["\[Epsilon]", "3"], " ", - SubsuperscriptBox["\[Sigma]", "1", "2"], " ", - SubsuperscriptBox["\[Sigma]", "2", "2"]}], "-", - RowBox[{"8", " ", "\[Epsilon]", " ", - SuperscriptBox["\[Lambda]", "2"], " ", - SubsuperscriptBox["\[Sigma]", "1", "2"], " ", - SubsuperscriptBox["\[Sigma]", "2", "2"]}], "+", - RowBox[{"8", " ", "\[Epsilon]", " ", "\[Lambda]", " ", - SubsuperscriptBox["\[Sigma]", "1", "2"], " ", - SubsuperscriptBox["\[Sigma]", "2", "2"], " ", - SubscriptBox["\[Omega]", "1"]}], "+", - RowBox[{"8", " ", "\[Epsilon]", " ", "\[Lambda]", " ", - SubsuperscriptBox["\[Sigma]", "1", "2"], " ", - SubsuperscriptBox["\[Sigma]", "2", "2"], " ", - SubscriptBox["\[Omega]", "2"]}], "-", - RowBox[{"8", " ", "\[Epsilon]", " ", - SubsuperscriptBox["\[Sigma]", "1", "2"], " ", - SubsuperscriptBox["\[Sigma]", "2", "2"], " ", - SubscriptBox["\[Omega]", "1"], " ", - SubscriptBox["\[Omega]", "2"]}]}], ")"}]}], "+", - RowBox[{ - SuperscriptBox["#1", "2"], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"4", " ", - SuperscriptBox["\[Epsilon]", "2"], " ", - SuperscriptBox["\[Lambda]", "2"], " ", - SubsuperscriptBox["\[Sigma]", "1", "2"]}], "+", - RowBox[{"4", " ", - SuperscriptBox["\[Epsilon]", "2"], " ", - SuperscriptBox["\[Lambda]", "2"], " ", - SubsuperscriptBox["\[Sigma]", "2", "2"]}], "-", - RowBox[{"8", " ", - SuperscriptBox["\[Epsilon]", "2"], " ", - SubsuperscriptBox["\[Sigma]", "1", "2"], " ", - SubsuperscriptBox["\[Sigma]", "2", "2"]}], "-", - RowBox[{"8", " ", - SuperscriptBox["\[Epsilon]", "2"], " ", "\[Lambda]", " ", - - SubsuperscriptBox["\[Sigma]", "2", "2"], " ", - SubscriptBox["\[Omega]", "1"]}], "+", - RowBox[{"4", " ", - SuperscriptBox["\[Epsilon]", "2"], " ", - SubsuperscriptBox["\[Sigma]", "2", "2"], " ", - SubsuperscriptBox["\[Omega]", "1", "2"]}], "-", - RowBox[{"8", " ", - SuperscriptBox["\[Epsilon]", "2"], " ", "\[Lambda]", " ", - - SubsuperscriptBox["\[Sigma]", "1", "2"], " ", - SubscriptBox["\[Omega]", "2"]}], "+", - RowBox[{"4", " ", - SuperscriptBox["\[Epsilon]", "2"], " ", - SubsuperscriptBox["\[Sigma]", "1", "2"], " ", - SubsuperscriptBox["\[Omega]", "2", "2"]}]}], ")"}]}]}], - "&"}], ",", "5"}], "]"}]}]}], "}"}]}], "}"}], - Short[#, 8]& ], "line" -> 67, "sessionID" -> 23876000146772358520, - "byteCount" -> 2225960, "size" -> 8, "stored" -> False, "expr" -> - Missing["NotStored"], "wrap" -> OutputSizeLimit`Defer, "version" -> 1|>, + TemplateBox[{"1"}, "OutputSizeLimit`Skeleton"], Short[#, 16]& ], "line" -> + 59, "sessionID" -> 23882815617388216864, "byteCount" -> 2146480, "size" -> + 16, "stored" -> False, "expr" -> Missing["NotStored"], "wrap" -> + OutputSizeLimit`Defer, "version" -> 1|>, "OutputSizeLimitTemplate"]], "Output", CellChangeTimes->{{3.905941916302861*^9, 3.905941963097375*^9}, 3.905942388134901*^9, {3.905942438623794*^9, 3.905942464087213*^9}, @@ -13768,8 +13066,9 @@ Cell[BoxData[ 3.908622449600922*^9, 3.908958028321018*^9, 3.908958184613326*^9, { 3.908958255380935*^9, 3.9089582853320217`*^9}, {3.908958324621259*^9, 3.908958340482032*^9}, {3.9089584151555347`*^9, 3.908958449922164*^9}, - 3.90896489331504*^9, 3.927208535226565*^9, 3.927268740841626*^9}, - CellLabel->"Out[67]=",ExpressionUUID->"c1529933-4912-4020-9a36-126199861756"] + 3.90896489331504*^9, 3.927208535226565*^9, 3.927268740841626*^9, + 3.928307080303113*^9, {3.928308520602763*^9, 3.928308541827199*^9}}, + CellLabel->"Out[59]=",ExpressionUUID->"28d11ee2-0596-4d50-9a1e-cbeee6fe020f"] }, Open ]], Cell[BoxData[{ @@ -13845,10 +13144,9 @@ Cell[BoxData[{ 3.908964913009623*^9}, {3.908964959642782*^9, 3.908964975746837*^9}, { 3.9089653624260902`*^9, 3.908965363753908*^9}, {3.908965402306756*^9, 3.908965411154817*^9}, {3.908965722376893*^9, 3.908965751457464*^9}, { - 3.927268751251314*^9, 3.92726876713138*^9}, {3.9272692476847143`*^9, - 3.9272692556048517`*^9}, {3.9272694010477133`*^9, 3.927269412568018*^9}}, - CellLabel-> - "In[133]:=",ExpressionUUID->"54eb6310-6546-48ff-bb13-776eec083f58"], + 3.927268751251314*^9, 3.92726876713138*^9}, {3.927269247684715*^9, + 3.9272692556048517`*^9}, {3.9272694010477138`*^9, 3.927269412568018*^9}}, + CellLabel->"In[78]:=",ExpressionUUID->"54eb6310-6546-48ff-bb13-776eec083f58"], Cell[CellGroupData[{ @@ -13890,11 +13188,11 @@ Cell[BoxData[ RowBox[{"PlotPoints", "->", "200"}]}], "]"}]], "Input", CellChangeTimes->{{3.908960443948842*^9, 3.9089604545250273`*^9}, { 3.908960692418763*^9, 3.908960755930942*^9}, {3.908960847749057*^9, - 3.9089608486687536`*^9}, {3.908961209260089*^9, 3.90896122552599*^9}, { + 3.908960848668754*^9}, {3.908961209260089*^9, 3.90896122552599*^9}, { 3.90896300338239*^9, 3.9089630049980183`*^9}, 3.908963160577557*^9, { 3.908963276731831*^9, 3.908963278427134*^9}, {3.908963339860756*^9, 3.908963343380438*^9}}, - CellLabel->"In[4]:=",ExpressionUUID->"dfdd1eea-966a-4bd0-8f13-2b14628904cd"], + CellLabel->"In[54]:=",ExpressionUUID->"dfdd1eea-966a-4bd0-8f13-2b14628904cd"], Cell[BoxData[ GraphicsBox[ @@ -13903,170 +13201,231 @@ Cell[BoxData[ TagBox[ {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[2], Opacity[1.], LineBox[CompressedData[" -1:eJxN13k0FPoeAPBhHI9raSGRPfu+aywzSb0xtkSe5V7LUNQ4VErKxSXRtZRn -p0ziykO4yaWunaFQrhZblCJZUrI3du+9c27fr985v/M7n3++f3y3c36y3mcd -fDgJBMLo/+7/3+Zzmi9svc0aCX+fo91B+SVe6EGD2mDebZ5ftZB87IneH+Pl -Z+qOjrqZxqXmgjZnrZJ4jqJbhdryWEboR2/XTncJoGOCDap+7TgIrmAIPRUM -QTcUqTxtkUWv7xaWtnlBAYt1GHpyXkbbVq28cJRFV3QmZf78ggxma9Etuy6j -AxqIx5YU0atRFrF/9pmCfVNbSooj0FzPheTPaKKvODF/pfeZgIWFH0vMRKAH -1pu57bXQ4TrsN8P9xuDjyQTuI9fQvGRz8V4NdK+UvDdnvxG4W21wg/Maujy6 -PVpHE93Ik0DXe0sCf2RNB7xMQE+2x/re1kdLrbL/MB09ANa7dOcLbwLaU3XC -6YI+up6HKFI+aoj50nVu2ncdzYiNaHQxRn8Vos3qThmAHT7T+E1S0ZPTkuEi -5mh3U7UB6Sl9zPdD/vj1THSzT6L/RQu0hxfNWGJWD6we2+eWkYMeXGX6Uajo -nHzivagZXXDaJQrlVg6akfmg/j0Vfe7DcvLyog74xonhzLK76DhtQlySLfqR -8mIXdV0b+99fhqB2Fz05/sW7xBYdJipusLmiBZ5Y7fyZwxpdpafkV1KoifPF -Na/14JsGeM1sw2WGhhbtKVfr+Y86eHGzp0eYrYb1jcxTWndA3wn4fUi8QhXc -Ma/ml0lEO3fZ51bTVcD5hyZLD5QrgyVkGyW+cqJXnCiG1l5KmF95TUWuCkVw -Ku1J4wlBdMPrnLq1AAVwEWHy3zON8uBvvwzwx0uiOdNN6JEBcuDzHFR3yY79 -YMHBpPp5JTTDymZRLkQWrLyrvGetVwZccDY6QUsBfTtI1/rAjBTW82HpK7cS -SdyXyjz/MLaRAJdRKxNPcomDfcgjb7dYYuBbJ2b6HXxFwRmGRxUXZPaCdxgl -ylo37QGPCNmNCvkKg0Oz6csqckLgFIfjNezWXdifDzOe7/5lJ9hurMqJHCoI -/rOOcLq1hQ98f/qL9LgxLzg3PFvnUig3WObU50+/TRFxXjnIWuW+HLh/F/OY -ri4bDd8deItfOdZsGTy4seabXjsPPhYzFPEsdwqsdJHW2Rc9DE67urAZbvwE -HK+v0FFZyaJ8d/O5ZPqE3xD4YSGlbT3zE5iR1Z8nMDwHJkonqFO82GDSEZPb -Je3rYOWfHIcDPxEOfrdxFS1LqoAIrq/KLtbW5QZTndW9upd4wJK02oS0Uj6w -z/uiHbX6guBBvimJ6pCdGH/td4+25l3gQ7sXBk4ShcDPVv5VZEUXBt/QPy03 -WrAH/OrgzbkW7r3ghvOWK3peouDR5aIyp7ti4AQ7papmTnGw/4oj472lBHjh -KYfz9XhJ8Ib/X5lXxqXAsjp3WWl7ZMBcwnMfrj9GX81Nd33HkAX3Na34s3/Y -D/aznC6urEZnh5LIz9zkwAIiQqsxAvLg40fKjvPUog0k7hA/uimAXdxkhk7w -K4JFqSv85HJ0SUvywNAxJXBkcfXz/VvoOZKRRHOeMjhfm5ZCdFABq9SJFAhs -oa3nTAUDc1XB9xPncy/bqaF7t+IG5tFz0Uzmu3x1MHf7snWJvQb4UWWp/csF -9D3e2cjsfE2wEU8Cd6OFFph5a0z53iQ67+mpGqa1NpjFjOXbdRtNlAsMdF5C -a16oLuCw0QErZWnEvGaiDwUyQq4solWkX4o6U3XBaxlZ15Iy0F9ZSrzMafT9 -lg+GPRQ9cPJln5B3GWg3tkW8zTT6m5UTdYKsDy53UN/rmI4maWmmTo+jRxrZ -cq4HDcBB+2SvKmegey2Db8hPoJ01UkvnKYbgwrE3wdNJ6JFT0TtsRtAmOYt1 -YaQD4JPFSXsG49BlpxejeD+gh+ceNTBJJIxnV1jgFocmenvkfR1GL9AO0cp0 -jcB/rVytfx6FbvdItGgdQCdntYaNqRqDQ6+xnryOQutZfqld7kH39F6MCFMw -AWeItDm/CkMrqh9549iF7l+KvVCsaAo+H6cx6BWOfjO38ZnahfYRzNi9qUDG -fbjl+nHkEnqrJjxapR3tpcowOixNAaecibwZdw496usp+Fs7Wkolx15K+iD2 -ZxOPWdtZtD2fyWHzNnRBeudyEL8Z+EGE5+ADEjq41tDKxQhtzBao2dxm1pm6 -m9Ym6G53MdcxMnrJpLtf9DDaaJnaG2GL3tST+qfi0W3xzi5Vdm6z1UR+mtgx -9E99BMc/HNDhlTWvxp3R5rPJ5jdc0NzqjAo9V3Ri/t6UyB/Rd1KC7Pe5o092 -WTc3bbPyD3I6pzzQ5Vde7qz0RAfVF0X+SEeTViJmCV7odX1neuE2//0/BP8X -j4NThw== +1:eJwd13c4lusfAHDriEJCUvbe4+U1XuO9X069lJEV6SAawomGEkkkyk5lRC8S +QnSOCinjNjOSVPaIjERJRsfO7/v8/niu5/r8872e+/6u65E8dsb2JAsTE9MY +PMS79qxah+UxGlaf3S58n/QVWX28kF3oTsPiQvaShPu1K/w5wZzG9+QJz6+a +ijYepeG3dyTIhKUi3L0NXWh4hw7JknBYaiKb8mEajgmyDSFsUreqx2FFw3SW +pDHCDfxNWXUUGu75vbuIAX4xuObZzk3DnkeHXTPAEf7apTdbEPbM7FzMBD/z +4m/lCUR4/tuHsCxwdb5ia70kwqf8YjWzwet8AuIWHVRcOHuxMQe8u0XnKEsA +FTcl7rn8CGxZutJhL0nFN1CzXD4Rry0h5XKHEV5ezC0rAC+pu+1vDzDCjZVU +z0KwTzWr9S85I+yTtmWjCLwaZhpZ3m2IORP7ov4Be9ytLywIMcR80R56xWC2 +d/wyvmqGmF4o3foUfM2BcdOt2wCPlt0Pfg4WEGgUmQ0xwLd6RBRLwX3rtew2 +6gbYkNL+ogwcTFoaGOnRx+O++p7lYLvbTOx7b+jjop/day/BnEYmwl2q+tie +rPa0AtwlJnOMpYeCw5LiXavAH5X7N1huUHD1YfHZanBxeHM4SY2C7Zq8s2rA +mCPGTWtQD8tkf9GpA4/Xzfi8j9HDXc/+bqgHf22O9Egn6+FJx0K/RrDY6tJz +wzFdfCtEmL0JrHUp8ztnjC6OUaK/agYfVZp08CPr4msslz1awVUcrILFYzp4 ++vynX2+I+9J0rNkTq4NJ1huP3oK9IkPwYX0dzPvewuAd+Ae/2U/NaW1MTspt +6gDbfjPjMrirja2Kyy9+IL5nRjRY0EQbm4evs3eCXQyV+8SnydgwffVlF3Hf +ZVzR6ylkbHxZ0boHXHsy/vRFUzKefej+qRfs6m6mL/JTCyes2sX3g1Uiu52T +M7RwgfIlyUGinlcZ3lS6Fs4MtO8eAmdksz4Om9XEDlwG14fBiZeo1LQMTfx3 +vC3/Z+L7U55WDdM18SdBmcZR8NnR5dvLiyTcnyp3ZBwcd3wk5UkOCU9d0pyc +AEdpMEUlWJLwSfpy0iRR3wqL7fR1DVwlMys/RdT/aQkm5RwNfPlz5sA0cd4v +348VWmrgU/NON7+DrwgJa/9eUcdbFPcJ/gBPrrZdZjZXxwz56dez4FItee/C +PDW8xbHmyBzRX2zz6k//U8Vmhta8C+A12sbhWTNVTLo6VbUIFuosVu58pIKH +2Uus/gMv/u7sFFhSxgNqeszLRH5Ds+TXbZVxW/5M8go40+efIeFnSrgmqUhm +Ddwyr+ydwqqEObhkO9fBju02D166KeKsqXaP3+Bs469FusUKOJiqKcyk+RWJ +SGKRHywK2H8zo4kZvOJA1TF3l8dZRkaOrOBEGTU5tmdyOGUwkeMP8F2z1/g4 +jxyeYBVLZwdX92ZUrvnI4vQnxYoc4Hymr7dmsQzWfrjewwn+72ofV7SoDPYj +X/baBmZJMnAL9ZHGMZvFItzg88x0F9EWKXzVb/dzHjBPf0LVvLwUpp2PMeYF +ex2wWJQOlMS9d8vmdoAVdhR3rnVJ4GI//gh+cO6Z8Bh1WQlsekJRfyc4/YKm +ue6sGG7oNZsUBL8oK/rgXCiKvSXTLgmBrRQ4tuhbiGDLEzmKe8BP6CXxJ9iE +ccSNkWph8Emjz4ObdbvxiomchSg47fhsj62HEC4dk1kTAyfrWMktSOzCooGH +4iTA2ynxkuY1O3HdCNVYCvyZ/+AYv4cArh4gzUiDg+67LStK82Pjzw5XZMF3 +bO1eLTXswPEPyary4LNlye/4rvLiiMC9tQrggxOlDkZBPFh41cVSCVxeyeTZ +UL8NJ0lorCmD/535Lv5FnxOznCfHqoIfBN8nXQpix4cc56jqYIlT36YeTrPi +lvMjnRpgW2Yj9WIPZkyl9R3TBK8vZjGcDm9UM2Ki+cjgc2lcCpG05eogKd9c +bXD/xppHUsV8NUl26xFdsHXEUMibB9PVmx/+ZaeA5S+atXWHj1Rrjd5M1ifq +4/rC72D919W1dCEzQ3A0WbalpKSOOrhrYNAIXHv2ttuk9xDV7XGeFwKX5VGb +1lOmqDZXVISMifze68niHpmjineMFZiAWcVjVKjuS1Q7GzuXvWC9vQbphc3r +VJ64Ng46kf+/7EfOTTGhILeAFFOwfqnZPbFcVjR6YNB0P7iq9H6BhiY7Euk9 +P3AATHdUcf/4iwORvWsTLMCiZhUxiUXbkBneTbUi8j2cv72CzINE3ua0HyTO +v21a5GUgL9rfMhlqQ8Rf+8e1qXYHOhblImgHNuZb6DvByo/eSw1l24PfrBzK +P+AmgB4mCtg5gOPIntJjuTtR+fDVCUfwB5Q6V8++C0nPPUh1Ivrl/P4VLXch +tNnZtu8v8Nhy/hOHnN3od55ylzM45qB8aS2LMBpQMrnhCj69Yu81vF8EMeXH +7HEDL7QyO8ZGi6IR7uFH7uCN029Trn0RQ+Xc0/bHwZKknLrEnRJIUlThywkw +m8DcaGyjBAotEU31AF9/kOT0yUsS5XjQ1T3B3TUrp5e2SqEJzsAqL7D3/pmC +kpdSSFj8uM/f4PtBekZvnKVRwIlQJh8wtyD/agS3DCrlPFTqC7bb+8SOo0IG +yadqHTsL1hbJZB13lkV5vvvmz4EPO0sMHeeSQ5FxPDl+YCH6CpdRsRx6sLGV +chFcWH+7b8haHtF8d7z2B4cWvHwntSmPrPneXQgAz+lRRGqzFNA3kRr2y+Bs +DbM7rLaKaMbM81UQWLFSMJd7UxEl+u7xCAabzxnynHughNJ5mX5dJfolfv5B +wEFllFHFyA0l3LUZ1TevjKTnT1PCiPjhDManbBUUJr744zqYvXnZvNBGFW1Y +RTAiiPlRUmTzfkEVfRc+oHoT/JjzZ+j9bDWk8qZxOBJM4Yhhx6bqiEf64sVo +MCNtQuHxV3XkdVeNNRac1XrqFcNcA4l0ZDyLA9cxIrftSNdAb1tN9t0i6l36 +3DnHXxqoMSR9JQGs5vcyl9mChKzpLI/uEP12TzWil0FCr0bStBOJ+jvnFXht +kYTmxaa/JBHnF38v5EjXRBqGPkEp4LXkezcSkjWR5bXVLangH3XynIwZTWRl +Ty1LI85fP6rTSdVCWcJlpgzw7YCTgZ+StVC36/hqOth5yTTaYkYLcdSLPMok +5vcBB/qkERm5kqLIWeBiW5Vd9klkpPJH0fhDoj/V1e7OfCEjgx8sATnE/MNL +0k5IGxUq8ao+Al/YI3ldIVkbxSbI9+eBu/b7x8lMaqM0ST/vArCj6t2ieaoO +ipi9IFIIzpsY8J9J0EGvFx4/LSLinQrfbvFZB3XofqP+AzbIWKy8oqeLGh5+ +nvkXfKIgYWd/lC466cQV+pSY556LYZyjumhcZkbrOXhk7kU1Q08PmSn2DpcQ +8Q7m5TpH6SGtW0u+ZcT9H3PN+jGih6IX2sTLif4yMzZ7oklBsQ3dz1+C365c +r3oXRkHl49OoAtzsGm/a0EdBPjMlM5XE/d1ruDKhpI/4A55frSbm/Y26171h ++ujPvlOkGrDW/u8Vy536KKnJuqkW3Nl1MeSKrAHy4957qJ7YJ4JNjh+uGKAh +/hm2RrCcyt4B+3YD1FLZmvIa3PMr0q9AzhCpCbhaNBP7Mkq13z3YEFEq15Zb +wANzG9/o7YYoX6Q98g0xz3iS+X7LGqGdOx303xLzcNNp/PMlI8Tznu9dO3jz +VXC4YrMR2ljo+6sD7K7kRflTnIrW7zls/UDsJ9/Q1KizVNQjyMH4SMwnj6M8 +D5upqJrtzMEusJhiho2YOEIvbEdWu4n6rOGgNZ1ByO3WjahesM02gz9NmhAq +kB2l9BP7Oalt+QIXDdWVnn87AH4acrT/qR4NHY0rDxsC+1foHDhMoaHqUtko +wvpL3K9+g3d9unOLcJ1vZaq5AQ29UPNhEP7osttpwoiG/n0nWUb4l8HHHqE/ +aSicN2aKMGWZ3hViSUMVcS7Wn8C/tcT2yVnRkHNpqwPhujO/StrAS4O6LoQP +TGYn7ramIWEVPm/Cf3Uz2T+3pSHR1tfXCQeXvPrwxZGG2P7QeEHY5Odtk7jD +NERXSa8izK7i9UzLiYbC7LY2EI7P3nUn9AgNTWWNdxDOvHPBZo8LDZ2hpk4T +PtFuXlsDDjvJPkdYYas06ZQrDd2K9VsiXHztPW/JURpK6bdkGyb6pyo/9Igb +Dd1hrthKWG8l5CeTOw3dVFDYQXid7OiWB/Y/mLRr+P/79v//h8jNn0WM8P8A +w7nF+g== "]]}, Annotation[#, "Charting`Private`Tag#1"]& ], TagBox[ {RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[2], Opacity[1.], LineBox[CompressedData[" -1:eJwt12k01dsbwHEcV4YoGVJkyDwPx3g4Z/+oax6iblRkinAJpZSSIXUNETIV -GZIbkRB1S+xImVXGKBlDSubM/J+z1v/FXnt93nzX3i+eF4+Yi6+NGxMDA8MI -HPpd46f0wcKFwI+UXSh+/W3IsiMgt9CZwJTLm6fo7tOovMAGtnh39xbdc6tG -+946EnjzeMco3fuvO3vpORA46urBW/7g8DtJzPJ2BDYtlho9CzaoXdVmtSSw -X8lk7HlwHU99Tq0Ogc2Q/1AQ+PmXNY82TgIzq/b53ABfv6BR8U8jwiaHDmkm -gMs8eZq4LiGMgtIa0sHV+bJNb8QQts7WJh6C13fxiph/oOGzLePzpeA9jZqO -TBdpmOY2dbMKbFGx8uGIGA0f8KubbqD3WuJTgz5QsZZbUVwHeEnZyaTtIhWv -dk3sGgD7VJMOLUpRsYm0Vsd38Gq4UeR/3XqY7ZOdwwLY/fabwoIQPcwu2tqy -BWZ+zyNxRkkPV4j8dZH9axsKO5rxj1O3LraTUWLjB/PyvhWaDtHF7su9rmLg -3vUaFmtlXZzhkr4qDw5WXfo82EPBx8cKL2iBDycwsBy8QcESq+1KBmA2qoFg -lyIFe6UatViAu4QlXJh6dLDM81vkY+AO+b4Nphs6ONZsptsVXBLREKGqpIPb -AzMcfcGYNcaJ/EUbV+5wkQgCj9ZO+XyM0ca7BTbKIsATDZHu99S1MaljSCoe -LLy69FRvRAv7fBzqvgsmB2b9ZIvRwhHzst7/gh3lxo+eU9fCzVOGzaXgKlYS -f8mIJm7gCnN/BV5Vs32996YmNnBlHK8He0aGYDuKJn7emZXbDv7FYzyjNqmB -v7PzyfWDbX4Yb9e9rYEr4tuSJ+jvmdoXzG+ggefY8qnzYAc9+V6RSXW888+6 -pk0w87Pt0eup6njDizGJbaAN1bjFeZ83Usc7dvBL84JPOhtThGbIeD7u7ywR -sEJkt31KJhlT2kcOy4H7VjO8aIZk3OGcPqUBzswlPQqfVsM8PbLW+uCkQBrt -bqYafjT/ZcYM7JlaWjVgqIZz/249bwv2G15OWF5QxalhI5ou4FjXwdTHD1Rx -mFd7jTc4SoUhKt5CFcs1rateBD+XWWgzXFfBjFmWX8PBdd6iDPIPVDBh3+cb -B54Y++lSaKGCPY7Qmu+ArwgIamyuKGOzB80uD8Djqy1BjGbKmG8qfuAJuIIs -7VX4UAnHXAtNewk2YJ5TLv2tiJvD/9V8B14jNuymjRXxtot5mR/BAp0l8p3/ -KuC7WR8MvoAXNjs7eZfksSlNpWUcTA7NkV63kce2LFUJc+Asn+J+wTI57Fsm -IbYBbpyT90olyWFipjqZdbAN2bZZZ79wksX2ypGGPOBc/YkirRIZTPMP/yIM -FhLDQr+YZPDw5lE9OfDKUZqmmbM03utv/0kdnCShJMVcJoV7FuOPEeDbxu+w -K5cUDvxrid8MXP0p89WajyQOnNLJ/AuczzBxaxpL4G3lBezO4N9Xe7dH75PA -JAWLp3+DmZJ1nUJ9xPGbg0L6geCzjIYO+xr3YzsWUY5wMFdffNWc9H5c9YIh -6ybY09R8QfySGH4rzSGQBpbhLulc6xLFxrvNW++D83wjYpQlRfFX1YrTxeB7 -AWpmWtPCuDZvtfkF+Pmzonb7wn1YMuSidx3YUoZ1G8VcCN9NFJp7D35sWB53 -ilkQ05hWn/aB3ahDX7Zq9+Bb/1Wgb+C7rtM9Nu4CWK8uuWQGnKJpKTUvuhs7 -kEod1sA7dOLEzF7z4bNs09MsQ21oiMdqhMedF4tXs5vvAl9Od1qWFefBE5Gu -o0LgRJvDL5fquDGnfL+zDNjvWcr7XVd3YqI3SZAMtvpWcZR6mQtviClkUcH/ -vWLwqHvDgdtPDm8zAT+Z+ikyRmHDycGfig6Ds4PTVQMvs2BV0k9NR7Do6R/f -70+ScIszseEJtmGkKpe4M+L9vOdjA8DrCzkZx+w2qvuM3jKFgv3vbpeJJJar -ExTsyqPBfRtr7smVc9X5pD/MUsCHrveHNGdPViukJBTmgKXPG7d0RwxWs1e5 -GBeBk67NbwZT3lXPfzNreg6OVpdsLC+vpcXfCYqsBdf4JTiNe/XTzBajd7aC -nz2k1a+nfqex+pYGfwJ7pvXkcA7O0vhMRaRHwCSRGAWa8xLNtCKn4hdY+6Du -vcKGddprlT+4VsEyJ44M+n9nQCHTpfeZh9sQpcI4TTiPhIKt/IV2gqsq0gtU -1FiQ20RQ+16woa2Cc8ciK5pOTPaRAu8zroxJKuJASayJ7apgt4H8HZXqXEgr -ve+cHriPY1LoxaWdyNNSbdWI3l8rPllfw40O8/W8sgHr75rvPUXiQU1JjiYO -4OaVv/JNnXgRy6HFlx7gWHUP8ZE8PmTzu9fjHLgd3Zl9w7IbTZk0rV0FV581 -WSE7C6CNqnt20eCR5fzHRx/sQR+2amaTwDFW0hU1TILIdGvaNxvsvXLEc8BE -CEXW+soVguebGG1vRu9DRGJncQV4w7s1NWxMGBno6QvUgMVUH9Qm8YmijRDG -6mYwM+/s8M23oqhiZ4NxD/hadvKxr55iiFAb2TEM7n694r3Evh9d3jOa/RPs -ZTJVUP5iP5L1+M6/DE6/rE1tthdHVSJ/NjKNtCFOfp7V65wSqOxJrhMX+PDB -x4dZKyUQs894zR6whlAWadReEuVfuOYoAbazF+133S6FjDxEh5XBAoYr26kl -Uig9gz+HAi58k9Dbf0gacf+Yl/0THFrw4v3+LWnkSv2Qegg8q60jVJMjgwQL -thmcAOeqGCeSbGTRu2i9j+5g2Vf8eZxbsqjkl63cWbDZrB6Xf7YcYrf8gK+A -n8TNZV+0kkcO6gcpkXR3bUX1zsmjJg7+2UR6PyIj42uuArrWN3QzE8zSsGxW -aK2ITowlzRWAn5cXWX+cV0QB9Q+TysGP2GZC03OVUHlxmeBrsA5rDAs2UkZL -zsIDTeCMu99kHk0oo0F0zrsLnNN0+mWGmQriRtVfB8G1GZEc3PdUUNnQ37E/ -wCRxf3/bRRXEv5tLbAmsdO5FHqO5KmIcSLvKNArzlqZ4/VOGKhJRjBTgBOv7 -e14KW1BFRsJeqQJgWZGPAraGaqg4ptRGHLyWknYjPkUNlQeO9CiCf9VKs2VM -qSEbcRYDHfCTN8OanTQy0hKLnzgATrjodulrChnZWbMFWIHtl4yizafIyMvD -u/E4+LfpUcNxqjqSfKp9wg1cYqOw+0iyOmrVn/voB9ZWVro9NaaOAlb4rl8G -D+El8WNIA427Se77BxywV+yaTIoGmjwnEpII7jK5ECsxroE84q7vuwe2Vbxd -NEfTRLo+Xdn54IffPl+YitdEvy0TnZ7Se6cjdpgPaSIBrDtZBdbNXHh1RVsL -ndzRatcIPlUQz9cXpYWsdFpJneDHHgvhbMNayLPi6e0B8ODs8+oMbW1Ekrkx -NUnvWT3Ms4/SRqeONl5bBJNcTub8GtRGw+MzmwzfYL6M9Y0fq+mgL3LRzzjA -rSvXqt6H6yBsxa3ND244GWdU16uD1haCMsXACWl1V77JURCPmJ2+Avjyjdp3 -n8IpqIzgb9QCk01+Vi53UtBav3GsAbiz63zIFUldJMPvJWgBTuGvt22/oot+ -2nvF2YGlFA5+PtKmiz4tD1JdwT2LkecKpPTQW16N9jPgs1GKfc7BeugcOVAl -CPx5duOHYZseEolWbY4Au3Gl7NqUpCIG/3rTeHDV1rHRoUAqWrjezZIO3noZ -HCHbQEUdUV0388DOcp46B0RoyJVSvFQCTjwTeifKj4b2TzNmVYJH3B257jfQ -kOQbRfl6sLBsprWwCEKOv4zD2sHSr1mJel+E9LYGefrB1hy6BwzqEdogrGIm -wHnJLcsB2wlU7aCL5sGlIY59pdoEIgut92yCL1RqmtrpECjM/x5pC0xZ4ny5 -CTZ/R1Omu/bMqztmugQ6cSbsBt0dDnuOfaMSyPY/Fg2GsTa0qNvRI3CAQK1k -7kRGsM6yYVeIBYGKGyTNmcGbZOE/pSwJlMdZH0h3re9ieQt4j41HLt2m47lJ -ew4RKKj30SrdJ7oZjjy1IdDeYeWCP8DB5S/bx2wJ1NOnw7INbDCTYBBrR6D7 -uz+r0s2i4FlGPkagH4evONAdl7s7MfQ4gRaaqsvpzkoMsN7rQKCxsgOurOBT -bWY1r8EZP0bj6JZhF1c9fZJAbeI3XtJdEvZxZ7kjgYoSG7jZwAFV+aHHneC/ -jZ5UurVXQmYYnAkUssXuSfe6uq3TQ7CERlES3f/fD5GRl8Vruv8HLwg2wg== +1:eJwd13c41t8bB3ArkZDVsOdjj8d88HjOJ8osZWSUrEoRlVJfGdlFyjeExpMI +JVIqRMmxikpGRlFkVNSXzLL53Z/fH+c61+uf93Xuc1/3da4j433c/hAbCwvL +ECxyrzmh0brTm8A/aT3vTITykW17UE6hF4F3zzpUkO7Re3GGG9xQ+v4u6akF +C4lXHgQe1K6JIi0b5+VH30/gJvV8A9LR169yqLoQOJhyJocONq1doHHZElhF +TjDUGFwv1JBda0jgOStrFUPwsy+LR5p5Cfx4N5uCLjjujF7phTcIZ1UOB2mC +n/gKveU7i/C+ApcvKuCqfOW3dTIIf24U6FcALwkKS+1oZWAJoTmaDHjLG30P +tmAGflZF0RAH7yydb3WUYeCClX6jTWRe05WMkFYTnKDZyBQEz2p6WjUHm2CN +ldkbvOCAKvbdfygmuO62428u8EK0RXx5Fx2XXae7coB9UusK70fQsad/gOeq +YD7iaBGSP6ZBx48+va1cAEc5MS94dhljBdvA0j9gYeFX4uMRxjhYI+fVBLh7 +qYbTTtMY1wewqo6Cw6mzn/s/GuHQqXy1YbBDMgvntvNG2Kw8LGYQzG1iKtap +boQlZ66f6QV3Ssp7s300xKKxplGfwO2qPcts5w2xgeimgXZwcWxjLFXDEE94 +6/U2gzFXoqfOFxquSY3QeAv+VjsW0JZIw1lfHDNegUca431u6dKwrFAQsxos +uTD7lD5kgPfOVf19Adb55/Yod6IBfr7oMFYG9lAZdjqla4AfKQctPga/5GLf +WDykj9PfYfci8IK2c7XoJX3M2rjHPR/sGx+BXYz0sa/opqc54N9ClhPav/Rw +5L4DUrfB9v9ZrjdO1cOz1AXFG+R5xiTCN5rqYV2Fyrg08H66arfUL12s19cY +cYW877L1F5cydPH3NJaWRHDNoST/0xa6uFyhTu8C2N3L0kh8QgcfL2ulRYPV +4rvc0jN18L713Mnh4J4Fph/DXAe/Tr0UFwzOzGEviB7XxgNrbiafAl/9h8G4 +kamNHdk6po6R5894/PKruTZ+7u8y4Qs+MTiXPDdDxWfN1podAl8+0J9RlEvF +I41EkSc4QYsl4cpOKiZmXz3dB36mNNNsvqSFs1xO8zuD6/2lWVRztbB76om1 +9mS9P0a9C3dqYdt//27cCQ7bLKa3Mq+Jr8bcDbUEDy80hbDaaOKoy3fCzMCl +Oop+hfc0cE9g4wcG2JRjSvPxX3UczzR6ZQheJJZdxi3V8f1AgxZd8OaOYtWO +u2qY+LFfQws8s9LRITyriit6W5VVyf5GZisu2aviW04BIRTw7YCHvWJPVHCP +ydVBGfCbKVW/DHYVzDW0dlgc7Nxsl1XhqYxprbnEZnDO1pEHBsVKeKgwSV8I +LC6DxX+zKeFALvZtfOB5J4a+jZci1j+ZdZebvF95DQrHEwr+xJmYxwFOtXyN +D/BR8POLmfOrAjDfnzIrFwMUcLID/dAiOJ9l5N9xLI+VoxUD/oL/nutef1FC +Htf6GL+dBLOlGXtGBsjh2AFm3Sj4JKv5fok3slhjhiI4AubrufJySlEWE3rG +wUNgX+sdM3JnZXC2xa2QPrCSQHHHYqc09itX/NANzjsem6ipII1lVFled4Bv +BWnbGIxL4tY+77YW8LOyBx/cCiXwmrIx6juwrRLXWqMd4vjOu9car8FF5iVJ +BznEcM2Phsga8CGTgS+rtVtwG6fDr0rwjQPjH+19NmOLLLWJZ+B0fVvKtPQm +PLJGw+YpmN8wScamWgT7ipwzfQgeENo1JOQjjD3oLnb3waE3PeeU5YRw44xr +aS44xd7h+Wy9APZMLSi9DT5Rlt4ieG4DDs+T5bkJ3vW91MkklA/rp8oHp4PL +K1mO1Nfx4N/Zp6OSwY/GRqV+GHHj1V9jXy+Bs8JvUv8J5cRH4kp7LoClD//3 +884vdixOz1WJAduzmmgW+7DioWfiKefASzPZTFeX5aqN1d/SzoIDb6xXiifm +qhQK238HgXuWF33SXkxVaTkIfjsO3h3XG/Eu61dVz4eeCT+w4mnLpq7Y/qqk +hTf2PuCrMdMr4Uavq+6Kcdt5gS/qKrwpKalltLw+lusGrjmR7Dns18vI5XXn +dwGX3WM0LGX8ZLyKv7XRgezvtY/ZvP2TjBJH9lO2YHapRDWG1yxjX1zFUSsw +bZvxrcLGJYbawfnQbWT/9zn2B/5kQbKuHgMIbFRqeU0yjx3xj4sMGYFflt68 +r6XNiUzCpwz1webOal7tf7gQZ6+UOhUsYfki8eoDHkTv6DJQI/v9NZ//hS4f +aop/mqFI1s/zS7zi7AZ0xmYgVZbMX3zo3lAjgIKKdL9LgLcKTncfZBdC7X4C +tlvA7+b35Ft7CiPbQOQgDL6se0RuKE8EVfemFPGDP6Drk3Wcm1BrnUHuOnJe +TlrN63htRq82+TxZAx6ayy9yyt2CptMrRFjBibsUS2vYxJBQk7vI0oZ85D/v +6PvVShyF8Sn7zYKn37I6X7oogX5Gh3VNgZf932dE/ZBE0iMyX8fAMtTc2qsi +0shfZpT+E8whPDl46ZU0+hrKZfANHJOV5trnK4P2XLI6/xXcVT3vP7tOFlmU +C431gP2sxu6XVMiiEEJrohN8M5Rm8s5NDtG3B1q2gXk3Ci3E8cqjji4Okyaw +w7YiB64X8igoXcaqAawnfpv9m5sCasrwLqgFu7hJ9x5YT0G+3n/vvQRvNp9f +b1JMQdW7Hy6Ugwvrkrt7dysiCnX8YAk48n5Fi+yqIqoWiTn6CDxJMxSvyVZC +b78ZNRSAc7QsU9jtlVHIyHacB1au3JjHu6qMyie6m7PANpN0vsAsFVSRn6zD +BD9KmsoK3qWKctqYuhmkO1cTuqdUke+ldxdTyPxYJrMvRw3hkZ3hl8GcjXM2 +hXbqaFjb9UI8+FnJA7u2aXW03H7hRwy4gHsi8maOBlJxWDd4DmzIlciJLTQR +nadYOwTMvPFdqWBEE/Ge7rtxGpz99vBzpo0WWp71vH0CXMuM5xG4pYVOhHDO +HwWzywUGOv/RQvHmLOM+YI1TFXmsO6joe1f0khdY8Zp63CcmFbGoKXnsB28N +9D0bNUNFYmtl3V3I+qXaNjubayPWBMYTB/Bi+rXzV9K10fbUIYld4N+1itzM +MW102L1XwZqsv25Qv4Ohg8Qy5qO3g5ODD53tS9dB/DV+YQTYbdbi4o4xHfQ5 +7uBlY/BfayfzYRNdlBkeOa0PLrZX2+SYpova7kz+oYJpmhqpYz90kWRv7E51 +8ACelXNFeijodMBWJXCQqEyMUroeGk3u2yEH7rQ6c1l+WA/diQ8skgQ7q6c+ +mGLoo84tewu2gO99/3xm7Io+2n744JIwmXc4ln/HgD76uPT30AawceZMZRjN +APUd/nqUB3zw/hWRngQD1Lrn52tOcNGRmWjuQQNUZGVVxQrun3xWxaTRkPo1 +6vslfsjbdS/PLYGGhjWMqXNgdm/37N/9NNSx9iZ1GjxtudWySNsQCfCIX/gN +fj8f87Il2hBJqCvM/AQ3uidZ1HcbIkpT7PI3cPK1+rDvKkbI1W2NWz849Hzt +60/RRujL9S9On8E6VqMv5jqMUHhBx90ucEfn6YgwBWN0pM6R7wM4fWOD84cw +Y/SkXlXwPZiitu2zY7Mxeuwhd7QR/PFP/Kn7FDq6LnTSsw58MkG9xyucjvYM +WgZUgT9PLv9n3kxHi/xESwX4EF+64IqCCRpNSXpfAn656vpt4B8T1Oa0LF0M +Xn0eHqvcaIKY89OJhWAvFV9DMykGSlMzTb0LTjkWeT3hBAOZHS4ezwYP+Xjw +3WlkoAveZ0aYYEnlTDtJKYTUdtXPZYAVq7mIhuMIDXNpu6eC7XiMzUwbEPLH +sx5J4Ly0prmg9QSiKPSWJYAfR3j0PKYRyLpctCAWfOaFvrWLIYGKpkUzSBvN +8j5fAUtrisWSrj1Wed3GmEB6d8XcSbfv3+L63YRAkmnigqT/GLd/3GxGoNHT +kiExYMM5886InQQKMZO1jgav6Ehup9gSqCdS1oB07fE/JU1g6ypZedLWwzlX +t+wm0F5DuZUo8L4uFsen9gQy1JJ/Qjq85PmHH84EmpamiJI2nUg2vexCIHsP +ylrSnGq+T3RcCVRzizITCU7K2ZQSuZdAzaKKzaRvpwTZie4nUL6IUjTpg802 +NdXg845Kx0krrZOjHnYnUFCqkhvp4qi2DSUeBIoSUNYnHfQyP3KvJ4EydyvL +kabNR0yweBGo6V/lDaSXdJ0974HXtSgvR/CT7+3//4fIhU/lF+n/ATq/Yrc= "]]}, Annotation[#, "Charting`Private`Tag#1"]& ], TagBox[ {RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[2], Opacity[1.], LineBox[CompressedData[" -1:eJxN13k0FPoeAPBhHI9raSGRPfu+aywzSb0xtkSe5V7LUNQ4VErKxSXRtZRn -p0ziykO4yaWunaFQrhZblCJZUrI3du+9c27fr985v/M7n3++f3y3c36y3mcd -fDgJBMLo/+7/3+Zzmi9svc0aCX+fo91B+SVe6EGD2mDebZ5ftZB87IneH+Pl -Z+qOjrqZxqXmgjZnrZJ4jqJbhdryWEboR2/XTncJoGOCDap+7TgIrmAIPRUM -QTcUqTxtkUWv7xaWtnlBAYt1GHpyXkbbVq28cJRFV3QmZf78ggxma9Etuy6j -AxqIx5YU0atRFrF/9pmCfVNbSooj0FzPheTPaKKvODF/pfeZgIWFH0vMRKAH -1pu57bXQ4TrsN8P9xuDjyQTuI9fQvGRz8V4NdK+UvDdnvxG4W21wg/Maujy6 -PVpHE93Ik0DXe0sCf2RNB7xMQE+2x/re1kdLrbL/MB09ANa7dOcLbwLaU3XC -6YI+up6HKFI+aoj50nVu2ncdzYiNaHQxRn8Vos3qThmAHT7T+E1S0ZPTkuEi -5mh3U7UB6Sl9zPdD/vj1THSzT6L/RQu0hxfNWGJWD6we2+eWkYMeXGX6Uajo -nHzivagZXXDaJQrlVg6akfmg/j0Vfe7DcvLyog74xonhzLK76DhtQlySLfqR -8mIXdV0b+99fhqB2Fz05/sW7xBYdJipusLmiBZ5Y7fyZwxpdpafkV1KoifPF -Na/14JsGeM1sw2WGhhbtKVfr+Y86eHGzp0eYrYb1jcxTWndA3wn4fUi8QhXc -Ma/ml0lEO3fZ51bTVcD5hyZLD5QrgyVkGyW+cqJXnCiG1l5KmF95TUWuCkVw -Ku1J4wlBdMPrnLq1AAVwEWHy3zON8uBvvwzwx0uiOdNN6JEBcuDzHFR3yY79 -YMHBpPp5JTTDymZRLkQWrLyrvGetVwZccDY6QUsBfTtI1/rAjBTW82HpK7cS -SdyXyjz/MLaRAJdRKxNPcomDfcgjb7dYYuBbJ2b6HXxFwRmGRxUXZPaCdxgl -ylo37QGPCNmNCvkKg0Oz6csqckLgFIfjNezWXdifDzOe7/5lJ9hurMqJHCoI -/rOOcLq1hQ98f/qL9LgxLzg3PFvnUig3WObU50+/TRFxXjnIWuW+HLh/F/OY -ri4bDd8deItfOdZsGTy4seabXjsPPhYzFPEsdwqsdJHW2Rc9DE67urAZbvwE -HK+v0FFZyaJ8d/O5ZPqE3xD4YSGlbT3zE5iR1Z8nMDwHJkonqFO82GDSEZPb -Je3rYOWfHIcDPxEOfrdxFS1LqoAIrq/KLtbW5QZTndW9upd4wJK02oS0Uj6w -z/uiHbX6guBBvimJ6pCdGH/td4+25l3gQ7sXBk4ShcDPVv5VZEUXBt/QPy03 -WrAH/OrgzbkW7r3ghvOWK3peouDR5aIyp7ti4AQ7papmTnGw/4oj472lBHjh -KYfz9XhJ8Ib/X5lXxqXAsjp3WWl7ZMBcwnMfrj9GX81Nd33HkAX3Na34s3/Y -D/aznC6urEZnh5LIz9zkwAIiQqsxAvLg40fKjvPUog0k7hA/uimAXdxkhk7w -K4JFqSv85HJ0SUvywNAxJXBkcfXz/VvoOZKRRHOeMjhfm5ZCdFABq9SJFAhs -oa3nTAUDc1XB9xPncy/bqaF7t+IG5tFz0Uzmu3x1MHf7snWJvQb4UWWp/csF -9D3e2cjsfE2wEU8Cd6OFFph5a0z53iQ67+mpGqa1NpjFjOXbdRtNlAsMdF5C -a16oLuCw0QErZWnEvGaiDwUyQq4solWkX4o6U3XBaxlZ15Iy0F9ZSrzMafT9 -lg+GPRQ9cPJln5B3GWg3tkW8zTT6m5UTdYKsDy53UN/rmI4maWmmTo+jRxrZ -cq4HDcBB+2SvKmegey2Db8hPoJ01UkvnKYbgwrE3wdNJ6JFT0TtsRtAmOYt1 -YaQD4JPFSXsG49BlpxejeD+gh+ceNTBJJIxnV1jgFocmenvkfR1GL9AO0cp0 -jcB/rVytfx6FbvdItGgdQCdntYaNqRqDQ6+xnryOQutZfqld7kH39F6MCFMw -AWeItDm/CkMrqh9549iF7l+KvVCsaAo+H6cx6BWOfjO38ZnahfYRzNi9qUDG -fbjl+nHkEnqrJjxapR3tpcowOixNAaecibwZdw496usp+Fs7Wkolx15K+iD2 -ZxOPWdtZtD2fyWHzNnRBeudyEL8Z+EGE5+ADEjq41tDKxQhtzBao2dxm1pm6 -m9Ym6G53MdcxMnrJpLtf9DDaaJnaG2GL3tST+qfi0W3xzi5Vdm6z1UR+mtgx -9E99BMc/HNDhlTWvxp3R5rPJ5jdc0NzqjAo9V3Ri/t6UyB/Rd1KC7Pe5o092 -WTc3bbPyD3I6pzzQ5Vde7qz0RAfVF0X+SEeTViJmCV7odX1neuE2//0/BP8X -j4NThw== +1:eJwt13k0lOsfAHBboiyJLJns+25mMIyZZ6jGWrLc6F67rLekkrKlhCwRWUMi +JGlRl0risRWVlEJouVSylLJ17fl933N+f7znPZ9z3vM9z/PdznnlvQ85+HJx +cHB8hod4N4fovNrlzcLrst50SJwbQ7vfhJZWebHwpmqnbsKDBvVh/GCxzt4B +wjNLFtsee8D3PP0ThBXivYJM3Vg4/eh7AUlw7MUsHk0XFmbbj+whbN6yROPb +zcKG6+f7CbeJtpe0GLOwnNvWcSnw/ffLAV2CLJz3QM2IBI4PM6g9+xRh3giS +uwz4bqDoM6FwhDmFzSLkwI3X1J+1yiP8REq7TQG8sllM1vYVE1tc/f1VCSz1 +1NCD6wQTi2XkGqmCd9UuvnKSZ+LjbK9odSJeZ3puxCsG5s/fVKgJntf1tOo6 +wcC3dc6OaYMPNnLv+aXCwNwhnwX1wEuxFokP+kzx97wQNTLYL7O1qjLGFAd9 +bQuhgnleiioF65hi65XfGYbg03sLz3r20bG9LMcwDSwm9pj0M4aOV+TIynTw +wEozr70uHfuvtzZngKP1598NvTXBfR/UUhHYMYODd0eCCY6smKw2A/MzzKV7 +tU3wJatwrh3gXhklb663xtir18CKDX6jObjKlWCM+0P6AyzB1XEdcfo6xjix +3eyeNRjzpXhS3tPwYdOM97bgLy2TB7tTaHj9A5GF3eCxjkS/S1QatnntYmYP +llma/8f0sxE+q5Lg4wimHL/8nT/FCC9xRvzzB9hDY3TvUaoRVn5XtOAMbuDj +Fq/+bIjvbLgu/ieRL7Jz09ZzhphdFuntCg5MjMEuJob4wRXKWXfwD1HLKfKE +Ae6vJ5V4gh2+WQrQMw1wkkLnmDdxnslt0eLmBriV35vfF+xmqjkgO0HFaqqN +zv5Evu8JJK/kUnHJG46YQHCzb9qBYxZUfLs8tOBvsLuXpQlpioL3ZNwaOQjW +SuxzzSmi4FeqL/lCiH5eKgxisinYt6l23xFwUSn39difZJx17MXlUHDWcSYz +v4iMJWeeN4YR58+90/Avm4xDHdM3hoNDPi1kLMzp46vJdP1IcKrPUO7NMn0c +tixhGw1O0uNISt+ljwuoD7NiiP5Wm+tir+jhXR7b750m+v+AHIdmmR4eMbmw +Lo6479fv3lW79LCqxWbrBHCUpLTB70Vd7OIV7p8IHl3qjOC00cWWwlfvJoNr +KapBVRU6uGigru8cMV88M7p3/tPG6nKZaufBy6xVl5+W2tjtyqVDGWDJnmrN +nqtaOMLt/PlM8Nzvnh6xeU185jj7QzZR31MlqisOmni5/wt3HvjywVsfpO9q +YO3MGtl88NMZzaBcbg386LxVYCHYucu+uM5THUf/fJxSBC41G7thVK2GFSLW +vy8Gk+Qx6QeXGk5yipAvBS/uZRraeKni9Fs9qJzIr5KOCs9dFWwpPpdSAc60 +fIJ9hFTwNoHl6kpivvuLHi0fVMa3ginPq8DXOMbO/8RK+FiLnugt8H8nBwSS +tylhvqYt1GowVzbd89RBRRyUi2Pvgo9wst22PVXASqr212vAQoPpDTOqCjhW +R6z9HlFPa9s5xXB5LDpbIFIHVhOp7lnulcOdKRsN6sHlh+JSdJXlMPUZSmgA +Xwol2xj9lME7j5d3YqKe9268dq3ahufFZr81E/tSjW+9iS0Jb6WvM24D32TX +pO3nkcZenmvuT8C+jOH3ay1S2EVEM6IDnO/z862DnySm6Ui3PgPnGO5WmZWT +wPO+s186wcLGafI2TVuw9sx56kvwsKjdZ1E/MSzD6R7eDY4s8FxQVxTFThZi +uW/AFxwcH863ieC+trRPvUR/3st5ufnkJrwlcZq3H2w3UruXESmEub7Fyw2C +HzziCGhr3Yg7Aj76vwffnvwu+9WEH89ayCZ+BBdHF+gfj+TF2RpKfUNgOf9v +41cmuLFytMjqJ2JeORm61X6c2CJCT2qE2L9zJYX7XFYbd7uL+oyCD+cLqCWy +Fhr5uj7GjxPztrrsl10/06glGNz3Dbwn/kPM8+KJxvFJHdIPsOoxy86+uKHG +52H9JlNEf5yZ/R1t8qRx6M7OszPgZKry05qaFmZeacGNOWLeQzI8R4M+MMcc +Fdv/A9+rYLav5I4zv10MFl4k6pv3tkRwaJq58+4VvWUwt2yKFtNrnjlqmR+z +CqbtoF+q6lhh6ma3tq4R9f/LaejwOAfSfNU7xJk6hkxqLfNkyrmR7YEqTR5w +Q21BpR6ZF2WvC7LjBbOdtbze/OJDMWPfivnA2yzrU7JubEQC5y6PbgD7/ntN +uJ4qhJhWpusFwYMbJ0h14ZtQJ7nQSZiIv3zLvb1ZBMXvGIkQAZttnh3Yzy2K +JimeOaLg54t/XLP2FEMqlKJ/t4BTqQGKn8u3IIuwx5yS4Nfo4nQrrwR6cue2 +/VZw4xGrRYqXJFptfp5DAn9euHZzb5kUiid318iAU+xUa5u5pJHpyYsc8uAD +i06B/1qREKbZKCuCZ59xOp9L3oamvuggZfDqgRe5p7/KoAG73gRVsLx+WUvW +FjlkvNO3Qh3MIzb96dxjOTQ5fP+XJvhMcfa+j4HyqERijqQD7mtaPDC/QQFN +WHkb64GDrCYra+oU0DRv5hkyuCCSxnjuqohaTty8SgULiosuxQsqoW635HlD +sOOOm4589UooyvAiwxhsQLrM/cVVGfkNZbjSwS6uch98BFSQ05BtJQMsyV4U +YFSrIO6m6S4ErmrNGPiwRxXtru4YNwOfqqx7qbCmiqQHvcg7wNM0Y1JziRry +WPviyAaX6lle4HZQR7VsjVJLsPoj8XLBNXB2yag12GbaVOhwsQZKXeFatwt8 +O22m+ISdJnIIUNljR7h3LWlgRhP5LlFC7Yn4cYWFH0u10Ltw7ieOYN6OBZsq +e220vHGd4F7w/Zob9t2z2mh8aErLBXydf+pUQakOmosvivgTbMyXwostdNEf +UYYlruDC/BG162O6KPgKR4M7uOSZ/8NCGz0kFnWO1wvcUpi4UeSSHnrdwqXu +A+ZWPHzY+ZceulpuEu4L1jlaV85pq4/ot8sa/cGqedrx/YX6yMl88X0g0X+H +A8NPz+kjeydh9QPE/WW7JZ3ZZGT3W3h3MHg5Jy8hPYeM1n83DwgB/2hR5S+c +JCN1U6PqI8T9Wz8Z9jApaAmJd4eCM074hn/MoaAXafdkj4Nd5y2SbScpKEgy +yScc/J/1XvYog4qEjrBPRYKrHbQknLKpKHex7Vk0mKarkzn5lYryPXR+xICH +8bziPmSA1t65oFhw6Fb5M2o5BkijqDY+DtxrFZaqNGqALP5aLUsAO2tn3phh +GqKzIrwzieCKkXdhk+mGiNG9KJFCxPOPE7YdNkR4VpaSCqYXzT2KohmhjzO8 +UefB+yvTtwwmGSEtiYFLGeCbAXOx/J+M0FWOA5OZ4KHp+42FNBpa2K5PziHi +2VWUuybR0IeOYbs8Iv/e7iU/hmjo8S+HgnxivizNLG+SjdGDI7dxIfjF4pmG +l7HG6Kgfc6AI3OGeZtE2YIyaRlLlSoj85bVFjWiYoIZXHaxScGRCy5P+WBP0 +XbctrRxMsfpev9Bjgpz4q2orwD29x2KilOkoYH9bdyU4R7zd+XUUHZEkiqRv +gFW0drxz6qKjLg8f5i3w21+JRytVTFHZ2FhaNfhIkvagV7Qp0p0o7rkLfje9 ++o3dZYrUi3bM1hD7TChn829lBtp07Bq6T+zDtX1fho8z0IjAwv468NrD6Dj1 +Dgb62yQiph7spRFovF2WiXyCH7U3gC8En7qYFMJECycnxjCxn/w8hK50MFHW +yX6jFrCMepG9jCxCUxsWI9uI/mziY7UfQsgifd3FJ2D7jfTt5u0InRnt/twB +Ls/uXAgVYCFtdvL65+A7MR6Dd2gsZOTBte8FOKze0NrFmIWi9Oq9CJvMCz78 +Da7jDA0i3BL86KINnYVIZSORhN+4Se0bYbBQwlhHEeFf9DdvJbez0Pih818I +Gy+we2N2sdDoCVJIF/g3RWanym4WMrDqPUG45dCvmk5wlFTaacLWo6VZUntY +aKZu7QLhv/o4nP5xYKEzS59qCUfXPHz91ZmF9CMqlwmbT2WYp7qwEI+1N89L +Yl9oBd6l7GOhV1LSgoTTSiUunPqThfbUnZMhfPlCqP1WNxaanT9kRnh/l01z +EzipXc2asNoGRX1/dxYSzx12IFx9untTjQcLSRs67icc2nDt1J+eLHRhncBB +wrTFmCkOLxbi7G07RniF6uxZAQ4oiz5J+P//h6jjqOFZwv8DsM8C+w== "]]}, Annotation[#, "Charting`Private`Tag#2"]& ]}, {}}, {"WolframDynamicHighlight", <| @@ -14083,47 +13442,78 @@ j4NThw== RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[2]], Line[CompressedData[" -1:eJxN13k0FPoeAPBhHI9raSGRPfu+aywzSb0xtkSe5V7LUNQ4VErKxSXRtZRn -p0ziykO4yaWunaFQrhZblCJZUrI3du+9c27fr985v/M7n3++f3y3c36y3mcd -fDgJBMLo/+7/3+Zzmi9svc0aCX+fo91B+SVe6EGD2mDebZ5ftZB87IneH+Pl -Z+qOjrqZxqXmgjZnrZJ4jqJbhdryWEboR2/XTncJoGOCDap+7TgIrmAIPRUM -QTcUqTxtkUWv7xaWtnlBAYt1GHpyXkbbVq28cJRFV3QmZf78ggxma9Etuy6j -AxqIx5YU0atRFrF/9pmCfVNbSooj0FzPheTPaKKvODF/pfeZgIWFH0vMRKAH -1pu57bXQ4TrsN8P9xuDjyQTuI9fQvGRz8V4NdK+UvDdnvxG4W21wg/Maujy6 -PVpHE93Ik0DXe0sCf2RNB7xMQE+2x/re1kdLrbL/MB09ANa7dOcLbwLaU3XC -6YI+up6HKFI+aoj50nVu2ncdzYiNaHQxRn8Vos3qThmAHT7T+E1S0ZPTkuEi -5mh3U7UB6Sl9zPdD/vj1THSzT6L/RQu0hxfNWGJWD6we2+eWkYMeXGX6Uajo -nHzivagZXXDaJQrlVg6akfmg/j0Vfe7DcvLyog74xonhzLK76DhtQlySLfqR -8mIXdV0b+99fhqB2Fz05/sW7xBYdJipusLmiBZ5Y7fyZwxpdpafkV1KoifPF -Na/14JsGeM1sw2WGhhbtKVfr+Y86eHGzp0eYrYb1jcxTWndA3wn4fUi8QhXc -Ma/ml0lEO3fZ51bTVcD5hyZLD5QrgyVkGyW+cqJXnCiG1l5KmF95TUWuCkVw -Ku1J4wlBdMPrnLq1AAVwEWHy3zON8uBvvwzwx0uiOdNN6JEBcuDzHFR3yY79 -YMHBpPp5JTTDymZRLkQWrLyrvGetVwZccDY6QUsBfTtI1/rAjBTW82HpK7cS -SdyXyjz/MLaRAJdRKxNPcomDfcgjb7dYYuBbJ2b6HXxFwRmGRxUXZPaCdxgl -ylo37QGPCNmNCvkKg0Oz6csqckLgFIfjNezWXdifDzOe7/5lJ9hurMqJHCoI -/rOOcLq1hQ98f/qL9LgxLzg3PFvnUig3WObU50+/TRFxXjnIWuW+HLh/F/OY -ri4bDd8deItfOdZsGTy4seabXjsPPhYzFPEsdwqsdJHW2Rc9DE67urAZbvwE -HK+v0FFZyaJ8d/O5ZPqE3xD4YSGlbT3zE5iR1Z8nMDwHJkonqFO82GDSEZPb -Je3rYOWfHIcDPxEOfrdxFS1LqoAIrq/KLtbW5QZTndW9upd4wJK02oS0Uj6w -z/uiHbX6guBBvimJ6pCdGH/td4+25l3gQ7sXBk4ShcDPVv5VZEUXBt/QPy03 -WrAH/OrgzbkW7r3ghvOWK3peouDR5aIyp7ti4AQ7papmTnGw/4oj472lBHjh -KYfz9XhJ8Ib/X5lXxqXAsjp3WWl7ZMBcwnMfrj9GX81Nd33HkAX3Na34s3/Y -D/aznC6urEZnh5LIz9zkwAIiQqsxAvLg40fKjvPUog0k7hA/uimAXdxkhk7w -K4JFqSv85HJ0SUvywNAxJXBkcfXz/VvoOZKRRHOeMjhfm5ZCdFABq9SJFAhs -oa3nTAUDc1XB9xPncy/bqaF7t+IG5tFz0Uzmu3x1MHf7snWJvQb4UWWp/csF -9D3e2cjsfE2wEU8Cd6OFFph5a0z53iQ67+mpGqa1NpjFjOXbdRtNlAsMdF5C -a16oLuCw0QErZWnEvGaiDwUyQq4solWkX4o6U3XBaxlZ15Iy0F9ZSrzMafT9 -lg+GPRQ9cPJln5B3GWg3tkW8zTT6m5UTdYKsDy53UN/rmI4maWmmTo+jRxrZ -cq4HDcBB+2SvKmegey2Db8hPoJ01UkvnKYbgwrE3wdNJ6JFT0TtsRtAmOYt1 -YaQD4JPFSXsG49BlpxejeD+gh+ceNTBJJIxnV1jgFocmenvkfR1GL9AO0cp0 -jcB/rVytfx6FbvdItGgdQCdntYaNqRqDQ6+xnryOQutZfqld7kH39F6MCFMw -AWeItDm/CkMrqh9549iF7l+KvVCsaAo+H6cx6BWOfjO38ZnahfYRzNi9qUDG -fbjl+nHkEnqrJjxapR3tpcowOixNAaecibwZdw496usp+Fs7Wkolx15K+iD2 -ZxOPWdtZtD2fyWHzNnRBeudyEL8Z+EGE5+ADEjq41tDKxQhtzBao2dxm1pm6 -m9Ym6G53MdcxMnrJpLtf9DDaaJnaG2GL3tST+qfi0W3xzi5Vdm6z1UR+mtgx -9E99BMc/HNDhlTWvxp3R5rPJ5jdc0NzqjAo9V3Ri/t6UyB/Rd1KC7Pe5o092 -WTc3bbPyD3I6pzzQ5Vde7qz0RAfVF0X+SEeTViJmCV7odX1neuE2//0/BP8X -j4NThw== +1:eJwd13c4lusfAHDriEJCUvbe4+U1XuO9X069lJEV6SAawomGEkkkyk5lRC8S +QnSOCinjNjOSVPaIjERJRsfO7/v8/niu5/r8872e+/6u65E8dsb2JAsTE9MY +PMS79qxah+UxGlaf3S58n/QVWX28kF3oTsPiQvaShPu1K/w5wZzG9+QJz6+a +ijYepeG3dyTIhKUi3L0NXWh4hw7JknBYaiKb8mEajgmyDSFsUreqx2FFw3SW +pDHCDfxNWXUUGu75vbuIAX4xuObZzk3DnkeHXTPAEf7apTdbEPbM7FzMBD/z +4m/lCUR4/tuHsCxwdb5ia70kwqf8YjWzwet8AuIWHVRcOHuxMQe8u0XnKEsA +FTcl7rn8CGxZutJhL0nFN1CzXD4Rry0h5XKHEV5ezC0rAC+pu+1vDzDCjZVU +z0KwTzWr9S85I+yTtmWjCLwaZhpZ3m2IORP7ov4Be9ytLywIMcR80R56xWC2 +d/wyvmqGmF4o3foUfM2BcdOt2wCPlt0Pfg4WEGgUmQ0xwLd6RBRLwX3rtew2 +6gbYkNL+ogwcTFoaGOnRx+O++p7lYLvbTOx7b+jjop/day/BnEYmwl2q+tie +rPa0AtwlJnOMpYeCw5LiXavAH5X7N1huUHD1YfHZanBxeHM4SY2C7Zq8s2rA +mCPGTWtQD8tkf9GpA4/Xzfi8j9HDXc/+bqgHf22O9Egn6+FJx0K/RrDY6tJz +wzFdfCtEmL0JrHUp8ztnjC6OUaK/agYfVZp08CPr4msslz1awVUcrILFYzp4 ++vynX2+I+9J0rNkTq4NJ1huP3oK9IkPwYX0dzPvewuAd+Ae/2U/NaW1MTspt +6gDbfjPjMrirja2Kyy9+IL5nRjRY0EQbm4evs3eCXQyV+8SnydgwffVlF3Hf +ZVzR6ylkbHxZ0boHXHsy/vRFUzKefej+qRfs6m6mL/JTCyes2sX3g1Uiu52T +M7RwgfIlyUGinlcZ3lS6Fs4MtO8eAmdksz4Om9XEDlwG14fBiZeo1LQMTfx3 +vC3/Z+L7U55WDdM18SdBmcZR8NnR5dvLiyTcnyp3ZBwcd3wk5UkOCU9d0pyc +AEdpMEUlWJLwSfpy0iRR3wqL7fR1DVwlMys/RdT/aQkm5RwNfPlz5sA0cd4v +348VWmrgU/NON7+DrwgJa/9eUcdbFPcJ/gBPrrZdZjZXxwz56dez4FItee/C +PDW8xbHmyBzRX2zz6k//U8Vmhta8C+A12sbhWTNVTLo6VbUIFuosVu58pIKH +2Uus/gMv/u7sFFhSxgNqeszLRH5Ds+TXbZVxW/5M8go40+efIeFnSrgmqUhm +Ddwyr+ydwqqEObhkO9fBju02D166KeKsqXaP3+Bs469FusUKOJiqKcyk+RWJ +SGKRHywK2H8zo4kZvOJA1TF3l8dZRkaOrOBEGTU5tmdyOGUwkeMP8F2z1/g4 +jxyeYBVLZwdX92ZUrvnI4vQnxYoc4Hymr7dmsQzWfrjewwn+72ofV7SoDPYj +X/baBmZJMnAL9ZHGMZvFItzg88x0F9EWKXzVb/dzHjBPf0LVvLwUpp2PMeYF +ex2wWJQOlMS9d8vmdoAVdhR3rnVJ4GI//gh+cO6Z8Bh1WQlsekJRfyc4/YKm +ue6sGG7oNZsUBL8oK/rgXCiKvSXTLgmBrRQ4tuhbiGDLEzmKe8BP6CXxJ9iE +ccSNkWph8Emjz4ObdbvxiomchSg47fhsj62HEC4dk1kTAyfrWMktSOzCooGH +4iTA2ynxkuY1O3HdCNVYCvyZ/+AYv4cArh4gzUiDg+67LStK82Pjzw5XZMF3 +bO1eLTXswPEPyary4LNlye/4rvLiiMC9tQrggxOlDkZBPFh41cVSCVxeyeTZ +UL8NJ0lorCmD/535Lv5FnxOznCfHqoIfBN8nXQpix4cc56jqYIlT36YeTrPi +lvMjnRpgW2Yj9WIPZkyl9R3TBK8vZjGcDm9UM2Ki+cjgc2lcCpG05eogKd9c +bXD/xppHUsV8NUl26xFdsHXEUMibB9PVmx/+ZaeA5S+atXWHj1Rrjd5M1ifq +4/rC72D919W1dCEzQ3A0WbalpKSOOrhrYNAIXHv2ttuk9xDV7XGeFwKX5VGb +1lOmqDZXVISMifze68niHpmjineMFZiAWcVjVKjuS1Q7GzuXvWC9vQbphc3r +VJ64Ng46kf+/7EfOTTGhILeAFFOwfqnZPbFcVjR6YNB0P7iq9H6BhiY7Euk9 +P3AATHdUcf/4iwORvWsTLMCiZhUxiUXbkBneTbUi8j2cv72CzINE3ua0HyTO +v21a5GUgL9rfMhlqQ8Rf+8e1qXYHOhblImgHNuZb6DvByo/eSw1l24PfrBzK +P+AmgB4mCtg5gOPIntJjuTtR+fDVCUfwB5Q6V8++C0nPPUh1Ivrl/P4VLXch +tNnZtu8v8Nhy/hOHnN3od55ylzM45qB8aS2LMBpQMrnhCj69Yu81vF8EMeXH +7HEDL7QyO8ZGi6IR7uFH7uCN029Trn0RQ+Xc0/bHwZKknLrEnRJIUlThywkw +m8DcaGyjBAotEU31AF9/kOT0yUsS5XjQ1T3B3TUrp5e2SqEJzsAqL7D3/pmC +kpdSSFj8uM/f4PtBekZvnKVRwIlQJh8wtyD/agS3DCrlPFTqC7bb+8SOo0IG +yadqHTsL1hbJZB13lkV5vvvmz4EPO0sMHeeSQ5FxPDl+YCH6CpdRsRx6sLGV +chFcWH+7b8haHtF8d7z2B4cWvHwntSmPrPneXQgAz+lRRGqzFNA3kRr2y+Bs +DbM7rLaKaMbM81UQWLFSMJd7UxEl+u7xCAabzxnynHughNJ5mX5dJfolfv5B +wEFllFHFyA0l3LUZ1TevjKTnT1PCiPjhDManbBUUJr744zqYvXnZvNBGFW1Y +RTAiiPlRUmTzfkEVfRc+oHoT/JjzZ+j9bDWk8qZxOBJM4Yhhx6bqiEf64sVo +MCNtQuHxV3XkdVeNNRac1XrqFcNcA4l0ZDyLA9cxIrftSNdAb1tN9t0i6l36 +3DnHXxqoMSR9JQGs5vcyl9mChKzpLI/uEP12TzWil0FCr0bStBOJ+jvnFXht +kYTmxaa/JBHnF38v5EjXRBqGPkEp4LXkezcSkjWR5bXVLangH3XynIwZTWRl +Ty1LI85fP6rTSdVCWcJlpgzw7YCTgZ+StVC36/hqOth5yTTaYkYLcdSLPMok +5vcBB/qkERm5kqLIWeBiW5Vd9klkpPJH0fhDoj/V1e7OfCEjgx8sATnE/MNL +0k5IGxUq8ao+Al/YI3ldIVkbxSbI9+eBu/b7x8lMaqM0ST/vArCj6t2ieaoO +ipi9IFIIzpsY8J9J0EGvFx4/LSLinQrfbvFZB3XofqP+AzbIWKy8oqeLGh5+ +nvkXfKIgYWd/lC466cQV+pSY556LYZyjumhcZkbrOXhk7kU1Q08PmSn2DpcQ +8Q7m5TpH6SGtW0u+ZcT9H3PN+jGih6IX2sTLif4yMzZ7oklBsQ3dz1+C365c +r3oXRkHl49OoAtzsGm/a0EdBPjMlM5XE/d1ruDKhpI/4A55frSbm/Y26171h ++ujPvlOkGrDW/u8Vy536KKnJuqkW3Nl1MeSKrAHy4957qJ7YJ4JNjh+uGKAh +/hm2RrCcyt4B+3YD1FLZmvIa3PMr0q9AzhCpCbhaNBP7Mkq13z3YEFEq15Zb +wANzG9/o7YYoX6Q98g0xz3iS+X7LGqGdOx303xLzcNNp/PMlI8Tznu9dO3jz +VXC4YrMR2ljo+6sD7K7kRflTnIrW7zls/UDsJ9/Q1KizVNQjyMH4SMwnj6M8 +D5upqJrtzMEusJhiho2YOEIvbEdWu4n6rOGgNZ1ByO3WjahesM02gz9NmhAq +kB2l9BP7Oalt+QIXDdWVnn87AH4acrT/qR4NHY0rDxsC+1foHDhMoaHqUtko +wvpL3K9+g3d9unOLcJ1vZaq5AQ29UPNhEP7osttpwoiG/n0nWUb4l8HHHqE/ +aSicN2aKMGWZ3hViSUMVcS7Wn8C/tcT2yVnRkHNpqwPhujO/StrAS4O6LoQP +TGYn7ramIWEVPm/Cf3Uz2T+3pSHR1tfXCQeXvPrwxZGG2P7QeEHY5Odtk7jD +NERXSa8izK7i9UzLiYbC7LY2EI7P3nUn9AgNTWWNdxDOvHPBZo8LDZ2hpk4T +PtFuXlsDDjvJPkdYYas06ZQrDd2K9VsiXHztPW/JURpK6bdkGyb6pyo/9Igb +Dd1hrthKWG8l5CeTOw3dVFDYQXid7OiWB/Y/mLRr+P/79v//h8jNn0WM8P8A +w7nF+g== "]]}, "Charting`Private`Tag#1"], Annotation[{ Directive[ @@ -14131,77 +13521,77 @@ j4NThw== RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[2]], Line[CompressedData[" -1:eJwt12k01dsbwHEcV4YoGVJkyDwPx3g4Z/+oax6iblRkinAJpZSSIXUNETIV -GZIbkRB1S+xImVXGKBlDSubM/J+z1v/FXnt93nzX3i+eF4+Yi6+NGxMDA8MI -HPpd46f0wcKFwI+UXSh+/W3IsiMgt9CZwJTLm6fo7tOovMAGtnh39xbdc6tG -+946EnjzeMco3fuvO3vpORA46urBW/7g8DtJzPJ2BDYtlho9CzaoXdVmtSSw -X8lk7HlwHU99Tq0Ogc2Q/1AQ+PmXNY82TgIzq/b53ABfv6BR8U8jwiaHDmkm -gMs8eZq4LiGMgtIa0sHV+bJNb8QQts7WJh6C13fxiph/oOGzLePzpeA9jZqO -TBdpmOY2dbMKbFGx8uGIGA0f8KubbqD3WuJTgz5QsZZbUVwHeEnZyaTtIhWv -dk3sGgD7VJMOLUpRsYm0Vsd38Gq4UeR/3XqY7ZOdwwLY/fabwoIQPcwu2tqy -BWZ+zyNxRkkPV4j8dZH9axsKO5rxj1O3LraTUWLjB/PyvhWaDtHF7su9rmLg -3vUaFmtlXZzhkr4qDw5WXfo82EPBx8cKL2iBDycwsBy8QcESq+1KBmA2qoFg -lyIFe6UatViAu4QlXJh6dLDM81vkY+AO+b4Nphs6ONZsptsVXBLREKGqpIPb -AzMcfcGYNcaJ/EUbV+5wkQgCj9ZO+XyM0ca7BTbKIsATDZHu99S1MaljSCoe -LLy69FRvRAv7fBzqvgsmB2b9ZIvRwhHzst7/gh3lxo+eU9fCzVOGzaXgKlYS -f8mIJm7gCnN/BV5Vs32996YmNnBlHK8He0aGYDuKJn7emZXbDv7FYzyjNqmB -v7PzyfWDbX4Yb9e9rYEr4tuSJ+jvmdoXzG+ggefY8qnzYAc9+V6RSXW888+6 -pk0w87Pt0eup6njDizGJbaAN1bjFeZ83Usc7dvBL84JPOhtThGbIeD7u7ywR -sEJkt31KJhlT2kcOy4H7VjO8aIZk3OGcPqUBzswlPQqfVsM8PbLW+uCkQBrt -bqYafjT/ZcYM7JlaWjVgqIZz/249bwv2G15OWF5QxalhI5ou4FjXwdTHD1Rx -mFd7jTc4SoUhKt5CFcs1rateBD+XWWgzXFfBjFmWX8PBdd6iDPIPVDBh3+cb -B54Y++lSaKGCPY7Qmu+ArwgIamyuKGOzB80uD8Djqy1BjGbKmG8qfuAJuIIs -7VX4UAnHXAtNewk2YJ5TLv2tiJvD/9V8B14jNuymjRXxtot5mR/BAp0l8p3/ -KuC7WR8MvoAXNjs7eZfksSlNpWUcTA7NkV63kce2LFUJc+Asn+J+wTI57Fsm -IbYBbpyT90olyWFipjqZdbAN2bZZZ79wksX2ypGGPOBc/YkirRIZTPMP/yIM -FhLDQr+YZPDw5lE9OfDKUZqmmbM03utv/0kdnCShJMVcJoV7FuOPEeDbxu+w -K5cUDvxrid8MXP0p89WajyQOnNLJ/AuczzBxaxpL4G3lBezO4N9Xe7dH75PA -JAWLp3+DmZJ1nUJ9xPGbg0L6geCzjIYO+xr3YzsWUY5wMFdffNWc9H5c9YIh -6ybY09R8QfySGH4rzSGQBpbhLulc6xLFxrvNW++D83wjYpQlRfFX1YrTxeB7 -AWpmWtPCuDZvtfkF+Pmzonb7wn1YMuSidx3YUoZ1G8VcCN9NFJp7D35sWB53 -ilkQ05hWn/aB3ahDX7Zq9+Bb/1Wgb+C7rtM9Nu4CWK8uuWQGnKJpKTUvuhs7 -kEod1sA7dOLEzF7z4bNs09MsQ21oiMdqhMedF4tXs5vvAl9Od1qWFefBE5Gu -o0LgRJvDL5fquDGnfL+zDNjvWcr7XVd3YqI3SZAMtvpWcZR6mQtviClkUcH/ -vWLwqHvDgdtPDm8zAT+Z+ikyRmHDycGfig6Ds4PTVQMvs2BV0k9NR7Do6R/f -70+ScIszseEJtmGkKpe4M+L9vOdjA8DrCzkZx+w2qvuM3jKFgv3vbpeJJJar -ExTsyqPBfRtr7smVc9X5pD/MUsCHrveHNGdPViukJBTmgKXPG7d0RwxWs1e5 -GBeBk67NbwZT3lXPfzNreg6OVpdsLC+vpcXfCYqsBdf4JTiNe/XTzBajd7aC -nz2k1a+nfqex+pYGfwJ7pvXkcA7O0vhMRaRHwCSRGAWa8xLNtCKn4hdY+6Du -vcKGddprlT+4VsEyJ44M+n9nQCHTpfeZh9sQpcI4TTiPhIKt/IV2gqsq0gtU -1FiQ20RQ+16woa2Cc8ciK5pOTPaRAu8zroxJKuJASayJ7apgt4H8HZXqXEgr -ve+cHriPY1LoxaWdyNNSbdWI3l8rPllfw40O8/W8sgHr75rvPUXiQU1JjiYO -4OaVv/JNnXgRy6HFlx7gWHUP8ZE8PmTzu9fjHLgd3Zl9w7IbTZk0rV0FV581 -WSE7C6CNqnt20eCR5fzHRx/sQR+2amaTwDFW0hU1TILIdGvaNxvsvXLEc8BE -CEXW+soVguebGG1vRu9DRGJncQV4w7s1NWxMGBno6QvUgMVUH9Qm8YmijRDG -6mYwM+/s8M23oqhiZ4NxD/hadvKxr55iiFAb2TEM7n694r3Evh9d3jOa/RPs -ZTJVUP5iP5L1+M6/DE6/rE1tthdHVSJ/NjKNtCFOfp7V65wSqOxJrhMX+PDB -x4dZKyUQs894zR6whlAWadReEuVfuOYoAbazF+133S6FjDxEh5XBAoYr26kl -Uig9gz+HAi58k9Dbf0gacf+Yl/0THFrw4v3+LWnkSv2Qegg8q60jVJMjgwQL -thmcAOeqGCeSbGTRu2i9j+5g2Vf8eZxbsqjkl63cWbDZrB6Xf7YcYrf8gK+A -n8TNZV+0kkcO6gcpkXR3bUX1zsmjJg7+2UR6PyIj42uuArrWN3QzE8zSsGxW -aK2ITowlzRWAn5cXWX+cV0QB9Q+TysGP2GZC03OVUHlxmeBrsA5rDAs2UkZL -zsIDTeCMu99kHk0oo0F0zrsLnNN0+mWGmQriRtVfB8G1GZEc3PdUUNnQ37E/ -wCRxf3/bRRXEv5tLbAmsdO5FHqO5KmIcSLvKNArzlqZ4/VOGKhJRjBTgBOv7 -e14KW1BFRsJeqQJgWZGPAraGaqg4ptRGHLyWknYjPkUNlQeO9CiCf9VKs2VM -qSEbcRYDHfCTN8OanTQy0hKLnzgATrjodulrChnZWbMFWIHtl4yizafIyMvD -u/E4+LfpUcNxqjqSfKp9wg1cYqOw+0iyOmrVn/voB9ZWVro9NaaOAlb4rl8G -D+El8WNIA427Se77BxywV+yaTIoGmjwnEpII7jK5ECsxroE84q7vuwe2Vbxd -NEfTRLo+Xdn54IffPl+YitdEvy0TnZ7Se6cjdpgPaSIBrDtZBdbNXHh1RVsL -ndzRatcIPlUQz9cXpYWsdFpJneDHHgvhbMNayLPi6e0B8ODs8+oMbW1Ekrkx -NUnvWT3Ms4/SRqeONl5bBJNcTub8GtRGw+MzmwzfYL6M9Y0fq+mgL3LRzzjA -rSvXqt6H6yBsxa3ND244GWdU16uD1haCMsXACWl1V77JURCPmJ2+Avjyjdp3 -n8IpqIzgb9QCk01+Vi53UtBav3GsAbiz63zIFUldJMPvJWgBTuGvt22/oot+ -2nvF2YGlFA5+PtKmiz4tD1JdwT2LkecKpPTQW16N9jPgs1GKfc7BeugcOVAl -CPx5duOHYZseEolWbY4Au3Gl7NqUpCIG/3rTeHDV1rHRoUAqWrjezZIO3noZ -HCHbQEUdUV0388DOcp46B0RoyJVSvFQCTjwTeifKj4b2TzNmVYJH3B257jfQ -kOQbRfl6sLBsprWwCEKOv4zD2sHSr1mJel+E9LYGefrB1hy6BwzqEdogrGIm -wHnJLcsB2wlU7aCL5sGlIY59pdoEIgut92yCL1RqmtrpECjM/x5pC0xZ4ny5 -CTZ/R1Omu/bMqztmugQ6cSbsBt0dDnuOfaMSyPY/Fg2GsTa0qNvRI3CAQK1k -7kRGsM6yYVeIBYGKGyTNmcGbZOE/pSwJlMdZH0h3re9ieQt4j41HLt2m47lJ -ew4RKKj30SrdJ7oZjjy1IdDeYeWCP8DB5S/bx2wJ1NOnw7INbDCTYBBrR6D7 -uz+r0s2i4FlGPkagH4evONAdl7s7MfQ4gRaaqsvpzkoMsN7rQKCxsgOurOBT -bWY1r8EZP0bj6JZhF1c9fZJAbeI3XtJdEvZxZ7kjgYoSG7jZwAFV+aHHneC/ -jZ5UurVXQmYYnAkUssXuSfe6uq3TQ7CERlES3f/fD5GRl8Vruv8HLwg2wg== +1:eJwd13c41t8bB3ArkZDVsOdjj8d88HjOJ8osZWSUrEoRlVJfGdlFyjeExpMI +JVIqRMmxikpGRlFkVNSXzLL53Z/fH+c61+uf93Xuc1/3da4j433c/hAbCwvL +ECxyrzmh0brTm8A/aT3vTITykW17UE6hF4F3zzpUkO7Re3GGG9xQ+v4u6akF +C4lXHgQe1K6JIi0b5+VH30/gJvV8A9LR169yqLoQOJhyJocONq1doHHZElhF +TjDUGFwv1JBda0jgOStrFUPwsy+LR5p5Cfx4N5uCLjjujF7phTcIZ1UOB2mC +n/gKveU7i/C+ApcvKuCqfOW3dTIIf24U6FcALwkKS+1oZWAJoTmaDHjLG30P +tmAGflZF0RAH7yydb3WUYeCClX6jTWRe05WMkFYTnKDZyBQEz2p6WjUHm2CN +ldkbvOCAKvbdfygmuO62428u8EK0RXx5Fx2XXae7coB9UusK70fQsad/gOeq +YD7iaBGSP6ZBx48+va1cAEc5MS94dhljBdvA0j9gYeFX4uMRxjhYI+fVBLh7 +qYbTTtMY1wewqo6Cw6mzn/s/GuHQqXy1YbBDMgvntvNG2Kw8LGYQzG1iKtap +boQlZ66f6QV3Ssp7s300xKKxplGfwO2qPcts5w2xgeimgXZwcWxjLFXDEE94 +6/U2gzFXoqfOFxquSY3QeAv+VjsW0JZIw1lfHDNegUca431u6dKwrFAQsxos +uTD7lD5kgPfOVf19Adb55/Yod6IBfr7oMFYG9lAZdjqla4AfKQctPga/5GLf +WDykj9PfYfci8IK2c7XoJX3M2rjHPR/sGx+BXYz0sa/opqc54N9ClhPav/Rw +5L4DUrfB9v9ZrjdO1cOz1AXFG+R5xiTCN5rqYV2Fyrg08H66arfUL12s19cY +cYW877L1F5cydPH3NJaWRHDNoST/0xa6uFyhTu8C2N3L0kh8QgcfL2ulRYPV +4rvc0jN18L713Mnh4J4Fph/DXAe/Tr0UFwzOzGEviB7XxgNrbiafAl/9h8G4 +kamNHdk6po6R5894/PKruTZ+7u8y4Qs+MTiXPDdDxWfN1podAl8+0J9RlEvF +I41EkSc4QYsl4cpOKiZmXz3dB36mNNNsvqSFs1xO8zuD6/2lWVRztbB76om1 +9mS9P0a9C3dqYdt//27cCQ7bLKa3Mq+Jr8bcDbUEDy80hbDaaOKoy3fCzMCl +Oop+hfc0cE9g4wcG2JRjSvPxX3UczzR6ZQheJJZdxi3V8f1AgxZd8OaOYtWO +u2qY+LFfQws8s9LRITyriit6W5VVyf5GZisu2aviW04BIRTw7YCHvWJPVHCP +ydVBGfCbKVW/DHYVzDW0dlgc7Nxsl1XhqYxprbnEZnDO1pEHBsVKeKgwSV8I +LC6DxX+zKeFALvZtfOB5J4a+jZci1j+ZdZebvF95DQrHEwr+xJmYxwFOtXyN +D/BR8POLmfOrAjDfnzIrFwMUcLID/dAiOJ9l5N9xLI+VoxUD/oL/nutef1FC +Htf6GL+dBLOlGXtGBsjh2AFm3Sj4JKv5fok3slhjhiI4AubrufJySlEWE3rG +wUNgX+sdM3JnZXC2xa2QPrCSQHHHYqc09itX/NANzjsem6ipII1lVFled4Bv +BWnbGIxL4tY+77YW8LOyBx/cCiXwmrIx6juwrRLXWqMd4vjOu9car8FF5iVJ +BznEcM2Phsga8CGTgS+rtVtwG6fDr0rwjQPjH+19NmOLLLWJZ+B0fVvKtPQm +PLJGw+YpmN8wScamWgT7ipwzfQgeENo1JOQjjD3oLnb3waE3PeeU5YRw44xr +aS44xd7h+Wy9APZMLSi9DT5Rlt4ieG4DDs+T5bkJ3vW91MkklA/rp8oHp4PL +K1mO1Nfx4N/Zp6OSwY/GRqV+GHHj1V9jXy+Bs8JvUv8J5cRH4kp7LoClD//3 +884vdixOz1WJAduzmmgW+7DioWfiKefASzPZTFeX5aqN1d/SzoIDb6xXiifm +qhQK238HgXuWF33SXkxVaTkIfjsO3h3XG/Eu61dVz4eeCT+w4mnLpq7Y/qqk +hTf2PuCrMdMr4Uavq+6Kcdt5gS/qKrwpKalltLw+lusGrjmR7Dns18vI5XXn +dwGX3WM0LGX8ZLyKv7XRgezvtY/ZvP2TjBJH9lO2YHapRDWG1yxjX1zFUSsw +bZvxrcLGJYbawfnQbWT/9zn2B/5kQbKuHgMIbFRqeU0yjx3xj4sMGYFflt68 +r6XNiUzCpwz1webOal7tf7gQZ6+UOhUsYfki8eoDHkTv6DJQI/v9NZ//hS4f +aop/mqFI1s/zS7zi7AZ0xmYgVZbMX3zo3lAjgIKKdL9LgLcKTncfZBdC7X4C +tlvA7+b35Ft7CiPbQOQgDL6se0RuKE8EVfemFPGDP6Drk3Wcm1BrnUHuOnJe +TlrN63htRq82+TxZAx6ayy9yyt2CptMrRFjBibsUS2vYxJBQk7vI0oZ85D/v +6PvVShyF8Sn7zYKn37I6X7oogX5Gh3VNgZf932dE/ZBE0iMyX8fAMtTc2qsi +0shfZpT+E8whPDl46ZU0+hrKZfANHJOV5trnK4P2XLI6/xXcVT3vP7tOFlmU +C431gP2sxu6XVMiiEEJrohN8M5Rm8s5NDtG3B1q2gXk3Ci3E8cqjji4Okyaw +w7YiB64X8igoXcaqAawnfpv9m5sCasrwLqgFu7hJ9x5YT0G+3n/vvQRvNp9f +b1JMQdW7Hy6Ugwvrkrt7dysiCnX8YAk48n5Fi+yqIqoWiTn6CDxJMxSvyVZC +b78ZNRSAc7QsU9jtlVHIyHacB1au3JjHu6qMyie6m7PANpN0vsAsFVSRn6zD +BD9KmsoK3qWKctqYuhmkO1cTuqdUke+ldxdTyPxYJrMvRw3hkZ3hl8GcjXM2 +hXbqaFjb9UI8+FnJA7u2aXW03H7hRwy4gHsi8maOBlJxWDd4DmzIlciJLTQR +nadYOwTMvPFdqWBEE/Ge7rtxGpz99vBzpo0WWp71vH0CXMuM5xG4pYVOhHDO +HwWzywUGOv/RQvHmLOM+YI1TFXmsO6joe1f0khdY8Zp63CcmFbGoKXnsB28N +9D0bNUNFYmtl3V3I+qXaNjubayPWBMYTB/Bi+rXzV9K10fbUIYld4N+1itzM +MW102L1XwZqsv25Qv4Ohg8Qy5qO3g5ODD53tS9dB/DV+YQTYbdbi4o4xHfQ5 +7uBlY/BfayfzYRNdlBkeOa0PLrZX2+SYpova7kz+oYJpmhqpYz90kWRv7E51 +8ACelXNFeijodMBWJXCQqEyMUroeGk3u2yEH7rQ6c1l+WA/diQ8skgQ7q6c+ +mGLoo84tewu2gO99/3xm7Io+2n744JIwmXc4ln/HgD76uPT30AawceZMZRjN +APUd/nqUB3zw/hWRngQD1Lrn52tOcNGRmWjuQQNUZGVVxQrun3xWxaTRkPo1 +6vslfsjbdS/PLYGGhjWMqXNgdm/37N/9NNSx9iZ1GjxtudWySNsQCfCIX/gN +fj8f87Il2hBJqCvM/AQ3uidZ1HcbIkpT7PI3cPK1+rDvKkbI1W2NWz849Hzt +60/RRujL9S9On8E6VqMv5jqMUHhBx90ucEfn6YgwBWN0pM6R7wM4fWOD84cw +Y/SkXlXwPZiitu2zY7Mxeuwhd7QR/PFP/Kn7FDq6LnTSsw58MkG9xyucjvYM +WgZUgT9PLv9n3kxHi/xESwX4EF+64IqCCRpNSXpfAn656vpt4B8T1Oa0LF0M +Xn0eHqvcaIKY89OJhWAvFV9DMykGSlMzTb0LTjkWeT3hBAOZHS4ezwYP+Xjw +3WlkoAveZ0aYYEnlTDtJKYTUdtXPZYAVq7mIhuMIDXNpu6eC7XiMzUwbEPLH +sx5J4Ly0prmg9QSiKPSWJYAfR3j0PKYRyLpctCAWfOaFvrWLIYGKpkUzSBvN +8j5fAUtrisWSrj1Wed3GmEB6d8XcSbfv3+L63YRAkmnigqT/GLd/3GxGoNHT +kiExYMM5886InQQKMZO1jgav6Ehup9gSqCdS1oB07fE/JU1g6ypZedLWwzlX +t+wm0F5DuZUo8L4uFsen9gQy1JJ/Qjq85PmHH84EmpamiJI2nUg2vexCIHsP +ylrSnGq+T3RcCVRzizITCU7K2ZQSuZdAzaKKzaRvpwTZie4nUL6IUjTpg802 +NdXg845Kx0krrZOjHnYnUFCqkhvp4qi2DSUeBIoSUNYnHfQyP3KvJ4EydyvL +kabNR0yweBGo6V/lDaSXdJ0974HXtSgvR/CT7+3//4fIhU/lF+n/ATq/Yrc= "]]}, "Charting`Private`Tag#1"], Annotation[{ @@ -14210,57 +13600,88 @@ jZ5UurVXQmYYnAkUssXuSfe6uq3TQ7CERlES3f/fD5GRl8Vruv8HLwg2wg== RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[2]], Line[CompressedData[" -1:eJxN13k0FPoeAPBhHI9raSGRPfu+aywzSb0xtkSe5V7LUNQ4VErKxSXRtZRn -p0ziykO4yaWunaFQrhZblCJZUrI3du+9c27fr985v/M7n3++f3y3c36y3mcd -fDgJBMLo/+7/3+Zzmi9svc0aCX+fo91B+SVe6EGD2mDebZ5ftZB87IneH+Pl -Z+qOjrqZxqXmgjZnrZJ4jqJbhdryWEboR2/XTncJoGOCDap+7TgIrmAIPRUM -QTcUqTxtkUWv7xaWtnlBAYt1GHpyXkbbVq28cJRFV3QmZf78ggxma9Etuy6j -AxqIx5YU0atRFrF/9pmCfVNbSooj0FzPheTPaKKvODF/pfeZgIWFH0vMRKAH -1pu57bXQ4TrsN8P9xuDjyQTuI9fQvGRz8V4NdK+UvDdnvxG4W21wg/Maujy6 -PVpHE93Ik0DXe0sCf2RNB7xMQE+2x/re1kdLrbL/MB09ANa7dOcLbwLaU3XC -6YI+up6HKFI+aoj50nVu2ncdzYiNaHQxRn8Vos3qThmAHT7T+E1S0ZPTkuEi -5mh3U7UB6Sl9zPdD/vj1THSzT6L/RQu0hxfNWGJWD6we2+eWkYMeXGX6Uajo -nHzivagZXXDaJQrlVg6akfmg/j0Vfe7DcvLyog74xonhzLK76DhtQlySLfqR -8mIXdV0b+99fhqB2Fz05/sW7xBYdJipusLmiBZ5Y7fyZwxpdpafkV1KoifPF -Na/14JsGeM1sw2WGhhbtKVfr+Y86eHGzp0eYrYb1jcxTWndA3wn4fUi8QhXc -Ma/ml0lEO3fZ51bTVcD5hyZLD5QrgyVkGyW+cqJXnCiG1l5KmF95TUWuCkVw -Ku1J4wlBdMPrnLq1AAVwEWHy3zON8uBvvwzwx0uiOdNN6JEBcuDzHFR3yY79 -YMHBpPp5JTTDymZRLkQWrLyrvGetVwZccDY6QUsBfTtI1/rAjBTW82HpK7cS -SdyXyjz/MLaRAJdRKxNPcomDfcgjb7dYYuBbJ2b6HXxFwRmGRxUXZPaCdxgl -ylo37QGPCNmNCvkKg0Oz6csqckLgFIfjNezWXdifDzOe7/5lJ9hurMqJHCoI -/rOOcLq1hQ98f/qL9LgxLzg3PFvnUig3WObU50+/TRFxXjnIWuW+HLh/F/OY -ri4bDd8deItfOdZsGTy4seabXjsPPhYzFPEsdwqsdJHW2Rc9DE67urAZbvwE -HK+v0FFZyaJ8d/O5ZPqE3xD4YSGlbT3zE5iR1Z8nMDwHJkonqFO82GDSEZPb -Je3rYOWfHIcDPxEOfrdxFS1LqoAIrq/KLtbW5QZTndW9upd4wJK02oS0Uj6w -z/uiHbX6guBBvimJ6pCdGH/td4+25l3gQ7sXBk4ShcDPVv5VZEUXBt/QPy03 -WrAH/OrgzbkW7r3ghvOWK3peouDR5aIyp7ti4AQ7papmTnGw/4oj472lBHjh -KYfz9XhJ8Ib/X5lXxqXAsjp3WWl7ZMBcwnMfrj9GX81Nd33HkAX3Na34s3/Y -D/aznC6urEZnh5LIz9zkwAIiQqsxAvLg40fKjvPUog0k7hA/uimAXdxkhk7w -K4JFqSv85HJ0SUvywNAxJXBkcfXz/VvoOZKRRHOeMjhfm5ZCdFABq9SJFAhs -oa3nTAUDc1XB9xPncy/bqaF7t+IG5tFz0Uzmu3x1MHf7snWJvQb4UWWp/csF -9D3e2cjsfE2wEU8Cd6OFFph5a0z53iQ67+mpGqa1NpjFjOXbdRtNlAsMdF5C -a16oLuCw0QErZWnEvGaiDwUyQq4solWkX4o6U3XBaxlZ15Iy0F9ZSrzMafT9 -lg+GPRQ9cPJln5B3GWg3tkW8zTT6m5UTdYKsDy53UN/rmI4maWmmTo+jRxrZ -cq4HDcBB+2SvKmegey2Db8hPoJ01UkvnKYbgwrE3wdNJ6JFT0TtsRtAmOYt1 -YaQD4JPFSXsG49BlpxejeD+gh+ceNTBJJIxnV1jgFocmenvkfR1GL9AO0cp0 -jcB/rVytfx6FbvdItGgdQCdntYaNqRqDQ6+xnryOQutZfqld7kH39F6MCFMw -AWeItDm/CkMrqh9549iF7l+KvVCsaAo+H6cx6BWOfjO38ZnahfYRzNi9qUDG -fbjl+nHkEnqrJjxapR3tpcowOixNAaecibwZdw496usp+Fs7Wkolx15K+iD2 -ZxOPWdtZtD2fyWHzNnRBeudyEL8Z+EGE5+ADEjq41tDKxQhtzBao2dxm1pm6 -m9Ym6G53MdcxMnrJpLtf9DDaaJnaG2GL3tST+qfi0W3xzi5Vdm6z1UR+mtgx -9E99BMc/HNDhlTWvxp3R5rPJ5jdc0NzqjAo9V3Ri/t6UyB/Rd1KC7Pe5o092 -WTc3bbPyD3I6pzzQ5Vde7qz0RAfVF0X+SEeTViJmCV7odX1neuE2//0/BP8X -j4NThw== +1:eJwt13k0lOsfAHBboiyJLJns+25mMIyZZ6jGWrLc6F67rLekkrKlhCwRWUMi +JGlRl0risRWVlEJouVSylLJ17fl933N+f7znPZ9z3vM9z/PdznnlvQ85+HJx +cHB8hod4N4fovNrlzcLrst50SJwbQ7vfhJZWebHwpmqnbsKDBvVh/GCxzt4B +wjNLFtsee8D3PP0ThBXivYJM3Vg4/eh7AUlw7MUsHk0XFmbbj+whbN6yROPb +zcKG6+f7CbeJtpe0GLOwnNvWcSnw/ffLAV2CLJz3QM2IBI4PM6g9+xRh3giS +uwz4bqDoM6FwhDmFzSLkwI3X1J+1yiP8REq7TQG8sllM1vYVE1tc/f1VCSz1 +1NCD6wQTi2XkGqmCd9UuvnKSZ+LjbK9odSJeZ3puxCsG5s/fVKgJntf1tOo6 +wcC3dc6OaYMPNnLv+aXCwNwhnwX1wEuxFokP+kzx97wQNTLYL7O1qjLGFAd9 +bQuhgnleiioF65hi65XfGYbg03sLz3r20bG9LMcwDSwm9pj0M4aOV+TIynTw +wEozr70uHfuvtzZngKP1598NvTXBfR/UUhHYMYODd0eCCY6smKw2A/MzzKV7 +tU3wJatwrh3gXhklb663xtir18CKDX6jObjKlWCM+0P6AyzB1XEdcfo6xjix +3eyeNRjzpXhS3tPwYdOM97bgLy2TB7tTaHj9A5GF3eCxjkS/S1QatnntYmYP +llma/8f0sxE+q5Lg4wimHL/8nT/FCC9xRvzzB9hDY3TvUaoRVn5XtOAMbuDj +Fq/+bIjvbLgu/ieRL7Jz09ZzhphdFuntCg5MjMEuJob4wRXKWXfwD1HLKfKE +Ae6vJ5V4gh2+WQrQMw1wkkLnmDdxnslt0eLmBriV35vfF+xmqjkgO0HFaqqN +zv5Evu8JJK/kUnHJG46YQHCzb9qBYxZUfLs8tOBvsLuXpQlpioL3ZNwaOQjW +SuxzzSmi4FeqL/lCiH5eKgxisinYt6l23xFwUSn39difZJx17MXlUHDWcSYz +v4iMJWeeN4YR58+90/Avm4xDHdM3hoNDPi1kLMzp46vJdP1IcKrPUO7NMn0c +tixhGw1O0uNISt+ljwuoD7NiiP5Wm+tir+jhXR7b750m+v+AHIdmmR4eMbmw +Lo6479fv3lW79LCqxWbrBHCUpLTB70Vd7OIV7p8IHl3qjOC00cWWwlfvJoNr +KapBVRU6uGigru8cMV88M7p3/tPG6nKZaufBy6xVl5+W2tjtyqVDGWDJnmrN +nqtaOMLt/PlM8Nzvnh6xeU185jj7QzZR31MlqisOmni5/wt3HvjywVsfpO9q +YO3MGtl88NMZzaBcbg386LxVYCHYucu+uM5THUf/fJxSBC41G7thVK2GFSLW +vy8Gk+Qx6QeXGk5yipAvBS/uZRraeKni9Fs9qJzIr5KOCs9dFWwpPpdSAc60 +fIJ9hFTwNoHl6kpivvuLHi0fVMa3ginPq8DXOMbO/8RK+FiLnugt8H8nBwSS +tylhvqYt1GowVzbd89RBRRyUi2Pvgo9wst22PVXASqr212vAQoPpDTOqCjhW +R6z9HlFPa9s5xXB5LDpbIFIHVhOp7lnulcOdKRsN6sHlh+JSdJXlMPUZSmgA +Xwol2xj9lME7j5d3YqKe9268dq3ahufFZr81E/tSjW+9iS0Jb6WvM24D32TX +pO3nkcZenmvuT8C+jOH3ay1S2EVEM6IDnO/z862DnySm6Ui3PgPnGO5WmZWT +wPO+s186wcLGafI2TVuw9sx56kvwsKjdZ1E/MSzD6R7eDY4s8FxQVxTFThZi +uW/AFxwcH863ieC+trRPvUR/3st5ufnkJrwlcZq3H2w3UruXESmEub7Fyw2C +HzziCGhr3Yg7Aj76vwffnvwu+9WEH89ayCZ+BBdHF+gfj+TF2RpKfUNgOf9v +41cmuLFytMjqJ2JeORm61X6c2CJCT2qE2L9zJYX7XFYbd7uL+oyCD+cLqCWy +Fhr5uj7GjxPztrrsl10/06glGNz3Dbwn/kPM8+KJxvFJHdIPsOoxy86+uKHG +52H9JlNEf5yZ/R1t8qRx6M7OszPgZKry05qaFmZeacGNOWLeQzI8R4M+MMcc +Fdv/A9+rYLav5I4zv10MFl4k6pv3tkRwaJq58+4VvWUwt2yKFtNrnjlqmR+z +CqbtoF+q6lhh6ma3tq4R9f/LaejwOAfSfNU7xJk6hkxqLfNkyrmR7YEqTR5w +Q21BpR6ZF2WvC7LjBbOdtbze/OJDMWPfivnA2yzrU7JubEQC5y6PbgD7/ntN +uJ4qhJhWpusFwYMbJ0h14ZtQJ7nQSZiIv3zLvb1ZBMXvGIkQAZttnh3Yzy2K +JimeOaLg54t/XLP2FEMqlKJ/t4BTqQGKn8u3IIuwx5yS4Nfo4nQrrwR6cue2 +/VZw4xGrRYqXJFptfp5DAn9euHZzb5kUiid318iAU+xUa5u5pJHpyYsc8uAD +i06B/1qREKbZKCuCZ59xOp9L3oamvuggZfDqgRe5p7/KoAG73gRVsLx+WUvW +FjlkvNO3Qh3MIzb96dxjOTQ5fP+XJvhMcfa+j4HyqERijqQD7mtaPDC/QQFN +WHkb64GDrCYra+oU0DRv5hkyuCCSxnjuqohaTty8SgULiosuxQsqoW635HlD +sOOOm4589UooyvAiwxhsQLrM/cVVGfkNZbjSwS6uch98BFSQ05BtJQMsyV4U +YFSrIO6m6S4ErmrNGPiwRxXtru4YNwOfqqx7qbCmiqQHvcg7wNM0Y1JziRry +WPviyAaX6lle4HZQR7VsjVJLsPoj8XLBNXB2yag12GbaVOhwsQZKXeFatwt8 +O22m+ISdJnIIUNljR7h3LWlgRhP5LlFC7Yn4cYWFH0u10Ltw7ieOYN6OBZsq +e220vHGd4F7w/Zob9t2z2mh8aErLBXydf+pUQakOmosvivgTbMyXwostdNEf +UYYlruDC/BG162O6KPgKR4M7uOSZ/8NCGz0kFnWO1wvcUpi4UeSSHnrdwqXu +A+ZWPHzY+ZceulpuEu4L1jlaV85pq4/ot8sa/cGqedrx/YX6yMl88X0g0X+H +A8NPz+kjeydh9QPE/WW7JZ3ZZGT3W3h3MHg5Jy8hPYeM1n83DwgB/2hR5S+c +JCN1U6PqI8T9Wz8Z9jApaAmJd4eCM074hn/MoaAXafdkj4Nd5y2SbScpKEgy +yScc/J/1XvYog4qEjrBPRYKrHbQknLKpKHex7Vk0mKarkzn5lYryPXR+xICH +8bziPmSA1t65oFhw6Fb5M2o5BkijqDY+DtxrFZaqNGqALP5aLUsAO2tn3phh +GqKzIrwzieCKkXdhk+mGiNG9KJFCxPOPE7YdNkR4VpaSCqYXzT2KohmhjzO8 +UefB+yvTtwwmGSEtiYFLGeCbAXOx/J+M0FWOA5OZ4KHp+42FNBpa2K5PziHi +2VWUuybR0IeOYbs8Iv/e7iU/hmjo8S+HgnxivizNLG+SjdGDI7dxIfjF4pmG +l7HG6Kgfc6AI3OGeZtE2YIyaRlLlSoj85bVFjWiYoIZXHaxScGRCy5P+WBP0 +XbctrRxMsfpev9Bjgpz4q2orwD29x2KilOkoYH9bdyU4R7zd+XUUHZEkiqRv +gFW0drxz6qKjLg8f5i3w21+JRytVTFHZ2FhaNfhIkvagV7Qp0p0o7rkLfje9 ++o3dZYrUi3bM1hD7TChn829lBtp07Bq6T+zDtX1fho8z0IjAwv468NrD6Dj1 +Dgb62yQiph7spRFovF2WiXyCH7U3gC8En7qYFMJECycnxjCxn/w8hK50MFHW +yX6jFrCMepG9jCxCUxsWI9uI/mziY7UfQsgifd3FJ2D7jfTt5u0InRnt/twB +Ls/uXAgVYCFtdvL65+A7MR6Dd2gsZOTBte8FOKze0NrFmIWi9Oq9CJvMCz78 +Da7jDA0i3BL86KINnYVIZSORhN+4Se0bYbBQwlhHEeFf9DdvJbez0Pih818I +Gy+we2N2sdDoCVJIF/g3RWanym4WMrDqPUG45dCvmk5wlFTaacLWo6VZUntY +aKZu7QLhv/o4nP5xYKEzS59qCUfXPHz91ZmF9CMqlwmbT2WYp7qwEI+1N89L +Yl9oBd6l7GOhV1LSgoTTSiUunPqThfbUnZMhfPlCqP1WNxaanT9kRnh/l01z +EzipXc2asNoGRX1/dxYSzx12IFx9untTjQcLSRs67icc2nDt1J+eLHRhncBB +wrTFmCkOLxbi7G07RniF6uxZAQ4oiz5J+P//h6jjqOFZwv8DsM8C+w== "]]}, "Charting`Private`Tag#2"]}}, {}}, <| "HighlightElements" -> <| "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>, "LayoutOptions" -> <| "PanelPlotLayout" -> <||>, - "PlotRange" -> {{-0.0005, 0.0005}, {0., 0.24139520540014045`}}, - "Frame" -> {{False, False}, {False, False}}, - "AxesOrigin" -> {0, 0}, "ImageSize" -> {360, 360/GoldenRatio}, - "Axes" -> {True, True}, "LabelStyle" -> {}, "AspectRatio" -> - GoldenRatio^(-1), "DefaultStyle" -> { + "PlotRange" -> {{-0.0005, 0.0005}, {0., 0.7673108712075356}}, + "Frame" -> {{True, True}, {True, True}}, "AxesOrigin" -> {0, 0}, + "ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True}, + "LabelStyle" -> {FontFamily -> "Times", + GrayLevel[0], FontSize -> 11}, "AspectRatio" -> GoldenRatio^(-1), + "DefaultStyle" -> { Directive[ Opacity[1.], RGBColor[0.560181, 0.691569, 0.194885], @@ -14284,10 +13705,11 @@ j4NThw== "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>, "LayoutOptions" -> <| "PanelPlotLayout" -> <||>, - "PlotRange" -> {{-0.0005, 0.0005}, {0., 0.24139520540014045`}}, - "Frame" -> {{False, False}, {False, False}}, "AxesOrigin" -> {0, 0}, - "ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True}, - "LabelStyle" -> {}, "AspectRatio" -> GoldenRatio^(-1), + "PlotRange" -> {{-0.0005, 0.0005}, {0., 0.7673108712075356}}, + "Frame" -> {{True, True}, {True, True}}, "AxesOrigin" -> {0, 0}, + "ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True}, + "LabelStyle" -> {FontFamily -> "Times", + GrayLevel[0], FontSize -> 11}, "AspectRatio" -> GoldenRatio^(-1), "DefaultStyle" -> { Directive[ Opacity[1.], @@ -14317,47 +13739,78 @@ j4NThw== RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[2]], Line[CompressedData[" -1:eJxN13k0FPoeAPBhHI9raSGRPfu+aywzSb0xtkSe5V7LUNQ4VErKxSXRtZRn -p0ziykO4yaWunaFQrhZblCJZUrI3du+9c27fr985v/M7n3++f3y3c36y3mcd -fDgJBMLo/+7/3+Zzmi9svc0aCX+fo91B+SVe6EGD2mDebZ5ftZB87IneH+Pl -Z+qOjrqZxqXmgjZnrZJ4jqJbhdryWEboR2/XTncJoGOCDap+7TgIrmAIPRUM -QTcUqTxtkUWv7xaWtnlBAYt1GHpyXkbbVq28cJRFV3QmZf78ggxma9Etuy6j -AxqIx5YU0atRFrF/9pmCfVNbSooj0FzPheTPaKKvODF/pfeZgIWFH0vMRKAH -1pu57bXQ4TrsN8P9xuDjyQTuI9fQvGRz8V4NdK+UvDdnvxG4W21wg/Maujy6 -PVpHE93Ik0DXe0sCf2RNB7xMQE+2x/re1kdLrbL/MB09ANa7dOcLbwLaU3XC -6YI+up6HKFI+aoj50nVu2ncdzYiNaHQxRn8Vos3qThmAHT7T+E1S0ZPTkuEi -5mh3U7UB6Sl9zPdD/vj1THSzT6L/RQu0hxfNWGJWD6we2+eWkYMeXGX6Uajo -nHzivagZXXDaJQrlVg6akfmg/j0Vfe7DcvLyog74xonhzLK76DhtQlySLfqR -8mIXdV0b+99fhqB2Fz05/sW7xBYdJipusLmiBZ5Y7fyZwxpdpafkV1KoifPF -Na/14JsGeM1sw2WGhhbtKVfr+Y86eHGzp0eYrYb1jcxTWndA3wn4fUi8QhXc -Ma/ml0lEO3fZ51bTVcD5hyZLD5QrgyVkGyW+cqJXnCiG1l5KmF95TUWuCkVw -Ku1J4wlBdMPrnLq1AAVwEWHy3zON8uBvvwzwx0uiOdNN6JEBcuDzHFR3yY79 -YMHBpPp5JTTDymZRLkQWrLyrvGetVwZccDY6QUsBfTtI1/rAjBTW82HpK7cS -SdyXyjz/MLaRAJdRKxNPcomDfcgjb7dYYuBbJ2b6HXxFwRmGRxUXZPaCdxgl -ylo37QGPCNmNCvkKg0Oz6csqckLgFIfjNezWXdifDzOe7/5lJ9hurMqJHCoI -/rOOcLq1hQ98f/qL9LgxLzg3PFvnUig3WObU50+/TRFxXjnIWuW+HLh/F/OY -ri4bDd8deItfOdZsGTy4seabXjsPPhYzFPEsdwqsdJHW2Rc9DE67urAZbvwE -HK+v0FFZyaJ8d/O5ZPqE3xD4YSGlbT3zE5iR1Z8nMDwHJkonqFO82GDSEZPb -Je3rYOWfHIcDPxEOfrdxFS1LqoAIrq/KLtbW5QZTndW9upd4wJK02oS0Uj6w -z/uiHbX6guBBvimJ6pCdGH/td4+25l3gQ7sXBk4ShcDPVv5VZEUXBt/QPy03 -WrAH/OrgzbkW7r3ghvOWK3peouDR5aIyp7ti4AQ7papmTnGw/4oj472lBHjh -KYfz9XhJ8Ib/X5lXxqXAsjp3WWl7ZMBcwnMfrj9GX81Nd33HkAX3Na34s3/Y -D/aznC6urEZnh5LIz9zkwAIiQqsxAvLg40fKjvPUog0k7hA/uimAXdxkhk7w -K4JFqSv85HJ0SUvywNAxJXBkcfXz/VvoOZKRRHOeMjhfm5ZCdFABq9SJFAhs -oa3nTAUDc1XB9xPncy/bqaF7t+IG5tFz0Uzmu3x1MHf7snWJvQb4UWWp/csF -9D3e2cjsfE2wEU8Cd6OFFph5a0z53iQ67+mpGqa1NpjFjOXbdRtNlAsMdF5C -a16oLuCw0QErZWnEvGaiDwUyQq4solWkX4o6U3XBaxlZ15Iy0F9ZSrzMafT9 -lg+GPRQ9cPJln5B3GWg3tkW8zTT6m5UTdYKsDy53UN/rmI4maWmmTo+jRxrZ -cq4HDcBB+2SvKmegey2Db8hPoJ01UkvnKYbgwrE3wdNJ6JFT0TtsRtAmOYt1 -YaQD4JPFSXsG49BlpxejeD+gh+ceNTBJJIxnV1jgFocmenvkfR1GL9AO0cp0 -jcB/rVytfx6FbvdItGgdQCdntYaNqRqDQ6+xnryOQutZfqld7kH39F6MCFMw -AWeItDm/CkMrqh9549iF7l+KvVCsaAo+H6cx6BWOfjO38ZnahfYRzNi9qUDG -fbjl+nHkEnqrJjxapR3tpcowOixNAaecibwZdw496usp+Fs7Wkolx15K+iD2 -ZxOPWdtZtD2fyWHzNnRBeudyEL8Z+EGE5+ADEjq41tDKxQhtzBao2dxm1pm6 -m9Ym6G53MdcxMnrJpLtf9DDaaJnaG2GL3tST+qfi0W3xzi5Vdm6z1UR+mtgx -9E99BMc/HNDhlTWvxp3R5rPJ5jdc0NzqjAo9V3Ri/t6UyB/Rd1KC7Pe5o092 -WTc3bbPyD3I6pzzQ5Vde7qz0RAfVF0X+SEeTViJmCV7odX1neuE2//0/BP8X -j4NThw== +1:eJwd13c4lusfAHDriEJCUvbe4+U1XuO9X069lJEV6SAawomGEkkkyk5lRC8S +QnSOCinjNjOSVPaIjERJRsfO7/v8/niu5/r8872e+/6u65E8dsb2JAsTE9MY +PMS79qxah+UxGlaf3S58n/QVWX28kF3oTsPiQvaShPu1K/w5wZzG9+QJz6+a +ijYepeG3dyTIhKUi3L0NXWh4hw7JknBYaiKb8mEajgmyDSFsUreqx2FFw3SW +pDHCDfxNWXUUGu75vbuIAX4xuObZzk3DnkeHXTPAEf7apTdbEPbM7FzMBD/z +4m/lCUR4/tuHsCxwdb5ia70kwqf8YjWzwet8AuIWHVRcOHuxMQe8u0XnKEsA +FTcl7rn8CGxZutJhL0nFN1CzXD4Rry0h5XKHEV5ezC0rAC+pu+1vDzDCjZVU +z0KwTzWr9S85I+yTtmWjCLwaZhpZ3m2IORP7ov4Be9ytLywIMcR80R56xWC2 +d/wyvmqGmF4o3foUfM2BcdOt2wCPlt0Pfg4WEGgUmQ0xwLd6RBRLwX3rtew2 +6gbYkNL+ogwcTFoaGOnRx+O++p7lYLvbTOx7b+jjop/day/BnEYmwl2q+tie +rPa0AtwlJnOMpYeCw5LiXavAH5X7N1huUHD1YfHZanBxeHM4SY2C7Zq8s2rA +mCPGTWtQD8tkf9GpA4/Xzfi8j9HDXc/+bqgHf22O9Egn6+FJx0K/RrDY6tJz +wzFdfCtEmL0JrHUp8ztnjC6OUaK/agYfVZp08CPr4msslz1awVUcrILFYzp4 ++vynX2+I+9J0rNkTq4NJ1huP3oK9IkPwYX0dzPvewuAd+Ae/2U/NaW1MTspt +6gDbfjPjMrirja2Kyy9+IL5nRjRY0EQbm4evs3eCXQyV+8SnydgwffVlF3Hf +ZVzR6ylkbHxZ0boHXHsy/vRFUzKefej+qRfs6m6mL/JTCyes2sX3g1Uiu52T +M7RwgfIlyUGinlcZ3lS6Fs4MtO8eAmdksz4Om9XEDlwG14fBiZeo1LQMTfx3 +vC3/Z+L7U55WDdM18SdBmcZR8NnR5dvLiyTcnyp3ZBwcd3wk5UkOCU9d0pyc +AEdpMEUlWJLwSfpy0iRR3wqL7fR1DVwlMys/RdT/aQkm5RwNfPlz5sA0cd4v +348VWmrgU/NON7+DrwgJa/9eUcdbFPcJ/gBPrrZdZjZXxwz56dez4FItee/C +PDW8xbHmyBzRX2zz6k//U8Vmhta8C+A12sbhWTNVTLo6VbUIFuosVu58pIKH +2Uus/gMv/u7sFFhSxgNqeszLRH5Ds+TXbZVxW/5M8go40+efIeFnSrgmqUhm +Ddwyr+ydwqqEObhkO9fBju02D166KeKsqXaP3+Bs469FusUKOJiqKcyk+RWJ +SGKRHywK2H8zo4kZvOJA1TF3l8dZRkaOrOBEGTU5tmdyOGUwkeMP8F2z1/g4 +jxyeYBVLZwdX92ZUrvnI4vQnxYoc4Hymr7dmsQzWfrjewwn+72ofV7SoDPYj +X/baBmZJMnAL9ZHGMZvFItzg88x0F9EWKXzVb/dzHjBPf0LVvLwUpp2PMeYF +ex2wWJQOlMS9d8vmdoAVdhR3rnVJ4GI//gh+cO6Z8Bh1WQlsekJRfyc4/YKm +ue6sGG7oNZsUBL8oK/rgXCiKvSXTLgmBrRQ4tuhbiGDLEzmKe8BP6CXxJ9iE +ccSNkWph8Emjz4ObdbvxiomchSg47fhsj62HEC4dk1kTAyfrWMktSOzCooGH +4iTA2ynxkuY1O3HdCNVYCvyZ/+AYv4cArh4gzUiDg+67LStK82Pjzw5XZMF3 +bO1eLTXswPEPyary4LNlye/4rvLiiMC9tQrggxOlDkZBPFh41cVSCVxeyeTZ +UL8NJ0lorCmD/535Lv5FnxOznCfHqoIfBN8nXQpix4cc56jqYIlT36YeTrPi +lvMjnRpgW2Yj9WIPZkyl9R3TBK8vZjGcDm9UM2Ki+cjgc2lcCpG05eogKd9c +bXD/xppHUsV8NUl26xFdsHXEUMibB9PVmx/+ZaeA5S+atXWHj1Rrjd5M1ifq +4/rC72D919W1dCEzQ3A0WbalpKSOOrhrYNAIXHv2ttuk9xDV7XGeFwKX5VGb +1lOmqDZXVISMifze68niHpmjineMFZiAWcVjVKjuS1Q7GzuXvWC9vQbphc3r +VJ64Ng46kf+/7EfOTTGhILeAFFOwfqnZPbFcVjR6YNB0P7iq9H6BhiY7Euk9 +P3AATHdUcf/4iwORvWsTLMCiZhUxiUXbkBneTbUi8j2cv72CzINE3ua0HyTO +v21a5GUgL9rfMhlqQ8Rf+8e1qXYHOhblImgHNuZb6DvByo/eSw1l24PfrBzK +P+AmgB4mCtg5gOPIntJjuTtR+fDVCUfwB5Q6V8++C0nPPUh1Ivrl/P4VLXch +tNnZtu8v8Nhy/hOHnN3od55ylzM45qB8aS2LMBpQMrnhCj69Yu81vF8EMeXH +7HEDL7QyO8ZGi6IR7uFH7uCN029Trn0RQ+Xc0/bHwZKknLrEnRJIUlThywkw +m8DcaGyjBAotEU31AF9/kOT0yUsS5XjQ1T3B3TUrp5e2SqEJzsAqL7D3/pmC +kpdSSFj8uM/f4PtBekZvnKVRwIlQJh8wtyD/agS3DCrlPFTqC7bb+8SOo0IG +yadqHTsL1hbJZB13lkV5vvvmz4EPO0sMHeeSQ5FxPDl+YCH6CpdRsRx6sLGV +chFcWH+7b8haHtF8d7z2B4cWvHwntSmPrPneXQgAz+lRRGqzFNA3kRr2y+Bs +DbM7rLaKaMbM81UQWLFSMJd7UxEl+u7xCAabzxnynHughNJ5mX5dJfolfv5B +wEFllFHFyA0l3LUZ1TevjKTnT1PCiPjhDManbBUUJr744zqYvXnZvNBGFW1Y +RTAiiPlRUmTzfkEVfRc+oHoT/JjzZ+j9bDWk8qZxOBJM4Yhhx6bqiEf64sVo +MCNtQuHxV3XkdVeNNRac1XrqFcNcA4l0ZDyLA9cxIrftSNdAb1tN9t0i6l36 +3DnHXxqoMSR9JQGs5vcyl9mChKzpLI/uEP12TzWil0FCr0bStBOJ+jvnFXht +kYTmxaa/JBHnF38v5EjXRBqGPkEp4LXkezcSkjWR5bXVLangH3XynIwZTWRl +Ty1LI85fP6rTSdVCWcJlpgzw7YCTgZ+StVC36/hqOth5yTTaYkYLcdSLPMok +5vcBB/qkERm5kqLIWeBiW5Vd9klkpPJH0fhDoj/V1e7OfCEjgx8sATnE/MNL +0k5IGxUq8ao+Al/YI3ldIVkbxSbI9+eBu/b7x8lMaqM0ST/vArCj6t2ieaoO +ipi9IFIIzpsY8J9J0EGvFx4/LSLinQrfbvFZB3XofqP+AzbIWKy8oqeLGh5+ +nvkXfKIgYWd/lC466cQV+pSY556LYZyjumhcZkbrOXhk7kU1Q08PmSn2DpcQ +8Q7m5TpH6SGtW0u+ZcT9H3PN+jGih6IX2sTLif4yMzZ7oklBsQ3dz1+C365c +r3oXRkHl49OoAtzsGm/a0EdBPjMlM5XE/d1ruDKhpI/4A55frSbm/Y26171h ++ujPvlOkGrDW/u8Vy536KKnJuqkW3Nl1MeSKrAHy4957qJ7YJ4JNjh+uGKAh +/hm2RrCcyt4B+3YD1FLZmvIa3PMr0q9AzhCpCbhaNBP7Mkq13z3YEFEq15Zb +wANzG9/o7YYoX6Q98g0xz3iS+X7LGqGdOx303xLzcNNp/PMlI8Tznu9dO3jz +VXC4YrMR2ljo+6sD7K7kRflTnIrW7zls/UDsJ9/Q1KizVNQjyMH4SMwnj6M8 +D5upqJrtzMEusJhiho2YOEIvbEdWu4n6rOGgNZ1ByO3WjahesM02gz9NmhAq +kB2l9BP7Oalt+QIXDdWVnn87AH4acrT/qR4NHY0rDxsC+1foHDhMoaHqUtko +wvpL3K9+g3d9unOLcJ1vZaq5AQ29UPNhEP7osttpwoiG/n0nWUb4l8HHHqE/ +aSicN2aKMGWZ3hViSUMVcS7Wn8C/tcT2yVnRkHNpqwPhujO/StrAS4O6LoQP +TGYn7ramIWEVPm/Cf3Uz2T+3pSHR1tfXCQeXvPrwxZGG2P7QeEHY5Odtk7jD +NERXSa8izK7i9UzLiYbC7LY2EI7P3nUn9AgNTWWNdxDOvHPBZo8LDZ2hpk4T +PtFuXlsDDjvJPkdYYas06ZQrDd2K9VsiXHztPW/JURpK6bdkGyb6pyo/9Igb +Dd1hrthKWG8l5CeTOw3dVFDYQXid7OiWB/Y/mLRr+P/79v//h8jNn0WM8P8A +w7nF+g== "]]}, "Charting`Private`Tag#1"], Annotation[{ Directive[ @@ -14365,77 +13818,77 @@ j4NThw== RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[2]], Line[CompressedData[" -1:eJwt12k01dsbwHEcV4YoGVJkyDwPx3g4Z/+oax6iblRkinAJpZSSIXUNETIV -GZIbkRB1S+xImVXGKBlDSubM/J+z1v/FXnt93nzX3i+eF4+Yi6+NGxMDA8MI -HPpd46f0wcKFwI+UXSh+/W3IsiMgt9CZwJTLm6fo7tOovMAGtnh39xbdc6tG -+946EnjzeMco3fuvO3vpORA46urBW/7g8DtJzPJ2BDYtlho9CzaoXdVmtSSw -X8lk7HlwHU99Tq0Ogc2Q/1AQ+PmXNY82TgIzq/b53ABfv6BR8U8jwiaHDmkm -gMs8eZq4LiGMgtIa0sHV+bJNb8QQts7WJh6C13fxiph/oOGzLePzpeA9jZqO -TBdpmOY2dbMKbFGx8uGIGA0f8KubbqD3WuJTgz5QsZZbUVwHeEnZyaTtIhWv -dk3sGgD7VJMOLUpRsYm0Vsd38Gq4UeR/3XqY7ZOdwwLY/fabwoIQPcwu2tqy -BWZ+zyNxRkkPV4j8dZH9axsKO5rxj1O3LraTUWLjB/PyvhWaDtHF7su9rmLg -3vUaFmtlXZzhkr4qDw5WXfo82EPBx8cKL2iBDycwsBy8QcESq+1KBmA2qoFg -lyIFe6UatViAu4QlXJh6dLDM81vkY+AO+b4Nphs6ONZsptsVXBLREKGqpIPb -AzMcfcGYNcaJ/EUbV+5wkQgCj9ZO+XyM0ca7BTbKIsATDZHu99S1MaljSCoe -LLy69FRvRAv7fBzqvgsmB2b9ZIvRwhHzst7/gh3lxo+eU9fCzVOGzaXgKlYS -f8mIJm7gCnN/BV5Vs32996YmNnBlHK8He0aGYDuKJn7emZXbDv7FYzyjNqmB -v7PzyfWDbX4Yb9e9rYEr4tuSJ+jvmdoXzG+ggefY8qnzYAc9+V6RSXW888+6 -pk0w87Pt0eup6njDizGJbaAN1bjFeZ83Usc7dvBL84JPOhtThGbIeD7u7ywR -sEJkt31KJhlT2kcOy4H7VjO8aIZk3OGcPqUBzswlPQqfVsM8PbLW+uCkQBrt -bqYafjT/ZcYM7JlaWjVgqIZz/249bwv2G15OWF5QxalhI5ou4FjXwdTHD1Rx -mFd7jTc4SoUhKt5CFcs1rateBD+XWWgzXFfBjFmWX8PBdd6iDPIPVDBh3+cb -B54Y++lSaKGCPY7Qmu+ArwgIamyuKGOzB80uD8Djqy1BjGbKmG8qfuAJuIIs -7VX4UAnHXAtNewk2YJ5TLv2tiJvD/9V8B14jNuymjRXxtot5mR/BAp0l8p3/ -KuC7WR8MvoAXNjs7eZfksSlNpWUcTA7NkV63kce2LFUJc+Asn+J+wTI57Fsm -IbYBbpyT90olyWFipjqZdbAN2bZZZ79wksX2ypGGPOBc/YkirRIZTPMP/yIM -FhLDQr+YZPDw5lE9OfDKUZqmmbM03utv/0kdnCShJMVcJoV7FuOPEeDbxu+w -K5cUDvxrid8MXP0p89WajyQOnNLJ/AuczzBxaxpL4G3lBezO4N9Xe7dH75PA -JAWLp3+DmZJ1nUJ9xPGbg0L6geCzjIYO+xr3YzsWUY5wMFdffNWc9H5c9YIh -6ybY09R8QfySGH4rzSGQBpbhLulc6xLFxrvNW++D83wjYpQlRfFX1YrTxeB7 -AWpmWtPCuDZvtfkF+Pmzonb7wn1YMuSidx3YUoZ1G8VcCN9NFJp7D35sWB53 -ilkQ05hWn/aB3ahDX7Zq9+Bb/1Wgb+C7rtM9Nu4CWK8uuWQGnKJpKTUvuhs7 -kEod1sA7dOLEzF7z4bNs09MsQ21oiMdqhMedF4tXs5vvAl9Od1qWFefBE5Gu -o0LgRJvDL5fquDGnfL+zDNjvWcr7XVd3YqI3SZAMtvpWcZR6mQtviClkUcH/ -vWLwqHvDgdtPDm8zAT+Z+ikyRmHDycGfig6Ds4PTVQMvs2BV0k9NR7Do6R/f -70+ScIszseEJtmGkKpe4M+L9vOdjA8DrCzkZx+w2qvuM3jKFgv3vbpeJJJar -ExTsyqPBfRtr7smVc9X5pD/MUsCHrveHNGdPViukJBTmgKXPG7d0RwxWs1e5 -GBeBk67NbwZT3lXPfzNreg6OVpdsLC+vpcXfCYqsBdf4JTiNe/XTzBajd7aC -nz2k1a+nfqex+pYGfwJ7pvXkcA7O0vhMRaRHwCSRGAWa8xLNtCKn4hdY+6Du -vcKGddprlT+4VsEyJ44M+n9nQCHTpfeZh9sQpcI4TTiPhIKt/IV2gqsq0gtU -1FiQ20RQ+16woa2Cc8ciK5pOTPaRAu8zroxJKuJASayJ7apgt4H8HZXqXEgr -ve+cHriPY1LoxaWdyNNSbdWI3l8rPllfw40O8/W8sgHr75rvPUXiQU1JjiYO -4OaVv/JNnXgRy6HFlx7gWHUP8ZE8PmTzu9fjHLgd3Zl9w7IbTZk0rV0FV581 -WSE7C6CNqnt20eCR5fzHRx/sQR+2amaTwDFW0hU1TILIdGvaNxvsvXLEc8BE -CEXW+soVguebGG1vRu9DRGJncQV4w7s1NWxMGBno6QvUgMVUH9Qm8YmijRDG -6mYwM+/s8M23oqhiZ4NxD/hadvKxr55iiFAb2TEM7n694r3Evh9d3jOa/RPs -ZTJVUP5iP5L1+M6/DE6/rE1tthdHVSJ/NjKNtCFOfp7V65wSqOxJrhMX+PDB -x4dZKyUQs894zR6whlAWadReEuVfuOYoAbazF+133S6FjDxEh5XBAoYr26kl -Uig9gz+HAi58k9Dbf0gacf+Yl/0THFrw4v3+LWnkSv2Qegg8q60jVJMjgwQL -thmcAOeqGCeSbGTRu2i9j+5g2Vf8eZxbsqjkl63cWbDZrB6Xf7YcYrf8gK+A -n8TNZV+0kkcO6gcpkXR3bUX1zsmjJg7+2UR6PyIj42uuArrWN3QzE8zSsGxW -aK2ITowlzRWAn5cXWX+cV0QB9Q+TysGP2GZC03OVUHlxmeBrsA5rDAs2UkZL -zsIDTeCMu99kHk0oo0F0zrsLnNN0+mWGmQriRtVfB8G1GZEc3PdUUNnQ37E/ -wCRxf3/bRRXEv5tLbAmsdO5FHqO5KmIcSLvKNArzlqZ4/VOGKhJRjBTgBOv7 -e14KW1BFRsJeqQJgWZGPAraGaqg4ptRGHLyWknYjPkUNlQeO9CiCf9VKs2VM -qSEbcRYDHfCTN8OanTQy0hKLnzgATrjodulrChnZWbMFWIHtl4yizafIyMvD -u/E4+LfpUcNxqjqSfKp9wg1cYqOw+0iyOmrVn/voB9ZWVro9NaaOAlb4rl8G -D+El8WNIA427Se77BxywV+yaTIoGmjwnEpII7jK5ECsxroE84q7vuwe2Vbxd -NEfTRLo+Xdn54IffPl+YitdEvy0TnZ7Se6cjdpgPaSIBrDtZBdbNXHh1RVsL -ndzRatcIPlUQz9cXpYWsdFpJneDHHgvhbMNayLPi6e0B8ODs8+oMbW1Ekrkx -NUnvWT3Ms4/SRqeONl5bBJNcTub8GtRGw+MzmwzfYL6M9Y0fq+mgL3LRzzjA -rSvXqt6H6yBsxa3ND244GWdU16uD1haCMsXACWl1V77JURCPmJ2+Avjyjdp3 -n8IpqIzgb9QCk01+Vi53UtBav3GsAbiz63zIFUldJMPvJWgBTuGvt22/oot+ -2nvF2YGlFA5+PtKmiz4tD1JdwT2LkecKpPTQW16N9jPgs1GKfc7BeugcOVAl -CPx5duOHYZseEolWbY4Au3Gl7NqUpCIG/3rTeHDV1rHRoUAqWrjezZIO3noZ -HCHbQEUdUV0388DOcp46B0RoyJVSvFQCTjwTeifKj4b2TzNmVYJH3B257jfQ -kOQbRfl6sLBsprWwCEKOv4zD2sHSr1mJel+E9LYGefrB1hy6BwzqEdogrGIm -wHnJLcsB2wlU7aCL5sGlIY59pdoEIgut92yCL1RqmtrpECjM/x5pC0xZ4ny5 -CTZ/R1Omu/bMqztmugQ6cSbsBt0dDnuOfaMSyPY/Fg2GsTa0qNvRI3CAQK1k -7kRGsM6yYVeIBYGKGyTNmcGbZOE/pSwJlMdZH0h3re9ieQt4j41HLt2m47lJ -ew4RKKj30SrdJ7oZjjy1IdDeYeWCP8DB5S/bx2wJ1NOnw7INbDCTYBBrR6D7 -uz+r0s2i4FlGPkagH4evONAdl7s7MfQ4gRaaqsvpzkoMsN7rQKCxsgOurOBT -bWY1r8EZP0bj6JZhF1c9fZJAbeI3XtJdEvZxZ7kjgYoSG7jZwAFV+aHHneC/ -jZ5UurVXQmYYnAkUssXuSfe6uq3TQ7CERlES3f/fD5GRl8Vruv8HLwg2wg== +1:eJwd13c41t8bB3ArkZDVsOdjj8d88HjOJ8osZWSUrEoRlVJfGdlFyjeExpMI +JVIqRMmxikpGRlFkVNSXzLL53Z/fH+c61+uf93Xuc1/3da4j433c/hAbCwvL +ECxyrzmh0brTm8A/aT3vTITykW17UE6hF4F3zzpUkO7Re3GGG9xQ+v4u6akF +C4lXHgQe1K6JIi0b5+VH30/gJvV8A9LR169yqLoQOJhyJocONq1doHHZElhF +TjDUGFwv1JBda0jgOStrFUPwsy+LR5p5Cfx4N5uCLjjujF7phTcIZ1UOB2mC +n/gKveU7i/C+ApcvKuCqfOW3dTIIf24U6FcALwkKS+1oZWAJoTmaDHjLG30P +tmAGflZF0RAH7yydb3WUYeCClX6jTWRe05WMkFYTnKDZyBQEz2p6WjUHm2CN +ldkbvOCAKvbdfygmuO62428u8EK0RXx5Fx2XXae7coB9UusK70fQsad/gOeq +YD7iaBGSP6ZBx48+va1cAEc5MS94dhljBdvA0j9gYeFX4uMRxjhYI+fVBLh7 +qYbTTtMY1wewqo6Cw6mzn/s/GuHQqXy1YbBDMgvntvNG2Kw8LGYQzG1iKtap +boQlZ66f6QV3Ssp7s300xKKxplGfwO2qPcts5w2xgeimgXZwcWxjLFXDEE94 +6/U2gzFXoqfOFxquSY3QeAv+VjsW0JZIw1lfHDNegUca431u6dKwrFAQsxos +uTD7lD5kgPfOVf19Adb55/Yod6IBfr7oMFYG9lAZdjqla4AfKQctPga/5GLf +WDykj9PfYfci8IK2c7XoJX3M2rjHPR/sGx+BXYz0sa/opqc54N9ClhPav/Rw +5L4DUrfB9v9ZrjdO1cOz1AXFG+R5xiTCN5rqYV2Fyrg08H66arfUL12s19cY +cYW877L1F5cydPH3NJaWRHDNoST/0xa6uFyhTu8C2N3L0kh8QgcfL2ulRYPV +4rvc0jN18L713Mnh4J4Fph/DXAe/Tr0UFwzOzGEviB7XxgNrbiafAl/9h8G4 +kamNHdk6po6R5894/PKruTZ+7u8y4Qs+MTiXPDdDxWfN1podAl8+0J9RlEvF +I41EkSc4QYsl4cpOKiZmXz3dB36mNNNsvqSFs1xO8zuD6/2lWVRztbB76om1 +9mS9P0a9C3dqYdt//27cCQ7bLKa3Mq+Jr8bcDbUEDy80hbDaaOKoy3fCzMCl +Oop+hfc0cE9g4wcG2JRjSvPxX3UczzR6ZQheJJZdxi3V8f1AgxZd8OaOYtWO +u2qY+LFfQws8s9LRITyriit6W5VVyf5GZisu2aviW04BIRTw7YCHvWJPVHCP +ydVBGfCbKVW/DHYVzDW0dlgc7Nxsl1XhqYxprbnEZnDO1pEHBsVKeKgwSV8I +LC6DxX+zKeFALvZtfOB5J4a+jZci1j+ZdZebvF95DQrHEwr+xJmYxwFOtXyN +D/BR8POLmfOrAjDfnzIrFwMUcLID/dAiOJ9l5N9xLI+VoxUD/oL/nutef1FC +Htf6GL+dBLOlGXtGBsjh2AFm3Sj4JKv5fok3slhjhiI4AubrufJySlEWE3rG +wUNgX+sdM3JnZXC2xa2QPrCSQHHHYqc09itX/NANzjsem6ipII1lVFled4Bv +BWnbGIxL4tY+77YW8LOyBx/cCiXwmrIx6juwrRLXWqMd4vjOu9car8FF5iVJ +BznEcM2Phsga8CGTgS+rtVtwG6fDr0rwjQPjH+19NmOLLLWJZ+B0fVvKtPQm +PLJGw+YpmN8wScamWgT7ipwzfQgeENo1JOQjjD3oLnb3waE3PeeU5YRw44xr +aS44xd7h+Wy9APZMLSi9DT5Rlt4ieG4DDs+T5bkJ3vW91MkklA/rp8oHp4PL +K1mO1Nfx4N/Zp6OSwY/GRqV+GHHj1V9jXy+Bs8JvUv8J5cRH4kp7LoClD//3 +884vdixOz1WJAduzmmgW+7DioWfiKefASzPZTFeX5aqN1d/SzoIDb6xXiifm +qhQK238HgXuWF33SXkxVaTkIfjsO3h3XG/Eu61dVz4eeCT+w4mnLpq7Y/qqk +hTf2PuCrMdMr4Uavq+6Kcdt5gS/qKrwpKalltLw+lusGrjmR7Dns18vI5XXn +dwGX3WM0LGX8ZLyKv7XRgezvtY/ZvP2TjBJH9lO2YHapRDWG1yxjX1zFUSsw +bZvxrcLGJYbawfnQbWT/9zn2B/5kQbKuHgMIbFRqeU0yjx3xj4sMGYFflt68 +r6XNiUzCpwz1webOal7tf7gQZ6+UOhUsYfki8eoDHkTv6DJQI/v9NZ//hS4f +aop/mqFI1s/zS7zi7AZ0xmYgVZbMX3zo3lAjgIKKdL9LgLcKTncfZBdC7X4C +tlvA7+b35Ft7CiPbQOQgDL6se0RuKE8EVfemFPGDP6Drk3Wcm1BrnUHuOnJe +TlrN63htRq82+TxZAx6ayy9yyt2CptMrRFjBibsUS2vYxJBQk7vI0oZ85D/v +6PvVShyF8Sn7zYKn37I6X7oogX5Gh3VNgZf932dE/ZBE0iMyX8fAMtTc2qsi +0shfZpT+E8whPDl46ZU0+hrKZfANHJOV5trnK4P2XLI6/xXcVT3vP7tOFlmU +C431gP2sxu6XVMiiEEJrohN8M5Rm8s5NDtG3B1q2gXk3Ci3E8cqjji4Okyaw +w7YiB64X8igoXcaqAawnfpv9m5sCasrwLqgFu7hJ9x5YT0G+3n/vvQRvNp9f +b1JMQdW7Hy6Ugwvrkrt7dysiCnX8YAk48n5Fi+yqIqoWiTn6CDxJMxSvyVZC +b78ZNRSAc7QsU9jtlVHIyHacB1au3JjHu6qMyie6m7PANpN0vsAsFVSRn6zD +BD9KmsoK3qWKctqYuhmkO1cTuqdUke+ldxdTyPxYJrMvRw3hkZ3hl8GcjXM2 +hXbqaFjb9UI8+FnJA7u2aXW03H7hRwy4gHsi8maOBlJxWDd4DmzIlciJLTQR +nadYOwTMvPFdqWBEE/Ge7rtxGpz99vBzpo0WWp71vH0CXMuM5xG4pYVOhHDO +HwWzywUGOv/RQvHmLOM+YI1TFXmsO6joe1f0khdY8Zp63CcmFbGoKXnsB28N +9D0bNUNFYmtl3V3I+qXaNjubayPWBMYTB/Bi+rXzV9K10fbUIYld4N+1itzM +MW102L1XwZqsv25Qv4Ohg8Qy5qO3g5ODD53tS9dB/DV+YQTYbdbi4o4xHfQ5 +7uBlY/BfayfzYRNdlBkeOa0PLrZX2+SYpova7kz+oYJpmhqpYz90kWRv7E51 +8ACelXNFeijodMBWJXCQqEyMUroeGk3u2yEH7rQ6c1l+WA/diQ8skgQ7q6c+ +mGLoo84tewu2gO99/3xm7Io+2n744JIwmXc4ln/HgD76uPT30AawceZMZRjN +APUd/nqUB3zw/hWRngQD1Lrn52tOcNGRmWjuQQNUZGVVxQrun3xWxaTRkPo1 +6vslfsjbdS/PLYGGhjWMqXNgdm/37N/9NNSx9iZ1GjxtudWySNsQCfCIX/gN +fj8f87Il2hBJqCvM/AQ3uidZ1HcbIkpT7PI3cPK1+rDvKkbI1W2NWz849Hzt +60/RRujL9S9On8E6VqMv5jqMUHhBx90ucEfn6YgwBWN0pM6R7wM4fWOD84cw +Y/SkXlXwPZiitu2zY7Mxeuwhd7QR/PFP/Kn7FDq6LnTSsw58MkG9xyucjvYM +WgZUgT9PLv9n3kxHi/xESwX4EF+64IqCCRpNSXpfAn656vpt4B8T1Oa0LF0M +Xn0eHqvcaIKY89OJhWAvFV9DMykGSlMzTb0LTjkWeT3hBAOZHS4ezwYP+Xjw +3WlkoAveZ0aYYEnlTDtJKYTUdtXPZYAVq7mIhuMIDXNpu6eC7XiMzUwbEPLH +sx5J4Ly0prmg9QSiKPSWJYAfR3j0PKYRyLpctCAWfOaFvrWLIYGKpkUzSBvN +8j5fAUtrisWSrj1Wed3GmEB6d8XcSbfv3+L63YRAkmnigqT/GLd/3GxGoNHT +kiExYMM5886InQQKMZO1jgav6Ehup9gSqCdS1oB07fE/JU1g6ypZedLWwzlX +t+wm0F5DuZUo8L4uFsen9gQy1JJ/Qjq85PmHH84EmpamiJI2nUg2vexCIHsP +ylrSnGq+T3RcCVRzizITCU7K2ZQSuZdAzaKKzaRvpwTZie4nUL6IUjTpg802 +NdXg845Kx0krrZOjHnYnUFCqkhvp4qi2DSUeBIoSUNYnHfQyP3KvJ4EydyvL +kabNR0yweBGo6V/lDaSXdJ0974HXtSgvR/CT7+3//4fIhU/lF+n/ATq/Yrc= "]]}, "Charting`Private`Tag#1"], Annotation[{ @@ -14444,56 +13897,88 @@ jZ5UurVXQmYYnAkUssXuSfe6uq3TQ7CERlES3f/fD5GRl8Vruv8HLwg2wg== RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[2]], Line[CompressedData[" -1:eJxN13k0FPoeAPBhHI9raSGRPfu+aywzSb0xtkSe5V7LUNQ4VErKxSXRtZRn -p0ziykO4yaWunaFQrhZblCJZUrI3du+9c27fr985v/M7n3++f3y3c36y3mcd -fDgJBMLo/+7/3+Zzmi9svc0aCX+fo91B+SVe6EGD2mDebZ5ftZB87IneH+Pl -Z+qOjrqZxqXmgjZnrZJ4jqJbhdryWEboR2/XTncJoGOCDap+7TgIrmAIPRUM -QTcUqTxtkUWv7xaWtnlBAYt1GHpyXkbbVq28cJRFV3QmZf78ggxma9Etuy6j -AxqIx5YU0atRFrF/9pmCfVNbSooj0FzPheTPaKKvODF/pfeZgIWFH0vMRKAH -1pu57bXQ4TrsN8P9xuDjyQTuI9fQvGRz8V4NdK+UvDdnvxG4W21wg/Maujy6 -PVpHE93Ik0DXe0sCf2RNB7xMQE+2x/re1kdLrbL/MB09ANa7dOcLbwLaU3XC -6YI+up6HKFI+aoj50nVu2ncdzYiNaHQxRn8Vos3qThmAHT7T+E1S0ZPTkuEi -5mh3U7UB6Sl9zPdD/vj1THSzT6L/RQu0hxfNWGJWD6we2+eWkYMeXGX6Uajo -nHzivagZXXDaJQrlVg6akfmg/j0Vfe7DcvLyog74xonhzLK76DhtQlySLfqR -8mIXdV0b+99fhqB2Fz05/sW7xBYdJipusLmiBZ5Y7fyZwxpdpafkV1KoifPF -Na/14JsGeM1sw2WGhhbtKVfr+Y86eHGzp0eYrYb1jcxTWndA3wn4fUi8QhXc -Ma/ml0lEO3fZ51bTVcD5hyZLD5QrgyVkGyW+cqJXnCiG1l5KmF95TUWuCkVw -Ku1J4wlBdMPrnLq1AAVwEWHy3zON8uBvvwzwx0uiOdNN6JEBcuDzHFR3yY79 -YMHBpPp5JTTDymZRLkQWrLyrvGetVwZccDY6QUsBfTtI1/rAjBTW82HpK7cS -SdyXyjz/MLaRAJdRKxNPcomDfcgjb7dYYuBbJ2b6HXxFwRmGRxUXZPaCdxgl -ylo37QGPCNmNCvkKg0Oz6csqckLgFIfjNezWXdifDzOe7/5lJ9hurMqJHCoI -/rOOcLq1hQ98f/qL9LgxLzg3PFvnUig3WObU50+/TRFxXjnIWuW+HLh/F/OY -ri4bDd8deItfOdZsGTy4seabXjsPPhYzFPEsdwqsdJHW2Rc9DE67urAZbvwE -HK+v0FFZyaJ8d/O5ZPqE3xD4YSGlbT3zE5iR1Z8nMDwHJkonqFO82GDSEZPb -Je3rYOWfHIcDPxEOfrdxFS1LqoAIrq/KLtbW5QZTndW9upd4wJK02oS0Uj6w -z/uiHbX6guBBvimJ6pCdGH/td4+25l3gQ7sXBk4ShcDPVv5VZEUXBt/QPy03 -WrAH/OrgzbkW7r3ghvOWK3peouDR5aIyp7ti4AQ7papmTnGw/4oj472lBHjh -KYfz9XhJ8Ib/X5lXxqXAsjp3WWl7ZMBcwnMfrj9GX81Nd33HkAX3Na34s3/Y -D/aznC6urEZnh5LIz9zkwAIiQqsxAvLg40fKjvPUog0k7hA/uimAXdxkhk7w -K4JFqSv85HJ0SUvywNAxJXBkcfXz/VvoOZKRRHOeMjhfm5ZCdFABq9SJFAhs -oa3nTAUDc1XB9xPncy/bqaF7t+IG5tFz0Uzmu3x1MHf7snWJvQb4UWWp/csF -9D3e2cjsfE2wEU8Cd6OFFph5a0z53iQ67+mpGqa1NpjFjOXbdRtNlAsMdF5C -a16oLuCw0QErZWnEvGaiDwUyQq4solWkX4o6U3XBaxlZ15Iy0F9ZSrzMafT9 -lg+GPRQ9cPJln5B3GWg3tkW8zTT6m5UTdYKsDy53UN/rmI4maWmmTo+jRxrZ -cq4HDcBB+2SvKmegey2Db8hPoJ01UkvnKYbgwrE3wdNJ6JFT0TtsRtAmOYt1 -YaQD4JPFSXsG49BlpxejeD+gh+ceNTBJJIxnV1jgFocmenvkfR1GL9AO0cp0 -jcB/rVytfx6FbvdItGgdQCdntYaNqRqDQ6+xnryOQutZfqld7kH39F6MCFMw -AWeItDm/CkMrqh9549iF7l+KvVCsaAo+H6cx6BWOfjO38ZnahfYRzNi9qUDG -fbjl+nHkEnqrJjxapR3tpcowOixNAaecibwZdw496usp+Fs7Wkolx15K+iD2 -ZxOPWdtZtD2fyWHzNnRBeudyEL8Z+EGE5+ADEjq41tDKxQhtzBao2dxm1pm6 -m9Ym6G53MdcxMnrJpLtf9DDaaJnaG2GL3tST+qfi0W3xzi5Vdm6z1UR+mtgx -9E99BMc/HNDhlTWvxp3R5rPJ5jdc0NzqjAo9V3Ri/t6UyB/Rd1KC7Pe5o092 -WTc3bbPyD3I6pzzQ5Vde7qz0RAfVF0X+SEeTViJmCV7odX1neuE2//0/BP8X -j4NThw== +1:eJwt13k0lOsfAHBboiyJLJns+25mMIyZZ6jGWrLc6F67rLekkrKlhCwRWUMi +JGlRl0risRWVlEJouVSylLJ17fl933N+f7znPZ9z3vM9z/PdznnlvQ85+HJx +cHB8hod4N4fovNrlzcLrst50SJwbQ7vfhJZWebHwpmqnbsKDBvVh/GCxzt4B +wjNLFtsee8D3PP0ThBXivYJM3Vg4/eh7AUlw7MUsHk0XFmbbj+whbN6yROPb +zcKG6+f7CbeJtpe0GLOwnNvWcSnw/ffLAV2CLJz3QM2IBI4PM6g9+xRh3giS +uwz4bqDoM6FwhDmFzSLkwI3X1J+1yiP8REq7TQG8sllM1vYVE1tc/f1VCSz1 +1NCD6wQTi2XkGqmCd9UuvnKSZ+LjbK9odSJeZ3puxCsG5s/fVKgJntf1tOo6 +wcC3dc6OaYMPNnLv+aXCwNwhnwX1wEuxFokP+kzx97wQNTLYL7O1qjLGFAd9 +bQuhgnleiioF65hi65XfGYbg03sLz3r20bG9LMcwDSwm9pj0M4aOV+TIynTw +wEozr70uHfuvtzZngKP1598NvTXBfR/UUhHYMYODd0eCCY6smKw2A/MzzKV7 +tU3wJatwrh3gXhklb663xtir18CKDX6jObjKlWCM+0P6AyzB1XEdcfo6xjix +3eyeNRjzpXhS3tPwYdOM97bgLy2TB7tTaHj9A5GF3eCxjkS/S1QatnntYmYP +llma/8f0sxE+q5Lg4wimHL/8nT/FCC9xRvzzB9hDY3TvUaoRVn5XtOAMbuDj +Fq/+bIjvbLgu/ieRL7Jz09ZzhphdFuntCg5MjMEuJob4wRXKWXfwD1HLKfKE +Ae6vJ5V4gh2+WQrQMw1wkkLnmDdxnslt0eLmBriV35vfF+xmqjkgO0HFaqqN +zv5Evu8JJK/kUnHJG46YQHCzb9qBYxZUfLs8tOBvsLuXpQlpioL3ZNwaOQjW +SuxzzSmi4FeqL/lCiH5eKgxisinYt6l23xFwUSn39difZJx17MXlUHDWcSYz +v4iMJWeeN4YR58+90/Avm4xDHdM3hoNDPi1kLMzp46vJdP1IcKrPUO7NMn0c +tixhGw1O0uNISt+ljwuoD7NiiP5Wm+tir+jhXR7b750m+v+AHIdmmR4eMbmw +Lo6479fv3lW79LCqxWbrBHCUpLTB70Vd7OIV7p8IHl3qjOC00cWWwlfvJoNr +KapBVRU6uGigru8cMV88M7p3/tPG6nKZaufBy6xVl5+W2tjtyqVDGWDJnmrN +nqtaOMLt/PlM8Nzvnh6xeU185jj7QzZR31MlqisOmni5/wt3HvjywVsfpO9q +YO3MGtl88NMZzaBcbg386LxVYCHYucu+uM5THUf/fJxSBC41G7thVK2GFSLW +vy8Gk+Qx6QeXGk5yipAvBS/uZRraeKni9Fs9qJzIr5KOCs9dFWwpPpdSAc60 +fIJ9hFTwNoHl6kpivvuLHi0fVMa3ginPq8DXOMbO/8RK+FiLnugt8H8nBwSS +tylhvqYt1GowVzbd89RBRRyUi2Pvgo9wst22PVXASqr212vAQoPpDTOqCjhW +R6z9HlFPa9s5xXB5LDpbIFIHVhOp7lnulcOdKRsN6sHlh+JSdJXlMPUZSmgA +Xwol2xj9lME7j5d3YqKe9268dq3ahufFZr81E/tSjW+9iS0Jb6WvM24D32TX +pO3nkcZenmvuT8C+jOH3ay1S2EVEM6IDnO/z862DnySm6Ui3PgPnGO5WmZWT +wPO+s186wcLGafI2TVuw9sx56kvwsKjdZ1E/MSzD6R7eDY4s8FxQVxTFThZi +uW/AFxwcH863ieC+trRPvUR/3st5ufnkJrwlcZq3H2w3UruXESmEub7Fyw2C +HzziCGhr3Yg7Aj76vwffnvwu+9WEH89ayCZ+BBdHF+gfj+TF2RpKfUNgOf9v +41cmuLFytMjqJ2JeORm61X6c2CJCT2qE2L9zJYX7XFYbd7uL+oyCD+cLqCWy +Fhr5uj7GjxPztrrsl10/06glGNz3Dbwn/kPM8+KJxvFJHdIPsOoxy86+uKHG +52H9JlNEf5yZ/R1t8qRx6M7OszPgZKry05qaFmZeacGNOWLeQzI8R4M+MMcc +Fdv/A9+rYLav5I4zv10MFl4k6pv3tkRwaJq58+4VvWUwt2yKFtNrnjlqmR+z +CqbtoF+q6lhh6ma3tq4R9f/LaejwOAfSfNU7xJk6hkxqLfNkyrmR7YEqTR5w +Q21BpR6ZF2WvC7LjBbOdtbze/OJDMWPfivnA2yzrU7JubEQC5y6PbgD7/ntN +uJ4qhJhWpusFwYMbJ0h14ZtQJ7nQSZiIv3zLvb1ZBMXvGIkQAZttnh3Yzy2K +JimeOaLg54t/XLP2FEMqlKJ/t4BTqQGKn8u3IIuwx5yS4Nfo4nQrrwR6cue2 +/VZw4xGrRYqXJFptfp5DAn9euHZzb5kUiid318iAU+xUa5u5pJHpyYsc8uAD +i06B/1qREKbZKCuCZ59xOp9L3oamvuggZfDqgRe5p7/KoAG73gRVsLx+WUvW +FjlkvNO3Qh3MIzb96dxjOTQ5fP+XJvhMcfa+j4HyqERijqQD7mtaPDC/QQFN +WHkb64GDrCYra+oU0DRv5hkyuCCSxnjuqohaTty8SgULiosuxQsqoW635HlD +sOOOm4589UooyvAiwxhsQLrM/cVVGfkNZbjSwS6uch98BFSQ05BtJQMsyV4U +YFSrIO6m6S4ErmrNGPiwRxXtru4YNwOfqqx7qbCmiqQHvcg7wNM0Y1JziRry +WPviyAaX6lle4HZQR7VsjVJLsPoj8XLBNXB2yag12GbaVOhwsQZKXeFatwt8 +O22m+ISdJnIIUNljR7h3LWlgRhP5LlFC7Yn4cYWFH0u10Ltw7ieOYN6OBZsq +e220vHGd4F7w/Zob9t2z2mh8aErLBXydf+pUQakOmosvivgTbMyXwostdNEf +UYYlruDC/BG162O6KPgKR4M7uOSZ/8NCGz0kFnWO1wvcUpi4UeSSHnrdwqXu +A+ZWPHzY+ZceulpuEu4L1jlaV85pq4/ot8sa/cGqedrx/YX6yMl88X0g0X+H +A8NPz+kjeydh9QPE/WW7JZ3ZZGT3W3h3MHg5Jy8hPYeM1n83DwgB/2hR5S+c +JCN1U6PqI8T9Wz8Z9jApaAmJd4eCM074hn/MoaAXafdkj4Nd5y2SbScpKEgy +yScc/J/1XvYog4qEjrBPRYKrHbQknLKpKHex7Vk0mKarkzn5lYryPXR+xICH +8bziPmSA1t65oFhw6Fb5M2o5BkijqDY+DtxrFZaqNGqALP5aLUsAO2tn3phh +GqKzIrwzieCKkXdhk+mGiNG9KJFCxPOPE7YdNkR4VpaSCqYXzT2KohmhjzO8 +UefB+yvTtwwmGSEtiYFLGeCbAXOx/J+M0FWOA5OZ4KHp+42FNBpa2K5PziHi +2VWUuybR0IeOYbs8Iv/e7iU/hmjo8S+HgnxivizNLG+SjdGDI7dxIfjF4pmG +l7HG6Kgfc6AI3OGeZtE2YIyaRlLlSoj85bVFjWiYoIZXHaxScGRCy5P+WBP0 +XbctrRxMsfpev9Bjgpz4q2orwD29x2KilOkoYH9bdyU4R7zd+XUUHZEkiqRv +gFW0drxz6qKjLg8f5i3w21+JRytVTFHZ2FhaNfhIkvagV7Qp0p0o7rkLfje9 ++o3dZYrUi3bM1hD7TChn829lBtp07Bq6T+zDtX1fho8z0IjAwv468NrD6Dj1 +Dgb62yQiph7spRFovF2WiXyCH7U3gC8En7qYFMJECycnxjCxn/w8hK50MFHW +yX6jFrCMepG9jCxCUxsWI9uI/mziY7UfQsgifd3FJ2D7jfTt5u0InRnt/twB +Ls/uXAgVYCFtdvL65+A7MR6Dd2gsZOTBte8FOKze0NrFmIWi9Oq9CJvMCz78 +Da7jDA0i3BL86KINnYVIZSORhN+4Se0bYbBQwlhHEeFf9DdvJbez0Pih818I +Gy+we2N2sdDoCVJIF/g3RWanym4WMrDqPUG45dCvmk5wlFTaacLWo6VZUntY +aKZu7QLhv/o4nP5xYKEzS59qCUfXPHz91ZmF9CMqlwmbT2WYp7qwEI+1N89L +Yl9oBd6l7GOhV1LSgoTTSiUunPqThfbUnZMhfPlCqP1WNxaanT9kRnh/l01z +EzipXc2asNoGRX1/dxYSzx12IFx9untTjQcLSRs67icc2nDt1J+eLHRhncBB +wrTFmCkOLxbi7G07RniF6uxZAQ4oiz5J+P//h6jjqOFZwv8DsM8C+w== "]]}, "Charting`Private`Tag#2"]}}, {}}, <| "HighlightElements" -> <| "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>, "LayoutOptions" -> <| "PanelPlotLayout" -> <||>, - "PlotRange" -> {{-0.0005, 0.0005}, {0., 0.24139520540014045`}}, - "Frame" -> {{False, False}, {False, False}}, "AxesOrigin" -> {0, 0}, + "PlotRange" -> {{-0.0005, 0.0005}, {0., 0.7673108712075356}}, + "Frame" -> {{True, True}, {True, True}}, "AxesOrigin" -> {0, 0}, "ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True}, - "LabelStyle" -> {}, "AspectRatio" -> GoldenRatio^(-1), "DefaultStyle" -> { + "LabelStyle" -> {FontFamily -> "Times", + GrayLevel[0], FontSize -> 11}, "AspectRatio" -> GoldenRatio^(-1), + "DefaultStyle" -> { Directive[ Opacity[1.], RGBColor[0.560181, 0.691569, 0.194885], @@ -14517,13 +14002,16 @@ j4NThw== AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, - Frame->{{False, False}, {False, False}}, + Frame->{{True, True}, {True, True}}, FrameLabel->{{None, None}, {None, None}}, + FrameStyle->GrayLevel[0], FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->All, + LabelStyle->{FontFamily -> "Times", + GrayLevel[0], FontSize -> 11}, Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { @@ -14543,7 +14031,7 @@ j4NThw== Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}}, - PlotRange->{{-0.0005, 0.0005}, {0., 0.24139520540014045`}}, + PlotRange->{{-0.0005, 0.0005}, {0., 0.7673108712075356}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], @@ -14557,8 +14045,8 @@ j4NThw== 3.908963019140664*^9}, {3.908963161193892*^9, 3.9089631733873253`*^9}, { 3.908963279044405*^9, 3.90896328850895*^9}, {3.908963340836013*^9, 3.908963344120305*^9}, 3.90896366611727*^9, 3.908964915724281*^9, - 3.908965365524316*^9, 3.927208538177861*^9}, - CellLabel->"Out[4]=",ExpressionUUID->"c58afa76-8ece-4937-b24c-29d3c1ba58fd"] + 3.908965365524316*^9, 3.927208538177861*^9, 3.9283085215826883`*^9}, + CellLabel->"Out[54]=",ExpressionUUID->"4b18b0e6-da57-47d7-8170-1cbe02c23f44"] }, Open ]], Cell[CellGroupData[{ @@ -17027,8 +16515,7 @@ Cell[BoxData[ RowBox[{"(", "x", ")"}], "2"]}]]}], "]"}]}]], "Input", CellChangeTimes->{{3.927269827522519*^9, 3.927269854631955*^9}, { 3.9272698952649117`*^9, 3.927269922225238*^9}}, - CellLabel-> - "In[154]:=",ExpressionUUID->"f117b50a-92dc-4e32-abab-3922821a7857"], + CellLabel->"In[55]:=",ExpressionUUID->"f117b50a-92dc-4e32-abab-3922821a7857"], Cell[CellGroupData[{ @@ -17048,7 +16535,8 @@ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{ - FractionBox["1", "\[Pi]"], + FractionBox["1", + RowBox[{"2", "\[Pi]"}]], RowBox[{"Abs", "@", RowBox[{"Im", "[", RowBox[{ @@ -17061,7 +16549,8 @@ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{ - FractionBox["1", "\[Pi]"], + FractionBox["1", + RowBox[{"2", "\[Pi]"}]], RowBox[{"Abs", "@", RowBox[{"Im", "[", RowBox[{ @@ -17073,7 +16562,8 @@ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{ - FractionBox["1", "\[Pi]"], + FractionBox["1", + RowBox[{"2", "\[Pi]"}]], RowBox[{"Abs", "@", RowBox[{"Im", "[", RowBox[{ @@ -17133,16 +16623,16 @@ Cell[BoxData[ 3.908960851628831*^9}, {3.927208593914703*^9, 3.927208595633608*^9}, { 3.9272087115440598`*^9, 3.927208726455944*^9}, {3.927210840506917*^9, 3.9272108596866693`*^9}, {3.9272687745884247`*^9, 3.927268883501584*^9}, { - 3.927268918319013*^9, 3.9272689680074663`*^9}, {3.927269021865239*^9, - 3.927269028296701*^9}, {3.927269060313438*^9, 3.9272691074981613`*^9}, { - 3.9272692402772408`*^9, 3.927269258765091*^9}, {3.9272694181220818`*^9, + 3.927268918319013*^9, 3.927268968007467*^9}, {3.927269021865239*^9, + 3.927269028296701*^9}, {3.927269060313438*^9, 3.927269107498161*^9}, { + 3.927269240277241*^9, 3.927269258765091*^9}, {3.9272694181220818`*^9, 3.927269454425047*^9}, {3.927269614236217*^9, 3.927269615108109*^9}, - 3.9272698197446957`*^9, {3.9272698586251287`*^9, 3.927269939986577*^9}, { - 3.927269991827999*^9, 3.9272700136675997`*^9}, {3.9272702891457*^9, + 3.9272698197446957`*^9, {3.927269858625129*^9, 3.927269939986577*^9}, { + 3.927269991827999*^9, 3.9272700136676*^9}, {3.9272702891457*^9, 3.927270291753561*^9}, {3.927270348363011*^9, 3.927270354818643*^9}, { - 3.927273940047409*^9, 3.927273996696007*^9}}, - CellLabel-> - "In[225]:=",ExpressionUUID->"ac3f0bd9-271b-4050-a7c4-8134f5842c06"], + 3.927273940047409*^9, 3.927273996696007*^9}, {3.9283085549659653`*^9, + 3.9283085638624372`*^9}}, + CellLabel->"In[81]:=",ExpressionUUID->"ac3f0bd9-271b-4050-a7c4-8134f5842c06"], Cell[BoxData[ GraphicsBox[ @@ -17354,182 +16844,182 @@ sxX/brklqZ7u6vKW+dI3DONWt2zz7kha6/qWs3Nd/m5ubvn/AOhbVcc= TagBox[ {RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[2], Opacity[1.], LineBox[CompressedData[" -1:eJxN13k01N//B3Bmxr7PtMgWSSSRkhJ5XWtSVJREhTaylBBZs5Qlsm8RUXbZ -lyxlzZKxzEwbWZIkypaQ3e/9Oed7zG/+mDmPM3fm/b535r5ezyt25bbBdRwD -A4MM9vTfa93mLZNr6121DP97TObVS8jV0y2sbXfJzJduN+e37bUEuhU+O+R6 -s3VuODO+ywpHat9wqGDQd6ZdrRs2FVvp5jxZt2FLb/2Hsyx0/6xRu1oRULth -fuXgTeddajbsekDEJdro9YZVdmqq8Gyu2LAvh+hjtp0FGy4OuKmaRcrf8Hd8 -yZQ2Pm/DmitaBg+GcjbMMmGzdT0lY8Pbkm5rjCk/pc8/BpexSzBhw32PY1iv -LcVtONmrumOgImrDx+q4C7Ns/DfMXqRwV1zad8PxGmVOKlT3DWtzJRBPxV7f -sLpay9NRpL5h3R7bwLLfxiBvy6E10eUGCdnJBVPudsCZryTpmPwAdBz99HBq -LtAieyrg1nAQvJ6NJGQcuA8ldu1RDKuPgV+Z2r8zyg+qmBT1N5HDgbZsXOkc -EgC2E6ghyzoSHr8ejG59GAzlvgpsGqNRoONpZS9wPwxOpkWcZDkRA4zbFyQU -X0eAp0nB7ZG4WKj+ep8xsCwGYhIbBmxW44G/TmNqX3EczN/YpT0gkADOKSz9 -PflPQFGGcdJFJhH2WYRV7MlKAg+TGryOfBIY3Ol6ZdnxHOCTisI1uxTwtiiS -fU1+AV6df1c8vqRAwZmodN62NFg2YKB+0kwFzv3noyqbM+DHxOsIbuJzaJ4Z -uMVRl4PNd0ShJfIFCB/5F3n+QhEoKHVzz2hmgMJ+q06f7iI4OCJqg2Iy4KR0 -D9vL88XQc9zCy2Y4A9wEqr0ZjErga/yerw/vZ0L3ktetbIMy6Jq8NDuSnQWR -1cy6yycq4cGRtlCnTzngJxLsfepZHeSPKP55VpYPDDFWhun9dSCNq4sRn8wH -Dw7tXcuC9aAhaJ2gvKsAnBYY2jPi6+Fcze5Z+ZgCuEFz3roW0QDTR9nXlA4V -go7/lfyXD97Cff+l2GWWIuCcVOpjs26FqfwSzQ8hxdB2eVbwigAF2nNH4s+r -lcGTcp4T8ioUWLn0/IvG+TKw4t7jxnCZAoHX4lgF7MqApcaiOzmVAnsdnO8+ -jC8DTeGu6F4pKvSFr5tbTJZBTW8217lDNPh4SkXMPrYcio3N1o+d/QAXxiSj -2nteQYJB29De0G4QfsV/I/pIFRR/8Lz77vAgtPywfOPnUgNZD69dGTo+CCzX -7efhUQ0kK544tWwyCNBxRoM5qQYexfPv3us5CLec93wubqiBqxdL+sLrB+HH -28XweO5a2DQ8qmGs+w3iZnJ7cNm14PzXkPjTdAieH640FHSuA9u0I+vrtkMg -5GL+/Kl3HVw5JzbO7zUEeXGhh2SC60D/1WSTbsoQNPVm5ruk1IGke5Br/vAQ -FK5wnWkj10E3rnbwrt13IBVv0iqVqAdlonQB4f4whB93q943Vg+djCbvOsKG -YZ7/kdLfuXow/xP0PTZlGE6VdER34BrgAWVs6+6GYaiaMVBtE2qAztBsbz2m -H+DDW6E0fKYBzDl2G8QG/4Dkdtv3D+uw8QSpOcn4EfAmOE+Mv2yEznkJ5RNF -o5A0n/pGM6EJdiV1B/ytGwX/++wfTLKawEsj+EMiZRT6B148syxvArnwabvx -qVHYdtLg1DVaE4Tvrk55LDsGAhoi+d/ZmsHg4mlmSu4YsPhx6tCcm+FTvRv1 -bMYvyD70fLniWAvIWu0VWS37BTbVPoWXz7aAP/egdXrTL8itPMK+YN4Ch0y1 -CPPDv6Cxvq2aya0F4md5DsWJ/4Y/RmzFj3NbwEQy/WlPym8oDD/w14izFQZC -uiwvJ44Ded24QKSpFe77GH82fjkOj3ojeVSorSDq/E3b8M04pOUmRZ7sb4Ur -Zn8ldL6OA//a5Mljc63wQ37rsLz4BOj52WWk73wH458umzPlTkDuWK7vFp93 -sCg6afyyahIeDR3Q05Vvg0cmzBKrttOw3ZuDL8uBDKr7OOfHnKbhnkQz2cWd -DH+YiC2fPKah/EnqF3hABuMi4ZuFIdPgZJohVBlDBgnWg3lXX07D6tQdzTMV -ZKgru3qw7fc0nCMx2YuukGGet14rzvoPnD4dZnXPqx2utrjfkLeagalk2aq3 -tzvgmsou/fnbM0BO1mtvce6AG0WUg9UuM/Cnqte4ybMDrBIlmLQCZmCZfdu/ -guAOuHW764VxxgzM/Ho0oJHZAW5bxb/dH56BJ0mjv6z7OyDSss200/wvTN8w -COzW6oR6lm1nbC7MwtYwN3Fp1i4YeSGr22MxC6n8RndvcXcBJ9LUOGY9C1rh -VyLyNnWB8b3bB8XdZ4E3sV5JSKwLpkabtvU+nQWZT+SmaqUuEG5zGNIdnIWm -ulU/FusucA1pd5S2nAPcA/WJieYukOfzjh1zmgeHoD86V5QoUMX6WarFYx7u -zX18VK9MAXUG2eq0B/NwbovthIgqBc5O9X41i56HJ7J+2z6oU8C549DuTyXz -4DneJyt1kgKvg6aqG2bmIUcOzt3D6owOzuxbov0/GPj93aPOhwLmf4/K6Nsu -gEyY/dk9jRTgIjJQPjgtABfeYEWzCbv+vgZHU88FSNzVXnuxhQKbbmlXW4Uu -AGOoRLI/mQKto/q6foUL8Dj2WnfjewrsGzCzqphdACbRHtUf3ynA8M4nbYfn -IrSTq++ScVTI+6mhk/1wETabxZflEKhgwsw8Lhe6CLvmyw4EMlOhVOPRgaPP -FsHRrnHyKDsVrGoiG87XL0Lh1sse0XxUoJS8GAxhWoLlzlMfJrdTITW5Sejf -4yVo/7MHmSlT4elFmc/nYpfgbKavHcNRKsQLREWUJi8B3lOQJUWVCqGx5swO -BUtgPBng+0WNCm6hy1PjlCWYv2JUrKJDBQMv+cYh0jJItHKUlp+lAuFy0s3O -J8twsP8hMcCWCuuChJ17ny9D0O4xq392VFjqsR4IzlmG7ROc2jduU2H63GHD -49XL0DpeFwcOVOjXe6/ytm8ZPqaN5w+6UKH8KBtv1fYV4ODXM+33pYKl8N3y -9PQVeGPzi6M5jgrNisLsTnkrQOxwY/4bT4Wdp5suqZetgECedKdIAhUGfTcz -fX27Atd59FocnlLBeLTMkH94BS4M6tzhTKWCTsn89KMdqyAW+FiKJYcKu4/f -22P/bBVkkKiSSDUVAq+I3lfNXIWT+IYliddUGHFvpXEWrAKHi+BTmTdUeJ7P -75ZdswopKYreirVUENhU2TrUvwpTEq39Ko1UYP+6eP2c0Bqo85232USmwm8n -95QjT9aAnCabO9NDhVtloUzFqWuwGpbV9OsLth5zqda7c9aA9Udl6rdeKsw6 -tyrwV6/Bw22mqeR+Kqzd2/xurm8NHHeEUcO/UYHXs+BPoeg6kCUsQgZHqaD4 -8Lu6ZNY6PAkV4EmYp0JF03xmcuE6yHLZZ9r8o4IyMzvXlsp10Ct026KyQAUU -sO8zoW0dTg8ru/csUuF4kKfN0O91OIfk7zCvUiG/maOtcysDujTXnrgbT4P6 -tvSZIFMGZPFyTfUJNw1K+Sl3PM0YUN9lnIkyDw0ybixN219lQHMV2/36MIfg -Tk2dt2FA3fsjGIX4aGB0ZOG3hDsDuncy9XUYiQbj2bo/6hMYkHHKWLQuPw22 -BE19XuxhQH664ix8YjRg/bzt/EQ/A0qc5mqPwby8U/PT4DcGROYvzdu2gwaD -dfEfWsYYEFPWRKuIOA1yF9SoMYsMiPvZNhsRCRogq+g2+W2M6IUc75u/UjSw -Oab05qYxIzp8Q8B5UY4G01LbmoouMiL/MwQLm300cGJfbF80Z0Thjy1O92H2 -6qjoC7rJiKicl1Wr5WkQaXh4JduNEb2fCrtmd4AGFWaHlH89ZUQMaBm9UKTB -UbWtGvtTGVH+844cJix3NOz4p+uWzoiKmMxELTGTf5SbsOczotPgsk/yMA0G -bBTdpGsZUfLFi9OJSjQg3DtYaf2NEWUG654wVqFB0IXN9cU/GNHwCMOLXMzc -ynOtS2OMiHv7Euca5q1rpd2PZhjRw+7D21KO0kD6gcJCDh6HrBNPC/eo0uBM -+IFDvyVwiEv5xM7tajT4dIcEB6RxiLCTTL6K2cTwr7a7LA7pFx4MzsR8bUuJ -EcchHKLmbzKUUafBvaf7nffo4BCPFplnjwYNkrPky2yscch5yNN7VZMGbT1X -W5/dwiETTQPKfi0azLPH9r53wCFi24qmJWY9uyVGFXfMFdSkDswr8o36nCE4 -NERW2BSuTQOpq3MWKByH/rm6RdRgPhstedcpGodcyu8dHMf8cj44se8pDi0v -es5oHqOBafXZ0Zd5OHTSOUx7HLP/uP/yYBEOaW16sE7SoUGxcCX35nIc4tb/ -NHgEM7u38EHPGhx6GWwo7I+5SnPER68Lh/RCKn2Jx2kwcpc/xuc9DuVo5Pgd -wEzM1M0q+4xD5pWX8w0x32Qr6BQexCH++WKfCMz8nS6Ck9M4dK9j3068Lg00 -17Nld8zhUFT0LRdhzPb7+tSMFnHIZyFmThFzaySyqmHEI9o+MUdLzLONDu4z -THh0Wb3BwQuz6Fxa6C52PBK2bkmKxuxynq0slIhH7bvsnGswPw9Ubm3Ygkd5 -r9V30jB3Vtr1zgtg798cWR3GvEuIxmgmjkdG2fMKrCdoYKBH2BwliUfwNyyS -H7OXl6JUyx48Km84LSSF+dNggr6cAh4JTMWWamLGETssrh7Go+F81HgGs6zG -ulOcCh5dqTRZu4TZxEk+kIzwSP7F7PWbmB+mX01c18Sjf7NCS46YCz/F5B84 -jkfb93yr8sTcx9Jab6mH3W+ZXpY/ZlalpQ+JZ/AIt2DXEIpZwVpmtOscHpXo -nGSLxWyeeHkZb4JHFn/+eDzFHNIezn34Mh6FyFoKP8dcsdogZnsFj9zlSn5l -YB6WnVNIuYFHW7f0Dedg5jWX1PlgjUef5kc48jGrRFwwZb2NR5ndn80KMVs1 -BN9SccSjr6VFg0WYo/6+8bF3wSM5F+fQYsz2tHCLi+54ZM6u4fCf9Yuuqunc -xyNnTdPk/8bvCVcUU/DDI4pSDfG/72O9zcYoGoBHwfutu/Iwj+j1DXIE41Fg -zsUP/91Po0xB3b9QPLp7JlIsE3MKh2/K90g8+sLO8uq/+Xj9OuvdFYtHEpNl -0UmYTd9Jmlcn4NEb7SdVcZgPZy1BZjIebYnOkYrAvCWgY3vUczxqChoaCML8 -93rKulcGHj3nUer3wUzRdPxqnYNH3Wrp4q6Y88W1a43y8YjvjnDx7f/m/+23 -l2w5Hp3jZck0waxdV3NZoAqP9HdbcJ3CLP4sQpW5Bo9cIuKr1TEPXDy01t+E -R6/GLKckMVcrsw+8e4dHLTJDTtswxwv0vynrwNbr+poaO2bDbl/Pxx/xSCu/ -u3gM+z/ue3XukmsPHpEaHIy6MXPHSh293o9H47Qbas3/7QfDzhWVH3hkq885 -8Qyzatc2j/FZPOoNHI/XxSyYP27avYBHOkPLTgcwL4TUKr9dwaOilwVxgphL -dK8vJxII6D5TYuEYth+lmgvdTmwioAsJDns9MTOn+5kc4icgs9qnyuaYv/sZ -HREXIiAvmQdh6piT1VYWl8QJSKKSlZUJM+nNMdecAwTURpA77IPVh+lEgQux -hwgoUDbM/jLmTreJw77KBKSZEj3xXz0JPBy1cEGDgPS55kr/YPVnrWTAhc2Q -gFjlc5yMMI/m3HW2ciCgB8HWkStYvTMWXhvIciYgYs06ZxvmljD/Y2Nu2P17 -bMuKxZzhFMdv7UdASZ97VPdivqZaWWUTTUAn35/5eQqrr4PUlbVb5QTU6sz3 -0xqrx6c1H1oWVBEQf/Cn49KYa8u5KFM1BLR8LK91FKvfyYkiqfYtBGTKbLDt -v/p+8TrScOgmIF/HmNWTiAafF/wC7i4R0GXefwFzWL/QtuGcLlvDrv/69YMM -zOX90cbzOCYUJ3sw3ghzdEP6bhcOJrQk1MpYivUbg5AW8j0hJjRN4vh4VRlb -n+0cvB6qTAhfNS8Rh/WzZu3IeF9fJpTwUiDu+H4a/LxR3eHmz4TuKxv8/I71 -T9aAYZzjIyYk/DPH3BOzboui3dVIJmQ3qtqRh/XbzmO9aprPmZBo+Ck/Ataf -P+rs/M3UwIT+Us9yBu3B9r9u+dEgRmbUPbCr4TfW75lsvjr4MDEj85YSB2vM -u4JZs1zZmNGRHzYwiuUDK7IJ0ZqPGeXpp+z5huWH8RPrI7pizIh17wf11u1Y -PT6pE86pxoymzb+x2gjSAH/qy1CYNzMa9SlsWMfySlvNOXGnB8yI/E5F6Rrm -SFnqVeNAZtRWUNHcwkuDHdytw6LhzCjxY97OECzvqHeUjRQ9Y0ZzUfVf2bho -4Hsi4tf7GmZU1in7u5sFq7c6OjNbV5kRcXMhZ8MKFdpeNe5fYWDB8hGXGyvm -SElwHCSwIGac6pTeMhV2sCjOZnGyIIWknVMfsXym3iw+ryTEgtwDVQ59wfKd -r+b6oqkyCxoRuutaMk0FnFo5Y4orC2LKfgvp36lwUfNnW7cnCypv9txbOYTl -6WP80Xy+LEgcxz1MxvKjtb7bLr9HLMiXnT174isV3puqnriRyIJsbSvv7+ij -Qppzc7TMGxYktSL17vQHKmi//CRZycCKRG8/IVRj+TalgOXPHwIrGpOseZ3R -gOX74sNV0mysiOrbJhlRj+XHyoSTT/lYkRG5iXQFy8dbWy7fub+DFfmJXpeb -raLC6LeRKi1NVmSQveVjdxEVHm39p0cLYEVFkkzNyclUiG1t/d4QzIrYR0I+ -OiVh5xfXBNeSMFa03vYm/ziW5yt6j6ZHx7GiNO2s6qknVPj57MGKUSYrWgy0 -kd0bQwVNKWJubzMrqnRimLANxvLz4b2sP5jYkFjkpOWyM5bPf60lfWRjQ9sv -LDpn36XC5kTKgWYuNpTBfk/ZyIkKMquOZpmb2VDtyv6h3DtUMK2vKr8pwYZK -zihGH8PONxXHda5ParIhktnQHFhQwcHkasM/PzYUtZo2J6eL5fNnvwZVAtmQ -3LzvnSjsvJT//c66TwgbAl+fU3PaVBiz9VbhjGFDTrc1ZUs1qGB+P6lcNIMN -MW2+d0kEO4/pp33OOd7Khg4mLpe+kKOC9OSJqEROdnQnNbzUhkSF7z4K1yCG -HTVeCkyo/EgBqS3cofZP2BH5IPOTV9j50jbn56vUJHbEdqu5rYRKgXlaAgch -gx1p3W1uzOigAPtOxpLWcnZ0MyN8whk7v+5r7mA06GZHIlu6pWtLKeDBbvns -miAH6lioMvsZQYEtUU++BKVyoNqFr40G2hTg/EiiOqRzIIb3zCbrGhTAbQ1t -Mc3mQIpaYQI5ahSYSvAt3VvEgVr+8m5ZUsHOv89tQql1HGjCOOaj3wEKuBUf -Vd82yIFsjptZHhWlwFfqt+wsEU70JZ7A6j3dBVm80q4tiZyo8eL5j7aaXbBv -5MICIYUTnbX5K3xStQsqq4Nc1NM4UZtHhPquw13QdmPs7puXnCi0OYybvKcL -xl9nOZS84US5CZyHPhG7QO6mpO2zr5yoYamhd/JrJ5TX7zRzEedCET5uWqzO -ndDosF1LMpcL0XafOVkc3gErc1PhQgVcSH5533pqUAcoutb18ZVwoRiLXKYQ -3w7IuW/htFLFhZYqQuf1nTogMuTFC2obF8roPd8Udr4DrmRI4jx+caFTh1x7 -/gl1AMMXuVrKbm5UOyCoc/BFO6iqISW3LG6k4erwpyuRDNs3XQ03fcmNvhsm -1uhGkYHh58OfKoXcSH7LQ92aR2RoCCHHrL/iRgdxga5hrmTQ7jaaedCCfT7h -kEyPERn0btvlho1wI4kvcZcYeclwMSlBOH0nD9Jx/Cd50aMNjtq/cfKX4kF7 -gp4p9zq0gYjGINlShge5MAtVn7nZBoOjEm7SCjyogsDXsdOoDa4pFH0q0OBB -Ww6LDlvItYEtuSWs6goPOnD1SZvM4DtwX5xlpKTwIIdcd82sI+9g0qzjG1M6 -D1KaN0ohyr2DK83p9crZPOhtkchPe/F3oBNl5JNZxIN6Fmx+s3K+g017Kxju -N/CgOt3ilrS+Vnhp7r6+d5gHDT6cfe7u3gpT373Xmki8KA2v1SFd0AJiJ1hW -xM/zomI/GaV7402g8FGDJnCBF9lThv8+GGgCbTPvLD5TXvSHx/9qAKUJrB0X -z65f5kU/dy0cu1XaBKWJv/O+3OBFjtH1WmR3bPx4l1mEMy/yj7j1kJUNG/84 -vnEthhd9+upd/lL0LXhs/fhkLo4XrZRELMgS30JoKp/9+BNeFDxUJFyOfwsl -ZY+EviTxoojRxIGPI42w0u9xtyydF2122vHnVl4jhMlaSNqW8aILHuzpqSqN -UNq1O7jnAy9quDlzYYtlA4SL16cvfeJFinH+2w0vNICNi3GdYA8vmsg2c8g6 -0QA7tgfMXernRSwxp2WS9jVA2K1hs6EfvMj3AOvPguV6sOZ6pvB7nhetuTp8 -sIytB9ETmwZW+PnQxx+2YZZ9dbCSnLsgLMiHdFN+7bah1sHnGXUSCPMhs5K5 -uvvNdRCacEfHR4wPeZ7MufylsA6WxzqLmaT50LGfKu26/nXwKTAogFuZD4kZ -9tc1H6iDkOa1faKX+JCDynBK0d5aQHdG5IXN+NDSxXbjYcFamBXs3C9gwYdu -H/jXt4O9Fi7eSVLYdJ0PmZQfeFU/UgN7hVQOs9rxIYWzfzk9Umqg844rTHvw -oYDP3EpRm2uAV3hWr+4pHwo5pXt+E+ENRDmOWZv38aFdK31b+IarQEDb7Y7h -AB9K4mZvPfq+Cp7zc9zTHuRDmz7+Wr/eUAXFb2QeygzzIf+sqPNZKVVAYbF/ -tvCbDymlBC1PXawC7qfz78OX+dDTegelGx8qIfAt/mi9ABHxHcx3JL+pAN64 -aI1SISLakvY1aevLCoi7KaGbKUJEMxRFoklCBWRwHzv/eAcRBbyzl613roAm -40d3LkgTkWTinCdJrgJwE7wZf5SIaEfN4nJq0ivw2CzCs+MCETmlGH4Tu1MO -HUVsJmBKRMz1tCmVi+Ugoj+XdvESEeV2TIZoHSuHWv/2I3EWRBQV7GQkIlwO -uAW3G5zWROT3h1FqpKUMAr58fjPvRkSv8+YPBW8rg8hnEbbkp0Tk2Bt7uyWn -BL4re74aTSaioBQK99/IElDotsIxpxKRswp/FYN7CXzkRfEonYhCPF9je64E -+H0nG8vyiCi2/3Rt/WgxJF87IZhSQ0SqVV4nz4gUQ/ZupjanQSIy3Vww32td -CDQhtWW7ISKCOg3FlVOFsMLjKWM5TERn7hm9mFAoBP352dALo0R0V+GJkfdK -Acw2DBuqThPRWHi5MrdwAaCLb/tZGEhI4Gd5uPTxPLA+xcDDiCOh1A+Zz3w4 -8yBKXQUt4UlIyuxUs0HXSxiRKn0+zkJCo3o2fucMX0LI3AtLKg8JaV14IeV4 -Nhe6Q/3+JGwnoR2ifL/EDmUDzrd2R7QYCZFP5ddum86CPXeXDR+LkxDz5qZM -laws8DJ1LL8vSULPlVUjfmzOgp1SV92vyZGQ855B4U8/MkBf8NnLS/IkJCt1 -7ZhyXAa4cPf2Gx0godWfWjd9jmVA26wBOn6IhGIUIuK80tLhdr06kyyQUEUN -uGbop0F8qZeipBoJJVr2vPOZewENmVWWohokxOCTdfh1wgvYFLq/jXiMhDgX -J5qmvj6HKpMdYf/0SYhJ/57WHoNUGNa7XDd9moQ23Sy0HhpNAS61hD9jBiQU -751D+u2RAuaSxLN9RiQ0eLjXWuzwM2CeZdxWf5mEKBmhggyXEmGhMD502JyE -umukU5UOJ8BvOzkC61USsp22nB1hegID0s2ue66TUDQ3A2mlMQ4oPy9O6VuS -0NMQ86ye27HQkPb3msNNEkoTqQrhYI6BMotHX2JsSKj0/Qz0+URBlojY6Uo7 -EvIMcu+I7ouAhN5XTX23ScjEiCudjTMcQuL1lRkcSCjrvBjP0Fow3D/3o1Dc -Cfv9goSFD8kGgAPRY9cxZxLKtbjWd4rLB651EZ9a3yOhlrHe1o4QazAKyeYL -dcPW63+P48dRQJEH3SrMn1c+eNEt22jnsOBNt6g3YVTQj27S0cRL8JDuhfJW -Hf8guhtyxLdviqTbKLKHLPeCbp1T9mqG6XQrc7K8cs78f9fzV3j+JpfuX65h -906U0u1loSVh2UR35r4ir+SfdN/a/Gfx1RjdCkv77lJ/013XWGhDmKa726jQ -2HqBblbPgv2KbJs2bPUub6RDmu7dV3L0V+3o7j1eWXzuN920F257wXEzfX1K -zqjsmKF7vcKhzP/Wlg2f2Ket5TFHd8sluZs2jls3TLxqVZ10l+7LVqlcFBe6 -5x1IxQoedO8M/Le0+oBu7+LakPBYuo+wnC4sq6TbnzMIN1pNN5Wv4axADd1W -QgqLXg10x8nzq+uQ6Z41HXz/pY9uZLFtF9dXuoNvGNyDb3TvuPNWKO0H3Wf8 -s67bTdL9NPjbq2fTdI+GC7DTZv7ffBJD8hX/0d2e0sRwc5HurRlrBonLdF/J -PZTesUp3fqH9v/V1uv8PDbcwUQ== +1:eJxN13k01N//B3Bmxr7PqGRLSSQpJSXyutakoigJhTaylJCdLEUi+xYRZZd9 +yVLWLBnLzLSRJUmibAnZ/d6fc77H/N5/zJzHmTtz3/fO+77u826/clv/Oo6B +gUEGe/nvvW7T5sm19a5ahv9dk3n1Evvq6RbRsrtk5ke3u/Pb9loC3fKfHXJ9 +2Do3nBnfZYUjtW84VCjoO9Ou1g2bbF/p5jxVt2FLH90Hsyx0/6xRvVoRWLth +AaVg/gsuNRt2OyjqEm34esPKOzWUeTZVbNiPQ+wx286CDRcH3lTJIuVv+Du+ +ZEoLn7dhjRVN/ftDORtmmbDZsp6SseGtSbfVx5Se0scfg8vYJZSw4b7HMazX +luI2nOxd3TFQEbXh43XchVk2ARtmL5K/Ky7tt+F49TInZarHhrW4Eoh6sdc3 +rKba8nQUqW1Yp8f2YdlvI5Cz5dCc6HKHhOzkgikPO+DMV5R0TL4P2o7+p3Gq +LtAiqxd4azgIXs9GEjIO3oMSu/YohtXHIKBE7d8Z5Q9VTAq6/ORwoC0bVTqH +BILtBGrIso6Ex68Ho1sfBEO5nzyb+mgUaHtZ2QveC4NTaRGnWE7GAOO2BQmF +1xHgZVxweyQuFqq/3mN8WBYDMYkNAzar8SBQpz61vzgO5m/s0hoQTADnFJb+ +nvwnoCDDOOkikwj7LcIq9mQlgadxDV5bLgn073S9sux4DvBJWf6aXQr4WBTJ +via/AO/OvyueX1Kg4GxUOm9bGizrM1A/aaQC54ELUZXNGfBj4nUEN/E5NM8M +3OKoy8HGOyLfEvkCRI7+i7xwsQjkFbu5ZzQyQP6AVadvdxEcGhGzQTEZcEq6 +h+3lhWLoOWHhbTOcAe6C1T4MhiXwNX7P1wf3MqF7yftWtn4ZdE1emh3JzoLI +amad5ZOVcP9oW6jTpxzwFw320XtWB/kjCn+eleUDQ4yVQXp/HUjj6mLEJ/PB +k0Nr17JQPagLWSco7SoApwWG9oz4ejhfs3tWLqYAbtCct6xFNMD0MfY1xcOF +oB1wJf/l/bdwL2ApdpmlCDgnFfvYrFthKr9E40NIMbRdnhW6IkiB9tyR+Auq +ZfCknOeknDIFVi49/6J+oQysuPe4M1ymwMNrcayCdmXAUmPRnZxKgb0Ozncf +xJeBhkhXdK8UFfrC180tJsugpjeb6/xhGnzUU95uH1sOxUZm68fPfYCLY5JR +7T2vIEG/bWhvaDeIvBK4EX20Coo/eN19d2QQWn5YvvF3qYGsB9euDJ0YBJbr +9vPwqAaSFU7qLRsPAnScVWdOqoFH8QK793oNwi3nPZ+LG2rgqmlJX3j9IPx4 +uxgez10L/MOj6kY63yBuJrcHl10Lzn8NiD9NhuD5kUoDIec6sE07ur5uOwTC +LubPn/rUwZXz28cFvIcgLy70sExwHei+mmzSSRmCpt7MfJeUOpD0CHLLHx6C +whWus23kOujG1Q7etfsOpGJ+zVKJelAiShcQ7g1D+An36v1j9dDJaPyuI2wY +5gUeKf6dqwfzP0HfY1OGQa+kI7oD1wD3KWNbdjcMQ9WMvkqbcAN0hmb7nGb6 +Ab68FYrDZxvAnGO3fmzwD0hut33/oA5rT5Cak4wfAR+C88T4y0bonJdQOlk0 +CknzqW80EppgV1J34N+6UQi4x/7BOKsJvNWDPyRSRqF/4MUzy/Im2Bc+bTc+ +NQpbT+nrXaM1Qfju6pTHsmMgqC6a/52tGfRNzzBTcseAxZ9Tm+bcDJ/q3ann +Mn5B9uHnyxXHW0DWaq/oatkvsKn2Lbx8rgUCuAet05t+QW7lUfYF8xY4bKJJ +mB/+BY31bdVM7i0QP8tzOE78N/wxZCt+nNsCxpLpT3tSfkNh+MG/hpytMBDS +ZXk5cRzI60YFok2tcM/X6LPRy3F41BvJo0xtBTHnb1oGb8YhLTcp8lR/K1wx ++yuh/XUcBNYmTx2fa4UfcluG5cQn4LS/XUb6zncw/umyOVPuBOSO5fpt9n0H +i2KTRi+rJuHR0MHTOnJt8MiYWWLVdhq2+XDwZTmQQWU/5/yY0zS4SjSTXTzI +8IeJ2PLJcxrKn6R+gftkMCoSuVkYMg1OJhnClTFkkGA9lHf15TSsTt3ROFtB +hrqyq4fafk/DeRKTvdgKGeZ56zXjrP/AmTNhVq7e7XC1xeOGnNUMTCXLVr29 +3QHXlHfpzt+eAXLy6fYW5w64UUQ5VO0yA3+qeo2avDrAKlGCSTNwBpbZt/4r +CO6AW7e7XhhlzMDMr0cD6pkd4L5F/Nu94Rl4kjT6y7q/AyIt20w6zf/C9A39 +h92anVDPsvWszcVZ2BLmLi7N2gUjL2R1eixmIVXA8O4t7i7gRBrqx61nQTP8 +SkQefxcYud4+JO4xC7yJ9YrC27tgarRpa+/TWZD5RG6qVuwCkTaHIZ3BWWiq +W/Vnse4Ct5B2R2nLOcDdV5uYaO4COT6f2DGneXAI+qN9RZECVayfpVo858F1 +7uOjeiUKqDHIVqfdn4fzm20nRFUocG6q96tZ9Dw8kfXf+kGNAs4dh3d/KpkH +r/E+WalTFHgdNFXdMDMPOfvgvCtWZ7RxZt8S7f/BwO/vnnW+FDD/e0xG13YB +ZMLsz+1ppAAXkYHywWkBuPD6KxpNWP/7GxxNvBYgcVd7rWkLBfhvaVVbhS4A +Y6hEcgCZAq2jujr+hQvwOPZad+N7CuwfMLOqmF0AJrEelR/fKcDwzjdth9ci +tJOr75JxVMj7qa6d/WARNpnFl+UQqGDMzDy+L3QRds2XHXzITIVS9UcHjz1b +BEe7xslj7FSwqolsuFC/CIVbLntG81GBUvJiMIRpCZY79T5MbqNCanKT8L/H +S9D+Zw8yU6LCU1OZz+djl+Bcpp8dwzEqxAtGRZQmLwHeS4glRYUKobHmzA4F +S2A0Gej3RZUK7qHLU+OUJZi/YlisrE0FfW+5xiHSMki0cpSWn6MC4XLSzc4n +y3Co/wEx0JYK60KEnXufL0PQ7jGrf3ZUWOqxHgjOWYZtE5xaN25TYfr8EYMT +1cvQOl4XBw5U6D/9Xvlt3zJ8TBvPH3ShQvkxNt6qbSvAIXDapN+PCpYid8vT +01fgjc0vjuY4KjQriLA75a0AscOd+W88FXaeabqkVrYCgnnSnaIJVBj028T0 +9e0KXOc53eLwlApGo2UGAsMrcHFQ+w5nKhW0S+anH+1Yhe0PH0ux5FBh9wnX +PfbPVkEGiSmKVlPh4RWxeyqZq3AK37Ak8ZoKIx6tNM6CVeBwEXoq84YKz/MF +3LNrViElRcFHoZYKgvyVrUP9qzAl0dqv3EgF9q+L188Lr4Ea3wUbfjIVfjt5 +pBx9sgbkNNncmR4q3CoLZSpOXYPVsKymX1+w+ZhLtd6dswasPypTv/VSYda5 +VV6geg0ebDVJJfdTYc1107u5vjVw3BFGDf9GBV6vgj+FYutAlrAIGRylgsKD +72qSWevwJFSQJ2GeChVN85nJhesgy2WfafOPCkrM7FybK9fhdKH7ZuUFKqDA +/Z8JbetwZljJo2eRCieCvGyGfq/DeSR3h3mVCvnNHG2dWxjQpbn2xN14GtS3 +pc8EmTAgi5drKk+4aVAqQLnjZcaA+i7jjJV4aJBxY2na/ioDmqvY5t+HOQSn +N3XBhgF1H4hgFOajgeHRhd8SHgzI9VTq6zASDcazdX7UJzAgo5SxaB0BGmwO +mvq82MOA/HXEWfi204D189YLE/0MKHGaqz0G8/JOjU+D3xgQWaA0b+sOGgzW +xX9oGWNATFkTraLiNMhdUKXGLDIg7mdbbUQlaICsotvktjKiF/t43/yVooHN +ccU3N40Y0ZEbgs6L+2gwLbW1qciUEQWcJVjY7KeBE/ti+6I5Iwp/bHGmD7N3 +R0Vf0E1GROW8rFItR4NIgyMr2e6M6P1U2DW7gzSoMDus9OspI2JAy+iFAg2O +qW5RP5DKiPKfd+QwYbmjYcc/Hfd0RlTEZCZmiZn8o9yYPZ8RnQGX/ZJHaDBg +o+AuXcuIkk1NpxMVaUBwPVRp/Y0RZQbrnDRSpkHQxU31xT8Y0fAIw4tczNxK +c61LY4yIe9sS5xrmLWul3Y9mGNGD7iNbU47RQPq+/EIOHoesE8+I9KjQ4Gz4 +wcO/JXCIS+nkzm2qNPh0hwQHpXGIsJNMvorZ2OCvlocsDukWHgrOxHxtc4kh +x2EcoubzG8io0cD16QHnPdo4xKNJ5tmjToPkLLkyG2scch7y8lnVoEFbz9XW +Z7dwyFhDn3JAkwbz7LG97x1wiNi2omGJ+bTdEqOyB+YKalIH5hW5Rl3OEBwa +Isvzh2vRQOrqnAUKx6F/bu4RNZjPRUvedYrGIZdy10PjmF/OByf2PcWh5UWv +GY3jNDCpPjf6Mg+HTjmHaY1jDhgPWB4swiFN/vvrJG0aFItUcm8qxyFu3U+D +RzGz+4gc8qrBoZfBBiIBmKs0RnxPd+HQ6ZBKP+IJGozcFYjxfY9DOeo5/gcx +EzN1sso+45B55eV8A8w32Qo6RQZxSGC+2DcCs0Cni9DkNA65duzfidehgcZ6 +tuyOORyKir7lIoLZfn+fquEiDvkuxMwpYG6NRFY1jHhE27/d0RLzbKODxwwT +Hl1Wa3Dwxiw2lxa6ix2PRKxbkqIxu1xgKwsl4lH7LjvnGszPHyq1NmzGo7zX +ajtpmDsr7XrnBbHPb46sDmPeJUxjNBPHI8PseXnWkzTQP03YFCWJR/A3LFIA +s7e3glTLHjwqbzgjLIX502CC7j55PBKcii3VwIwjdlhcPYJHw/mo8SxmWfV1 +pzhlPLpSabx2CbOxk9xDMsIjuRez129ifpB+NXFdA4/+zQovOWIu/BSTf/AE +Hm3b863KC3MfS2u95WnsfstOZwVgZlVc+pB4Fo9wC3YNoZjlrWVGu87jUYn2 +KbZYzOaJl5fxxnik/eeP51PMIe3h3Ecu41GIrKXIc8wVqw3bba/gkce+kl8Z +mIdl5+RTbuDRls19wzmYec0ltT9Y49Gn+RGOfMzKERdNWG/jUWb3Z7NCzFYN +wbeUHfHoa2nRYBHmqL9vfO1d8EjZ1Tm0GLM9LdzC1AOPzNnVHf6zbtFVVe17 +eKSrZZL8X/s94Qrb5f3xiKJYQ/zv91hvszGKBeJR8AHrrjzMI6f7BjmC8ehh +jumH/+6nUaag7l8oHt09G7k9E3MKh1/K90g8+sLO8uq/8Xj/OufTFYtHEpNl +0UmYTd5Jmlcn4NEbrSdVcZiPZC1BZjIebY7OkYrAvDmwY1vUczxqChoaCML8 +93rKuncGHj3nUez3xUzRcPxqnYNH3arp4m6Y88W1ag3z8Yjvjkjx7f/G/+23 +t2w5HpnysmQaY9aqq7ksWIWNb7cFlx5m8WcRKsw1eOQSEV+thnnA9PBafxMe +vRqznJLEXK3EPvDuHR61yAw5bcUcL9j/pqwDm6/ra6rsmA26/bwef8Qjzfzu +4jHsedz/6vwltx48IjU4GHZj5o6VOna9H4/GaTdUm/9bDwadK8o/8MhWl3Pi +GWaVrq2e47N41PtwPF4Hs1D+uEn3AvY8DC07HcS8EFKr9HYFj4peFsQJYS7R +ub6cSCCge0yJhWPYepRqLnQ/yU9AFxMc9nphZk73Nz4sQEBmtU+VzDF/9zc8 +Ki5MQN4y98PUMCerriwuiROQRCUrKxNm0pvjbjkHCaiNsO+IL1YfphMFL8Ye +JqCHsmH2lzF3uk8c8VMiII2U6In/6snDI1ELF9UJSJdrrvQPVn/WSgZc2AwI +iFUux8kQ82jOXWcrBwK6H2wduYLVOyORtYEsZwIi1qxztmFuCQs4PuaO3b/n +1qxYzBlOcQLW/gSU9LlHZS/mayqVVTbRBHTq/dmfelh9HaSurN0qJ6BWZ76f +1lg9PqPxwLKgioAEgj+dkMZcW85FmaohoOXjea2jWP1OThRNtW8hIBNm/a3/ +1XfT60jdoZuA/BxjVk8hGnxe8A+8u0RAl3n/Bc5h+4WWDed02RrW/+vX9zMw +l/dHG83jmFCc7KF4Q8zRDem7XTiY0JJwK2Mptt/oh7SQXYWZ0DSJ4+NVJWx+ +tnHweqowIXzVvEQctp81a0XG+/kxoYSXgnEnDtDg543qDvcAJnRPSf/nd2z/ +ZA0cxjk+YkIiP3PMvTDrtCjYXY1kQnajKh152H7bebxXVeM5ExIL1/MnYPvz +R+2dv5kamNBf6jnOoD3Y+tcpPxbEyIy6B3Y1/Mb2eyabrw6+TMzIvKXEwRrz +rmDWLDc2ZnT0hw2MYvnAimxMtOZjRnm6KXu+Yflh/OT6iM52ZsS694Na6zas +Hp/SDudUZUbT5t9YbYRogNf7MhTmw4xGfQsb1rG80lZzXtzpPjMiv1NWvIY5 +UpZ61eghM2orqGhu4aXBDu7WYbFwZpT4MW9nCJZ31DrKRoqeMaO5qPqvbFw0 +8DsZ8et9DTMq65T93c2C1Vtt7Zktq8yIuKmQs2GFCm2vGg+sMLBg+YjLnRVz +pCQ4DhJYEDNOZer0MhV2sCjMZnGyIPmknVMfsXym1iw+ryjMgjweKh/+guU7 +P431RRMlFjQifNetZJoKONVyxhQ3FsSU/RbSv1PBVONnW7cXCypv9tpbOYTl +6eMC0Xx+LEgcxz1MxvKjta77Lv9HLMiPnT174isV3puonLyRyIJsbSvv7eij +Qppzc7TMGxYktSL17swHKmi9/CRZycCKxG4/IVRj+TalgOXPHwIrGpOseZ3R +gOX74iNV0mysiOrXJhlRj+XHyoRTT/lYkSG5iXQFy8dbWi7fubeDFfmLXd83 +W0WF0W8jVZoarEg/e/PH7iIqPNry7zQtkBUVSTI1JydTIba19XtDMCtiHwn5 +6JSEnV/cEtxKwljRetub/BNYnq/oPZYeHceK0rSyqqeeUOHns/srhpmsaPGh +jezeGCpoSBFze5tZUaUTw4RtMJafj+xl/cHEhrZHTlouO2P5/Nda0kc2NrTt +4qJz9l0qbEqkHGzmYkMZ7K5Khk5UkFl1NMvcxIZqVw4M5d6hgkl9VflNCTZU +clYh+jh2vqk4oX19UoMNkcyG5sCCCg7GVxv++bOhqNW0uX06WD5/9mtQ+SEb +2jfvdycKOy/lf7+z7hvChsDPV29Oiwpjtj7KnDFsyOm2hmypOhXM7yWVi2Ww +IaZNrpdEsfOYbtrnnBOtbOhQ4nLpi31UkJ48GZXIyY7upIaX2pCo8N1X/hrE +sKPGSw8TKj9SQGozd6j9E3ZEPsT85BV2vrTN+fkqNYkdsd1qbiuhUmCelsBB +yGBHmnebGzM6KMC+k7GktZwd3cwIn3DGzq/7mzsY9bvZkejmbunaUgp4sls+ +uybEgToWqsx+RlBgc9STL0GpHKh24WujvhYFOD+SqA7pHIjhPbPxujoFcFtC +W0yyOZCCZphgjioFphL8SvcWcaCWv7ybl5Sx8+9zm1BqHQeaMIr56H+QAu7F +x9S2DnIgmxNmlsfEKPCV+i07S5QTfYknsPpMd0EWr7RbSyInajS98NFWowv2 +j1xcIKRwonM2f0VOqXRBZXWQi1oaJ2rzjFDbdaQL2m6M3X3zkhOFNodxk/d0 +wfjrLIeSN5woN4Hz8CdiF+y7KWn77Csnalhq6J382gnl9TvNXMS5UISvuyar +cyc0OmzTlMzlQrTdZ08Vh3fAytxUuHABF5Jb3r+eGtQBCm51fXwlXCjGIpcp +xK8Dcu5ZOK1UcaGlitB5XacOiAx58YLaxoUyei80hV3ogCsZkjjPX1xI77Bb +zz/hDmD4sq+Wspsb1Q4IaR960Q4qqkjRPYsbqbs5/OlKJMM2/qvhJi+50XeD +xBqdKDIw/HzwU7mQG8ltfqBT84gMDSHkmPVX3OgQ7qFbmBsZtLoNZ+63YN9P +OCzTY0iG07ftcsNGuJHEl7hLjLxkME1KEEnfyYO0Hf9Jmnq2wTH7N04BUjxo +T9AzpV6HNhBVHyRbyvAgF2bh6rM322BwVMJdWp4HVRD4OnYatsE1+aJPBeo8 +aPMRsWGLfW1gS24Jq7rCgw5efdImM/gOPBZnGSkpPMgh10Mj6+g7mDTr+MaU +zoMU5w1TiPvewZXm9HqlbB70tkj0p734O9COMvTNLOJBPQs2v1k53wH/3gqG +ew08qE6nuCWtrxVemnus7x3mQYMPZp97eLTC1HeftSYSL0rDa3ZIF7TA9pMs +K+IXeFGxv4yi63gTyH9Upwle5EX2lOG/9weaQMvMJ4vPhBf94Qm4GkhpAmvH +xXPrl3nRz10Lx2+VNkFp4u+8Lzd4kWN0vSbZA2s/3mUW4cyLAiJuPWBlw9o/ +jm9ci+FFn776lL8UewueWz4+mYvjRSslEQuyxLcQmspnP/6EFwUPFYmU499C +Sdkj4S9JvChiNHHg40gjrPR73i1L50WbnHb8uZXXCGGyFpK2Zbzooid7eqpy +I5R27Q7u+cCLGm7OXNxs2QDh4vXpS594kUJcwDaDiw1g42JUJ9TDiyayzRyy +TjbAjm2Bc5f6eRFLzBmZpP0NEHZr2GzoBy/yO8j6s2C5Hqy5nsn/nudFa24O +Hyxj60HsJP/AigAf+vjDNsyyrw5WknMXRIT4kE7Kr9021Dr4PKNGAhE+ZFYy +V3evuQ5CE+5o+27nQ16nci5/KayD5bHOYiZpPnT8p3K7TkAdfHoYFMitxIe2 +G/TXNR+sg5Dmtf1il/iQg/JwStHeWkB3RuREzPjQkmm70bBQLcwKdR4QtOBD +tw/+69vBXgumd5Lk+a/zIePyg6/qR2pgr7DyEVY7PiR/7i+nZ0oNdN5xg2lP +PhT4mVsxalMN8IrMnq57yodC9HQu8BPeQJTjmLV5Hx/atdK3mW+4CgS13O8Y +DPChJG721mPvq+C5AIer1iAf4v/4a/16QxUUv5F5IDPMhwKyoi5kpVQBhcX+ +2cJvPqSYErQ8ZVoF3E/n34cv86Gn9Q6KNz5UwsO3+GP1gkTEdyjfkfymAnjj +otVLhYloc9rXpC0vKyDupoROpigRzVAUiMYJFZDBffzC4x1EFPjOXrbeuQKa +jB7duShNRJKJc16kfRWAm+DN+KNIRDtqFpdTk16B5yZRnh0XicgpxeDb9jvl +0FHEZgwmRMRcT5tSNi0HUd25NNNLRJTbMRmiebwcagPaj8ZZEFFUsJOhqEg5 +4Bbcb3BaE5H/H0apkZYyCPzy+c28OxG9zps/HLy1DCKfRdiSnxKRY2/s7Zac +Eviu5PVqNJmIglIo3H8jS0C+2wrHnEpEzsoCVQweJfCRF8WjdCIK8XqNrbkS +EPCbbCzLI6LY/jO19aPFkHztpFBKDRGpVHmfOitaDNm7mdqcBonIZFPBfK91 +IdCEVZfthogI6tQVVvQKYYXHS8ZymIjOuhq+mJAvBN352dCLo0R0V/6Joc9K +Acw2DBuoTBPRWHi5ErdIASDTt/0sDCQk+LM8XPpEHljrMfAw4kgo9UPmM1/O +PIhSU0ZLeBKSMtNr1u96CSNSpc/HWUho9LSN/3mDlxAy98KSykNCmhdfSDme +y4XuUP8/CdtIaIcY36/th7MB51e7I3o7CZH18mu3TmfBnrvLBo/FSYh5U1Om +clYWeJs4lt+TJKHnSioRPzZlwU6pqx7X9pGQ855BkU8/MkBX6NnLS3IkJCt1 +7bhSXAa4cPf2Gx4kodWfmjd9j2dA26w+OnGYhGLkI+K809Lhdr0akyyQUEUN +uGXopkF8qbeCpCoJJVr2vPOdewENmVWWYuokxOCbdeR1wgvgDz3QRjxOQpyL +E01TX59DlfGOsH+6JMSk66q5Rz8Vhk9frps+Q0L8Nwuth0ZTgEs14c+YPgnF +++SQfnumgLkk8VyfIQkNHum13n7kGTDPMm6tv0xClIxQIYZLibBQGB86bE5C +3TXSqYpHEuC33T4C61USsp22nB1hegID0s1ue66TUDQ3A2mlMQ4oP02ndC1J +6GmIeVbP7VhoSPt7zeEmCaWJVoVwMMdAmcWjLzE2JFT6fgb6fKMgS3T7mUo7 +EvIK8uiI7ouAhN5XTX23ScjYkCudjTMcQuJ1lRgcSCjrwnaeobVguHf+R6G4 +E/b/BYmIHJYNBAei567jziSUa3GtT4/LF651EZ9au5JQy1hva0eINRiGZPOF +umPz9b/rxAkUWORJtzLz55UP3nTLNto5LPjQLeZDGBXyp5t0LPESPKB7obxV +OyCI7oYc8W38kXQbRvaQ972gW1vPXtUgnW4lTpZXzpn/r78A+edvcun+5Rbm +erKUbm8LTQnLJroz9xd5J/+k+9amP4uvxuiWX9p/l/qb7rrGQhvCNN3dhoVG +1gt0s3oVHFBg49+w1bu8kQ5pundfydFdtaO790Rl8fnfdNNeuO8Fx030+Sk5 +q7xjhu71CoeygFubN3xyv5am5xzdLZf23bRx3LJh4lWr6qS7dF+2SuWiuNA9 +70Aqlveke+fDf0ur9+n2Ka4NCY+l+yjLmcKySroDOINwo9V0U/kazgnW0G0l +LL/o3UB3nJyAmjaZ7lmTwfdf+uhGFlt3cX2lO/iGvit8o3vHnbfCaT/oPhuQ +dd1uku6nwd9ePZumezRckJ028//GkxiSr/CP7vaUJoabi3RvyVjTT1ym+0ru +4fSOVbrzC+3/ra/T/X/uiDAn "]]}, Annotation[#, "Charting`Private`Tag#2"]& ], TagBox[ @@ -17610,157 +17100,157 @@ uchF2M24kYkLd5Ro+LP8ePz6lE2kWHx9h0ZeZnXJXgT3Qt4D6fj6f3C2oaql aBGyJMIv7sAdyK/ks7NqEfrCZRVT8f3iHbo0MdqyCPT9YX0R+P5yN7BMP9a1 COOrox8JuG9wNl5N/7kIq0zmZ27g+9H6fmSXzfQiRCXYex0UpsHpO8of+wSW IOqHYHOMIA2Oq0Xd1hRfgruviexDAjTQXVzd/0pmCTRn0kd24dbwaM40U1mC -X8q3kgvw+LHD0Say8/wShFqxfXrITQOC+ctrWPQSmFXJqVxho8GaGEFG8fUS -WDXu9ruOx7fFruvfH6UvQayB2FUHFhpMnlM9o1e2BG2f3aat8PjYc7xNrbZ7 -CV4+0SRJrWFQqM7BW7p5GRZzRw/XzWKQu+REEdm2DNX1anH3ZjDILGkP9Ny1 -DANbhm9p/sXgtcob+l7NZXhzNJyWMYnHY0X4lW25DJfidkfpj2BgI+Fe+Pbt -MtzbJPoy+wcG9fskON2yloFrxwfLw98xkDlZZ3a4YBnEo2X3tOLnS2/ABpYf -tcvAtq9noq8LP4+HCs6I9C+DwleOknb8fNLNm5t8KLUC2I8Tgav1eNbeHH/E -WH4F3hU8tjtVhwFhQCdKbvcKpHa/0n/1EYMqkRdQq7kC4VV7R5SrMFC9sz90 -5fIKbL/BEiZTgsF2vZs7biSsQC2H/3GddAyCLSV9NVJWQKQ7TdAoFc8XfMif -SNkroPtXpcIqGR/vOxHvtIoVCBmsfO/2GgNRwRJyX88KEFaWFi7HYMD5g251 -TnwVOMnymc4PMBhx83l1MHoVlPhkM2yvYuBYEMryPnEVfI76m1VYYDA5m3h9 -e/oq7Hu+bZn7EgYzHuS9ImWrwDZ3YPYVnm+s3tzQONu9Cp6tT54H4fkI7+3s -qRzJNdhVvMvbbD8G++79OiyXugaxNq3aoiwYFNfNpcTnrMFwrulHMiMGh1g5 -uYRK1iC9kvLNeZUKKGhXB4GyBq3Pplrz5qmg9+C2Xd/IGkjc+hwwN0yFd/VE -CibMgBoqqZZuVCpUU95OPzBhQPVLSgFqeD6XL9LifPsSA2IUkVS8HUKFZOvF -yRtXGJDnZmasOJgKIUwnJi7YMaBPSd4Dkv5UOH9wYWSrDwNioLlI5ztTYTRN -/3d1DAMydiw06D9FBaEHEx30LgZ08cV47nluKrB3bLww1sOAWE8N3JzkoMKS -zJH23p8MSOtJXXsgCxV6q6I+NwwzIP/qTP2Xy82QsaDZ+pzOgIo8v5eG/GkG -ZBtBUd7IiDKGXeYs65rB7uiB8mtGjMjuwJfQdo9mmNy2sS7XlBGVFkxln3Bu -BjdOejP9MiOy/py2Vm3XDHeoxd0PrjEi+rUrYmGXmyHsjOpymjcjamrO7/yh -1wzFl/Yf+hPHiGp2/VVQEmsGwk2Vkus/GZGsHDuDb3ETxKcqF9hdZ0LDDzM4 -wnooQOm6Qk5wZEKiaTeO2rRTYI4z8lubCxMKeon9UKFR4LjDIqOaDxMy+9im -VVlFgWXlj4akECakf5p55m4SBUzKzg5lZjGhFN+Azb02FBDBPMXGJ5kQqaSQ -6jDaCEfW0pSkZpnQy/ao00/6G+HGrm7N83QmtL9jTiKruxHIYci2gpEZTfF3 -6n5vbgTPCxwFofzMSMcvq1A8C6+3emMMd+5lRi4cY8PIoRHC/5b73/BkRiWX -32qFjZPhxqenFqY+zGiPrsy00SAZDHOvaOr6MqPXEjfOyPWSgd2Jg1EyiBml -P22419NKhjt/zvrRIplRS3a0SnUBGWx/jtxRKmRGm+7R3Ql+ZNCpqjAXLWVG -FakPpl94kUE64ZkGawUz+ht1hQ1cyfDddP9qTx0zsrMb+dBkTYYznQG3H39h -Rl0qnZ2LhmTYVXTOzKuLGV1vue6ko0cG7sht6lY9zEg03ywtS4sM5DPYstpv -ZnSiO/pymyoZNGgbb43OMCPpKvqfGBkyiL0bNelcYEZDEXIhfZvJsBBSeah2 -mRkxOdLLDMXIkKdvtRRLIKDgY+ePRvOT8XpV9VsQOwFdiyvu8eImgyM7scyV -RECzJ8o97nKSYVt9jvcxQQLKGvBc2cBMBta3dy/uF8Hbq8QwJ641wK+75w9K -ixOQH+OxQ8bLDVBluV2UR5KAzHfaxwO9AeI1l+mL0gRU/+2jxLm5BvCRpHUN -yBEQ28RqQszfBjBaSyz5tIOAjvMWMvBNNcC+727RFTsJ6IqYJ0/JeAMIlB/1 -St9DQPzHv4SGjzbAZKyoceR+AhK3CtiT+Aev773HVAMOEVDYqktS31ADZBhX -iTgCAa1c4HU3GmyAYNXwBWMtAhrO81JiHmgAa2HrTu2jBFRxqePIr/4G0JpT -LVY+RkDO+tVi9F8NIPmFGCVxAr/fgVKCNu7VvO+eHGcI6O33Oo2Gvgb4FpZ7 -YfY8Adl/J8354i52Dtz/8yL+fe8ULSfckScvCFPNCUh5wFPxOW7XnfLzxZYE -lDoglTyF+yT3SvsbawLyFZF6HIj3rzRGK3x6nYAmTk2+O47fD7H5deQtRwIS -izpRZ/C7AYbS3T1sXQjo+6cUT3/8/o0kVr+nehDQstZbDRI+3oYn948OexMQ -aY1//PMwPn9MPDnbfQmIk6za8nWkAZLdXohcv0tASw32GyXw+RQa3OyfHkRA -Y1YwHDPZAPeMU4f/PCIgDtWKY2fw53FVo6TULgKfn/5bCU748/ucoymdGUVA -F+9En2nFn6+WNOXRaBwBTT0nSF9jIIMU+zdTh7cEFMg2yLqPnQxh3lfqstLw -64Gsjy2JDIxjI4rjWQT0OkOJ2sRLht7W5VXHQny8P354bhYlw8kj92yySwmo -OsVziYSv18pCrpaJCgJiZ9It2Iqv5/jYTYk3Ggho/wqdvU2JDKZWSMulk4D8 -gzwJs9pk6Fi4G+S+SECqkb2skt74/rMjTRasElCuEmvsRn8yFPZEGM0xsSDa -8+H5bcFkiKh5u92TyII8quWeBkaS4XRIQ9NNcRZUu4sYz5dPBmwzkfeWBgsK -UuJIy5kiQ71OWFRAAAu6/0eOY9y5EQaty6je91nQG5qWs7dXI7AH9TO5PmRB -bBErQaz+jaDfsM/hShgLWtbozBB/2gjY0W+aR16zoO6b7LQD7xrhi67MCEsN -CwpMWPJj+9MI/fqF6g8YWdFZMfroF3MKsNj9cPFnYUUlVfqLi1YUkH3EnurF -wYqiD8W1izpQwLbpIv91PlZk5RBaou9DgdFjawP6W1jR3zCRgGsvKDBjoPuU -pMmKFGg6e6IwCjCf+Nr3xI8VNV7fV+6r2gSUinPSboGsKOcwKxtFownClFqv -GAWzIuOoj+bc2k0gxU3ul3zKisRXmpTvnWqCw9SCgdwEVvSV+l17x/UmCDj2 -7E9bBSt6PShdZhTTBEy6utPCK6zoJ5CG1Obw/os+7l5mYEP2Lz/PkJfw/uXA -tZfAhgKVemROMDaDFNu+mVQSG/og+3pej9QMh+ul5w6Is6EXEbfT6FuaIeDI -Gt3kEBuyXtvtpGXQDEyahYyvvNgQK49qXnhcM5geGaR03mZDCu6nZlsTm6Hw -qEgEXwAbSu38VsyR0gzXDb1l7z5kQ9xxNW1Wuc3QZqJxzDqWDfUEvqxrwc/L -Nx71EQrlbIjroRmj+1gz6GS2y5UwsKOHx6gjfKpUeJXNNjVFYEf3DzB8C1Kj -wuJ71VJ5DnaUe+Ry/TzC84eSGIM4Pna0l/vSqzo9Kgg3mDv7SrGj0L0PGzaa -UGHo50Cp9hF2FKClz5ZyiwoPheePfwrC+596FuFQRoVIMvlXzSN2pEUak/tT -QYVErxivvCf438MreixqqFD8Tf1txAt2pP9lofRwIxUGEwKXz6ewo+AqxwBK -OxWObOPP+FbPjlQ+fnWcmaTCqqoi+28WDiSedOdEzRY8P/uz+vILBwfqCGz7 -kSKDwYbYlj31XBzoQ4xfT7AcBgorrpdSNnCgAoXz29UVMTCpLi28tpUDaaSe -VXdSxfMrPV2r8SMcqEmesmnpOAYuF6/UzN/lQA93GJtWuuP5WcKfXrVgDjSu -es5N9yYG7345r/mHcKBgfWv3Zm8Mhu391EjPOVC0kdehOl8MLvu+LJRM5kA9 -hy4IeOP5ouGbjnQ9Mgcay5GonY7FYHTIvDG0mQMZkz9c2xGPwUPFgcG2Fry/ -QbONl15hUFc4I2PexYG0y8/FF73BQK2RL8HlDweih/C4KWZhID9+LDyWxInM -rOqHFcsxIO9uy+3l5UTCd+S5RSoxsPa82LJ1Ayd67PHceAXPjxMZrnHlSHAi -SROwL6nFQETgflCtEidy6j+bPd+EAatqlc/YSU5EynEXDMXz8ze3jsbsPseJ -AmvP2+/4hsHhaqzY05gT+Qq+JtTi+fxt/Z5ZRktOFOZ7YXkAz/9nTBedhFw5 -EWv7610zvzH45b/3KjznRORtAr8VpjDYJsQdeiOaEyHJkaab0xjYpw8WJb7k -RMONRnur8Hpj7lMMkZDMiZQ4q0I15/DnKcOYRy7kRDGvUx5yL2FwovhrN72U -E53atCNh3zIGEQb5rDsqOVFCf6jGxRUMJNxtLj5u4ESNF6ylIvB6Z1c9lfF0 -JyeaL6qK+4TXQ+4XU3bc7eZEesfrZTsINCgd9zuX38uJvO5pHunA6yct4b1p -QsOcyHrunToFr7fO28ac/EbnRD4Mtjo+RBrELrt6k1Y50eTGXcGmJBr0Pj3+ -Rp2JiGbvnbE6wEWDayUMCwmcRMSpYD/7G6/fbnHaJFwVI6IM3yf3OflpUB2P -Gp9vJiLH3IkPZNyse0T/1ksTUbfDwPMAvB58YkLV2a5ARL3PmfcM4/Xj68w9 -42NqRHRQ3EI5AK8vBxGXyGZNIvqqNxougdefCl8GNE9qE1FHaFJCPu7Clejn -748T0c2JnIIveL3aaMig7mmO9/fFbeoXXu9y/+qyTrUkolHVV+9N8fr4tGfe -0y5rIpJcHZFqxd2dYN1/yImIVjqzBbLwenrLXsTt4EpEttZBzwXx+tuavFE1 -3pOIkJ5GoyfuycnmRwx+RERC47rKeP2uci+5QDmQiJIt9kQG4fbe6PfDMpiI -ns1PvOjCXZFlzBERQkQ/WWoN5SRpwHx4z566p0R0UuF42Q3cuu0ks7kIIppL -kf1egDvk+sB9uWgimj47XDSHWyg8+uuDRCJK6/QPs9tCA9IXgVaXt0REThTd -H4ebSTi0wSQNH7/BIelG3AtG7BVHsojI1+/8hWncEzEB+Yq5RDS8uadNWIoG -A93L6UIFRCStqxF9AHf3Js/EtWIiYj8zmHIB96fLUy+GPhDRTIcWgwtu8mu7 -0NYqIsIyy18H467o/x1YWktEAoMfnvy/90Wyl32SyETU1p3SkI473farc0gz -EZVs/aVfiDsx/aytewsRscW1bqzAHTWKmZt/JqIQs897/3tfFKqkd+5oJxHF -NevH/efAGx+P7eomIpZnYSf/e7/k/V798MZeIlqOYjtdjPvGTJEqUz8RsYoS -ErNwW+/bvXNkkIj6n/WqJ+A2vZm59fMIEXk1/N32+L/3Y6Wy4uUTRPSmKczS -E7f+8iv+5L9EJLPIO2KGG2mIcTyZJyKXxcoahHuf3/M1zyUiCq+aGN6MW6GG -Z+7yGhFNPh6/vITPpxTh4ageMwnJTLNva8O9UYfwazcbCTU2PYAU3LzBd7rE -iCR8vZSmeOJmpSzQCDwk5D388/IR3MtE1/oxfhLKu6Vjx/Xf+8DjYx/ahUgI -tio0fMKf94/Wn2mpm0hI9nuA22nc7QKmr55JkdBkm2v9f++Tms+1R3rLkpBh -xu/rH/H1VdxFuWugREKnXA5kbsX9TkzbW2U3CXHNPNZrxdfrW7PKG5v2kVDb -Ld2DXrjDfuaZTarj9/e4RqgCX+/B0kpnuzRJ6KrtIJMJ7jtWqfo12iRUPq2m -NYPvD7vhuP0Rx0lILW53tRjuI1P3+FTNSIifeaFQQ5QGB/cwsG+xIKH+RDO9 -Cnz/7XL3XuWwwneH2UHlg7gl6I4j3+xJ6IpRD6Mcvl/nGIzqfG/h9+9ITP+8 -gQajhz+V2fqR0IiX58g+3H2BBu9PBZLQYpnq3ed4PKCxayZIh5BQuxyx8Cge -L1J55b0aYknoiViDvB8vfr0B4wXCKxI67MYrX8BDg5KyB56H35DQUon8t//i -EcV62L08k4S6vGdPH8Tj1eiHVJe8chLaEn4pOpuDBm5hnVOT1SRU9qZMroad -Bis27M5K9SRU2Dlr04LHQ24BW6c0jIRYlH+u/MDj5c5rcvYJP0io6fXmO02M -+PxrXBjp/kVC17TYY8oY8PUkGHRddIiEwtIMbVLweHyycsD2+SQJpaY83OCC -x2uXDclWjxi5kD2PWXnbAgaF1TKXPKW5ULuiuAh5HAONF2e/58txIYa4XlXX -MQwa7APNpndwoTDPi+yioxh0CvebOOzlQo8kPd9fHMaA7pBkdEWbC30ibFBI -/YWfl6JSp0/YcCHFojeurh0YfHTZrC2XwYUO+5z7Qi7DYHl24ql4NheKv6Gu -wlGKwT6vqm6+PC408z2qQbsYg3RfC7flUi50pG/BPy8fg7CQpKRWChe6mCmt -aYGfv5bJcky3/nAhUfTKnwU/vxm+7qxs2c6NrpE7XBxuYXDQjIFYr8iN5N2P -Ku3B8wO33pbzZcrcyHZRhzjricHQgPP42wPcqFXcQs7BFYOWv3kSPnp4+/5H -X5SuY5DApXpr6zVuxPZ7yWn+PD4fmuiAdyo3mg5osI/C85fNgleemmRyo0qL -rXnj8vj1B+8NquVwI+P7LvKa2zCoCWl6vlaEt5cLSv0qhYFO5/npwAZuVG7+ -h/JDGIPjTg4ZTwa4kfp75t/KjBiYvoyReCvDg+pqr46Pt1BB/Ua52/1tPEj0 -0cewRioVNmn1Ntko8KDfAV16ryhU6B3a6i2/lwcJl/aOaNZS4ere3PZsLR50 -cPxn77kiKtg3NTwpteRBF4OEIyrjqOBDn2FsecWDdp6jfHt2lQrjl6g/Wd7i -7S9/XYu7TAXL+rfVh9J4UIXuwvkkUyrohp/3T8nlQTvu+r1IPEsFQcViBt8a -HuTXzKx89QgVMi/7rCn28yBr7SMqDNJUmPjlt1onwIvSztBO3O9uhm3CDuO9 -G3jRG57gIzMdzWCpb/x9SZgXFeXw7TRra4b2HOUKZXFelLjI2rOZ0gwfbvfd -finDi2RfFF2yLWqGYOEjK24qvEikcYiL8KwZthxjW5a+wIt+fof351Az7P2i -9UnUmBeZK8W98DyE59OX/FL5THiRkexaR8Q+PB93pZ9dM+dFB8uOW1QrNEN+ -7EjWV2tedDLyoXGfCN5+lHbpmQcv8iZ+nNKcbILrj6M+rj7nRWOzZ+JsYpsg -n7b9UddnXqR2O169qo8CT6Wr3y628yLGK5qXpbopYOdpVCXWxYvknXsN7nyh -gNTmoFmzHl5kGxDlJk2mwBPH/kt9v3nR+UdXn0plUeA6V8LekTleVKjD4DPp -TgHJY4Lfl0X4kNlHJtZ3TBQIqV/dJWnGhzRmd28rYGsE5DygLHGJDy1aJ7fP -rJFhRgzbLWrBh1T3zEgoLeD1qPPLvYJWfCjfH1k/HiKDoriaKrsDHzK36bZe -JeP1pLMXTN7iQ/qfybbJeP3JKzFzvCqOD6lUxs5PMJEh3HX4+uVuPlT8rnze -ua8eRHW8nc9850OffAYObO2qh9cixJs6vXxo5tQ2vVZaPbwvV7in0M+Hft+O -qxQor4cWthsJCyN8KKxB/bXmi3rgjptre7rEh87eS2HV0K+H4Fpm9WpRfnTg -XcfNxPQ6uLVhE4+UMT96thL/w+9sLVBzOS6CCT/aVjykbKZbC5sMZ9+YmvGj -T/J5lrvUaqHyfvPBFxb86OBSo0WZdC0wLXhbk67zo0v9V0avTH+EoK8d5XPe -/EjfM8maIfQjhCU8s2+K40cq+75F3KyogbTtLBS3Xn4Ua5tueomlGj6Jay45 -9PGjzJztY4wLVbDMc1vBpp8fDS0qOr/8UwWGczOhxkO4z+ZaVNKqYKam/4zG -JD+KPBuulh1dBci0toeNQQDZCo2NIYUq6Ay9OxWzWQBxHhyaMI2qANYZxo3V -5gLozJrS+5KRUljIiQrtvyyA3m1yb8inlMKIw04C+xUBlCP0ojU6rRRaBk0n -DG0EkL3JLW9Jm1KI+VZU1+0kgPSUXZyFfpaA0kcHlwU/AcTsmT5p0FIM58O6 -mnYmCaDQeEKvaVQh6J64oXnmrQBacDmbludaCIdIbEUeKQKIv1iiqs+wECTv -731dniGAsiq2a9YTCuGP15Obx/IF0OPvO1uCHAvgjoX2Vps6AUTl1j3PdCAf -Unbl3okfFEA6hZ1s7Qm54Lhhil40LIDUZcrG/N1yYe/iLvfWEQFkXVFx6Ytu -LlR9zLEjTAqgWFNBT5vJHOg8n2N0fUEADTYtSPUezAH229m793EIomqjTHjg -mgWYxUTWCaIgKo09OWHNnQUROju3X+MSRFmJnAEcqZkgyZu9OY5PEDFCtIRV -RwaoJr0jMYkKIvrx/gM5Mulg25g1QJUXRG/2hB82sE4GpXdjFoMKgmiyq/1R -26+3MBOm2MOwUxBNbffKdzB/C36mWW179gii7GndE5N6b0BHc8zwuIogCsN8 -606UJgFJVpFivV8QdYY/nMqUTYKoicyq6EOCqEhVPYw2lQjmn0cP5anj12sZ -OZp4IhFkShTwqCSIPM+6SvmlvIKcgMysNS1BVBNaExsWGA8eNqPbNuoIok0k -SWYz1pegZqDwZreuIJJgZR/87RoL5A2ZMVYGeP+mz2IEmKIgdHFkg6+hIDK9 -PnS2VCgSzv7Y8SzqpCA6J/gnhnclHERr7UjvTwuiYBe92GdvnkFvakZQ01lB -RCWJ0r1/PIbkxyNMv88LIjs/Jn0v9SCwd9lxZ9UIv76Ki9yKkw/svmBHFzYR -RP/7/3oLhzLclM3WXSE5MqF/ad2BLDvsrlqsm5eWbvHCat3bLdMNVxzWTX55 -MGfaad3WXRS+Ied1vzk58vmT+7olQcEk9fa6hcTf2Zx5vG6m9ly/tMx1f9Mr -eX9uZN2fkrwVwXXD+njyTqlJTa97rdil4L6j0D8f26WjfWt23Q1mO6/ZuQr/ -M/8V27KX7us2t03kavFc95yLwPu9t9YtEzy/uBK4br/3lSFPI9d9kO1kTkHJ -uu+THjANla27la/mrGjFum3F99Lv1Kz7hbLIYd2mdc+Y9LZ97V43stgoy/Vj -3Y+sT9+En+uWcq4Vf/N73afup1o5jK877tHPooTJdQ89FeX8NP1/xhMb8m7f -/LqbX9UxXKOvWzh59XTs0rotM/a/pa6s+13Ojfm1tXX/D9n23L8= +PuVbyQV4/NjhaBPZeX4JQq3YPj3kpgHB/OU1LHoJzKrkVK6w0WBNjCCj+HoJ +rBp3+13H49ti1/Xvj9KXINZA7KoDCw0mz6me0StbgrbPbtNWeHzsOd6mVtu9 +BC+faJKk1jAoVOfgLd28DIu5o4frZjHIXXKiiGxbhup6tbh7MxhklrQHeu5a +hoEtw7c0/2LwWuUNfa/mMrw5Gk7LmMTjsSL8yrZchktxu6P0RzCwkXAvfPt2 +Ge5tEn2Z/QOD+n0SnG5Zy8C144Pl4e8YyJysMztcsAzi0bJ7WvHzpTdgA8uP +2mVg29cz0deFn8dDBWdE+pdB4StHSTt+PunmzU0+lFoB7MeJwNV6PGtvjj9i +LL8C7woe252qw4AwoBMlt3sFUrtf6b/6iEGVyAuo1VyB8Kq9I8pVGKje2R+6 +cnkFtt9gCZMpwWC73s0dNxJWoJbD/7hOOgbBlpK+GikrINKdJmiUiucLPuRP +pOwV0P2rUmGVjI/3nYh3WsUKhAxWvnd7jYGoYAm5r2cFCCtLC5djMOD8Qbc6 +J74KnGT5TOcHGIy4+bw6GL0KSnyyGbZXMXAsCGV5n7gKPkf9zSosMJicTby+ +PX0V9j3ftsx9CYMZD/JekbJVYJs7MPsKzzdWb25onO1eBc/WJ8+D8HyE93b2 +VI7kGuwq3uVtth+Dffd+HZZLXYNYm1ZtURYMiuvmUuJz1mA41/QjmRGDQ6yc +XEIla5BeSfnmvEoFFLSrg0BZg9ZnU61581TQe3Dbrm9kDSRufQ6YG6bCu3oi +BRNmQA2VVEs3KhWqKW+nH5gwoPolpQA1PJ/LF2lxvn2JATGKSCreDqFCsvXi +5I0rDMhzMzNWHEyFEKYTExfsGNCnJO8BSX8qnD+4MLLVhwEx0Fyk852pMJqm +/7s6hgEZOxYa9J+igtCDiQ56FwO6+GI89zw3Fdg7Nl4Y62FArKcGbk5yUGFJ +5kh7708GpPWkrj2QhQq9VVGfG4YZkH91pv7L5WbIWNBsfU5nQEWe30tD/jQD +so2gKG9kRBnDLnOWdc1gd/RA+TUjRmR34Etou0czTG7bWJdryohKC6ayTzg3 +gxsnvZl+mRFZf05bq7ZrhjvU4u4H1xgR/doVsbDLzRB2RnU5zZsRNTXnd/7Q +a4biS/sP/YljRDW7/iooiTUD4aZKyfWfjEhWjp3Bt7gJ4lOVC+yuM6Hhhxkc +YT0UoHRdISc4MiHRtBtHbdopMMcZ+a3NhQkFvcR+qNAocNxhkVHNhwmZfWzT +qqyiwLLyR0NSCBPSP808czeJAiZlZ4cys5hQim/A5l4bCohgnmLjk0yIVFJI +dRhthCNraUpSs0zoZXvU6Sf9jXBjV7fmeToT2t8xJ5HV3QjkMGRbwciMpvg7 +db83N4LnBY6CUH5mpOOXVSiehddbvTGGO/cyIxeOsWHk0Ajhf8v9b3gyo5LL +b7XCxslw49NTC1MfZrRHV2baaJAMhrlXNHV9mdFriRtn5HrJwO7EwSgZxIzS +nzbc62klw50/Z/1okcyoJTtapbqADLY/R+4oFTKjTffo7gQ/MuhUVZiLljKj +itQH0y+8yCCd8EyDtYIZ/Y26wgauZPhuun+1p44Z2dmNfGiyJsOZzoDbj78w +oy6Vzs5FQzLsKjpn5tXFjK63XHfS0SMDd+Q2daseZiSab5aWpUUG8hlsWe03 +MzrRHX25TZUMGrSNt0ZnmJF0Ff1PjAwZxN6NmnQuMKOhCLmQvs1kWAipPFS7 +zIyYHOllhmJkyNO3WoolEFDwsfNHo/nJeL2q+i2InYCuxRX3eHGTwZGdWOZK +IqDZE+UedznJsK0+x/uYIAFlDXiubGAmA+vbuxf3i+DtVWKYE9ca4Nfd8wel +xQnIj/HYIePlBqiy3C7KI0lA5jvt44HeAPGay/RFaQKq//ZR4txcA/hI0roG +5AiIbWI1IeZvAxitJZZ82kFAx3kLGfimGmDfd7foip0EdEXMk6dkvAEEyo96 +pe8hIP7jX0LDRxtgMlbUOHI/AYlbBexJ/IPX995jqgGHCChs1SWpb6gBMoyr +RByBgFYu8LobDTZAsGr4grEWAQ3neSkxDzSAtbB1p/ZRAqq41HHkV38DaM2p +FisfIyBn/Wox+q8GkPxCjJI4gd/vQClBG/dq3ndPjjME9PZ7nUZDXwN8C8u9 +MHuegOy/k+Z8cRc7B+7/eRH/vneKlhPuyJMXhKnmBKQ84Kn4HLfrTvn5YksC +Sh2QSp7CfZJ7pf2NNQH5ikg9DsT7VxqjFT69TkATpybfHcfvh9j8OvKWIwGJ +RZ2oM/jdAEPp7h62LgT0/VOKpz9+/0YSq99TPQhoWeutBgkfb8OT+0eHvQmI +tMY//nkYnz8mnpztvgTESVZt+TrSAMluL0Su3yWgpQb7jRL4fAoNbvZPDyKg +MSsYjplsgHvGqcN/HhEQh2rFsTP487iqUVJqF4HPT/+tBCf8+X3O0ZTOjCKg +i3eiz7Tiz1dLmvJoNI6App4TpK8xkEGK/Zupw1sCCmQbZN3HToYw7yt1WWn4 +9UDWx5ZEBsaxEcXxLAJ6naFEbeIlQ2/r8qpjIT7eHz88N4uS4eSRezbZpQRU +neK5RMLXa2UhV8tEBQGxM+kWbMXXc3zspsQbDQS0f4XO3qZEBlMrpOXSSUD+ +QZ6EWW0ydCzcDXJfJCDVyF5WSW98/9mRJgtWCShXiTV2oz8ZCnsijOaYWBDt ++fD8tmAyRNS83e5JZEEe1XJPAyPJcDqkoemmOAuq3UWM58snA7aZyHtLgwUF +KXGk5UyRoV4nLCoggAXd/yPHMe7cCIPWZVTv+yzoDU3L2durEdiD+plcH7Ig +toiVIFb/RtBv2OdwJYwFLWt0Zog/bQTs6DfNI69ZUPdNdtqBd43wRVdmhKWG +BQUmLPmx/WmEfv1C9QeMrOisGH30izkFWOx+uPizsKKSKv3FRSsKyD5iT/Xi +YEXRh+LaRR0oYNt0kf86Hyuycggt0fehwOixtQH9Lazob5hIwLUXFJgx0H1K +0mRFCjSdPVEYBZhPfO174seKGq/vK/dVbQJKxTlpt0BWlHOYlY2i0QRhSq1X +jIJZkXHUR3Nu7SaQ4ib3Sz5lReIrTcr3TjXBYWrBQG4CK/pK/a6943oTBBx7 +9qetghW9HpQuM4ppAiZd3WnhFVb0E0hDanN4/0Ufdy8zsCH7l59nyEt4/3Lg +2ktgQ4FKPTInGJtBim3fTCqJDX2QfT2vR2qGw/XScwfE2dCLiNtp9C3NEHBk +jW5yiA1Zr+120jJoBibNQsZXXmyIlUc1LzyuGUyPDFI6b7MhBfdTs62JzVB4 +VCSCL4ANpXZ+K+ZIaYbrht6ydx+yIe64mjar3GZoM9E4Zh3LhnoCX9a14Ofl +G4/6CIVyNsT10IzRfawZdDLb5UoY2NHDY9QRPlUqvMpmm5oisKP7Bxi+BalR +YfG9aqk8BzvKPXK5fh7h+UNJjEEcHzvay33pVZ0eFYQbzJ19pdhR6N6HDRtN +qDD0c6BU+wg7CtDSZ0u5RYWHwvPHPwXh/U89i3Aoo0Ikmfyr5hE70iKNyf2p +oEKiV4xX3hP87+EVPRY1VCj+pv424gU70v+yUHq4kQqDCYHL51PYUXCVYwCl +nQpHtvFnfKtnRyofvzrOTFJhVVWR/TcLBxJPunOiZguen/1ZffmFgwN1BLb9 +SJHBYENsy556Lg70IcavJ1gOA4UV10spGzhQgcL57eqKGJhUlxZe28qBNFLP +qjup4vmVnq7V+BEO1CRP2bR0HAOXi1dq5u9yoIc7jE0r3fH8LOFPr1owBxpX +PeemexODd7+c1/xDOFCwvrV7szcGw/Z+aqTnHCjayOtQnS8Gl31fFkomc6Ce +QxcEvPF80fBNR7oemQON5UjUTsdiMDpk3hjazIGMyR+u7YjH4KHiwGBbC97f +oNnGS68wqCuckTHv4kDa5efii95goNbIl+DyhwPRQ3jcFLMwkB8/Fh5L4kRm +VvXDiuUYkHe35fbyciLhO/LcIpUYWHtebNm6gRM99nhuvILnx4kM17hyJDiR +pAnYl9RiICJwP6hWiRM59Z/Nnm/CgFW1ymfsJCci5bgLhuL5+ZtbR2N2n+NE +gbXn7Xd8w+BwNVbsacyJfAVfE2rxfP62fs8soyUnCvO9sDyA5/8zpotOQq6c +iLX99a6Z3xj88t97FZ5zIvI2gd8KUxhsE+IOvRHNiZDkSNPNaQzs0weLEl9y +ouFGo71VeL0x9ymGSEjmREqcVaGac/jzlGHMIxdyopjXKQ+5lzA4Ufy1m17K +iU5t2pGwbxmDCIN81h2VnCihP1Tj4goGEu42Fx83cKLGC9ZSEXi9s6ueyni6 +kxPNF1XFfcLrIfeLKTvudnMiveP1sh0EGpSO+53L7+VEXvc0j3Tg9ZOW8N40 +oWFOZD33Tp2C11vnbWNOfqNzIh8GWx0fIg1il129SaucaHLjrmBTEg16nx5/ +o85ERLP3zlgd4KLBtRKGhQROIuJUsJ/9jddvtzhtEq6KEVGG75P7nPw0qI5H +jc83E5Fj7sQHMm7WPaJ/66WJqNth4HkAXg8+MaHqbFcgot7nzHuG8frxdeae +8TE1IjoobqEcgNeXg4hLZLMmEX3VGw2XwOtPhS8Dmie1iagjNCkhH3fhSvTz +98eJ6OZETsEXvF5tNGRQ9zTH+/viNvULr3e5f3VZp1oS0ajqq/emeH182jPv +aZc1EUmujki14u5OsO4/5EREK53ZAll4Pb1lL+J2cCUiW+ug54J4/W1N3qga +70lESE+j0RP35GTzIwY/IiKhcV1lvH5XuZdcoBxIRMkWeyKDcHtv9PthGUxE +z+YnXnThrsgy5ogIIaKfLLWGcpI0YD68Z0/dUyI6qXC87AZu3XaS2VwEEc2l +yH4vwB1yfeC+XDQRTZ8dLprDLRQe/fVBIhGldfqH2W2hAemLQKvLWyIiJ4ru +j8PNJBzaYJKGj9/gkHQj7gUj9oojWUTk63f+wjTuiZiAfMVcIhre3NMmLEWD +ge7ldKECIpLW1Yg+gLt7k2fiWjERsZ8ZTLmA+9PlqRdDH4hopkOLwQU3+bVd +aGsVEWGZ5a+DcVf0/w4srSUigcEPT/7f+yLZyz5JZCJq605pSMedbvvVOaSZ +iEq2/tIvxJ2YftbWvYWI2OJaN1bgjhrFzM0/E1GI2ee9/70vClXSO3e0k4ji +mvXj/nPgjY/HdnUTEcuzsJP/vV/yfq9+eGMvES1HsZ0uxn1jpkiVqZ+IWEUJ +iVm4rfft3jkySET9z3rVE3Cb3szc+nmEiLwa/m57/N/7sVJZ8fIJInrTFGbp +iVt/+RV/8l8iklnkHTHDjTTEOJ7ME5HLYmUNwr3P7/ma5xIRhVdNDG/GrVDD +M3d5jYgmH49fXsLnU4rwcFSPmYRkptm3teHeqEP4tZuNhBqbHkAKbt7gO11i +RBK+XkpTPHGzUhZoBB4S8h7+efkI7mWia/0YPwnl3dKx4/rvfeDxsQ/tQiQE +WxUaPuHP+0frz7TUTSQk+z3A7TTudgHTV8+kSGiyzbX+v/dJzefaI71lScgw +4/f1j/j6Ku6i3DVQIqFTLgcyt+J+J6btrbKbhLhmHuu14uv1rVnljU37SKjt +lu5BL9xhP/PMJtXx+3tcI1SBr/dgaaWzXZokdNV2kMkE9x2rVP0abRIqn1bT +msH3h91w3P6I4ySkFre7Wgz3kal7fKpmJMTPvFCoIUqDg3sY2LdYkFB/ople +Bb7/drl7r3JY4bvD7KDyQdwSdMeRb/YkdMWoh1EO369zDEZ1vrfw+3ckpn/e +QIPRw5/KbP1IaMTLc2Qf7r5Ag/enAklosUz17nM8HtDYNROkQ0ioXY5YeBSP +F6m88l4NsST0RKxB3o8Xv96A8QLhFQkdduOVL+ChQUnZA8/Db0hoqUT+23/x +iGI97F6eSUJd3rOnD+LxavRDqkteOQltCb8Unc1BA7ewzqnJahIqe1MmV8NO +gxUbdmelehIq7Jy1acHjIbeArVMaRkIsyj9XfuDxcuc1OfuEHyTU9HrznSZG +fP41Lox0/yKha1rsMWUM+HoSDLouOkRCYWmGNil4PD5ZOWD7fJKEUlMebnDB +47XLhmSrR4xcyJ7HrLxtAYPCaplLntJcqF1RXIQ8joHGi7Pf8+W4EENcr6rr +GAYN9oFm0zu4UJjnRXbRUQw6hftNHPZyoUeSnu8vDmNAd0gyuqLNhT4RNiik +/sLPS1Gp0ydsuJBi0RtX1w4MPrps1pbL4EKHfc59IZdhsDw78VQ8mwvF31BX +4SjFYJ9XVTdfHhea+R7VoF2MQbqvhdtyKRc60rfgn5ePQVhIUlIrhQtdzJTW +tMDPX8tkOaZbf7iQKHrlz4Kf3wxfd1a2bOdG18gdLg63MDhoxkCsV+RG8u5H +lfbg+YFbb8v5MmVuZLuoQ5z1xGBowHn87QFu1CpuIefgikHL3zwJHz28ff+j +L0rXMUjgUr219Ro3Yvu95DR/Hp8PTXTAO5UbTQc02Efh+ctmwStPTTK5UaXF +1rxxefz6g/cG1XK4kfF9F3nNbRjUhDQ9XyvC28sFpX6VwkCn8/x0YAM3Kjf/ +Q/khjMFxJ4eMJwPcSP09829lRgxMX8ZIvJXhQXW1V8fHW6igfqPc7f42HiT6 +6GNYI5UKm7R6m2wUeNDvgC69VxQq9A5t9Zbfy4OES3tHNGupcHVvbnu2Fg86 +OP6z91wRFeybGp6UWvKgi0HCEZVxVPChzzC2vOJBO89Rvj27SoXxS9SfLG/x +9pe/rsVdpoJl/dvqQ2k8qEJ34XySKRV0w8/7p+TyoB13/V4knqWCoGIxg28N +D/JrZla+eoQKmZd91hT7eZC19hEVBmkqTPzyW60T4EVpZ2gn7nc3wzZhh/He +DbzoDU/wkZmOZrDUN/6+JMyLinL4dpq1NUN7jnKFsjgvSlxk7dlMaYYPt/tu +v5ThRbIvii7ZFjVDsPCRFTcVXiTSOMRFeNYMW46xLUtf4EU/v8P7c6gZ9n7R ++iRqzIvMleJeeB7C8+lLfql8JrzISHatI2Ifno+70s+umfOig2XHLaoVmiE/ +diTrqzUvOhn50LhPBG8/Srv0zIMXeRM/TmlONsH1x1EfV5/zorHZM3E2sU2Q +T9v+qOszL1K7Ha9e1UeBp9LVbxfbeRHjFc3LUt0UsPM0qhLr4kXyzr0Gd75Q +QGpz0KxZDy+yDYhykyZT4Ilj/6W+37zo/KOrT6WyKHCdK2HvyBwvKtRh8Jl0 +p4DkMcHvyyJ8yOwjE+s7JgqE1K/ukjTjQxqzu7cVsDUCch5QlrjEhxatk9tn +1sgwI4btFrXgQ6p7ZiSUFvB61PnlXkErPpTvj6wfD5FBUVxNld2BD5nbdFuv +kvF60tkLJm/xIf3PZNtkvP7klZg5XhXHh1QqY+cnmMgQ7jp8/XI3Hyp+Vz7v +3FcPojrezme+86FPPgMHtnbVw2sR4k2dXj40c2qbXiutHt6XK9xT6OdDv2/H +VQqU10ML242EhRE+FNag/lrzRT1wx821PV3iQ2fvpbBq6NdDcC2zerUoPzrw +ruNmYnod3NqwiUfKmB89W4n/4Xe2Fqi5HBfBhB9tKx5SNtOthU2Gs29MzfjR +J/k8y11qtVB5v/ngCwt+dHCp0aJMuhaYFrytSdf50aX+K6NXpj9C0NeO8jlv +fqTvmWTNEPoRwhKe2TfF8SOVfd8iblbUQNp2FopbLz+KtU03vcRSDZ/ENZcc ++vhRZs72McaFKljmua1g08+PhhYVnV/+qQLDuZlQ4yHcZ3MtKmlVMFPTf0Zj +kh9Fng1Xy46uAmRa28PGIIBshcbGkEIVdIbenYrZLIA4Dw5NmEZVAOsM48Zq +cwF0Zk3pfclIKSzkRIX2XxZA7za5N+RTSmHEYSeB/YoAyhF60RqdVgotg6YT +hjYCyN7klrekTSnEfCuq63YSQHrKLs5CP0tA6aODy4KfAGL2TJ80aCmG82Fd +TTuTBFBoPKHXNKoQdE/c0DzzVgAtuJxNy3MthEMktiKPFAHEXyxR1WdYCJL3 +974uzxBAWRXbNesJhfDH68nNY/kC6PH3nS1BjgVwx0J7q02dAKJy655nOpAP +Kbty78QPCiCdwk629oRccNwwRS8aFkDqMmVj/m65sHdxl3vriACyrqi49EU3 +F6o+5tgRJgVQrKmgp81kDnSezzG6viCABpsWpHoP5gD77ezd+zgEUbVRJjxw +zQLMYiLrBFEQlcaenLDmzoIInZ3br3EJoqxEzgCO1EyQ5M3eHMcniBghWsKq +IwNUk96RmEQFEf14/4EcmXSwbcwaoMoLojd7wg8bWCeD0rsxi0EFQTTZ1f6o +7ddbmAlT7GHYKYimtnvlO5i/BT/TrLY9ewRR9rTuiUm9N6CjOWZ4XEUQhWG+ +dSdKk4Akq0ix3i+IOsMfTmXKJkHURGZV9CFBVKSqHkabSgTzz6OH8tTx67WM +HE08kQgyJQp4VBJEnmddpfxSXkFOQGbWmpYgqgmtiQ0LjAcPm9FtG3UE0SaS +JLMZ60tQM1B4s1tXEEmwsg/+do0F8obMGCsDvH/TZzECTFEQujiywddQEJle +HzpbKhQJZ3/seBZ1UhCdE/wTw7sSDqK1dqT3pwVRsIte7LM3z6A3NSOo6awg +opJE6d4/HkPy4xGm3+cFkZ0fk76XehDYu+y4s2qEX1/FRW7FyQd2X7CjC5sI +ov/9f72FQxluymbrrpAcmdC/tO5Alh12Vy3WzUtLt3hhte7tlumGKw7rJr88 +mDPttG7rLgrfkPO635wc+fzJfd2SoGCSenvdQuLvbM48XjdTe65fWua6v+mV +vD83su5PSd6K4LphfTx5p9Skpte9VuxScN9R6J+P7dLRvjW77gazndfsXIX/ +mf+KbdlL93Wb2yZytXiue85F4P3eW+uWCZ5fXAlct9/7ypCnkes+yHYyp6Bk +3fdJD5iGytbdyldzVrRi3bbie+l3atb9QlnksG7TumdMetu+dq8bWWyU5fqx +7kfWp2/Cz3VLOdeKv/m97lP3U60cxtcd9+hnUcLkuoeeinJ+mv4/44kNebdv +ft3Nr+oYrtHXLZy8ejp2ad2WGfvfUlfW/S7nxvza2rr/B7ye3L4= "]]}, Annotation[#, "Charting`Private`Tag#3"]& ], TagBox[ @@ -18255,182 +17745,182 @@ sxX/brklqZ7u6vKW+dI3DONWt2zz7kha6/qWs3Nd/m5ubvn/AOhbVcc= AbsoluteThickness[2], RGBColor[0.560181, 0.691569, 0.194885]], Line[CompressedData[" -1:eJxN13k01N//B3Bmxr7PtMgWSSSRkhJ5XWtSVJREhTaylBBZs5Qlsm8RUXbZ -lyxlzZKxzEwbWZIkypaQ3e/9Oed7zG/+mDmPM3fm/b535r5ezyt25bbBdRwD -A4MM9vTfa93mLZNr6121DP97TObVS8jV0y2sbXfJzJduN+e37bUEuhU+O+R6 -s3VuODO+ywpHat9wqGDQd6ZdrRs2FVvp5jxZt2FLb/2Hsyx0/6xRu1oRULth -fuXgTeddajbsekDEJdro9YZVdmqq8Gyu2LAvh+hjtp0FGy4OuKmaRcrf8Hd8 -yZQ2Pm/DmitaBg+GcjbMMmGzdT0lY8Pbkm5rjCk/pc8/BpexSzBhw32PY1iv -LcVtONmrumOgImrDx+q4C7Ns/DfMXqRwV1zad8PxGmVOKlT3DWtzJRBPxV7f -sLpay9NRpL5h3R7bwLLfxiBvy6E10eUGCdnJBVPudsCZryTpmPwAdBz99HBq -LtAieyrg1nAQvJ6NJGQcuA8ldu1RDKuPgV+Z2r8zyg+qmBT1N5HDgbZsXOkc -EgC2E6ghyzoSHr8ejG59GAzlvgpsGqNRoONpZS9wPwxOpkWcZDkRA4zbFyQU -X0eAp0nB7ZG4WKj+ep8xsCwGYhIbBmxW44G/TmNqX3EczN/YpT0gkADOKSz9 -PflPQFGGcdJFJhH2WYRV7MlKAg+TGryOfBIY3Ol6ZdnxHOCTisI1uxTwtiiS -fU1+AV6df1c8vqRAwZmodN62NFg2YKB+0kwFzv3noyqbM+DHxOsIbuJzaJ4Z -uMVRl4PNd0ShJfIFCB/5F3n+QhEoKHVzz2hmgMJ+q06f7iI4OCJqg2Iy4KR0 -D9vL88XQc9zCy2Y4A9wEqr0ZjErga/yerw/vZ0L3ktetbIMy6Jq8NDuSnQWR -1cy6yycq4cGRtlCnTzngJxLsfepZHeSPKP55VpYPDDFWhun9dSCNq4sRn8wH -Dw7tXcuC9aAhaJ2gvKsAnBYY2jPi6+Fcze5Z+ZgCuEFz3roW0QDTR9nXlA4V -go7/lfyXD97Cff+l2GWWIuCcVOpjs26FqfwSzQ8hxdB2eVbwigAF2nNH4s+r -lcGTcp4T8ioUWLn0/IvG+TKw4t7jxnCZAoHX4lgF7MqApcaiOzmVAnsdnO8+ -jC8DTeGu6F4pKvSFr5tbTJZBTW8217lDNPh4SkXMPrYcio3N1o+d/QAXxiSj -2nteQYJB29De0G4QfsV/I/pIFRR/8Lz77vAgtPywfOPnUgNZD69dGTo+CCzX -7efhUQ0kK544tWwyCNBxRoM5qQYexfPv3us5CLec93wubqiBqxdL+sLrB+HH -28XweO5a2DQ8qmGs+w3iZnJ7cNm14PzXkPjTdAieH640FHSuA9u0I+vrtkMg -5GL+/Kl3HVw5JzbO7zUEeXGhh2SC60D/1WSTbsoQNPVm5ruk1IGke5Br/vAQ -FK5wnWkj10E3rnbwrt13IBVv0iqVqAdlonQB4f4whB93q943Vg+djCbvOsKG -YZ7/kdLfuXow/xP0PTZlGE6VdER34BrgAWVs6+6GYaiaMVBtE2qAztBsbz2m -H+DDW6E0fKYBzDl2G8QG/4Dkdtv3D+uw8QSpOcn4EfAmOE+Mv2yEznkJ5RNF -o5A0n/pGM6EJdiV1B/ytGwX/++wfTLKawEsj+EMiZRT6B148syxvArnwabvx -qVHYdtLg1DVaE4Tvrk55LDsGAhoi+d/ZmsHg4mlmSu4YsPhx6tCcm+FTvRv1 -bMYvyD70fLniWAvIWu0VWS37BTbVPoWXz7aAP/egdXrTL8itPMK+YN4Ch0y1 -CPPDv6Cxvq2aya0F4md5DsWJ/4Y/RmzFj3NbwEQy/WlPym8oDD/w14izFQZC -uiwvJ44Ded24QKSpFe77GH82fjkOj3ojeVSorSDq/E3b8M04pOUmRZ7sb4Ur -Zn8ldL6OA//a5Mljc63wQ37rsLz4BOj52WWk73wH458umzPlTkDuWK7vFp93 -sCg6afyyahIeDR3Q05Vvg0cmzBKrttOw3ZuDL8uBDKr7OOfHnKbhnkQz2cWd -DH+YiC2fPKah/EnqF3hABuMi4ZuFIdPgZJohVBlDBgnWg3lXX07D6tQdzTMV -ZKgru3qw7fc0nCMx2YuukGGet14rzvoPnD4dZnXPqx2utrjfkLeagalk2aq3 -tzvgmsou/fnbM0BO1mtvce6AG0WUg9UuM/Cnqte4ybMDrBIlmLQCZmCZfdu/ -guAOuHW764VxxgzM/Ho0oJHZAW5bxb/dH56BJ0mjv6z7OyDSss200/wvTN8w -COzW6oR6lm1nbC7MwtYwN3Fp1i4YeSGr22MxC6n8RndvcXcBJ9LUOGY9C1rh -VyLyNnWB8b3bB8XdZ4E3sV5JSKwLpkabtvU+nQWZT+SmaqUuEG5zGNIdnIWm -ulU/FusucA1pd5S2nAPcA/WJieYukOfzjh1zmgeHoD86V5QoUMX6WarFYx7u -zX18VK9MAXUG2eq0B/NwbovthIgqBc5O9X41i56HJ7J+2z6oU8C549DuTyXz -4DneJyt1kgKvg6aqG2bmIUcOzt3D6owOzuxbov0/GPj93aPOhwLmf4/K6Nsu -gEyY/dk9jRTgIjJQPjgtABfeYEWzCbv+vgZHU88FSNzVXnuxhQKbbmlXW4Uu -AGOoRLI/mQKto/q6foUL8Dj2WnfjewrsGzCzqphdACbRHtUf3ynA8M4nbYfn -IrSTq++ScVTI+6mhk/1wETabxZflEKhgwsw8Lhe6CLvmyw4EMlOhVOPRgaPP -FsHRrnHyKDsVrGoiG87XL0Lh1sse0XxUoJS8GAxhWoLlzlMfJrdTITW5Sejf -4yVo/7MHmSlT4elFmc/nYpfgbKavHcNRKsQLREWUJi8B3lOQJUWVCqGx5swO -BUtgPBng+0WNCm6hy1PjlCWYv2JUrKJDBQMv+cYh0jJItHKUlp+lAuFy0s3O -J8twsP8hMcCWCuuChJ17ny9D0O4xq392VFjqsR4IzlmG7ROc2jduU2H63GHD -49XL0DpeFwcOVOjXe6/ytm8ZPqaN5w+6UKH8KBtv1fYV4ODXM+33pYKl8N3y -9PQVeGPzi6M5jgrNisLsTnkrQOxwY/4bT4Wdp5suqZetgECedKdIAhUGfTcz -fX27Atd59FocnlLBeLTMkH94BS4M6tzhTKWCTsn89KMdqyAW+FiKJYcKu4/f -22P/bBVkkKiSSDUVAq+I3lfNXIWT+IYliddUGHFvpXEWrAKHi+BTmTdUeJ7P -75ZdswopKYreirVUENhU2TrUvwpTEq39Ko1UYP+6eP2c0Bqo85232USmwm8n -95QjT9aAnCabO9NDhVtloUzFqWuwGpbV9OsLth5zqda7c9aA9Udl6rdeKsw6 -tyrwV6/Bw22mqeR+Kqzd2/xurm8NHHeEUcO/UYHXs+BPoeg6kCUsQgZHqaD4 -8Lu6ZNY6PAkV4EmYp0JF03xmcuE6yHLZZ9r8o4IyMzvXlsp10Ct026KyQAUU -sO8zoW0dTg8ru/csUuF4kKfN0O91OIfk7zCvUiG/maOtcysDujTXnrgbT4P6 -tvSZIFMGZPFyTfUJNw1K+Sl3PM0YUN9lnIkyDw0ybixN219lQHMV2/36MIfg -Tk2dt2FA3fsjGIX4aGB0ZOG3hDsDuncy9XUYiQbj2bo/6hMYkHHKWLQuPw22 -BE19XuxhQH664ix8YjRg/bzt/EQ/A0qc5mqPwby8U/PT4DcGROYvzdu2gwaD -dfEfWsYYEFPWRKuIOA1yF9SoMYsMiPvZNhsRCRogq+g2+W2M6IUc75u/UjSw -Oab05qYxIzp8Q8B5UY4G01LbmoouMiL/MwQLm300cGJfbF80Z0Thjy1O92H2 -6qjoC7rJiKicl1Wr5WkQaXh4JduNEb2fCrtmd4AGFWaHlH89ZUQMaBm9UKTB -UbWtGvtTGVH+844cJix3NOz4p+uWzoiKmMxELTGTf5SbsOczotPgsk/yMA0G -bBTdpGsZUfLFi9OJSjQg3DtYaf2NEWUG654wVqFB0IXN9cU/GNHwCMOLXMzc -ynOtS2OMiHv7Euca5q1rpd2PZhjRw+7D21KO0kD6gcJCDh6HrBNPC/eo0uBM -+IFDvyVwiEv5xM7tajT4dIcEB6RxiLCTTL6K2cTwr7a7LA7pFx4MzsR8bUuJ -EcchHKLmbzKUUafBvaf7nffo4BCPFplnjwYNkrPky2yscch5yNN7VZMGbT1X -W5/dwiETTQPKfi0azLPH9r53wCFi24qmJWY9uyVGFXfMFdSkDswr8o36nCE4 -NERW2BSuTQOpq3MWKByH/rm6RdRgPhstedcpGodcyu8dHMf8cj44se8pDi0v -es5oHqOBafXZ0Zd5OHTSOUx7HLP/uP/yYBEOaW16sE7SoUGxcCX35nIc4tb/ -NHgEM7u38EHPGhx6GWwo7I+5SnPER68Lh/RCKn2Jx2kwcpc/xuc9DuVo5Pgd -wEzM1M0q+4xD5pWX8w0x32Qr6BQexCH++WKfCMz8nS6Ck9M4dK9j3068Lg00 -17Nld8zhUFT0LRdhzPb7+tSMFnHIZyFmThFzaySyqmHEI9o+MUdLzLONDu4z -THh0Wb3BwQuz6Fxa6C52PBK2bkmKxuxynq0slIhH7bvsnGswPw9Ubm3Ygkd5 -r9V30jB3Vtr1zgtg798cWR3GvEuIxmgmjkdG2fMKrCdoYKBH2BwliUfwNyyS -H7OXl6JUyx48Km84LSSF+dNggr6cAh4JTMWWamLGETssrh7Go+F81HgGs6zG -ulOcCh5dqTRZu4TZxEk+kIzwSP7F7PWbmB+mX01c18Sjf7NCS46YCz/F5B84 -jkfb93yr8sTcx9Jab6mH3W+ZXpY/ZlalpQ+JZ/AIt2DXEIpZwVpmtOscHpXo -nGSLxWyeeHkZb4JHFn/+eDzFHNIezn34Mh6FyFoKP8dcsdogZnsFj9zlSn5l -YB6WnVNIuYFHW7f0Dedg5jWX1PlgjUef5kc48jGrRFwwZb2NR5ndn80KMVs1 -BN9SccSjr6VFg0WYo/6+8bF3wSM5F+fQYsz2tHCLi+54ZM6u4fCf9Yuuqunc -xyNnTdPk/8bvCVcUU/DDI4pSDfG/72O9zcYoGoBHwfutu/Iwj+j1DXIE41Fg -zsUP/91Po0xB3b9QPLp7JlIsE3MKh2/K90g8+sLO8uq/+Xj9OuvdFYtHEpNl -0UmYTd9Jmlcn4NEb7SdVcZgPZy1BZjIebYnOkYrAvCWgY3vUczxqChoaCML8 -93rKulcGHj3nUer3wUzRdPxqnYNH3Wrp4q6Y88W1a43y8YjvjnDx7f/m/+23 -l2w5Hp3jZck0waxdV3NZoAqP9HdbcJ3CLP4sQpW5Bo9cIuKr1TEPXDy01t+E -R6/GLKckMVcrsw+8e4dHLTJDTtswxwv0vynrwNbr+poaO2bDbl/Pxx/xSCu/ -u3gM+z/ue3XukmsPHpEaHIy6MXPHSh293o9H47Qbas3/7QfDzhWVH3hkq885 -8Qyzatc2j/FZPOoNHI/XxSyYP27avYBHOkPLTgcwL4TUKr9dwaOilwVxgphL -dK8vJxII6D5TYuEYth+lmgvdTmwioAsJDns9MTOn+5kc4icgs9qnyuaYv/sZ -HREXIiAvmQdh6piT1VYWl8QJSKKSlZUJM+nNMdecAwTURpA77IPVh+lEgQux -hwgoUDbM/jLmTreJw77KBKSZEj3xXz0JPBy1cEGDgPS55kr/YPVnrWTAhc2Q -gFjlc5yMMI/m3HW2ciCgB8HWkStYvTMWXhvIciYgYs06ZxvmljD/Y2Nu2P17 -bMuKxZzhFMdv7UdASZ97VPdivqZaWWUTTUAn35/5eQqrr4PUlbVb5QTU6sz3 -0xqrx6c1H1oWVBEQf/Cn49KYa8u5KFM1BLR8LK91FKvfyYkiqfYtBGTKbLDt -v/p+8TrScOgmIF/HmNWTiAafF/wC7i4R0GXefwFzWL/QtuGcLlvDrv/69YMM -zOX90cbzOCYUJ3sw3ghzdEP6bhcOJrQk1MpYivUbg5AW8j0hJjRN4vh4VRlb -n+0cvB6qTAhfNS8Rh/WzZu3IeF9fJpTwUiDu+H4a/LxR3eHmz4TuKxv8/I71 -T9aAYZzjIyYk/DPH3BOzboui3dVIJmQ3qtqRh/XbzmO9aprPmZBo+Ck/Ataf -P+rs/M3UwIT+Us9yBu3B9r9u+dEgRmbUPbCr4TfW75lsvjr4MDEj85YSB2vM -u4JZs1zZmNGRHzYwiuUDK7IJ0ZqPGeXpp+z5huWH8RPrI7pizIh17wf11u1Y -PT6pE86pxoymzb+x2gjSAH/qy1CYNzMa9SlsWMfySlvNOXGnB8yI/E5F6Rrm -SFnqVeNAZtRWUNHcwkuDHdytw6LhzCjxY97OECzvqHeUjRQ9Y0ZzUfVf2bho -4Hsi4tf7GmZU1in7u5sFq7c6OjNbV5kRcXMhZ8MKFdpeNe5fYWDB8hGXGyvm -SElwHCSwIGac6pTeMhV2sCjOZnGyIIWknVMfsXym3iw+ryTEgtwDVQ59wfKd -r+b6oqkyCxoRuutaMk0FnFo5Y4orC2LKfgvp36lwUfNnW7cnCypv9txbOYTl -6WP80Xy+LEgcxz1MxvKjtb7bLr9HLMiXnT174isV3puqnriRyIJsbSvv7+ij -Qppzc7TMGxYktSL17vQHKmi//CRZycCKRG8/IVRj+TalgOXPHwIrGpOseZ3R -gOX74sNV0mysiOrbJhlRj+XHyoSTT/lYkRG5iXQFy8dbWy7fub+DFfmJXpeb -raLC6LeRKi1NVmSQveVjdxEVHm39p0cLYEVFkkzNyclUiG1t/d4QzIrYR0I+ -OiVh5xfXBNeSMFa03vYm/ziW5yt6j6ZHx7GiNO2s6qknVPj57MGKUSYrWgy0 -kd0bQwVNKWJubzMrqnRimLANxvLz4b2sP5jYkFjkpOWyM5bPf60lfWRjQ9sv -LDpn36XC5kTKgWYuNpTBfk/ZyIkKMquOZpmb2VDtyv6h3DtUMK2vKr8pwYZK -zihGH8PONxXHda5ParIhktnQHFhQwcHkasM/PzYUtZo2J6eL5fNnvwZVAtmQ -3LzvnSjsvJT//c66TwgbAl+fU3PaVBiz9VbhjGFDTrc1ZUs1qGB+P6lcNIMN -MW2+d0kEO4/pp33OOd7Khg4mLpe+kKOC9OSJqEROdnQnNbzUhkSF7z4K1yCG -HTVeCkyo/EgBqS3cofZP2BH5IPOTV9j50jbn56vUJHbEdqu5rYRKgXlaAgch -gx1p3W1uzOigAPtOxpLWcnZ0MyN8whk7v+5r7mA06GZHIlu6pWtLKeDBbvns -miAH6lioMvsZQYEtUU++BKVyoNqFr40G2hTg/EiiOqRzIIb3zCbrGhTAbQ1t -Mc3mQIpaYQI5ahSYSvAt3VvEgVr+8m5ZUsHOv89tQql1HGjCOOaj3wEKuBUf -Vd82yIFsjptZHhWlwFfqt+wsEU70JZ7A6j3dBVm80q4tiZyo8eL5j7aaXbBv -5MICIYUTnbX5K3xStQsqq4Nc1NM4UZtHhPquw13QdmPs7puXnCi0OYybvKcL -xl9nOZS84US5CZyHPhG7QO6mpO2zr5yoYamhd/JrJ5TX7zRzEedCET5uWqzO -ndDosF1LMpcL0XafOVkc3gErc1PhQgVcSH5533pqUAcoutb18ZVwoRiLXKYQ -3w7IuW/htFLFhZYqQuf1nTogMuTFC2obF8roPd8Udr4DrmRI4jx+caFTh1x7 -/gl1AMMXuVrKbm5UOyCoc/BFO6iqISW3LG6k4erwpyuRDNs3XQ03fcmNvhsm -1uhGkYHh58OfKoXcSH7LQ92aR2RoCCHHrL/iRgdxga5hrmTQ7jaaedCCfT7h -kEyPERn0btvlho1wI4kvcZcYeclwMSlBOH0nD9Jx/Cd50aMNjtq/cfKX4kF7 -gp4p9zq0gYjGINlShge5MAtVn7nZBoOjEm7SCjyogsDXsdOoDa4pFH0q0OBB -Ww6LDlvItYEtuSWs6goPOnD1SZvM4DtwX5xlpKTwIIdcd82sI+9g0qzjG1M6 -D1KaN0ohyr2DK83p9crZPOhtkchPe/F3oBNl5JNZxIN6Fmx+s3K+g017Kxju -N/CgOt3ilrS+Vnhp7r6+d5gHDT6cfe7u3gpT373Xmki8KA2v1SFd0AJiJ1hW -xM/zomI/GaV7402g8FGDJnCBF9lThv8+GGgCbTPvLD5TXvSHx/9qAKUJrB0X -z65f5kU/dy0cu1XaBKWJv/O+3OBFjtH1WmR3bPx4l1mEMy/yj7j1kJUNG/84 -vnEthhd9+upd/lL0LXhs/fhkLo4XrZRELMgS30JoKp/9+BNeFDxUJFyOfwsl -ZY+EviTxoojRxIGPI42w0u9xtyydF2122vHnVl4jhMlaSNqW8aILHuzpqSqN -UNq1O7jnAy9quDlzYYtlA4SL16cvfeJFinH+2w0vNICNi3GdYA8vmsg2c8g6 -0QA7tgfMXernRSwxp2WS9jVA2K1hs6EfvMj3AOvPguV6sOZ6pvB7nhetuTp8 -sIytB9ETmwZW+PnQxx+2YZZ9dbCSnLsgLMiHdFN+7bah1sHnGXUSCPMhs5K5 -uvvNdRCacEfHR4wPeZ7MufylsA6WxzqLmaT50LGfKu26/nXwKTAogFuZD4kZ -9tc1H6iDkOa1faKX+JCDynBK0d5aQHdG5IXN+NDSxXbjYcFamBXs3C9gwYdu -H/jXt4O9Fi7eSVLYdJ0PmZQfeFU/UgN7hVQOs9rxIYWzfzk9Umqg844rTHvw -oYDP3EpRm2uAV3hWr+4pHwo5pXt+E+ENRDmOWZv38aFdK31b+IarQEDb7Y7h -AB9K4mZvPfq+Cp7zc9zTHuRDmz7+Wr/eUAXFb2QeygzzIf+sqPNZKVVAYbF/ -tvCbDymlBC1PXawC7qfz78OX+dDTegelGx8qIfAt/mi9ABHxHcx3JL+pAN64 -aI1SISLakvY1aevLCoi7KaGbKUJEMxRFoklCBWRwHzv/eAcRBbyzl613roAm -40d3LkgTkWTinCdJrgJwE7wZf5SIaEfN4nJq0ivw2CzCs+MCETmlGH4Tu1MO -HUVsJmBKRMz1tCmVi+Ugoj+XdvESEeV2TIZoHSuHWv/2I3EWRBQV7GQkIlwO -uAW3G5zWROT3h1FqpKUMAr58fjPvRkSv8+YPBW8rg8hnEbbkp0Tk2Bt7uyWn -BL4re74aTSaioBQK99/IElDotsIxpxKRswp/FYN7CXzkRfEonYhCPF9je64E -+H0nG8vyiCi2/3Rt/WgxJF87IZhSQ0SqVV4nz4gUQ/ZupjanQSIy3Vww32td -CDQhtWW7ISKCOg3FlVOFsMLjKWM5TERn7hm9mFAoBP352dALo0R0V+GJkfdK -Acw2DBuqThPRWHi5MrdwAaCLb/tZGEhI4Gd5uPTxPLA+xcDDiCOh1A+Zz3w4 -8yBKXQUt4UlIyuxUs0HXSxiRKn0+zkJCo3o2fucMX0LI3AtLKg8JaV14IeV4 -Nhe6Q/3+JGwnoR2ifL/EDmUDzrd2R7QYCZFP5ddum86CPXeXDR+LkxDz5qZM -laws8DJ1LL8vSULPlVUjfmzOgp1SV92vyZGQ855B4U8/MkBf8NnLS/IkJCt1 -7ZhyXAa4cPf2Gx0godWfWjd9jmVA26wBOn6IhGIUIuK80tLhdr06kyyQUEUN -uGbop0F8qZeipBoJJVr2vPOZewENmVWWohokxOCTdfh1wgvYFLq/jXiMhDgX -J5qmvj6HKpMdYf/0SYhJ/57WHoNUGNa7XDd9moQ23Sy0HhpNAS61hD9jBiQU -751D+u2RAuaSxLN9RiQ0eLjXWuzwM2CeZdxWf5mEKBmhggyXEmGhMD502JyE -umukU5UOJ8BvOzkC61USsp22nB1hegID0s2ue66TUDQ3A2mlMQ4oPy9O6VuS -0NMQ86ye27HQkPb3msNNEkoTqQrhYI6BMotHX2JsSKj0/Qz0+URBlojY6Uo7 -EvIMcu+I7ouAhN5XTX23ScjEiCudjTMcQuL1lRkcSCjrvBjP0Fow3D/3o1Dc -Cfv9goSFD8kGgAPRY9cxZxLKtbjWd4rLB651EZ9a3yOhlrHe1o4QazAKyeYL -dcPW63+P48dRQJEH3SrMn1c+eNEt22jnsOBNt6g3YVTQj27S0cRL8JDuhfJW -Hf8guhtyxLdviqTbKLKHLPeCbp1T9mqG6XQrc7K8cs78f9fzV3j+JpfuX65h -906U0u1loSVh2UR35r4ir+SfdN/a/Gfx1RjdCkv77lJ/013XWGhDmKa726jQ -2HqBblbPgv2KbJs2bPUub6RDmu7dV3L0V+3o7j1eWXzuN920F257wXEzfX1K -zqjsmKF7vcKhzP/Wlg2f2Ket5TFHd8sluZs2jls3TLxqVZ10l+7LVqlcFBe6 -5x1IxQoedO8M/Le0+oBu7+LakPBYuo+wnC4sq6TbnzMIN1pNN5Wv4axADd1W -QgqLXg10x8nzq+uQ6Z41HXz/pY9uZLFtF9dXuoNvGNyDb3TvuPNWKO0H3Wf8 -s67bTdL9NPjbq2fTdI+GC7DTZv7ffBJD8hX/0d2e0sRwc5HurRlrBonLdF/J -PZTesUp3fqH9v/V1uv8PDbcwUQ== +1:eJxN13k01N//B3Bmxr7PqGRLSSQpJSXyutakoigJhTaylJCdLEUi+xYRZZd9 +yVLWLBnLzLSRJUmibAnZ/d6fc77H/N5/zJzHmTtz3/fO+77u826/clv/Oo6B +gUEGe/nvvW7T5sm19a5ahv9dk3n1Evvq6RbRsrtk5ke3u/Pb9loC3fKfHXJ9 +2Do3nBnfZYUjtW84VCjoO9Ou1g2bbF/p5jxVt2FLH90Hsyx0/6xRvVoRWLth +AaVg/gsuNRt2OyjqEm34esPKOzWUeTZVbNiPQ+wx286CDRcH3lTJIuVv+Du+ +ZEoLn7dhjRVN/ftDORtmmbDZsp6SseGtSbfVx5Se0scfg8vYJZSw4b7HMazX +luI2nOxd3TFQEbXh43XchVk2ARtmL5K/Ky7tt+F49TInZarHhrW4Eoh6sdc3 +rKba8nQUqW1Yp8f2YdlvI5Cz5dCc6HKHhOzkgikPO+DMV5R0TL4P2o7+p3Gq +LtAiqxd4azgIXs9GEjIO3oMSu/YohtXHIKBE7d8Z5Q9VTAq6/ORwoC0bVTqH +BILtBGrIso6Ex68Ho1sfBEO5nzyb+mgUaHtZ2QveC4NTaRGnWE7GAOO2BQmF +1xHgZVxweyQuFqq/3mN8WBYDMYkNAzar8SBQpz61vzgO5m/s0hoQTADnFJb+ +nvwnoCDDOOkikwj7LcIq9mQlgadxDV5bLgn073S9sux4DvBJWf6aXQr4WBTJ +via/AO/OvyueX1Kg4GxUOm9bGizrM1A/aaQC54ELUZXNGfBj4nUEN/E5NM8M +3OKoy8HGOyLfEvkCRI7+i7xwsQjkFbu5ZzQyQP6AVadvdxEcGhGzQTEZcEq6 +h+3lhWLoOWHhbTOcAe6C1T4MhiXwNX7P1wf3MqF7yftWtn4ZdE1emh3JzoLI +amad5ZOVcP9oW6jTpxzwFw320XtWB/kjCn+eleUDQ4yVQXp/HUjj6mLEJ/PB +k0Nr17JQPagLWSco7SoApwWG9oz4ejhfs3tWLqYAbtCct6xFNMD0MfY1xcOF +oB1wJf/l/bdwL2ApdpmlCDgnFfvYrFthKr9E40NIMbRdnhW6IkiB9tyR+Auq +ZfCknOeknDIFVi49/6J+oQysuPe4M1ymwMNrcayCdmXAUmPRnZxKgb0Ozncf +xJeBhkhXdK8UFfrC180tJsugpjeb6/xhGnzUU95uH1sOxUZm68fPfYCLY5JR +7T2vIEG/bWhvaDeIvBK4EX20Coo/eN19d2QQWn5YvvF3qYGsB9euDJ0YBJbr +9vPwqAaSFU7qLRsPAnScVWdOqoFH8QK793oNwi3nPZ+LG2rgqmlJX3j9IPx4 +uxgez10L/MOj6kY63yBuJrcHl10Lzn8NiD9NhuD5kUoDIec6sE07ur5uOwTC +LubPn/rUwZXz28cFvIcgLy70sExwHei+mmzSSRmCpt7MfJeUOpD0CHLLHx6C +whWus23kOujG1Q7etfsOpGJ+zVKJelAiShcQ7g1D+An36v1j9dDJaPyuI2wY +5gUeKf6dqwfzP0HfY1OGQa+kI7oD1wD3KWNbdjcMQ9WMvkqbcAN0hmb7nGb6 +Ab68FYrDZxvAnGO3fmzwD0hut33/oA5rT5Cak4wfAR+C88T4y0bonJdQOlk0 +CknzqW80EppgV1J34N+6UQi4x/7BOKsJvNWDPyRSRqF/4MUzy/Im2Bc+bTc+ +NQpbT+nrXaM1Qfju6pTHsmMgqC6a/52tGfRNzzBTcseAxZ9Tm+bcDJ/q3ann +Mn5B9uHnyxXHW0DWaq/oatkvsKn2Lbx8rgUCuAet05t+QW7lUfYF8xY4bKJJ +mB/+BY31bdVM7i0QP8tzOE78N/wxZCt+nNsCxpLpT3tSfkNh+MG/hpytMBDS +ZXk5cRzI60YFok2tcM/X6LPRy3F41BvJo0xtBTHnb1oGb8YhLTcp8lR/K1wx ++yuh/XUcBNYmTx2fa4UfcluG5cQn4LS/XUb6zncw/umyOVPuBOSO5fpt9n0H +i2KTRi+rJuHR0MHTOnJt8MiYWWLVdhq2+XDwZTmQQWU/5/yY0zS4SjSTXTzI +8IeJ2PLJcxrKn6R+gftkMCoSuVkYMg1OJhnClTFkkGA9lHf15TSsTt3ROFtB +hrqyq4fafk/DeRKTvdgKGeZ56zXjrP/AmTNhVq7e7XC1xeOGnNUMTCXLVr29 +3QHXlHfpzt+eAXLy6fYW5w64UUQ5VO0yA3+qeo2avDrAKlGCSTNwBpbZt/4r +CO6AW7e7XhhlzMDMr0cD6pkd4L5F/Nu94Rl4kjT6y7q/AyIt20w6zf/C9A39 +h92anVDPsvWszcVZ2BLmLi7N2gUjL2R1eixmIVXA8O4t7i7gRBrqx61nQTP8 +SkQefxcYud4+JO4xC7yJ9YrC27tgarRpa+/TWZD5RG6qVuwCkTaHIZ3BWWiq +W/Vnse4Ct5B2R2nLOcDdV5uYaO4COT6f2DGneXAI+qN9RZECVayfpVo858F1 +7uOjeiUKqDHIVqfdn4fzm20nRFUocG6q96tZ9Dw8kfXf+kGNAs4dh3d/KpkH +r/E+WalTFHgdNFXdMDMPOfvgvCtWZ7RxZt8S7f/BwO/vnnW+FDD/e0xG13YB +ZMLsz+1ppAAXkYHywWkBuPD6KxpNWP/7GxxNvBYgcVd7rWkLBfhvaVVbhS4A +Y6hEcgCZAq2jujr+hQvwOPZad+N7CuwfMLOqmF0AJrEelR/fKcDwzjdth9ci +tJOr75JxVMj7qa6d/WARNpnFl+UQqGDMzDy+L3QRds2XHXzITIVS9UcHjz1b +BEe7xslj7FSwqolsuFC/CIVbLntG81GBUvJiMIRpCZY79T5MbqNCanKT8L/H +S9D+Zw8yU6LCU1OZz+djl+Bcpp8dwzEqxAtGRZQmLwHeS4glRYUKobHmzA4F +S2A0Gej3RZUK7qHLU+OUJZi/YlisrE0FfW+5xiHSMki0cpSWn6MC4XLSzc4n +y3Co/wEx0JYK60KEnXufL0PQ7jGrf3ZUWOqxHgjOWYZtE5xaN25TYfr8EYMT +1cvQOl4XBw5U6D/9Xvlt3zJ8TBvPH3ShQvkxNt6qbSvAIXDapN+PCpYid8vT +01fgjc0vjuY4KjQriLA75a0AscOd+W88FXaeabqkVrYCgnnSnaIJVBj028T0 +9e0KXOc53eLwlApGo2UGAsMrcHFQ+w5nKhW0S+anH+1Yhe0PH0ux5FBh9wnX +PfbPVkEGiSmKVlPh4RWxeyqZq3AK37Ak8ZoKIx6tNM6CVeBwEXoq84YKz/MF +3LNrViElRcFHoZYKgvyVrUP9qzAl0dqv3EgF9q+L188Lr4Ea3wUbfjIVfjt5 +pBx9sgbkNNncmR4q3CoLZSpOXYPVsKymX1+w+ZhLtd6dswasPypTv/VSYda5 +VV6geg0ebDVJJfdTYc1107u5vjVw3BFGDf9GBV6vgj+FYutAlrAIGRylgsKD +72qSWevwJFSQJ2GeChVN85nJhesgy2WfafOPCkrM7FybK9fhdKH7ZuUFKqDA +/Z8JbetwZljJo2eRCieCvGyGfq/DeSR3h3mVCvnNHG2dWxjQpbn2xN14GtS3 +pc8EmTAgi5drKk+4aVAqQLnjZcaA+i7jjJV4aJBxY2na/ioDmqvY5t+HOQSn +N3XBhgF1H4hgFOajgeHRhd8SHgzI9VTq6zASDcazdX7UJzAgo5SxaB0BGmwO +mvq82MOA/HXEWfi204D189YLE/0MKHGaqz0G8/JOjU+D3xgQWaA0b+sOGgzW +xX9oGWNATFkTraLiNMhdUKXGLDIg7mdbbUQlaICsotvktjKiF/t43/yVooHN +ccU3N40Y0ZEbgs6L+2gwLbW1qciUEQWcJVjY7KeBE/ti+6I5Iwp/bHGmD7N3 +R0Vf0E1GROW8rFItR4NIgyMr2e6M6P1U2DW7gzSoMDus9OspI2JAy+iFAg2O +qW5RP5DKiPKfd+QwYbmjYcc/Hfd0RlTEZCZmiZn8o9yYPZ8RnQGX/ZJHaDBg +o+AuXcuIkk1NpxMVaUBwPVRp/Y0RZQbrnDRSpkHQxU31xT8Y0fAIw4tczNxK +c61LY4yIe9sS5xrmLWul3Y9mGNGD7iNbU47RQPq+/EIOHoesE8+I9KjQ4Gz4 +wcO/JXCIS+nkzm2qNPh0hwQHpXGIsJNMvorZ2OCvlocsDukWHgrOxHxtc4kh +x2EcoubzG8io0cD16QHnPdo4xKNJ5tmjToPkLLkyG2scch7y8lnVoEFbz9XW +Z7dwyFhDn3JAkwbz7LG97x1wiNi2omGJ+bTdEqOyB+YKalIH5hW5Rl3OEBwa +Isvzh2vRQOrqnAUKx6F/bu4RNZjPRUvedYrGIZdy10PjmF/OByf2PcWh5UWv +GY3jNDCpPjf6Mg+HTjmHaY1jDhgPWB4swiFN/vvrJG0aFItUcm8qxyFu3U+D +RzGz+4gc8qrBoZfBBiIBmKs0RnxPd+HQ6ZBKP+IJGozcFYjxfY9DOeo5/gcx +EzN1sso+45B55eV8A8w32Qo6RQZxSGC+2DcCs0Cni9DkNA65duzfidehgcZ6 +tuyOORyKir7lIoLZfn+fquEiDvkuxMwpYG6NRFY1jHhE27/d0RLzbKODxwwT +Hl1Wa3Dwxiw2lxa6ix2PRKxbkqIxu1xgKwsl4lH7LjvnGszPHyq1NmzGo7zX +ajtpmDsr7XrnBbHPb46sDmPeJUxjNBPHI8PseXnWkzTQP03YFCWJR/A3LFIA +s7e3glTLHjwqbzgjLIX502CC7j55PBKcii3VwIwjdlhcPYJHw/mo8SxmWfV1 +pzhlPLpSabx2CbOxk9xDMsIjuRez129ifpB+NXFdA4/+zQovOWIu/BSTf/AE +Hm3b863KC3MfS2u95WnsfstOZwVgZlVc+pB4Fo9wC3YNoZjlrWVGu87jUYn2 +KbZYzOaJl5fxxnik/eeP51PMIe3h3Ecu41GIrKXIc8wVqw3bba/gkce+kl8Z +mIdl5+RTbuDRls19wzmYec0ltT9Y49Gn+RGOfMzKERdNWG/jUWb3Z7NCzFYN +wbeUHfHoa2nRYBHmqL9vfO1d8EjZ1Tm0GLM9LdzC1AOPzNnVHf6zbtFVVe17 +eKSrZZL8X/s94Qrb5f3xiKJYQ/zv91hvszGKBeJR8AHrrjzMI6f7BjmC8ehh +jumH/+6nUaag7l8oHt09G7k9E3MKh1/K90g8+sLO8uq/8Xj/OufTFYtHEpNl +0UmYTd5Jmlcn4NEbrSdVcZiPZC1BZjIebY7OkYrAvDmwY1vUczxqChoaCML8 +93rKuncGHj3nUez3xUzRcPxqnYNH3arp4m6Y88W1ag3z8Yjvjkjx7f/G/+23 +t2w5HpnysmQaY9aqq7ksWIWNb7cFlx5m8WcRKsw1eOQSEV+thnnA9PBafxMe +vRqznJLEXK3EPvDuHR61yAw5bcUcL9j/pqwDm6/ra6rsmA26/bwef8Qjzfzu +4jHsedz/6vwltx48IjU4GHZj5o6VOna9H4/GaTdUm/9bDwadK8o/8MhWl3Pi +GWaVrq2e47N41PtwPF4Hs1D+uEn3AvY8DC07HcS8EFKr9HYFj4peFsQJYS7R +ub6cSCCge0yJhWPYepRqLnQ/yU9AFxMc9nphZk73Nz4sQEBmtU+VzDF/9zc8 +Ki5MQN4y98PUMCerriwuiROQRCUrKxNm0pvjbjkHCaiNsO+IL1YfphMFL8Ye +JqCHsmH2lzF3uk8c8VMiII2U6In/6snDI1ELF9UJSJdrrvQPVn/WSgZc2AwI +iFUux8kQ82jOXWcrBwK6H2wduYLVOyORtYEsZwIi1qxztmFuCQs4PuaO3b/n +1qxYzBlOcQLW/gSU9LlHZS/mayqVVTbRBHTq/dmfelh9HaSurN0qJ6BWZ76f +1lg9PqPxwLKgioAEgj+dkMZcW85FmaohoOXjea2jWP1OThRNtW8hIBNm/a3/ +1XfT60jdoZuA/BxjVk8hGnxe8A+8u0RAl3n/Bc5h+4WWDed02RrW/+vX9zMw +l/dHG83jmFCc7KF4Q8zRDem7XTiY0JJwK2Mptt/oh7SQXYWZ0DSJ4+NVJWx+ +tnHweqowIXzVvEQctp81a0XG+/kxoYSXgnEnDtDg543qDvcAJnRPSf/nd2z/ +ZA0cxjk+YkIiP3PMvTDrtCjYXY1kQnajKh152H7bebxXVeM5ExIL1/MnYPvz +R+2dv5kamNBf6jnOoD3Y+tcpPxbEyIy6B3Y1/Mb2eyabrw6+TMzIvKXEwRrz +rmDWLDc2ZnT0hw2MYvnAimxMtOZjRnm6KXu+Yflh/OT6iM52ZsS694Na6zas +Hp/SDudUZUbT5t9YbYRogNf7MhTmw4xGfQsb1rG80lZzXtzpPjMiv1NWvIY5 +UpZ61eghM2orqGhu4aXBDu7WYbFwZpT4MW9nCJZ31DrKRoqeMaO5qPqvbFw0 +8DsZ8et9DTMq65T93c2C1Vtt7Zktq8yIuKmQs2GFCm2vGg+sMLBg+YjLnRVz +pCQ4DhJYEDNOZer0MhV2sCjMZnGyIPmknVMfsXym1iw+ryjMgjweKh/+guU7 +P431RRMlFjQifNetZJoKONVyxhQ3FsSU/RbSv1PBVONnW7cXCypv9tpbOYTl +6eMC0Xx+LEgcxz1MxvKjta77Lv9HLMiPnT174isV3puonLyRyIJsbSvv7eij +Qppzc7TMGxYktSL17swHKmi9/CRZycCKxG4/IVRj+TalgOXPHwIrGpOseZ3R +gOX74iNV0mysiOrXJhlRj+XHyoRTT/lYkSG5iXQFy8dbWi7fubeDFfmLXd83 +W0WF0W8jVZoarEg/e/PH7iIqPNry7zQtkBUVSTI1JydTIba19XtDMCtiHwn5 +6JSEnV/cEtxKwljRetub/BNYnq/oPZYeHceK0rSyqqeeUOHns/srhpmsaPGh +jezeGCpoSBFze5tZUaUTw4RtMJafj+xl/cHEhrZHTlouO2P5/Nda0kc2NrTt +4qJz9l0qbEqkHGzmYkMZ7K5Khk5UkFl1NMvcxIZqVw4M5d6hgkl9VflNCTZU +clYh+jh2vqk4oX19UoMNkcyG5sCCCg7GVxv++bOhqNW0uX06WD5/9mtQ+SEb +2jfvdycKOy/lf7+z7hvChsDPV29Oiwpjtj7KnDFsyOm2hmypOhXM7yWVi2Ww +IaZNrpdEsfOYbtrnnBOtbOhQ4nLpi31UkJ48GZXIyY7upIaX2pCo8N1X/hrE +sKPGSw8TKj9SQGozd6j9E3ZEPsT85BV2vrTN+fkqNYkdsd1qbiuhUmCelsBB +yGBHmnebGzM6KMC+k7GktZwd3cwIn3DGzq/7mzsY9bvZkejmbunaUgp4sls+ +uybEgToWqsx+RlBgc9STL0GpHKh24WujvhYFOD+SqA7pHIjhPbPxujoFcFtC +W0yyOZCCZphgjioFphL8SvcWcaCWv7ybl5Sx8+9zm1BqHQeaMIr56H+QAu7F +x9S2DnIgmxNmlsfEKPCV+i07S5QTfYknsPpMd0EWr7RbSyInajS98NFWowv2 +j1xcIKRwonM2f0VOqXRBZXWQi1oaJ2rzjFDbdaQL2m6M3X3zkhOFNodxk/d0 +wfjrLIeSN5woN4Hz8CdiF+y7KWn77Csnalhq6J382gnl9TvNXMS5UISvuyar +cyc0OmzTlMzlQrTdZ08Vh3fAytxUuHABF5Jb3r+eGtQBCm51fXwlXCjGIpcp +xK8Dcu5ZOK1UcaGlitB5XacOiAx58YLaxoUyei80hV3ogCsZkjjPX1xI77Bb +zz/hDmD4sq+Wspsb1Q4IaR960Q4qqkjRPYsbqbs5/OlKJMM2/qvhJi+50XeD +xBqdKDIw/HzwU7mQG8ltfqBT84gMDSHkmPVX3OgQ7qFbmBsZtLoNZ+63YN9P +OCzTY0iG07ftcsNGuJHEl7hLjLxkME1KEEnfyYO0Hf9Jmnq2wTH7N04BUjxo +T9AzpV6HNhBVHyRbyvAgF2bh6rM322BwVMJdWp4HVRD4OnYatsE1+aJPBeo8 +aPMRsWGLfW1gS24Jq7rCgw5efdImM/gOPBZnGSkpPMgh10Mj6+g7mDTr+MaU +zoMU5w1TiPvewZXm9HqlbB70tkj0p734O9COMvTNLOJBPQs2v1k53wH/3gqG +ew08qE6nuCWtrxVemnus7x3mQYMPZp97eLTC1HeftSYSL0rDa3ZIF7TA9pMs +K+IXeFGxv4yi63gTyH9Upwle5EX2lOG/9weaQMvMJ4vPhBf94Qm4GkhpAmvH +xXPrl3nRz10Lx2+VNkFp4u+8Lzd4kWN0vSbZA2s/3mUW4cyLAiJuPWBlw9o/ +jm9ci+FFn776lL8UewueWz4+mYvjRSslEQuyxLcQmspnP/6EFwUPFYmU499C +Sdkj4S9JvChiNHHg40gjrPR73i1L50WbnHb8uZXXCGGyFpK2Zbzooid7eqpy +I5R27Q7u+cCLGm7OXNxs2QDh4vXpS594kUJcwDaDiw1g42JUJ9TDiyayzRyy +TjbAjm2Bc5f6eRFLzBmZpP0NEHZr2GzoBy/yO8j6s2C5Hqy5nsn/nudFa24O +Hyxj60HsJP/AigAf+vjDNsyyrw5WknMXRIT4kE7Kr9021Dr4PKNGAhE+ZFYy +V3evuQ5CE+5o+27nQ16nci5/KayD5bHOYiZpPnT8p3K7TkAdfHoYFMitxIe2 +G/TXNR+sg5Dmtf1il/iQg/JwStHeWkB3RuREzPjQkmm70bBQLcwKdR4QtOBD +tw/+69vBXgumd5Lk+a/zIePyg6/qR2pgr7DyEVY7PiR/7i+nZ0oNdN5xg2lP +PhT4mVsxalMN8IrMnq57yodC9HQu8BPeQJTjmLV5Hx/atdK3mW+4CgS13O8Y +DPChJG721mPvq+C5AIer1iAf4v/4a/16QxUUv5F5IDPMhwKyoi5kpVQBhcX+ +2cJvPqSYErQ8ZVoF3E/n34cv86Gn9Q6KNz5UwsO3+GP1gkTEdyjfkfymAnjj +otVLhYloc9rXpC0vKyDupoROpigRzVAUiMYJFZDBffzC4x1EFPjOXrbeuQKa +jB7duShNRJKJc16kfRWAm+DN+KNIRDtqFpdTk16B5yZRnh0XicgpxeDb9jvl +0FHEZgwmRMRcT5tSNi0HUd25NNNLRJTbMRmiebwcagPaj8ZZEFFUsJOhqEg5 +4Bbcb3BaE5H/H0apkZYyCPzy+c28OxG9zps/HLy1DCKfRdiSnxKRY2/s7Zac +Eviu5PVqNJmIglIo3H8jS0C+2wrHnEpEzsoCVQweJfCRF8WjdCIK8XqNrbkS +EPCbbCzLI6LY/jO19aPFkHztpFBKDRGpVHmfOitaDNm7mdqcBonIZFPBfK91 +IdCEVZfthogI6tQVVvQKYYXHS8ZymIjOuhq+mJAvBN352dCLo0R0V/6Joc9K +Acw2DBuoTBPRWHi5ErdIASDTt/0sDCQk+LM8XPpEHljrMfAw4kgo9UPmM1/O +PIhSU0ZLeBKSMtNr1u96CSNSpc/HWUho9LSN/3mDlxAy98KSykNCmhdfSDme +y4XuUP8/CdtIaIcY36/th7MB51e7I3o7CZH18mu3TmfBnrvLBo/FSYh5U1Om +clYWeJs4lt+TJKHnSioRPzZlwU6pqx7X9pGQ855BkU8/MkBX6NnLS3IkJCt1 +7bhSXAa4cPf2Gx4kodWfmjd9j2dA26w+OnGYhGLkI+K809Lhdr0akyyQUEUN +uGXopkF8qbeCpCoJJVr2vPOdewENmVWWYuokxOCbdeR1wgvgDz3QRjxOQpyL +E01TX59DlfGOsH+6JMSk66q5Rz8Vhk9frps+Q0L8Nwuth0ZTgEs14c+YPgnF +++SQfnumgLkk8VyfIQkNHum13n7kGTDPMm6tv0xClIxQIYZLibBQGB86bE5C +3TXSqYpHEuC33T4C61USsp22nB1hegID0s1ue66TUDQ3A2mlMQ4oP02ndC1J +6GmIeVbP7VhoSPt7zeEmCaWJVoVwMMdAmcWjLzE2JFT6fgb6fKMgS3T7mUo7 +EvIK8uiI7ouAhN5XTX23ScjYkCudjTMcQuJ1lRgcSCjrwnaeobVguHf+R6G4 +E/b/BYmIHJYNBAei567jziSUa3GtT4/LF651EZ9au5JQy1hva0eINRiGZPOF +umPz9b/rxAkUWORJtzLz55UP3nTLNto5LPjQLeZDGBXyp5t0LPESPKB7obxV +OyCI7oYc8W38kXQbRvaQ972gW1vPXtUgnW4lTpZXzpn/r78A+edvcun+5Rbm +erKUbm8LTQnLJroz9xd5J/+k+9amP4uvxuiWX9p/l/qb7rrGQhvCNN3dhoVG +1gt0s3oVHFBg49+w1bu8kQ5pundfydFdtaO790Rl8fnfdNNeuO8Fx030+Sk5 +q7xjhu71CoeygFubN3xyv5am5xzdLZf23bRx3LJh4lWr6qS7dF+2SuWiuNA9 +70Aqlveke+fDf0ur9+n2Ka4NCY+l+yjLmcKySroDOINwo9V0U/kazgnW0G0l +LL/o3UB3nJyAmjaZ7lmTwfdf+uhGFlt3cX2lO/iGvit8o3vHnbfCaT/oPhuQ +dd1uku6nwd9ePZumezRckJ028//GkxiSr/CP7vaUJoabi3RvyVjTT1ym+0ru +4fSOVbrzC+3/ra/T/X/uiDAn "]]}, "Charting`Private`Tag#2"], Annotation[{ Directive[ @@ -18513,157 +18003,157 @@ uchF2M24kYkLd5Ro+LP8ePz6lE2kWHx9h0ZeZnXJXgT3Qt4D6fj6f3C2oaql aBGyJMIv7sAdyK/ks7NqEfrCZRVT8f3iHbo0MdqyCPT9YX0R+P5yN7BMP9a1 COOrox8JuG9wNl5N/7kIq0zmZ27g+9H6fmSXzfQiRCXYex0UpsHpO8of+wSW IOqHYHOMIA2Oq0Xd1hRfgruviexDAjTQXVzd/0pmCTRn0kd24dbwaM40U1mC -X8q3kgvw+LHD0Say8/wShFqxfXrITQOC+ctrWPQSmFXJqVxho8GaGEFG8fUS -WDXu9ruOx7fFruvfH6UvQayB2FUHFhpMnlM9o1e2BG2f3aat8PjYc7xNrbZ7 -CV4+0SRJrWFQqM7BW7p5GRZzRw/XzWKQu+REEdm2DNX1anH3ZjDILGkP9Ny1 -DANbhm9p/sXgtcob+l7NZXhzNJyWMYnHY0X4lW25DJfidkfpj2BgI+Fe+Pbt -MtzbJPoy+wcG9fskON2yloFrxwfLw98xkDlZZ3a4YBnEo2X3tOLnS2/ABpYf -tcvAtq9noq8LP4+HCs6I9C+DwleOknb8fNLNm5t8KLUC2I8Tgav1eNbeHH/E -WH4F3hU8tjtVhwFhQCdKbvcKpHa/0n/1EYMqkRdQq7kC4VV7R5SrMFC9sz90 -5fIKbL/BEiZTgsF2vZs7biSsQC2H/3GddAyCLSV9NVJWQKQ7TdAoFc8XfMif -SNkroPtXpcIqGR/vOxHvtIoVCBmsfO/2GgNRwRJyX88KEFaWFi7HYMD5g251 -TnwVOMnymc4PMBhx83l1MHoVlPhkM2yvYuBYEMryPnEVfI76m1VYYDA5m3h9 -e/oq7Hu+bZn7EgYzHuS9ImWrwDZ3YPYVnm+s3tzQONu9Cp6tT54H4fkI7+3s -qRzJNdhVvMvbbD8G++79OiyXugaxNq3aoiwYFNfNpcTnrMFwrulHMiMGh1g5 -uYRK1iC9kvLNeZUKKGhXB4GyBq3Pplrz5qmg9+C2Xd/IGkjc+hwwN0yFd/VE -CibMgBoqqZZuVCpUU95OPzBhQPVLSgFqeD6XL9LifPsSA2IUkVS8HUKFZOvF -yRtXGJDnZmasOJgKIUwnJi7YMaBPSd4Dkv5UOH9wYWSrDwNioLlI5ztTYTRN -/3d1DAMydiw06D9FBaEHEx30LgZ08cV47nluKrB3bLww1sOAWE8N3JzkoMKS -zJH23p8MSOtJXXsgCxV6q6I+NwwzIP/qTP2Xy82QsaDZ+pzOgIo8v5eG/GkG -ZBtBUd7IiDKGXeYs65rB7uiB8mtGjMjuwJfQdo9mmNy2sS7XlBGVFkxln3Bu -BjdOejP9MiOy/py2Vm3XDHeoxd0PrjEi+rUrYmGXmyHsjOpymjcjamrO7/yh -1wzFl/Yf+hPHiGp2/VVQEmsGwk2Vkus/GZGsHDuDb3ETxKcqF9hdZ0LDDzM4 -wnooQOm6Qk5wZEKiaTeO2rRTYI4z8lubCxMKeon9UKFR4LjDIqOaDxMy+9im -VVlFgWXlj4akECakf5p55m4SBUzKzg5lZjGhFN+Azb02FBDBPMXGJ5kQqaSQ -6jDaCEfW0pSkZpnQy/ao00/6G+HGrm7N83QmtL9jTiKruxHIYci2gpEZTfF3 -6n5vbgTPCxwFofzMSMcvq1A8C6+3emMMd+5lRi4cY8PIoRHC/5b73/BkRiWX -32qFjZPhxqenFqY+zGiPrsy00SAZDHOvaOr6MqPXEjfOyPWSgd2Jg1EyiBml -P22419NKhjt/zvrRIplRS3a0SnUBGWx/jtxRKmRGm+7R3Ql+ZNCpqjAXLWVG -FakPpl94kUE64ZkGawUz+ht1hQ1cyfDddP9qTx0zsrMb+dBkTYYznQG3H39h -Rl0qnZ2LhmTYVXTOzKuLGV1vue6ko0cG7sht6lY9zEg03ywtS4sM5DPYstpv -ZnSiO/pymyoZNGgbb43OMCPpKvqfGBkyiL0bNelcYEZDEXIhfZvJsBBSeah2 -mRkxOdLLDMXIkKdvtRRLIKDgY+ePRvOT8XpV9VsQOwFdiyvu8eImgyM7scyV -RECzJ8o97nKSYVt9jvcxQQLKGvBc2cBMBta3dy/uF8Hbq8QwJ641wK+75w9K -ixOQH+OxQ8bLDVBluV2UR5KAzHfaxwO9AeI1l+mL0gRU/+2jxLm5BvCRpHUN -yBEQ28RqQszfBjBaSyz5tIOAjvMWMvBNNcC+727RFTsJ6IqYJ0/JeAMIlB/1 -St9DQPzHv4SGjzbAZKyoceR+AhK3CtiT+Aev773HVAMOEVDYqktS31ADZBhX -iTgCAa1c4HU3GmyAYNXwBWMtAhrO81JiHmgAa2HrTu2jBFRxqePIr/4G0JpT -LVY+RkDO+tVi9F8NIPmFGCVxAr/fgVKCNu7VvO+eHGcI6O33Oo2Gvgb4FpZ7 -YfY8Adl/J8354i52Dtz/8yL+fe8ULSfckScvCFPNCUh5wFPxOW7XnfLzxZYE -lDoglTyF+yT3SvsbawLyFZF6HIj3rzRGK3x6nYAmTk2+O47fD7H5deQtRwIS -izpRZ/C7AYbS3T1sXQjo+6cUT3/8/o0kVr+nehDQstZbDRI+3oYn948OexMQ -aY1//PMwPn9MPDnbfQmIk6za8nWkAZLdXohcv0tASw32GyXw+RQa3OyfHkRA -Y1YwHDPZAPeMU4f/PCIgDtWKY2fw53FVo6TULgKfn/5bCU748/ucoymdGUVA -F+9En2nFn6+WNOXRaBwBTT0nSF9jIIMU+zdTh7cEFMg2yLqPnQxh3lfqstLw -64Gsjy2JDIxjI4rjWQT0OkOJ2sRLht7W5VXHQny8P354bhYlw8kj92yySwmo -OsVziYSv18pCrpaJCgJiZ9It2Iqv5/jYTYk3Ggho/wqdvU2JDKZWSMulk4D8 -gzwJs9pk6Fi4G+S+SECqkb2skt74/rMjTRasElCuEmvsRn8yFPZEGM0xsSDa -8+H5bcFkiKh5u92TyII8quWeBkaS4XRIQ9NNcRZUu4sYz5dPBmwzkfeWBgsK -UuJIy5kiQ71OWFRAAAu6/0eOY9y5EQaty6je91nQG5qWs7dXI7AH9TO5PmRB -bBErQaz+jaDfsM/hShgLWtbozBB/2gjY0W+aR16zoO6b7LQD7xrhi67MCEsN -CwpMWPJj+9MI/fqF6g8YWdFZMfroF3MKsNj9cPFnYUUlVfqLi1YUkH3EnurF -wYqiD8W1izpQwLbpIv91PlZk5RBaou9DgdFjawP6W1jR3zCRgGsvKDBjoPuU -pMmKFGg6e6IwCjCf+Nr3xI8VNV7fV+6r2gSUinPSboGsKOcwKxtFownClFqv -GAWzIuOoj+bc2k0gxU3ul3zKisRXmpTvnWqCw9SCgdwEVvSV+l17x/UmCDj2 -7E9bBSt6PShdZhTTBEy6utPCK6zoJ5CG1Obw/os+7l5mYEP2Lz/PkJfw/uXA -tZfAhgKVemROMDaDFNu+mVQSG/og+3pej9QMh+ul5w6Is6EXEbfT6FuaIeDI -Gt3kEBuyXtvtpGXQDEyahYyvvNgQK49qXnhcM5geGaR03mZDCu6nZlsTm6Hw -qEgEXwAbSu38VsyR0gzXDb1l7z5kQ9xxNW1Wuc3QZqJxzDqWDfUEvqxrwc/L -Nx71EQrlbIjroRmj+1gz6GS2y5UwsKOHx6gjfKpUeJXNNjVFYEf3DzB8C1Kj -wuJ71VJ5DnaUe+Ry/TzC84eSGIM4Pna0l/vSqzo9Kgg3mDv7SrGj0L0PGzaa -UGHo50Cp9hF2FKClz5ZyiwoPheePfwrC+596FuFQRoVIMvlXzSN2pEUak/tT -QYVErxivvCf438MreixqqFD8Tf1txAt2pP9lofRwIxUGEwKXz6ewo+AqxwBK -OxWObOPP+FbPjlQ+fnWcmaTCqqoi+28WDiSedOdEzRY8P/uz+vILBwfqCGz7 -kSKDwYbYlj31XBzoQ4xfT7AcBgorrpdSNnCgAoXz29UVMTCpLi28tpUDaaSe -VXdSxfMrPV2r8SMcqEmesmnpOAYuF6/UzN/lQA93GJtWuuP5WcKfXrVgDjSu -es5N9yYG7345r/mHcKBgfWv3Zm8Mhu391EjPOVC0kdehOl8MLvu+LJRM5kA9 -hy4IeOP5ouGbjnQ9Mgcay5GonY7FYHTIvDG0mQMZkz9c2xGPwUPFgcG2Fry/ -QbONl15hUFc4I2PexYG0y8/FF73BQK2RL8HlDweih/C4KWZhID9+LDyWxInM -rOqHFcsxIO9uy+3l5UTCd+S5RSoxsPa82LJ1Ayd67PHceAXPjxMZrnHlSHAi -SROwL6nFQETgflCtEidy6j+bPd+EAatqlc/YSU5EynEXDMXz8ze3jsbsPseJ -AmvP2+/4hsHhaqzY05gT+Qq+JtTi+fxt/Z5ZRktOFOZ7YXkAz/9nTBedhFw5 -EWv7610zvzH45b/3KjznRORtAr8VpjDYJsQdeiOaEyHJkaab0xjYpw8WJb7k -RMONRnur8Hpj7lMMkZDMiZQ4q0I15/DnKcOYRy7kRDGvUx5yL2FwovhrN72U -E53atCNh3zIGEQb5rDsqOVFCf6jGxRUMJNxtLj5u4ESNF6ylIvB6Z1c9lfF0 -JyeaL6qK+4TXQ+4XU3bc7eZEesfrZTsINCgd9zuX38uJvO5pHunA6yct4b1p -QsOcyHrunToFr7fO28ac/EbnRD4Mtjo+RBrELrt6k1Y50eTGXcGmJBr0Pj3+ -Rp2JiGbvnbE6wEWDayUMCwmcRMSpYD/7G6/fbnHaJFwVI6IM3yf3OflpUB2P -Gp9vJiLH3IkPZNyse0T/1ksTUbfDwPMAvB58YkLV2a5ARL3PmfcM4/Xj68w9 -42NqRHRQ3EI5AK8vBxGXyGZNIvqqNxougdefCl8GNE9qE1FHaFJCPu7Clejn -748T0c2JnIIveL3aaMig7mmO9/fFbeoXXu9y/+qyTrUkolHVV+9N8fr4tGfe -0y5rIpJcHZFqxd2dYN1/yImIVjqzBbLwenrLXsTt4EpEttZBzwXx+tuavFE1 -3pOIkJ5GoyfuycnmRwx+RERC47rKeP2uci+5QDmQiJIt9kQG4fbe6PfDMpiI -ns1PvOjCXZFlzBERQkQ/WWoN5SRpwHx4z566p0R0UuF42Q3cuu0ks7kIIppL -kf1egDvk+sB9uWgimj47XDSHWyg8+uuDRCJK6/QPs9tCA9IXgVaXt0REThTd -H4ebSTi0wSQNH7/BIelG3AtG7BVHsojI1+/8hWncEzEB+Yq5RDS8uadNWIoG -A93L6UIFRCStqxF9AHf3Js/EtWIiYj8zmHIB96fLUy+GPhDRTIcWgwtu8mu7 -0NYqIsIyy18H467o/x1YWktEAoMfnvy/90Wyl32SyETU1p3SkI473farc0gz -EZVs/aVfiDsx/aytewsRscW1bqzAHTWKmZt/JqIQs897/3tfFKqkd+5oJxHF -NevH/efAGx+P7eomIpZnYSf/e7/k/V798MZeIlqOYjtdjPvGTJEqUz8RsYoS -ErNwW+/bvXNkkIj6n/WqJ+A2vZm59fMIEXk1/N32+L/3Y6Wy4uUTRPSmKczS -E7f+8iv+5L9EJLPIO2KGG2mIcTyZJyKXxcoahHuf3/M1zyUiCq+aGN6MW6GG -Z+7yGhFNPh6/vITPpxTh4ageMwnJTLNva8O9UYfwazcbCTU2PYAU3LzBd7rE -iCR8vZSmeOJmpSzQCDwk5D388/IR3MtE1/oxfhLKu6Vjx/Xf+8DjYx/ahUgI -tio0fMKf94/Wn2mpm0hI9nuA22nc7QKmr55JkdBkm2v9f++Tms+1R3rLkpBh -xu/rH/H1VdxFuWugREKnXA5kbsX9TkzbW2U3CXHNPNZrxdfrW7PKG5v2kVDb -Ld2DXrjDfuaZTarj9/e4RqgCX+/B0kpnuzRJ6KrtIJMJ7jtWqfo12iRUPq2m -NYPvD7vhuP0Rx0lILW53tRjuI1P3+FTNSIifeaFQQ5QGB/cwsG+xIKH+RDO9 -Cnz/7XL3XuWwwneH2UHlg7gl6I4j3+xJ6IpRD6Mcvl/nGIzqfG/h9+9ITP+8 -gQajhz+V2fqR0IiX58g+3H2BBu9PBZLQYpnq3ed4PKCxayZIh5BQuxyx8Cge -L1J55b0aYknoiViDvB8vfr0B4wXCKxI67MYrX8BDg5KyB56H35DQUon8t//i -EcV62L08k4S6vGdPH8Tj1eiHVJe8chLaEn4pOpuDBm5hnVOT1SRU9qZMroad -Bis27M5K9SRU2Dlr04LHQ24BW6c0jIRYlH+u/MDj5c5rcvYJP0io6fXmO02M -+PxrXBjp/kVC17TYY8oY8PUkGHRddIiEwtIMbVLweHyycsD2+SQJpaY83OCC -x2uXDclWjxi5kD2PWXnbAgaF1TKXPKW5ULuiuAh5HAONF2e/58txIYa4XlXX -MQwa7APNpndwoTDPi+yioxh0CvebOOzlQo8kPd9fHMaA7pBkdEWbC30ibFBI -/YWfl6JSp0/YcCHFojeurh0YfHTZrC2XwYUO+5z7Qi7DYHl24ql4NheKv6Gu -wlGKwT6vqm6+PC408z2qQbsYg3RfC7flUi50pG/BPy8fg7CQpKRWChe6mCmt -aYGfv5bJcky3/nAhUfTKnwU/vxm+7qxs2c6NrpE7XBxuYXDQjIFYr8iN5N2P -Ku3B8wO33pbzZcrcyHZRhzjricHQgPP42wPcqFXcQs7BFYOWv3kSPnp4+/5H -X5SuY5DApXpr6zVuxPZ7yWn+PD4fmuiAdyo3mg5osI/C85fNgleemmRyo0qL -rXnj8vj1B+8NquVwI+P7LvKa2zCoCWl6vlaEt5cLSv0qhYFO5/npwAZuVG7+ -h/JDGIPjTg4ZTwa4kfp75t/KjBiYvoyReCvDg+pqr46Pt1BB/Ua52/1tPEj0 -0cewRioVNmn1Ntko8KDfAV16ryhU6B3a6i2/lwcJl/aOaNZS4ere3PZsLR50 -cPxn77kiKtg3NTwpteRBF4OEIyrjqOBDn2FsecWDdp6jfHt2lQrjl6g/Wd7i -7S9/XYu7TAXL+rfVh9J4UIXuwvkkUyrohp/3T8nlQTvu+r1IPEsFQcViBt8a -HuTXzKx89QgVMi/7rCn28yBr7SMqDNJUmPjlt1onwIvSztBO3O9uhm3CDuO9 -G3jRG57gIzMdzWCpb/x9SZgXFeXw7TRra4b2HOUKZXFelLjI2rOZ0gwfbvfd -finDi2RfFF2yLWqGYOEjK24qvEikcYiL8KwZthxjW5a+wIt+fof351Az7P2i -9UnUmBeZK8W98DyE59OX/FL5THiRkexaR8Q+PB93pZ9dM+dFB8uOW1QrNEN+ -7EjWV2tedDLyoXGfCN5+lHbpmQcv8iZ+nNKcbILrj6M+rj7nRWOzZ+JsYpsg -n7b9UddnXqR2O169qo8CT6Wr3y628yLGK5qXpbopYOdpVCXWxYvknXsN7nyh -gNTmoFmzHl5kGxDlJk2mwBPH/kt9v3nR+UdXn0plUeA6V8LekTleVKjD4DPp -TgHJY4Lfl0X4kNlHJtZ3TBQIqV/dJWnGhzRmd28rYGsE5DygLHGJDy1aJ7fP -rJFhRgzbLWrBh1T3zEgoLeD1qPPLvYJWfCjfH1k/HiKDoriaKrsDHzK36bZe -JeP1pLMXTN7iQ/qfybbJeP3JKzFzvCqOD6lUxs5PMJEh3HX4+uVuPlT8rnze -ua8eRHW8nc9850OffAYObO2qh9cixJs6vXxo5tQ2vVZaPbwvV7in0M+Hft+O -qxQor4cWthsJCyN8KKxB/bXmi3rgjptre7rEh87eS2HV0K+H4Fpm9WpRfnTg -XcfNxPQ6uLVhE4+UMT96thL/w+9sLVBzOS6CCT/aVjykbKZbC5sMZ9+YmvGj -T/J5lrvUaqHyfvPBFxb86OBSo0WZdC0wLXhbk67zo0v9V0avTH+EoK8d5XPe -/EjfM8maIfQjhCU8s2+K40cq+75F3KyogbTtLBS3Xn4Ua5tueomlGj6Jay45 -9PGjzJztY4wLVbDMc1vBpp8fDS0qOr/8UwWGczOhxkO4z+ZaVNKqYKam/4zG -JD+KPBuulh1dBci0toeNQQDZCo2NIYUq6Ay9OxWzWQBxHhyaMI2qANYZxo3V -5gLozJrS+5KRUljIiQrtvyyA3m1yb8inlMKIw04C+xUBlCP0ojU6rRRaBk0n -DG0EkL3JLW9Jm1KI+VZU1+0kgPSUXZyFfpaA0kcHlwU/AcTsmT5p0FIM58O6 -mnYmCaDQeEKvaVQh6J64oXnmrQBacDmbludaCIdIbEUeKQKIv1iiqs+wECTv -731dniGAsiq2a9YTCuGP15Obx/IF0OPvO1uCHAvgjoX2Vps6AUTl1j3PdCAf -Unbl3okfFEA6hZ1s7Qm54Lhhil40LIDUZcrG/N1yYe/iLvfWEQFkXVFx6Ytu -LlR9zLEjTAqgWFNBT5vJHOg8n2N0fUEADTYtSPUezAH229m793EIomqjTHjg -mgWYxUTWCaIgKo09OWHNnQUROju3X+MSRFmJnAEcqZkgyZu9OY5PEDFCtIRV -RwaoJr0jMYkKIvrx/gM5Mulg25g1QJUXRG/2hB82sE4GpXdjFoMKgmiyq/1R -26+3MBOm2MOwUxBNbffKdzB/C36mWW179gii7GndE5N6b0BHc8zwuIogCsN8 -606UJgFJVpFivV8QdYY/nMqUTYKoicyq6EOCqEhVPYw2lQjmn0cP5anj12sZ -OZp4IhFkShTwqCSIPM+6SvmlvIKcgMysNS1BVBNaExsWGA8eNqPbNuoIok0k -SWYz1pegZqDwZreuIJJgZR/87RoL5A2ZMVYGeP+mz2IEmKIgdHFkg6+hIDK9 -PnS2VCgSzv7Y8SzqpCA6J/gnhnclHERr7UjvTwuiYBe92GdvnkFvakZQ01lB -RCWJ0r1/PIbkxyNMv88LIjs/Jn0v9SCwd9lxZ9UIv76Ki9yKkw/svmBHFzYR -RP/7/3oLhzLclM3WXSE5MqF/ad2BLDvsrlqsm5eWbvHCat3bLdMNVxzWTX55 -MGfaad3WXRS+Ied1vzk58vmT+7olQcEk9fa6hcTf2Zx5vG6m9ly/tMx1f9Mr -eX9uZN2fkrwVwXXD+njyTqlJTa97rdil4L6j0D8f26WjfWt23Q1mO6/ZuQr/ -M/8V27KX7us2t03kavFc95yLwPu9t9YtEzy/uBK4br/3lSFPI9d9kO1kTkHJ -uu+THjANla27la/mrGjFum3F99Lv1Kz7hbLIYd2mdc+Y9LZ97V43stgoy/Vj -3Y+sT9+En+uWcq4Vf/N73afup1o5jK877tHPooTJdQ89FeX8NP1/xhMb8m7f -/LqbX9UxXKOvWzh59XTs0rotM/a/pa6s+13Ojfm1tXX/D9n23L8= +PuVbyQV4/NjhaBPZeX4JQq3YPj3kpgHB/OU1LHoJzKrkVK6w0WBNjCCj+HoJ +rBp3+13H49ti1/Xvj9KXINZA7KoDCw0mz6me0StbgrbPbtNWeHzsOd6mVtu9 +BC+faJKk1jAoVOfgLd28DIu5o4frZjHIXXKiiGxbhup6tbh7MxhklrQHeu5a +hoEtw7c0/2LwWuUNfa/mMrw5Gk7LmMTjsSL8yrZchktxu6P0RzCwkXAvfPt2 +Ge5tEn2Z/QOD+n0SnG5Zy8C144Pl4e8YyJysMztcsAzi0bJ7WvHzpTdgA8uP +2mVg29cz0deFn8dDBWdE+pdB4StHSTt+PunmzU0+lFoB7MeJwNV6PGtvjj9i +LL8C7woe252qw4AwoBMlt3sFUrtf6b/6iEGVyAuo1VyB8Kq9I8pVGKje2R+6 +cnkFtt9gCZMpwWC73s0dNxJWoJbD/7hOOgbBlpK+GikrINKdJmiUiucLPuRP +pOwV0P2rUmGVjI/3nYh3WsUKhAxWvnd7jYGoYAm5r2cFCCtLC5djMOD8Qbc6 +J74KnGT5TOcHGIy4+bw6GL0KSnyyGbZXMXAsCGV5n7gKPkf9zSosMJicTby+ +PX0V9j3ftsx9CYMZD/JekbJVYJs7MPsKzzdWb25onO1eBc/WJ8+D8HyE93b2 +VI7kGuwq3uVtth+Dffd+HZZLXYNYm1ZtURYMiuvmUuJz1mA41/QjmRGDQ6yc +XEIla5BeSfnmvEoFFLSrg0BZg9ZnU61581TQe3Dbrm9kDSRufQ6YG6bCu3oi +BRNmQA2VVEs3KhWqKW+nH5gwoPolpQA1PJ/LF2lxvn2JATGKSCreDqFCsvXi +5I0rDMhzMzNWHEyFEKYTExfsGNCnJO8BSX8qnD+4MLLVhwEx0Fyk852pMJqm +/7s6hgEZOxYa9J+igtCDiQ56FwO6+GI89zw3Fdg7Nl4Y62FArKcGbk5yUGFJ +5kh7708GpPWkrj2QhQq9VVGfG4YZkH91pv7L5WbIWNBsfU5nQEWe30tD/jQD +so2gKG9kRBnDLnOWdc1gd/RA+TUjRmR34Etou0czTG7bWJdryohKC6ayTzg3 +gxsnvZl+mRFZf05bq7ZrhjvU4u4H1xgR/doVsbDLzRB2RnU5zZsRNTXnd/7Q +a4biS/sP/YljRDW7/iooiTUD4aZKyfWfjEhWjp3Bt7gJ4lOVC+yuM6Hhhxkc +YT0UoHRdISc4MiHRtBtHbdopMMcZ+a3NhQkFvcR+qNAocNxhkVHNhwmZfWzT +qqyiwLLyR0NSCBPSP808czeJAiZlZ4cys5hQim/A5l4bCohgnmLjk0yIVFJI +dRhthCNraUpSs0zoZXvU6Sf9jXBjV7fmeToT2t8xJ5HV3QjkMGRbwciMpvg7 +db83N4LnBY6CUH5mpOOXVSiehddbvTGGO/cyIxeOsWHk0Ajhf8v9b3gyo5LL +b7XCxslw49NTC1MfZrRHV2baaJAMhrlXNHV9mdFriRtn5HrJwO7EwSgZxIzS +nzbc62klw50/Z/1okcyoJTtapbqADLY/R+4oFTKjTffo7gQ/MuhUVZiLljKj +itQH0y+8yCCd8EyDtYIZ/Y26wgauZPhuun+1p44Z2dmNfGiyJsOZzoDbj78w +oy6Vzs5FQzLsKjpn5tXFjK63XHfS0SMDd+Q2daseZiSab5aWpUUG8hlsWe03 +MzrRHX25TZUMGrSNt0ZnmJF0Ff1PjAwZxN6NmnQuMKOhCLmQvs1kWAipPFS7 +zIyYHOllhmJkyNO3WoolEFDwsfNHo/nJeL2q+i2InYCuxRX3eHGTwZGdWOZK +IqDZE+UedznJsK0+x/uYIAFlDXiubGAmA+vbuxf3i+DtVWKYE9ca4Nfd8wel +xQnIj/HYIePlBqiy3C7KI0lA5jvt44HeAPGay/RFaQKq//ZR4txcA/hI0roG +5AiIbWI1IeZvAxitJZZ82kFAx3kLGfimGmDfd7foip0EdEXMk6dkvAEEyo96 +pe8hIP7jX0LDRxtgMlbUOHI/AYlbBexJ/IPX995jqgGHCChs1SWpb6gBMoyr +RByBgFYu8LobDTZAsGr4grEWAQ3neSkxDzSAtbB1p/ZRAqq41HHkV38DaM2p +FisfIyBn/Wox+q8GkPxCjJI4gd/vQClBG/dq3ndPjjME9PZ7nUZDXwN8C8u9 +MHuegOy/k+Z8cRc7B+7/eRH/vneKlhPuyJMXhKnmBKQ84Kn4HLfrTvn5YksC +Sh2QSp7CfZJ7pf2NNQH5ikg9DsT7VxqjFT69TkATpybfHcfvh9j8OvKWIwGJ +RZ2oM/jdAEPp7h62LgT0/VOKpz9+/0YSq99TPQhoWeutBgkfb8OT+0eHvQmI +tMY//nkYnz8mnpztvgTESVZt+TrSAMluL0Su3yWgpQb7jRL4fAoNbvZPDyKg +MSsYjplsgHvGqcN/HhEQh2rFsTP487iqUVJqF4HPT/+tBCf8+X3O0ZTOjCKg +i3eiz7Tiz1dLmvJoNI6App4TpK8xkEGK/Zupw1sCCmQbZN3HToYw7yt1WWn4 +9UDWx5ZEBsaxEcXxLAJ6naFEbeIlQ2/r8qpjIT7eHz88N4uS4eSRezbZpQRU +neK5RMLXa2UhV8tEBQGxM+kWbMXXc3zspsQbDQS0f4XO3qZEBlMrpOXSSUD+ +QZ6EWW0ydCzcDXJfJCDVyF5WSW98/9mRJgtWCShXiTV2oz8ZCnsijOaYWBDt ++fD8tmAyRNS83e5JZEEe1XJPAyPJcDqkoemmOAuq3UWM58snA7aZyHtLgwUF +KXGk5UyRoV4nLCoggAXd/yPHMe7cCIPWZVTv+yzoDU3L2durEdiD+plcH7Ig +toiVIFb/RtBv2OdwJYwFLWt0Zog/bQTs6DfNI69ZUPdNdtqBd43wRVdmhKWG +BQUmLPmx/WmEfv1C9QeMrOisGH30izkFWOx+uPizsKKSKv3FRSsKyD5iT/Xi +YEXRh+LaRR0oYNt0kf86Hyuycggt0fehwOixtQH9Lazob5hIwLUXFJgx0H1K +0mRFCjSdPVEYBZhPfO174seKGq/vK/dVbQJKxTlpt0BWlHOYlY2i0QRhSq1X +jIJZkXHUR3Nu7SaQ4ib3Sz5lReIrTcr3TjXBYWrBQG4CK/pK/a6943oTBBx7 +9qetghW9HpQuM4ppAiZd3WnhFVb0E0hDanN4/0Ufdy8zsCH7l59nyEt4/3Lg +2ktgQ4FKPTInGJtBim3fTCqJDX2QfT2vR2qGw/XScwfE2dCLiNtp9C3NEHBk +jW5yiA1Zr+120jJoBibNQsZXXmyIlUc1LzyuGUyPDFI6b7MhBfdTs62JzVB4 +VCSCL4ANpXZ+K+ZIaYbrht6ydx+yIe64mjar3GZoM9E4Zh3LhnoCX9a14Ofl +G4/6CIVyNsT10IzRfawZdDLb5UoY2NHDY9QRPlUqvMpmm5oisKP7Bxi+BalR +YfG9aqk8BzvKPXK5fh7h+UNJjEEcHzvay33pVZ0eFYQbzJ19pdhR6N6HDRtN +qDD0c6BU+wg7CtDSZ0u5RYWHwvPHPwXh/U89i3Aoo0Ikmfyr5hE70iKNyf2p +oEKiV4xX3hP87+EVPRY1VCj+pv424gU70v+yUHq4kQqDCYHL51PYUXCVYwCl +nQpHtvFnfKtnRyofvzrOTFJhVVWR/TcLBxJPunOiZguen/1ZffmFgwN1BLb9 +SJHBYENsy556Lg70IcavJ1gOA4UV10spGzhQgcL57eqKGJhUlxZe28qBNFLP +qjup4vmVnq7V+BEO1CRP2bR0HAOXi1dq5u9yoIc7jE0r3fH8LOFPr1owBxpX +PeemexODd7+c1/xDOFCwvrV7szcGw/Z+aqTnHCjayOtQnS8Gl31fFkomc6Ce +QxcEvPF80fBNR7oemQON5UjUTsdiMDpk3hjazIGMyR+u7YjH4KHiwGBbC97f +oNnGS68wqCuckTHv4kDa5efii95goNbIl+DyhwPRQ3jcFLMwkB8/Fh5L4kRm +VvXDiuUYkHe35fbyciLhO/LcIpUYWHtebNm6gRM99nhuvILnx4kM17hyJDiR +pAnYl9RiICJwP6hWiRM59Z/Nnm/CgFW1ymfsJCci5bgLhuL5+ZtbR2N2n+NE +gbXn7Xd8w+BwNVbsacyJfAVfE2rxfP62fs8soyUnCvO9sDyA5/8zpotOQq6c +iLX99a6Z3xj88t97FZ5zIvI2gd8KUxhsE+IOvRHNiZDkSNPNaQzs0weLEl9y +ouFGo71VeL0x9ymGSEjmREqcVaGac/jzlGHMIxdyopjXKQ+5lzA4Ufy1m17K +iU5t2pGwbxmDCIN81h2VnCihP1Tj4goGEu42Fx83cKLGC9ZSEXi9s6ueyni6 +kxPNF1XFfcLrIfeLKTvudnMiveP1sh0EGpSO+53L7+VEXvc0j3Tg9ZOW8N40 +oWFOZD33Tp2C11vnbWNOfqNzIh8GWx0fIg1il129SaucaHLjrmBTEg16nx5/ +o85ERLP3zlgd4KLBtRKGhQROIuJUsJ/9jddvtzhtEq6KEVGG75P7nPw0qI5H +jc83E5Fj7sQHMm7WPaJ/66WJqNth4HkAXg8+MaHqbFcgot7nzHuG8frxdeae +8TE1IjoobqEcgNeXg4hLZLMmEX3VGw2XwOtPhS8Dmie1iagjNCkhH3fhSvTz +98eJ6OZETsEXvF5tNGRQ9zTH+/viNvULr3e5f3VZp1oS0ajqq/emeH182jPv +aZc1EUmujki14u5OsO4/5EREK53ZAll4Pb1lL+J2cCUiW+ug54J4/W1N3qga +70lESE+j0RP35GTzIwY/IiKhcV1lvH5XuZdcoBxIRMkWeyKDcHtv9PthGUxE +z+YnXnThrsgy5ogIIaKfLLWGcpI0YD68Z0/dUyI6qXC87AZu3XaS2VwEEc2l +yH4vwB1yfeC+XDQRTZ8dLprDLRQe/fVBIhGldfqH2W2hAemLQKvLWyIiJ4ru +j8PNJBzaYJKGj9/gkHQj7gUj9oojWUTk63f+wjTuiZiAfMVcIhre3NMmLEWD +ge7ldKECIpLW1Yg+gLt7k2fiWjERsZ8ZTLmA+9PlqRdDH4hopkOLwQU3+bVd +aGsVEWGZ5a+DcVf0/w4srSUigcEPT/7f+yLZyz5JZCJq605pSMedbvvVOaSZ +iEq2/tIvxJ2YftbWvYWI2OJaN1bgjhrFzM0/E1GI2ee9/70vClXSO3e0k4ji +mvXj/nPgjY/HdnUTEcuzsJP/vV/yfq9+eGMvES1HsZ0uxn1jpkiVqZ+IWEUJ +iVm4rfft3jkySET9z3rVE3Cb3szc+nmEiLwa/m57/N/7sVJZ8fIJInrTFGbp +iVt/+RV/8l8iklnkHTHDjTTEOJ7ME5HLYmUNwr3P7/ma5xIRhVdNDG/GrVDD +M3d5jYgmH49fXsLnU4rwcFSPmYRkptm3teHeqEP4tZuNhBqbHkAKbt7gO11i +RBK+XkpTPHGzUhZoBB4S8h7+efkI7mWia/0YPwnl3dKx4/rvfeDxsQ/tQiQE +WxUaPuHP+0frz7TUTSQk+z3A7TTudgHTV8+kSGiyzbX+v/dJzefaI71lScgw +4/f1j/j6Ku6i3DVQIqFTLgcyt+J+J6btrbKbhLhmHuu14uv1rVnljU37SKjt +lu5BL9xhP/PMJtXx+3tcI1SBr/dgaaWzXZokdNV2kMkE9x2rVP0abRIqn1bT +msH3h91w3P6I4ySkFre7Wgz3kal7fKpmJMTPvFCoIUqDg3sY2LdYkFB/ople +Bb7/drl7r3JY4bvD7KDyQdwSdMeRb/YkdMWoh1EO369zDEZ1vrfw+3ckpn/e +QIPRw5/KbP1IaMTLc2Qf7r5Ag/enAklosUz17nM8HtDYNROkQ0ioXY5YeBSP +F6m88l4NsST0RKxB3o8Xv96A8QLhFQkdduOVL+ChQUnZA8/Db0hoqUT+23/x +iGI97F6eSUJd3rOnD+LxavRDqkteOQltCb8Unc1BA7ewzqnJahIqe1MmV8NO +gxUbdmelehIq7Jy1acHjIbeArVMaRkIsyj9XfuDxcuc1OfuEHyTU9HrznSZG +fP41Lox0/yKha1rsMWUM+HoSDLouOkRCYWmGNil4PD5ZOWD7fJKEUlMebnDB +47XLhmSrR4xcyJ7HrLxtAYPCaplLntJcqF1RXIQ8joHGi7Pf8+W4EENcr6rr +GAYN9oFm0zu4UJjnRXbRUQw6hftNHPZyoUeSnu8vDmNAd0gyuqLNhT4RNiik +/sLPS1Gp0ydsuJBi0RtX1w4MPrps1pbL4EKHfc59IZdhsDw78VQ8mwvF31BX +4SjFYJ9XVTdfHhea+R7VoF2MQbqvhdtyKRc60rfgn5ePQVhIUlIrhQtdzJTW +tMDPX8tkOaZbf7iQKHrlz4Kf3wxfd1a2bOdG18gdLg63MDhoxkCsV+RG8u5H +lfbg+YFbb8v5MmVuZLuoQ5z1xGBowHn87QFu1CpuIefgikHL3zwJHz28ff+j +L0rXMUjgUr219Ro3Yvu95DR/Hp8PTXTAO5UbTQc02Efh+ctmwStPTTK5UaXF +1rxxefz6g/cG1XK4kfF9F3nNbRjUhDQ9XyvC28sFpX6VwkCn8/x0YAM3Kjf/ +Q/khjMFxJ4eMJwPcSP09829lRgxMX8ZIvJXhQXW1V8fHW6igfqPc7f42HiT6 +6GNYI5UKm7R6m2wUeNDvgC69VxQq9A5t9Zbfy4OES3tHNGupcHVvbnu2Fg86 +OP6z91wRFeybGp6UWvKgi0HCEZVxVPChzzC2vOJBO89Rvj27SoXxS9SfLG/x +9pe/rsVdpoJl/dvqQ2k8qEJ34XySKRV0w8/7p+TyoB13/V4knqWCoGIxg28N +D/JrZla+eoQKmZd91hT7eZC19hEVBmkqTPzyW60T4EVpZ2gn7nc3wzZhh/He +DbzoDU/wkZmOZrDUN/6+JMyLinL4dpq1NUN7jnKFsjgvSlxk7dlMaYYPt/tu +v5ThRbIvii7ZFjVDsPCRFTcVXiTSOMRFeNYMW46xLUtf4EU/v8P7c6gZ9n7R ++iRqzIvMleJeeB7C8+lLfql8JrzISHatI2Ifno+70s+umfOig2XHLaoVmiE/ +diTrqzUvOhn50LhPBG8/Srv0zIMXeRM/TmlONsH1x1EfV5/zorHZM3E2sU2Q +T9v+qOszL1K7Ha9e1UeBp9LVbxfbeRHjFc3LUt0UsPM0qhLr4kXyzr0Gd75Q +QGpz0KxZDy+yDYhykyZT4Ilj/6W+37zo/KOrT6WyKHCdK2HvyBwvKtRh8Jl0 +p4DkMcHvyyJ8yOwjE+s7JgqE1K/ukjTjQxqzu7cVsDUCch5QlrjEhxatk9tn +1sgwI4btFrXgQ6p7ZiSUFvB61PnlXkErPpTvj6wfD5FBUVxNld2BD5nbdFuv +kvF60tkLJm/xIf3PZNtkvP7klZg5XhXHh1QqY+cnmMgQ7jp8/XI3Hyp+Vz7v +3FcPojrezme+86FPPgMHtnbVw2sR4k2dXj40c2qbXiutHt6XK9xT6OdDv2/H +VQqU10ML242EhRE+FNag/lrzRT1wx821PV3iQ2fvpbBq6NdDcC2zerUoPzrw +ruNmYnod3NqwiUfKmB89W4n/4Xe2Fqi5HBfBhB9tKx5SNtOthU2Gs29MzfjR +J/k8y11qtVB5v/ngCwt+dHCp0aJMuhaYFrytSdf50aX+K6NXpj9C0NeO8jlv +fqTvmWTNEPoRwhKe2TfF8SOVfd8iblbUQNp2FopbLz+KtU03vcRSDZ/ENZcc ++vhRZs72McaFKljmua1g08+PhhYVnV/+qQLDuZlQ4yHcZ3MtKmlVMFPTf0Zj +kh9Fng1Xy46uAmRa28PGIIBshcbGkEIVdIbenYrZLIA4Dw5NmEZVAOsM48Zq +cwF0Zk3pfclIKSzkRIX2XxZA7za5N+RTSmHEYSeB/YoAyhF60RqdVgotg6YT +hjYCyN7klrekTSnEfCuq63YSQHrKLs5CP0tA6aODy4KfAGL2TJ80aCmG82Fd +TTuTBFBoPKHXNKoQdE/c0DzzVgAtuJxNy3MthEMktiKPFAHEXyxR1WdYCJL3 +974uzxBAWRXbNesJhfDH68nNY/kC6PH3nS1BjgVwx0J7q02dAKJy655nOpAP +Kbty78QPCiCdwk629oRccNwwRS8aFkDqMmVj/m65sHdxl3vriACyrqi49EU3 +F6o+5tgRJgVQrKmgp81kDnSezzG6viCABpsWpHoP5gD77ezd+zgEUbVRJjxw +zQLMYiLrBFEQlcaenLDmzoIInZ3br3EJoqxEzgCO1EyQ5M3eHMcniBghWsKq +IwNUk96RmEQFEf14/4EcmXSwbcwaoMoLojd7wg8bWCeD0rsxi0EFQTTZ1f6o +7ddbmAlT7GHYKYimtnvlO5i/BT/TrLY9ewRR9rTuiUm9N6CjOWZ4XEUQhWG+ +dSdKk4Akq0ix3i+IOsMfTmXKJkHURGZV9CFBVKSqHkabSgTzz6OH8tTx67WM +HE08kQgyJQp4VBJEnmddpfxSXkFOQGbWmpYgqgmtiQ0LjAcPm9FtG3UE0SaS +JLMZ60tQM1B4s1tXEEmwsg/+do0F8obMGCsDvH/TZzECTFEQujiywddQEJle +HzpbKhQJZ3/seBZ1UhCdE/wTw7sSDqK1dqT3pwVRsIte7LM3z6A3NSOo6awg +opJE6d4/HkPy4xGm3+cFkZ0fk76XehDYu+y4s2qEX1/FRW7FyQd2X7CjC5sI +ov/9f72FQxluymbrrpAcmdC/tO5Alh12Vy3WzUtLt3hhte7tlumGKw7rJr88 +mDPttG7rLgrfkPO635wc+fzJfd2SoGCSenvdQuLvbM48XjdTe65fWua6v+mV +vD83su5PSd6K4LphfTx5p9Skpte9VuxScN9R6J+P7dLRvjW77gazndfsXIX/ +mf+KbdlL93Wb2yZytXiue85F4P3eW+uWCZ5fXAlct9/7ypCnkes+yHYyp6Bk +3fdJD5iGytbdyldzVrRi3bbie+l3atb9QlnksG7TumdMetu+dq8bWWyU5fqx +7kfWp2/Cz3VLOdeKv/m97lP3U60cxtcd9+hnUcLkuoeeinJ+mv4/44kNebdv +ft3Nr+oYrtHXLZy8ejp2ad2WGfvfUlfW/S7nxvza2rr/B7ye3L4= "]]}, "Charting`Private`Tag#3"], Annotation[{ Directive[ @@ -19228,182 +18718,182 @@ sxX/brklqZ7u6vKW+dI3DONWt2zz7kha6/qWs3Nd/m5ubvn/AOhbVcc= AbsoluteThickness[2], RGBColor[0.560181, 0.691569, 0.194885]], Line[CompressedData[" -1:eJxN13k01N//B3Bmxr7PtMgWSSSRkhJ5XWtSVJREhTaylBBZs5Qlsm8RUXbZ -lyxlzZKxzEwbWZIkypaQ3e/9Oed7zG/+mDmPM3fm/b535r5ezyt25bbBdRwD -A4MM9vTfa93mLZNr6121DP97TObVS8jV0y2sbXfJzJduN+e37bUEuhU+O+R6 -s3VuODO+ywpHat9wqGDQd6ZdrRs2FVvp5jxZt2FLb/2Hsyx0/6xRu1oRULth -fuXgTeddajbsekDEJdro9YZVdmqq8Gyu2LAvh+hjtp0FGy4OuKmaRcrf8Hd8 -yZQ2Pm/DmitaBg+GcjbMMmGzdT0lY8Pbkm5rjCk/pc8/BpexSzBhw32PY1iv -LcVtONmrumOgImrDx+q4C7Ns/DfMXqRwV1zad8PxGmVOKlT3DWtzJRBPxV7f -sLpay9NRpL5h3R7bwLLfxiBvy6E10eUGCdnJBVPudsCZryTpmPwAdBz99HBq -LtAieyrg1nAQvJ6NJGQcuA8ldu1RDKuPgV+Z2r8zyg+qmBT1N5HDgbZsXOkc -EgC2E6ghyzoSHr8ejG59GAzlvgpsGqNRoONpZS9wPwxOpkWcZDkRA4zbFyQU -X0eAp0nB7ZG4WKj+ep8xsCwGYhIbBmxW44G/TmNqX3EczN/YpT0gkADOKSz9 -PflPQFGGcdJFJhH2WYRV7MlKAg+TGryOfBIY3Ol6ZdnxHOCTisI1uxTwtiiS -fU1+AV6df1c8vqRAwZmodN62NFg2YKB+0kwFzv3noyqbM+DHxOsIbuJzaJ4Z -uMVRl4PNd0ShJfIFCB/5F3n+QhEoKHVzz2hmgMJ+q06f7iI4OCJqg2Iy4KR0 -D9vL88XQc9zCy2Y4A9wEqr0ZjErga/yerw/vZ0L3ktetbIMy6Jq8NDuSnQWR -1cy6yycq4cGRtlCnTzngJxLsfepZHeSPKP55VpYPDDFWhun9dSCNq4sRn8wH -Dw7tXcuC9aAhaJ2gvKsAnBYY2jPi6+Fcze5Z+ZgCuEFz3roW0QDTR9nXlA4V -go7/lfyXD97Cff+l2GWWIuCcVOpjs26FqfwSzQ8hxdB2eVbwigAF2nNH4s+r -lcGTcp4T8ioUWLn0/IvG+TKw4t7jxnCZAoHX4lgF7MqApcaiOzmVAnsdnO8+ -jC8DTeGu6F4pKvSFr5tbTJZBTW8217lDNPh4SkXMPrYcio3N1o+d/QAXxiSj -2nteQYJB29De0G4QfsV/I/pIFRR/8Lz77vAgtPywfOPnUgNZD69dGTo+CCzX -7efhUQ0kK544tWwyCNBxRoM5qQYexfPv3us5CLec93wubqiBqxdL+sLrB+HH -28XweO5a2DQ8qmGs+w3iZnJ7cNm14PzXkPjTdAieH640FHSuA9u0I+vrtkMg -5GL+/Kl3HVw5JzbO7zUEeXGhh2SC60D/1WSTbsoQNPVm5ruk1IGke5Br/vAQ -FK5wnWkj10E3rnbwrt13IBVv0iqVqAdlonQB4f4whB93q943Vg+djCbvOsKG -YZ7/kdLfuXow/xP0PTZlGE6VdER34BrgAWVs6+6GYaiaMVBtE2qAztBsbz2m -H+DDW6E0fKYBzDl2G8QG/4Dkdtv3D+uw8QSpOcn4EfAmOE+Mv2yEznkJ5RNF -o5A0n/pGM6EJdiV1B/ytGwX/++wfTLKawEsj+EMiZRT6B148syxvArnwabvx -qVHYdtLg1DVaE4Tvrk55LDsGAhoi+d/ZmsHg4mlmSu4YsPhx6tCcm+FTvRv1 -bMYvyD70fLniWAvIWu0VWS37BTbVPoWXz7aAP/egdXrTL8itPMK+YN4Ch0y1 -CPPDv6Cxvq2aya0F4md5DsWJ/4Y/RmzFj3NbwEQy/WlPym8oDD/w14izFQZC -uiwvJ44Ded24QKSpFe77GH82fjkOj3ojeVSorSDq/E3b8M04pOUmRZ7sb4Ur -Zn8ldL6OA//a5Mljc63wQ37rsLz4BOj52WWk73wH458umzPlTkDuWK7vFp93 -sCg6afyyahIeDR3Q05Vvg0cmzBKrttOw3ZuDL8uBDKr7OOfHnKbhnkQz2cWd -DH+YiC2fPKah/EnqF3hABuMi4ZuFIdPgZJohVBlDBgnWg3lXX07D6tQdzTMV -ZKgru3qw7fc0nCMx2YuukGGet14rzvoPnD4dZnXPqx2utrjfkLeagalk2aq3 -tzvgmsou/fnbM0BO1mtvce6AG0WUg9UuM/Cnqte4ybMDrBIlmLQCZmCZfdu/ -guAOuHW764VxxgzM/Ho0oJHZAW5bxb/dH56BJ0mjv6z7OyDSss200/wvTN8w -COzW6oR6lm1nbC7MwtYwN3Fp1i4YeSGr22MxC6n8RndvcXcBJ9LUOGY9C1rh -VyLyNnWB8b3bB8XdZ4E3sV5JSKwLpkabtvU+nQWZT+SmaqUuEG5zGNIdnIWm -ulU/FusucA1pd5S2nAPcA/WJieYukOfzjh1zmgeHoD86V5QoUMX6WarFYx7u -zX18VK9MAXUG2eq0B/NwbovthIgqBc5O9X41i56HJ7J+2z6oU8C549DuTyXz -4DneJyt1kgKvg6aqG2bmIUcOzt3D6owOzuxbov0/GPj93aPOhwLmf4/K6Nsu -gEyY/dk9jRTgIjJQPjgtABfeYEWzCbv+vgZHU88FSNzVXnuxhQKbbmlXW4Uu -AGOoRLI/mQKto/q6foUL8Dj2WnfjewrsGzCzqphdACbRHtUf3ynA8M4nbYfn -IrSTq++ScVTI+6mhk/1wETabxZflEKhgwsw8Lhe6CLvmyw4EMlOhVOPRgaPP -FsHRrnHyKDsVrGoiG87XL0Lh1sse0XxUoJS8GAxhWoLlzlMfJrdTITW5Sejf -4yVo/7MHmSlT4elFmc/nYpfgbKavHcNRKsQLREWUJi8B3lOQJUWVCqGx5swO -BUtgPBng+0WNCm6hy1PjlCWYv2JUrKJDBQMv+cYh0jJItHKUlp+lAuFy0s3O -J8twsP8hMcCWCuuChJ17ny9D0O4xq392VFjqsR4IzlmG7ROc2jduU2H63GHD -49XL0DpeFwcOVOjXe6/ytm8ZPqaN5w+6UKH8KBtv1fYV4ODXM+33pYKl8N3y -9PQVeGPzi6M5jgrNisLsTnkrQOxwY/4bT4Wdp5suqZetgECedKdIAhUGfTcz -fX27Atd59FocnlLBeLTMkH94BS4M6tzhTKWCTsn89KMdqyAW+FiKJYcKu4/f -22P/bBVkkKiSSDUVAq+I3lfNXIWT+IYliddUGHFvpXEWrAKHi+BTmTdUeJ7P -75ZdswopKYreirVUENhU2TrUvwpTEq39Ko1UYP+6eP2c0Bqo85232USmwm8n -95QjT9aAnCabO9NDhVtloUzFqWuwGpbV9OsLth5zqda7c9aA9Udl6rdeKsw6 -tyrwV6/Bw22mqeR+Kqzd2/xurm8NHHeEUcO/UYHXs+BPoeg6kCUsQgZHqaD4 -8Lu6ZNY6PAkV4EmYp0JF03xmcuE6yHLZZ9r8o4IyMzvXlsp10Ct026KyQAUU -sO8zoW0dTg8ru/csUuF4kKfN0O91OIfk7zCvUiG/maOtcysDujTXnrgbT4P6 -tvSZIFMGZPFyTfUJNw1K+Sl3PM0YUN9lnIkyDw0ybixN219lQHMV2/36MIfg -Tk2dt2FA3fsjGIX4aGB0ZOG3hDsDuncy9XUYiQbj2bo/6hMYkHHKWLQuPw22 -BE19XuxhQH664ix8YjRg/bzt/EQ/A0qc5mqPwby8U/PT4DcGROYvzdu2gwaD -dfEfWsYYEFPWRKuIOA1yF9SoMYsMiPvZNhsRCRogq+g2+W2M6IUc75u/UjSw -Oab05qYxIzp8Q8B5UY4G01LbmoouMiL/MwQLm300cGJfbF80Z0Thjy1O92H2 -6qjoC7rJiKicl1Wr5WkQaXh4JduNEb2fCrtmd4AGFWaHlH89ZUQMaBm9UKTB -UbWtGvtTGVH+844cJix3NOz4p+uWzoiKmMxELTGTf5SbsOczotPgsk/yMA0G -bBTdpGsZUfLFi9OJSjQg3DtYaf2NEWUG654wVqFB0IXN9cU/GNHwCMOLXMzc -ynOtS2OMiHv7Euca5q1rpd2PZhjRw+7D21KO0kD6gcJCDh6HrBNPC/eo0uBM -+IFDvyVwiEv5xM7tajT4dIcEB6RxiLCTTL6K2cTwr7a7LA7pFx4MzsR8bUuJ -EcchHKLmbzKUUafBvaf7nffo4BCPFplnjwYNkrPky2yscch5yNN7VZMGbT1X -W5/dwiETTQPKfi0azLPH9r53wCFi24qmJWY9uyVGFXfMFdSkDswr8o36nCE4 -NERW2BSuTQOpq3MWKByH/rm6RdRgPhstedcpGodcyu8dHMf8cj44se8pDi0v -es5oHqOBafXZ0Zd5OHTSOUx7HLP/uP/yYBEOaW16sE7SoUGxcCX35nIc4tb/ -NHgEM7u38EHPGhx6GWwo7I+5SnPER68Lh/RCKn2Jx2kwcpc/xuc9DuVo5Pgd -wEzM1M0q+4xD5pWX8w0x32Qr6BQexCH++WKfCMz8nS6Ck9M4dK9j3068Lg00 -17Nld8zhUFT0LRdhzPb7+tSMFnHIZyFmThFzaySyqmHEI9o+MUdLzLONDu4z -THh0Wb3BwQuz6Fxa6C52PBK2bkmKxuxynq0slIhH7bvsnGswPw9Ubm3Ygkd5 -r9V30jB3Vtr1zgtg798cWR3GvEuIxmgmjkdG2fMKrCdoYKBH2BwliUfwNyyS -H7OXl6JUyx48Km84LSSF+dNggr6cAh4JTMWWamLGETssrh7Go+F81HgGs6zG -ulOcCh5dqTRZu4TZxEk+kIzwSP7F7PWbmB+mX01c18Sjf7NCS46YCz/F5B84 -jkfb93yr8sTcx9Jab6mH3W+ZXpY/ZlalpQ+JZ/AIt2DXEIpZwVpmtOscHpXo -nGSLxWyeeHkZb4JHFn/+eDzFHNIezn34Mh6FyFoKP8dcsdogZnsFj9zlSn5l -YB6WnVNIuYFHW7f0Dedg5jWX1PlgjUef5kc48jGrRFwwZb2NR5ndn80KMVs1 -BN9SccSjr6VFg0WYo/6+8bF3wSM5F+fQYsz2tHCLi+54ZM6u4fCf9Yuuqunc -xyNnTdPk/8bvCVcUU/DDI4pSDfG/72O9zcYoGoBHwfutu/Iwj+j1DXIE41Fg -zsUP/91Po0xB3b9QPLp7JlIsE3MKh2/K90g8+sLO8uq/+Xj9OuvdFYtHEpNl -0UmYTd9Jmlcn4NEb7SdVcZgPZy1BZjIebYnOkYrAvCWgY3vUczxqChoaCML8 -93rKulcGHj3nUer3wUzRdPxqnYNH3Wrp4q6Y88W1a43y8YjvjnDx7f/m/+23 -l2w5Hp3jZck0waxdV3NZoAqP9HdbcJ3CLP4sQpW5Bo9cIuKr1TEPXDy01t+E -R6/GLKckMVcrsw+8e4dHLTJDTtswxwv0vynrwNbr+poaO2bDbl/Pxx/xSCu/ -u3gM+z/ue3XukmsPHpEaHIy6MXPHSh293o9H47Qbas3/7QfDzhWVH3hkq885 -8Qyzatc2j/FZPOoNHI/XxSyYP27avYBHOkPLTgcwL4TUKr9dwaOilwVxgphL -dK8vJxII6D5TYuEYth+lmgvdTmwioAsJDns9MTOn+5kc4icgs9qnyuaYv/sZ -HREXIiAvmQdh6piT1VYWl8QJSKKSlZUJM+nNMdecAwTURpA77IPVh+lEgQux -hwgoUDbM/jLmTreJw77KBKSZEj3xXz0JPBy1cEGDgPS55kr/YPVnrWTAhc2Q -gFjlc5yMMI/m3HW2ciCgB8HWkStYvTMWXhvIciYgYs06ZxvmljD/Y2Nu2P17 -bMuKxZzhFMdv7UdASZ97VPdivqZaWWUTTUAn35/5eQqrr4PUlbVb5QTU6sz3 -0xqrx6c1H1oWVBEQf/Cn49KYa8u5KFM1BLR8LK91FKvfyYkiqfYtBGTKbLDt -v/p+8TrScOgmIF/HmNWTiAafF/wC7i4R0GXefwFzWL/QtuGcLlvDrv/69YMM -zOX90cbzOCYUJ3sw3ghzdEP6bhcOJrQk1MpYivUbg5AW8j0hJjRN4vh4VRlb -n+0cvB6qTAhfNS8Rh/WzZu3IeF9fJpTwUiDu+H4a/LxR3eHmz4TuKxv8/I71 -T9aAYZzjIyYk/DPH3BOzboui3dVIJmQ3qtqRh/XbzmO9aprPmZBo+Ck/Ataf -P+rs/M3UwIT+Us9yBu3B9r9u+dEgRmbUPbCr4TfW75lsvjr4MDEj85YSB2vM -u4JZs1zZmNGRHzYwiuUDK7IJ0ZqPGeXpp+z5huWH8RPrI7pizIh17wf11u1Y -PT6pE86pxoymzb+x2gjSAH/qy1CYNzMa9SlsWMfySlvNOXGnB8yI/E5F6Rrm -SFnqVeNAZtRWUNHcwkuDHdytw6LhzCjxY97OECzvqHeUjRQ9Y0ZzUfVf2bho -4Hsi4tf7GmZU1in7u5sFq7c6OjNbV5kRcXMhZ8MKFdpeNe5fYWDB8hGXGyvm -SElwHCSwIGac6pTeMhV2sCjOZnGyIIWknVMfsXym3iw+ryTEgtwDVQ59wfKd -r+b6oqkyCxoRuutaMk0FnFo5Y4orC2LKfgvp36lwUfNnW7cnCypv9txbOYTl -6WP80Xy+LEgcxz1MxvKjtb7bLr9HLMiXnT174isV3puqnriRyIJsbSvv7+ij -Qppzc7TMGxYktSL17vQHKmi//CRZycCKRG8/IVRj+TalgOXPHwIrGpOseZ3R -gOX74sNV0mysiOrbJhlRj+XHyoSTT/lYkRG5iXQFy8dbWy7fub+DFfmJXpeb -raLC6LeRKi1NVmSQveVjdxEVHm39p0cLYEVFkkzNyclUiG1t/d4QzIrYR0I+ -OiVh5xfXBNeSMFa03vYm/ziW5yt6j6ZHx7GiNO2s6qknVPj57MGKUSYrWgy0 -kd0bQwVNKWJubzMrqnRimLANxvLz4b2sP5jYkFjkpOWyM5bPf60lfWRjQ9sv -LDpn36XC5kTKgWYuNpTBfk/ZyIkKMquOZpmb2VDtyv6h3DtUMK2vKr8pwYZK -zihGH8PONxXHda5ParIhktnQHFhQwcHkasM/PzYUtZo2J6eL5fNnvwZVAtmQ -3LzvnSjsvJT//c66TwgbAl+fU3PaVBiz9VbhjGFDTrc1ZUs1qGB+P6lcNIMN -MW2+d0kEO4/pp33OOd7Khg4mLpe+kKOC9OSJqEROdnQnNbzUhkSF7z4K1yCG -HTVeCkyo/EgBqS3cofZP2BH5IPOTV9j50jbn56vUJHbEdqu5rYRKgXlaAgch -gx1p3W1uzOigAPtOxpLWcnZ0MyN8whk7v+5r7mA06GZHIlu6pWtLKeDBbvns -miAH6lioMvsZQYEtUU++BKVyoNqFr40G2hTg/EiiOqRzIIb3zCbrGhTAbQ1t -Mc3mQIpaYQI5ahSYSvAt3VvEgVr+8m5ZUsHOv89tQql1HGjCOOaj3wEKuBUf -Vd82yIFsjptZHhWlwFfqt+wsEU70JZ7A6j3dBVm80q4tiZyo8eL5j7aaXbBv -5MICIYUTnbX5K3xStQsqq4Nc1NM4UZtHhPquw13QdmPs7puXnCi0OYybvKcL -xl9nOZS84US5CZyHPhG7QO6mpO2zr5yoYamhd/JrJ5TX7zRzEedCET5uWqzO -ndDosF1LMpcL0XafOVkc3gErc1PhQgVcSH5533pqUAcoutb18ZVwoRiLXKYQ -3w7IuW/htFLFhZYqQuf1nTogMuTFC2obF8roPd8Udr4DrmRI4jx+caFTh1x7 -/gl1AMMXuVrKbm5UOyCoc/BFO6iqISW3LG6k4erwpyuRDNs3XQ03fcmNvhsm -1uhGkYHh58OfKoXcSH7LQ92aR2RoCCHHrL/iRgdxga5hrmTQ7jaaedCCfT7h -kEyPERn0btvlho1wI4kvcZcYeclwMSlBOH0nD9Jx/Cd50aMNjtq/cfKX4kF7 -gp4p9zq0gYjGINlShge5MAtVn7nZBoOjEm7SCjyogsDXsdOoDa4pFH0q0OBB -Ww6LDlvItYEtuSWs6goPOnD1SZvM4DtwX5xlpKTwIIdcd82sI+9g0qzjG1M6 -D1KaN0ohyr2DK83p9crZPOhtkchPe/F3oBNl5JNZxIN6Fmx+s3K+g017Kxju -N/CgOt3ilrS+Vnhp7r6+d5gHDT6cfe7u3gpT373Xmki8KA2v1SFd0AJiJ1hW -xM/zomI/GaV7402g8FGDJnCBF9lThv8+GGgCbTPvLD5TXvSHx/9qAKUJrB0X -z65f5kU/dy0cu1XaBKWJv/O+3OBFjtH1WmR3bPx4l1mEMy/yj7j1kJUNG/84 -vnEthhd9+upd/lL0LXhs/fhkLo4XrZRELMgS30JoKp/9+BNeFDxUJFyOfwsl -ZY+EviTxoojRxIGPI42w0u9xtyydF2122vHnVl4jhMlaSNqW8aILHuzpqSqN -UNq1O7jnAy9quDlzYYtlA4SL16cvfeJFinH+2w0vNICNi3GdYA8vmsg2c8g6 -0QA7tgfMXernRSwxp2WS9jVA2K1hs6EfvMj3AOvPguV6sOZ6pvB7nhetuTp8 -sIytB9ETmwZW+PnQxx+2YZZ9dbCSnLsgLMiHdFN+7bah1sHnGXUSCPMhs5K5 -uvvNdRCacEfHR4wPeZ7MufylsA6WxzqLmaT50LGfKu26/nXwKTAogFuZD4kZ -9tc1H6iDkOa1faKX+JCDynBK0d5aQHdG5IXN+NDSxXbjYcFamBXs3C9gwYdu -H/jXt4O9Fi7eSVLYdJ0PmZQfeFU/UgN7hVQOs9rxIYWzfzk9Umqg844rTHvw -oYDP3EpRm2uAV3hWr+4pHwo5pXt+E+ENRDmOWZv38aFdK31b+IarQEDb7Y7h -AB9K4mZvPfq+Cp7zc9zTHuRDmz7+Wr/eUAXFb2QeygzzIf+sqPNZKVVAYbF/ -tvCbDymlBC1PXawC7qfz78OX+dDTegelGx8qIfAt/mi9ABHxHcx3JL+pAN64 -aI1SISLakvY1aevLCoi7KaGbKUJEMxRFoklCBWRwHzv/eAcRBbyzl613roAm -40d3LkgTkWTinCdJrgJwE7wZf5SIaEfN4nJq0ivw2CzCs+MCETmlGH4Tu1MO -HUVsJmBKRMz1tCmVi+Ugoj+XdvESEeV2TIZoHSuHWv/2I3EWRBQV7GQkIlwO -uAW3G5zWROT3h1FqpKUMAr58fjPvRkSv8+YPBW8rg8hnEbbkp0Tk2Bt7uyWn -BL4re74aTSaioBQK99/IElDotsIxpxKRswp/FYN7CXzkRfEonYhCPF9je64E -+H0nG8vyiCi2/3Rt/WgxJF87IZhSQ0SqVV4nz4gUQ/ZupjanQSIy3Vww32td -CDQhtWW7ISKCOg3FlVOFsMLjKWM5TERn7hm9mFAoBP352dALo0R0V+GJkfdK -Acw2DBuqThPRWHi5MrdwAaCLb/tZGEhI4Gd5uPTxPLA+xcDDiCOh1A+Zz3w4 -8yBKXQUt4UlIyuxUs0HXSxiRKn0+zkJCo3o2fucMX0LI3AtLKg8JaV14IeV4 -Nhe6Q/3+JGwnoR2ifL/EDmUDzrd2R7QYCZFP5ddum86CPXeXDR+LkxDz5qZM -laws8DJ1LL8vSULPlVUjfmzOgp1SV92vyZGQ855B4U8/MkBf8NnLS/IkJCt1 -7ZhyXAa4cPf2Gx0godWfWjd9jmVA26wBOn6IhGIUIuK80tLhdr06kyyQUEUN -uGbop0F8qZeipBoJJVr2vPOZewENmVWWohokxOCTdfh1wgvYFLq/jXiMhDgX -J5qmvj6HKpMdYf/0SYhJ/57WHoNUGNa7XDd9moQ23Sy0HhpNAS61hD9jBiQU -751D+u2RAuaSxLN9RiQ0eLjXWuzwM2CeZdxWf5mEKBmhggyXEmGhMD502JyE -umukU5UOJ8BvOzkC61USsp22nB1hegID0s2ue66TUDQ3A2mlMQ4oPy9O6VuS -0NMQ86ye27HQkPb3msNNEkoTqQrhYI6BMotHX2JsSKj0/Qz0+URBlojY6Uo7 -EvIMcu+I7ouAhN5XTX23ScjEiCudjTMcQuL1lRkcSCjrvBjP0Fow3D/3o1Dc -Cfv9goSFD8kGgAPRY9cxZxLKtbjWd4rLB651EZ9a3yOhlrHe1o4QazAKyeYL -dcPW63+P48dRQJEH3SrMn1c+eNEt22jnsOBNt6g3YVTQj27S0cRL8JDuhfJW -Hf8guhtyxLdviqTbKLKHLPeCbp1T9mqG6XQrc7K8cs78f9fzV3j+JpfuX65h -906U0u1loSVh2UR35r4ir+SfdN/a/Gfx1RjdCkv77lJ/013XWGhDmKa726jQ -2HqBblbPgv2KbJs2bPUub6RDmu7dV3L0V+3o7j1eWXzuN920F257wXEzfX1K -zqjsmKF7vcKhzP/Wlg2f2Ket5TFHd8sluZs2jls3TLxqVZ10l+7LVqlcFBe6 -5x1IxQoedO8M/Le0+oBu7+LakPBYuo+wnC4sq6TbnzMIN1pNN5Wv4axADd1W -QgqLXg10x8nzq+uQ6Z41HXz/pY9uZLFtF9dXuoNvGNyDb3TvuPNWKO0H3Wf8 -s67bTdL9NPjbq2fTdI+GC7DTZv7ffBJD8hX/0d2e0sRwc5HurRlrBonLdF/J -PZTesUp3fqH9v/V1uv8PDbcwUQ== +1:eJxN13k01N//B3Bmxr7PqGRLSSQpJSXyutakoigJhTaylJCdLEUi+xYRZZd9 +yVLWLBnLzLSRJUmibAnZ/d6fc77H/N5/zJzHmTtz3/fO+77u826/clv/Oo6B +gUEGe/nvvW7T5sm19a5ahv9dk3n1Evvq6RbRsrtk5ke3u/Pb9loC3fKfHXJ9 +2Do3nBnfZYUjtW84VCjoO9Ou1g2bbF/p5jxVt2FLH90Hsyx0/6xRvVoRWLth +AaVg/gsuNRt2OyjqEm34esPKOzWUeTZVbNiPQ+wx286CDRcH3lTJIuVv+Du+ +ZEoLn7dhjRVN/ftDORtmmbDZsp6SseGtSbfVx5Se0scfg8vYJZSw4b7HMazX +luI2nOxd3TFQEbXh43XchVk2ARtmL5K/Ky7tt+F49TInZarHhrW4Eoh6sdc3 +rKba8nQUqW1Yp8f2YdlvI5Cz5dCc6HKHhOzkgikPO+DMV5R0TL4P2o7+p3Gq +LtAiqxd4azgIXs9GEjIO3oMSu/YohtXHIKBE7d8Z5Q9VTAq6/ORwoC0bVTqH +BILtBGrIso6Ex68Ho1sfBEO5nzyb+mgUaHtZ2QveC4NTaRGnWE7GAOO2BQmF +1xHgZVxweyQuFqq/3mN8WBYDMYkNAzar8SBQpz61vzgO5m/s0hoQTADnFJb+ +nvwnoCDDOOkikwj7LcIq9mQlgadxDV5bLgn073S9sux4DvBJWf6aXQr4WBTJ +via/AO/OvyueX1Kg4GxUOm9bGizrM1A/aaQC54ELUZXNGfBj4nUEN/E5NM8M +3OKoy8HGOyLfEvkCRI7+i7xwsQjkFbu5ZzQyQP6AVadvdxEcGhGzQTEZcEq6 +h+3lhWLoOWHhbTOcAe6C1T4MhiXwNX7P1wf3MqF7yftWtn4ZdE1emh3JzoLI +amad5ZOVcP9oW6jTpxzwFw320XtWB/kjCn+eleUDQ4yVQXp/HUjj6mLEJ/PB +k0Nr17JQPagLWSco7SoApwWG9oz4ejhfs3tWLqYAbtCct6xFNMD0MfY1xcOF +oB1wJf/l/bdwL2ApdpmlCDgnFfvYrFthKr9E40NIMbRdnhW6IkiB9tyR+Auq +ZfCknOeknDIFVi49/6J+oQysuPe4M1ymwMNrcayCdmXAUmPRnZxKgb0Ozncf +xJeBhkhXdK8UFfrC180tJsugpjeb6/xhGnzUU95uH1sOxUZm68fPfYCLY5JR +7T2vIEG/bWhvaDeIvBK4EX20Coo/eN19d2QQWn5YvvF3qYGsB9euDJ0YBJbr +9vPwqAaSFU7qLRsPAnScVWdOqoFH8QK793oNwi3nPZ+LG2rgqmlJX3j9IPx4 +uxgez10L/MOj6kY63yBuJrcHl10Lzn8NiD9NhuD5kUoDIec6sE07ur5uOwTC +LubPn/rUwZXz28cFvIcgLy70sExwHei+mmzSSRmCpt7MfJeUOpD0CHLLHx6C +whWus23kOujG1Q7etfsOpGJ+zVKJelAiShcQ7g1D+An36v1j9dDJaPyuI2wY +5gUeKf6dqwfzP0HfY1OGQa+kI7oD1wD3KWNbdjcMQ9WMvkqbcAN0hmb7nGb6 +Ab68FYrDZxvAnGO3fmzwD0hut33/oA5rT5Cak4wfAR+C88T4y0bonJdQOlk0 +CknzqW80EppgV1J34N+6UQi4x/7BOKsJvNWDPyRSRqF/4MUzy/Im2Bc+bTc+ +NQpbT+nrXaM1Qfju6pTHsmMgqC6a/52tGfRNzzBTcseAxZ9Tm+bcDJ/q3ann +Mn5B9uHnyxXHW0DWaq/oatkvsKn2Lbx8rgUCuAet05t+QW7lUfYF8xY4bKJJ +mB/+BY31bdVM7i0QP8tzOE78N/wxZCt+nNsCxpLpT3tSfkNh+MG/hpytMBDS +ZXk5cRzI60YFok2tcM/X6LPRy3F41BvJo0xtBTHnb1oGb8YhLTcp8lR/K1wx ++yuh/XUcBNYmTx2fa4UfcluG5cQn4LS/XUb6zncw/umyOVPuBOSO5fpt9n0H +i2KTRi+rJuHR0MHTOnJt8MiYWWLVdhq2+XDwZTmQQWU/5/yY0zS4SjSTXTzI +8IeJ2PLJcxrKn6R+gftkMCoSuVkYMg1OJhnClTFkkGA9lHf15TSsTt3ROFtB +hrqyq4fafk/DeRKTvdgKGeZ56zXjrP/AmTNhVq7e7XC1xeOGnNUMTCXLVr29 +3QHXlHfpzt+eAXLy6fYW5w64UUQ5VO0yA3+qeo2avDrAKlGCSTNwBpbZt/4r +CO6AW7e7XhhlzMDMr0cD6pkd4L5F/Nu94Rl4kjT6y7q/AyIt20w6zf/C9A39 +h92anVDPsvWszcVZ2BLmLi7N2gUjL2R1eixmIVXA8O4t7i7gRBrqx61nQTP8 +SkQefxcYud4+JO4xC7yJ9YrC27tgarRpa+/TWZD5RG6qVuwCkTaHIZ3BWWiq +W/Vnse4Ct5B2R2nLOcDdV5uYaO4COT6f2DGneXAI+qN9RZECVayfpVo858F1 +7uOjeiUKqDHIVqfdn4fzm20nRFUocG6q96tZ9Dw8kfXf+kGNAs4dh3d/KpkH +r/E+WalTFHgdNFXdMDMPOfvgvCtWZ7RxZt8S7f/BwO/vnnW+FDD/e0xG13YB +ZMLsz+1ppAAXkYHywWkBuPD6KxpNWP/7GxxNvBYgcVd7rWkLBfhvaVVbhS4A +Y6hEcgCZAq2jujr+hQvwOPZad+N7CuwfMLOqmF0AJrEelR/fKcDwzjdth9ci +tJOr75JxVMj7qa6d/WARNpnFl+UQqGDMzDy+L3QRds2XHXzITIVS9UcHjz1b +BEe7xslj7FSwqolsuFC/CIVbLntG81GBUvJiMIRpCZY79T5MbqNCanKT8L/H +S9D+Zw8yU6LCU1OZz+djl+Bcpp8dwzEqxAtGRZQmLwHeS4glRYUKobHmzA4F +S2A0Gej3RZUK7qHLU+OUJZi/YlisrE0FfW+5xiHSMki0cpSWn6MC4XLSzc4n +y3Co/wEx0JYK60KEnXufL0PQ7jGrf3ZUWOqxHgjOWYZtE5xaN25TYfr8EYMT +1cvQOl4XBw5U6D/9Xvlt3zJ8TBvPH3ShQvkxNt6qbSvAIXDapN+PCpYid8vT +01fgjc0vjuY4KjQriLA75a0AscOd+W88FXaeabqkVrYCgnnSnaIJVBj028T0 +9e0KXOc53eLwlApGo2UGAsMrcHFQ+w5nKhW0S+anH+1Yhe0PH0ux5FBh9wnX +PfbPVkEGiSmKVlPh4RWxeyqZq3AK37Ak8ZoKIx6tNM6CVeBwEXoq84YKz/MF +3LNrViElRcFHoZYKgvyVrUP9qzAl0dqv3EgF9q+L188Lr4Ea3wUbfjIVfjt5 +pBx9sgbkNNncmR4q3CoLZSpOXYPVsKymX1+w+ZhLtd6dswasPypTv/VSYda5 +VV6geg0ebDVJJfdTYc1107u5vjVw3BFGDf9GBV6vgj+FYutAlrAIGRylgsKD +72qSWevwJFSQJ2GeChVN85nJhesgy2WfafOPCkrM7FybK9fhdKH7ZuUFKqDA +/Z8JbetwZljJo2eRCieCvGyGfq/DeSR3h3mVCvnNHG2dWxjQpbn2xN14GtS3 +pc8EmTAgi5drKk+4aVAqQLnjZcaA+i7jjJV4aJBxY2na/ioDmqvY5t+HOQSn +N3XBhgF1H4hgFOajgeHRhd8SHgzI9VTq6zASDcazdX7UJzAgo5SxaB0BGmwO +mvq82MOA/HXEWfi204D189YLE/0MKHGaqz0G8/JOjU+D3xgQWaA0b+sOGgzW +xX9oGWNATFkTraLiNMhdUKXGLDIg7mdbbUQlaICsotvktjKiF/t43/yVooHN +ccU3N40Y0ZEbgs6L+2gwLbW1qciUEQWcJVjY7KeBE/ti+6I5Iwp/bHGmD7N3 +R0Vf0E1GROW8rFItR4NIgyMr2e6M6P1U2DW7gzSoMDus9OspI2JAy+iFAg2O +qW5RP5DKiPKfd+QwYbmjYcc/Hfd0RlTEZCZmiZn8o9yYPZ8RnQGX/ZJHaDBg +o+AuXcuIkk1NpxMVaUBwPVRp/Y0RZQbrnDRSpkHQxU31xT8Y0fAIw4tczNxK +c61LY4yIe9sS5xrmLWul3Y9mGNGD7iNbU47RQPq+/EIOHoesE8+I9KjQ4Gz4 +wcO/JXCIS+nkzm2qNPh0hwQHpXGIsJNMvorZ2OCvlocsDukWHgrOxHxtc4kh +x2EcoubzG8io0cD16QHnPdo4xKNJ5tmjToPkLLkyG2scch7y8lnVoEFbz9XW +Z7dwyFhDn3JAkwbz7LG97x1wiNi2omGJ+bTdEqOyB+YKalIH5hW5Rl3OEBwa +Isvzh2vRQOrqnAUKx6F/bu4RNZjPRUvedYrGIZdy10PjmF/OByf2PcWh5UWv +GY3jNDCpPjf6Mg+HTjmHaY1jDhgPWB4swiFN/vvrJG0aFItUcm8qxyFu3U+D +RzGz+4gc8qrBoZfBBiIBmKs0RnxPd+HQ6ZBKP+IJGozcFYjxfY9DOeo5/gcx +EzN1sso+45B55eV8A8w32Qo6RQZxSGC+2DcCs0Cni9DkNA65duzfidehgcZ6 +tuyOORyKir7lIoLZfn+fquEiDvkuxMwpYG6NRFY1jHhE27/d0RLzbKODxwwT +Hl1Wa3Dwxiw2lxa6ix2PRKxbkqIxu1xgKwsl4lH7LjvnGszPHyq1NmzGo7zX +ajtpmDsr7XrnBbHPb46sDmPeJUxjNBPHI8PseXnWkzTQP03YFCWJR/A3LFIA +s7e3glTLHjwqbzgjLIX502CC7j55PBKcii3VwIwjdlhcPYJHw/mo8SxmWfV1 +pzhlPLpSabx2CbOxk9xDMsIjuRez129ifpB+NXFdA4/+zQovOWIu/BSTf/AE +Hm3b863KC3MfS2u95WnsfstOZwVgZlVc+pB4Fo9wC3YNoZjlrWVGu87jUYn2 +KbZYzOaJl5fxxnik/eeP51PMIe3h3Ecu41GIrKXIc8wVqw3bba/gkce+kl8Z +mIdl5+RTbuDRls19wzmYec0ltT9Y49Gn+RGOfMzKERdNWG/jUWb3Z7NCzFYN +wbeUHfHoa2nRYBHmqL9vfO1d8EjZ1Tm0GLM9LdzC1AOPzNnVHf6zbtFVVe17 +eKSrZZL8X/s94Qrb5f3xiKJYQ/zv91hvszGKBeJR8AHrrjzMI6f7BjmC8ehh +jumH/+6nUaag7l8oHt09G7k9E3MKh1/K90g8+sLO8uq/8Xj/OufTFYtHEpNl +0UmYTd5Jmlcn4NEbrSdVcZiPZC1BZjIebY7OkYrAvDmwY1vUczxqChoaCML8 +93rKuncGHj3nUez3xUzRcPxqnYNH3arp4m6Y88W1ag3z8Yjvjkjx7f/G/+23 +t2w5HpnysmQaY9aqq7ksWIWNb7cFlx5m8WcRKsw1eOQSEV+thnnA9PBafxMe +vRqznJLEXK3EPvDuHR61yAw5bcUcL9j/pqwDm6/ra6rsmA26/bwef8Qjzfzu +4jHsedz/6vwltx48IjU4GHZj5o6VOna9H4/GaTdUm/9bDwadK8o/8MhWl3Pi +GWaVrq2e47N41PtwPF4Hs1D+uEn3AvY8DC07HcS8EFKr9HYFj4peFsQJYS7R +ub6cSCCge0yJhWPYepRqLnQ/yU9AFxMc9nphZk73Nz4sQEBmtU+VzDF/9zc8 +Ki5MQN4y98PUMCerriwuiROQRCUrKxNm0pvjbjkHCaiNsO+IL1YfphMFL8Ye +JqCHsmH2lzF3uk8c8VMiII2U6In/6snDI1ELF9UJSJdrrvQPVn/WSgZc2AwI +iFUux8kQ82jOXWcrBwK6H2wduYLVOyORtYEsZwIi1qxztmFuCQs4PuaO3b/n +1qxYzBlOcQLW/gSU9LlHZS/mayqVVTbRBHTq/dmfelh9HaSurN0qJ6BWZ76f +1lg9PqPxwLKgioAEgj+dkMZcW85FmaohoOXjea2jWP1OThRNtW8hIBNm/a3/ +1XfT60jdoZuA/BxjVk8hGnxe8A+8u0RAl3n/Bc5h+4WWDed02RrW/+vX9zMw +l/dHG83jmFCc7KF4Q8zRDem7XTiY0JJwK2Mptt/oh7SQXYWZ0DSJ4+NVJWx+ +tnHweqowIXzVvEQctp81a0XG+/kxoYSXgnEnDtDg543qDvcAJnRPSf/nd2z/ +ZA0cxjk+YkIiP3PMvTDrtCjYXY1kQnajKh152H7bebxXVeM5ExIL1/MnYPvz +R+2dv5kamNBf6jnOoD3Y+tcpPxbEyIy6B3Y1/Mb2eyabrw6+TMzIvKXEwRrz +rmDWLDc2ZnT0hw2MYvnAimxMtOZjRnm6KXu+Yflh/OT6iM52ZsS694Na6zas +Hp/SDudUZUbT5t9YbYRogNf7MhTmw4xGfQsb1rG80lZzXtzpPjMiv1NWvIY5 +UpZ61eghM2orqGhu4aXBDu7WYbFwZpT4MW9nCJZ31DrKRoqeMaO5qPqvbFw0 +8DsZ8et9DTMq65T93c2C1Vtt7Zktq8yIuKmQs2GFCm2vGg+sMLBg+YjLnRVz +pCQ4DhJYEDNOZer0MhV2sCjMZnGyIPmknVMfsXym1iw+ryjMgjweKh/+guU7 +P431RRMlFjQifNetZJoKONVyxhQ3FsSU/RbSv1PBVONnW7cXCypv9tpbOYTl +6eMC0Xx+LEgcxz1MxvKjta77Lv9HLMiPnT174isV3puonLyRyIJsbSvv7eij +Qppzc7TMGxYktSL17swHKmi9/CRZycCKxG4/IVRj+TalgOXPHwIrGpOseZ3R +gOX74iNV0mysiOrXJhlRj+XHyoRTT/lYkSG5iXQFy8dbWi7fubeDFfmLXd83 +W0WF0W8jVZoarEg/e/PH7iIqPNry7zQtkBUVSTI1JydTIba19XtDMCtiHwn5 +6JSEnV/cEtxKwljRetub/BNYnq/oPZYeHceK0rSyqqeeUOHns/srhpmsaPGh +jezeGCpoSBFze5tZUaUTw4RtMJafj+xl/cHEhrZHTlouO2P5/Nda0kc2NrTt +4qJz9l0qbEqkHGzmYkMZ7K5Khk5UkFl1NMvcxIZqVw4M5d6hgkl9VflNCTZU +clYh+jh2vqk4oX19UoMNkcyG5sCCCg7GVxv++bOhqNW0uX06WD5/9mtQ+SEb +2jfvdycKOy/lf7+z7hvChsDPV29Oiwpjtj7KnDFsyOm2hmypOhXM7yWVi2Ww +IaZNrpdEsfOYbtrnnBOtbOhQ4nLpi31UkJ48GZXIyY7upIaX2pCo8N1X/hrE +sKPGSw8TKj9SQGozd6j9E3ZEPsT85BV2vrTN+fkqNYkdsd1qbiuhUmCelsBB +yGBHmnebGzM6KMC+k7GktZwd3cwIn3DGzq/7mzsY9bvZkejmbunaUgp4sls+ +uybEgToWqsx+RlBgc9STL0GpHKh24WujvhYFOD+SqA7pHIjhPbPxujoFcFtC +W0yyOZCCZphgjioFphL8SvcWcaCWv7ybl5Sx8+9zm1BqHQeaMIr56H+QAu7F +x9S2DnIgmxNmlsfEKPCV+i07S5QTfYknsPpMd0EWr7RbSyInajS98NFWowv2 +j1xcIKRwonM2f0VOqXRBZXWQi1oaJ2rzjFDbdaQL2m6M3X3zkhOFNodxk/d0 +wfjrLIeSN5woN4Hz8CdiF+y7KWn77Csnalhq6J382gnl9TvNXMS5UISvuyar +cyc0OmzTlMzlQrTdZ08Vh3fAytxUuHABF5Jb3r+eGtQBCm51fXwlXCjGIpcp +xK8Dcu5ZOK1UcaGlitB5XacOiAx58YLaxoUyei80hV3ogCsZkjjPX1xI77Bb +zz/hDmD4sq+Wspsb1Q4IaR960Q4qqkjRPYsbqbs5/OlKJMM2/qvhJi+50XeD +xBqdKDIw/HzwU7mQG8ltfqBT84gMDSHkmPVX3OgQ7qFbmBsZtLoNZ+63YN9P +OCzTY0iG07ftcsNGuJHEl7hLjLxkME1KEEnfyYO0Hf9Jmnq2wTH7N04BUjxo +T9AzpV6HNhBVHyRbyvAgF2bh6rM322BwVMJdWp4HVRD4OnYatsE1+aJPBeo8 +aPMRsWGLfW1gS24Jq7rCgw5efdImM/gOPBZnGSkpPMgh10Mj6+g7mDTr+MaU +zoMU5w1TiPvewZXm9HqlbB70tkj0p734O9COMvTNLOJBPQs2v1k53wH/3gqG +ew08qE6nuCWtrxVemnus7x3mQYMPZp97eLTC1HeftSYSL0rDa3ZIF7TA9pMs +K+IXeFGxv4yi63gTyH9Upwle5EX2lOG/9weaQMvMJ4vPhBf94Qm4GkhpAmvH +xXPrl3nRz10Lx2+VNkFp4u+8Lzd4kWN0vSbZA2s/3mUW4cyLAiJuPWBlw9o/ +jm9ci+FFn776lL8UewueWz4+mYvjRSslEQuyxLcQmspnP/6EFwUPFYmU499C +Sdkj4S9JvChiNHHg40gjrPR73i1L50WbnHb8uZXXCGGyFpK2Zbzooid7eqpy +I5R27Q7u+cCLGm7OXNxs2QDh4vXpS594kUJcwDaDiw1g42JUJ9TDiyayzRyy +TjbAjm2Bc5f6eRFLzBmZpP0NEHZr2GzoBy/yO8j6s2C5Hqy5nsn/nudFa24O +Hyxj60HsJP/AigAf+vjDNsyyrw5WknMXRIT4kE7Kr9021Dr4PKNGAhE+ZFYy +V3evuQ5CE+5o+27nQ16nci5/KayD5bHOYiZpPnT8p3K7TkAdfHoYFMitxIe2 +G/TXNR+sg5Dmtf1il/iQg/JwStHeWkB3RuREzPjQkmm70bBQLcwKdR4QtOBD +tw/+69vBXgumd5Lk+a/zIePyg6/qR2pgr7DyEVY7PiR/7i+nZ0oNdN5xg2lP +PhT4mVsxalMN8IrMnq57yodC9HQu8BPeQJTjmLV5Hx/atdK3mW+4CgS13O8Y +DPChJG721mPvq+C5AIer1iAf4v/4a/16QxUUv5F5IDPMhwKyoi5kpVQBhcX+ +2cJvPqSYErQ8ZVoF3E/n34cv86Gn9Q6KNz5UwsO3+GP1gkTEdyjfkfymAnjj +otVLhYloc9rXpC0vKyDupoROpigRzVAUiMYJFZDBffzC4x1EFPjOXrbeuQKa +jB7duShNRJKJc16kfRWAm+DN+KNIRDtqFpdTk16B5yZRnh0XicgpxeDb9jvl +0FHEZgwmRMRcT5tSNi0HUd25NNNLRJTbMRmiebwcagPaj8ZZEFFUsJOhqEg5 +4Bbcb3BaE5H/H0apkZYyCPzy+c28OxG9zps/HLy1DCKfRdiSnxKRY2/s7Zac +Eviu5PVqNJmIglIo3H8jS0C+2wrHnEpEzsoCVQweJfCRF8WjdCIK8XqNrbkS +EPCbbCzLI6LY/jO19aPFkHztpFBKDRGpVHmfOitaDNm7mdqcBonIZFPBfK91 +IdCEVZfthogI6tQVVvQKYYXHS8ZymIjOuhq+mJAvBN352dCLo0R0V/6Joc9K +Acw2DBuoTBPRWHi5ErdIASDTt/0sDCQk+LM8XPpEHljrMfAw4kgo9UPmM1/O +PIhSU0ZLeBKSMtNr1u96CSNSpc/HWUho9LSN/3mDlxAy98KSykNCmhdfSDme +y4XuUP8/CdtIaIcY36/th7MB51e7I3o7CZH18mu3TmfBnrvLBo/FSYh5U1Om +clYWeJs4lt+TJKHnSioRPzZlwU6pqx7X9pGQ855BkU8/MkBX6NnLS3IkJCt1 +7bhSXAa4cPf2Gx4kodWfmjd9j2dA26w+OnGYhGLkI+K809Lhdr0akyyQUEUN +uGXopkF8qbeCpCoJJVr2vPOdewENmVWWYuokxOCbdeR1wgvgDz3QRjxOQpyL +E01TX59DlfGOsH+6JMSk66q5Rz8Vhk9frps+Q0L8Nwuth0ZTgEs14c+YPgnF +++SQfnumgLkk8VyfIQkNHum13n7kGTDPMm6tv0xClIxQIYZLibBQGB86bE5C +3TXSqYpHEuC33T4C61USsp22nB1hegID0s1ue66TUDQ3A2mlMQ4oP02ndC1J +6GmIeVbP7VhoSPt7zeEmCaWJVoVwMMdAmcWjLzE2JFT6fgb6fKMgS3T7mUo7 +EvIK8uiI7ouAhN5XTX23ScjYkCudjTMcQuJ1lRgcSCjrwnaeobVguHf+R6G4 +E/b/BYmIHJYNBAei567jziSUa3GtT4/LF651EZ9au5JQy1hva0eINRiGZPOF +umPz9b/rxAkUWORJtzLz55UP3nTLNto5LPjQLeZDGBXyp5t0LPESPKB7obxV +OyCI7oYc8W38kXQbRvaQ972gW1vPXtUgnW4lTpZXzpn/r78A+edvcun+5Rbm +erKUbm8LTQnLJroz9xd5J/+k+9amP4uvxuiWX9p/l/qb7rrGQhvCNN3dhoVG +1gt0s3oVHFBg49+w1bu8kQ5pundfydFdtaO790Rl8fnfdNNeuO8Fx030+Sk5 +q7xjhu71CoeygFubN3xyv5am5xzdLZf23bRx3LJh4lWr6qS7dF+2SuWiuNA9 +70Aqlveke+fDf0ur9+n2Ka4NCY+l+yjLmcKySroDOINwo9V0U/kazgnW0G0l +LL/o3UB3nJyAmjaZ7lmTwfdf+uhGFlt3cX2lO/iGvit8o3vHnbfCaT/oPhuQ +dd1uku6nwd9ePZumezRckJ028//GkxiSr/CP7vaUJoabi3RvyVjTT1ym+0ru +4fSOVbrzC+3/ra/T/X/uiDAn "]]}, "Charting`Private`Tag#2"], Annotation[{ Directive[ @@ -19486,157 +18976,157 @@ uchF2M24kYkLd5Ro+LP8ePz6lE2kWHx9h0ZeZnXJXgT3Qt4D6fj6f3C2oaql aBGyJMIv7sAdyK/ks7NqEfrCZRVT8f3iHbo0MdqyCPT9YX0R+P5yN7BMP9a1 COOrox8JuG9wNl5N/7kIq0zmZ27g+9H6fmSXzfQiRCXYex0UpsHpO8of+wSW IOqHYHOMIA2Oq0Xd1hRfgruviexDAjTQXVzd/0pmCTRn0kd24dbwaM40U1mC -X8q3kgvw+LHD0Say8/wShFqxfXrITQOC+ctrWPQSmFXJqVxho8GaGEFG8fUS -WDXu9ruOx7fFruvfH6UvQayB2FUHFhpMnlM9o1e2BG2f3aat8PjYc7xNrbZ7 -CV4+0SRJrWFQqM7BW7p5GRZzRw/XzWKQu+REEdm2DNX1anH3ZjDILGkP9Ny1 -DANbhm9p/sXgtcob+l7NZXhzNJyWMYnHY0X4lW25DJfidkfpj2BgI+Fe+Pbt -MtzbJPoy+wcG9fskON2yloFrxwfLw98xkDlZZ3a4YBnEo2X3tOLnS2/ABpYf -tcvAtq9noq8LP4+HCs6I9C+DwleOknb8fNLNm5t8KLUC2I8Tgav1eNbeHH/E -WH4F3hU8tjtVhwFhQCdKbvcKpHa/0n/1EYMqkRdQq7kC4VV7R5SrMFC9sz90 -5fIKbL/BEiZTgsF2vZs7biSsQC2H/3GddAyCLSV9NVJWQKQ7TdAoFc8XfMif -SNkroPtXpcIqGR/vOxHvtIoVCBmsfO/2GgNRwRJyX88KEFaWFi7HYMD5g251 -TnwVOMnymc4PMBhx83l1MHoVlPhkM2yvYuBYEMryPnEVfI76m1VYYDA5m3h9 -e/oq7Hu+bZn7EgYzHuS9ImWrwDZ3YPYVnm+s3tzQONu9Cp6tT54H4fkI7+3s -qRzJNdhVvMvbbD8G++79OiyXugaxNq3aoiwYFNfNpcTnrMFwrulHMiMGh1g5 -uYRK1iC9kvLNeZUKKGhXB4GyBq3Pplrz5qmg9+C2Xd/IGkjc+hwwN0yFd/VE -CibMgBoqqZZuVCpUU95OPzBhQPVLSgFqeD6XL9LifPsSA2IUkVS8HUKFZOvF -yRtXGJDnZmasOJgKIUwnJi7YMaBPSd4Dkv5UOH9wYWSrDwNioLlI5ztTYTRN -/3d1DAMydiw06D9FBaEHEx30LgZ08cV47nluKrB3bLww1sOAWE8N3JzkoMKS -zJH23p8MSOtJXXsgCxV6q6I+NwwzIP/qTP2Xy82QsaDZ+pzOgIo8v5eG/GkG -ZBtBUd7IiDKGXeYs65rB7uiB8mtGjMjuwJfQdo9mmNy2sS7XlBGVFkxln3Bu -BjdOejP9MiOy/py2Vm3XDHeoxd0PrjEi+rUrYmGXmyHsjOpymjcjamrO7/yh -1wzFl/Yf+hPHiGp2/VVQEmsGwk2Vkus/GZGsHDuDb3ETxKcqF9hdZ0LDDzM4 -wnooQOm6Qk5wZEKiaTeO2rRTYI4z8lubCxMKeon9UKFR4LjDIqOaDxMy+9im -VVlFgWXlj4akECakf5p55m4SBUzKzg5lZjGhFN+Azb02FBDBPMXGJ5kQqaSQ -6jDaCEfW0pSkZpnQy/ao00/6G+HGrm7N83QmtL9jTiKruxHIYci2gpEZTfF3 -6n5vbgTPCxwFofzMSMcvq1A8C6+3emMMd+5lRi4cY8PIoRHC/5b73/BkRiWX -32qFjZPhxqenFqY+zGiPrsy00SAZDHOvaOr6MqPXEjfOyPWSgd2Jg1EyiBml -P22419NKhjt/zvrRIplRS3a0SnUBGWx/jtxRKmRGm+7R3Ql+ZNCpqjAXLWVG -FakPpl94kUE64ZkGawUz+ht1hQ1cyfDddP9qTx0zsrMb+dBkTYYznQG3H39h -Rl0qnZ2LhmTYVXTOzKuLGV1vue6ko0cG7sht6lY9zEg03ywtS4sM5DPYstpv -ZnSiO/pymyoZNGgbb43OMCPpKvqfGBkyiL0bNelcYEZDEXIhfZvJsBBSeah2 -mRkxOdLLDMXIkKdvtRRLIKDgY+ePRvOT8XpV9VsQOwFdiyvu8eImgyM7scyV -RECzJ8o97nKSYVt9jvcxQQLKGvBc2cBMBta3dy/uF8Hbq8QwJ641wK+75w9K -ixOQH+OxQ8bLDVBluV2UR5KAzHfaxwO9AeI1l+mL0gRU/+2jxLm5BvCRpHUN -yBEQ28RqQszfBjBaSyz5tIOAjvMWMvBNNcC+727RFTsJ6IqYJ0/JeAMIlB/1 -St9DQPzHv4SGjzbAZKyoceR+AhK3CtiT+Aev773HVAMOEVDYqktS31ADZBhX -iTgCAa1c4HU3GmyAYNXwBWMtAhrO81JiHmgAa2HrTu2jBFRxqePIr/4G0JpT -LVY+RkDO+tVi9F8NIPmFGCVxAr/fgVKCNu7VvO+eHGcI6O33Oo2Gvgb4FpZ7 -YfY8Adl/J8354i52Dtz/8yL+fe8ULSfckScvCFPNCUh5wFPxOW7XnfLzxZYE -lDoglTyF+yT3SvsbawLyFZF6HIj3rzRGK3x6nYAmTk2+O47fD7H5deQtRwIS -izpRZ/C7AYbS3T1sXQjo+6cUT3/8/o0kVr+nehDQstZbDRI+3oYn948OexMQ -aY1//PMwPn9MPDnbfQmIk6za8nWkAZLdXohcv0tASw32GyXw+RQa3OyfHkRA -Y1YwHDPZAPeMU4f/PCIgDtWKY2fw53FVo6TULgKfn/5bCU748/ucoymdGUVA -F+9En2nFn6+WNOXRaBwBTT0nSF9jIIMU+zdTh7cEFMg2yLqPnQxh3lfqstLw -64Gsjy2JDIxjI4rjWQT0OkOJ2sRLht7W5VXHQny8P354bhYlw8kj92yySwmo -OsVziYSv18pCrpaJCgJiZ9It2Iqv5/jYTYk3Ggho/wqdvU2JDKZWSMulk4D8 -gzwJs9pk6Fi4G+S+SECqkb2skt74/rMjTRasElCuEmvsRn8yFPZEGM0xsSDa -8+H5bcFkiKh5u92TyII8quWeBkaS4XRIQ9NNcRZUu4sYz5dPBmwzkfeWBgsK -UuJIy5kiQ71OWFRAAAu6/0eOY9y5EQaty6je91nQG5qWs7dXI7AH9TO5PmRB -bBErQaz+jaDfsM/hShgLWtbozBB/2gjY0W+aR16zoO6b7LQD7xrhi67MCEsN -CwpMWPJj+9MI/fqF6g8YWdFZMfroF3MKsNj9cPFnYUUlVfqLi1YUkH3EnurF -wYqiD8W1izpQwLbpIv91PlZk5RBaou9DgdFjawP6W1jR3zCRgGsvKDBjoPuU -pMmKFGg6e6IwCjCf+Nr3xI8VNV7fV+6r2gSUinPSboGsKOcwKxtFownClFqv -GAWzIuOoj+bc2k0gxU3ul3zKisRXmpTvnWqCw9SCgdwEVvSV+l17x/UmCDj2 -7E9bBSt6PShdZhTTBEy6utPCK6zoJ5CG1Obw/os+7l5mYEP2Lz/PkJfw/uXA -tZfAhgKVemROMDaDFNu+mVQSG/og+3pej9QMh+ul5w6Is6EXEbfT6FuaIeDI -Gt3kEBuyXtvtpGXQDEyahYyvvNgQK49qXnhcM5geGaR03mZDCu6nZlsTm6Hw -qEgEXwAbSu38VsyR0gzXDb1l7z5kQ9xxNW1Wuc3QZqJxzDqWDfUEvqxrwc/L -Nx71EQrlbIjroRmj+1gz6GS2y5UwsKOHx6gjfKpUeJXNNjVFYEf3DzB8C1Kj -wuJ71VJ5DnaUe+Ry/TzC84eSGIM4Pna0l/vSqzo9Kgg3mDv7SrGj0L0PGzaa -UGHo50Cp9hF2FKClz5ZyiwoPheePfwrC+596FuFQRoVIMvlXzSN2pEUak/tT -QYVErxivvCf438MreixqqFD8Tf1txAt2pP9lofRwIxUGEwKXz6ewo+AqxwBK -OxWObOPP+FbPjlQ+fnWcmaTCqqoi+28WDiSedOdEzRY8P/uz+vILBwfqCGz7 -kSKDwYbYlj31XBzoQ4xfT7AcBgorrpdSNnCgAoXz29UVMTCpLi28tpUDaaSe -VXdSxfMrPV2r8SMcqEmesmnpOAYuF6/UzN/lQA93GJtWuuP5WcKfXrVgDjSu -es5N9yYG7345r/mHcKBgfWv3Zm8Mhu391EjPOVC0kdehOl8MLvu+LJRM5kA9 -hy4IeOP5ouGbjnQ9Mgcay5GonY7FYHTIvDG0mQMZkz9c2xGPwUPFgcG2Fry/ -QbONl15hUFc4I2PexYG0y8/FF73BQK2RL8HlDweih/C4KWZhID9+LDyWxInM -rOqHFcsxIO9uy+3l5UTCd+S5RSoxsPa82LJ1Ayd67PHceAXPjxMZrnHlSHAi -SROwL6nFQETgflCtEidy6j+bPd+EAatqlc/YSU5EynEXDMXz8ze3jsbsPseJ -AmvP2+/4hsHhaqzY05gT+Qq+JtTi+fxt/Z5ZRktOFOZ7YXkAz/9nTBedhFw5 -EWv7610zvzH45b/3KjznRORtAr8VpjDYJsQdeiOaEyHJkaab0xjYpw8WJb7k -RMONRnur8Hpj7lMMkZDMiZQ4q0I15/DnKcOYRy7kRDGvUx5yL2FwovhrN72U -E53atCNh3zIGEQb5rDsqOVFCf6jGxRUMJNxtLj5u4ESNF6ylIvB6Z1c9lfF0 -JyeaL6qK+4TXQ+4XU3bc7eZEesfrZTsINCgd9zuX38uJvO5pHunA6yct4b1p -QsOcyHrunToFr7fO28ac/EbnRD4Mtjo+RBrELrt6k1Y50eTGXcGmJBr0Pj3+ -Rp2JiGbvnbE6wEWDayUMCwmcRMSpYD/7G6/fbnHaJFwVI6IM3yf3OflpUB2P -Gp9vJiLH3IkPZNyse0T/1ksTUbfDwPMAvB58YkLV2a5ARL3PmfcM4/Xj68w9 -42NqRHRQ3EI5AK8vBxGXyGZNIvqqNxougdefCl8GNE9qE1FHaFJCPu7Clejn -748T0c2JnIIveL3aaMig7mmO9/fFbeoXXu9y/+qyTrUkolHVV+9N8fr4tGfe -0y5rIpJcHZFqxd2dYN1/yImIVjqzBbLwenrLXsTt4EpEttZBzwXx+tuavFE1 -3pOIkJ5GoyfuycnmRwx+RERC47rKeP2uci+5QDmQiJIt9kQG4fbe6PfDMpiI -ns1PvOjCXZFlzBERQkQ/WWoN5SRpwHx4z566p0R0UuF42Q3cuu0ks7kIIppL -kf1egDvk+sB9uWgimj47XDSHWyg8+uuDRCJK6/QPs9tCA9IXgVaXt0REThTd -H4ebSTi0wSQNH7/BIelG3AtG7BVHsojI1+/8hWncEzEB+Yq5RDS8uadNWIoG -A93L6UIFRCStqxF9AHf3Js/EtWIiYj8zmHIB96fLUy+GPhDRTIcWgwtu8mu7 -0NYqIsIyy18H467o/x1YWktEAoMfnvy/90Wyl32SyETU1p3SkI473farc0gz -EZVs/aVfiDsx/aytewsRscW1bqzAHTWKmZt/JqIQs897/3tfFKqkd+5oJxHF -NevH/efAGx+P7eomIpZnYSf/e7/k/V798MZeIlqOYjtdjPvGTJEqUz8RsYoS -ErNwW+/bvXNkkIj6n/WqJ+A2vZm59fMIEXk1/N32+L/3Y6Wy4uUTRPSmKczS -E7f+8iv+5L9EJLPIO2KGG2mIcTyZJyKXxcoahHuf3/M1zyUiCq+aGN6MW6GG -Z+7yGhFNPh6/vITPpxTh4ageMwnJTLNva8O9UYfwazcbCTU2PYAU3LzBd7rE -iCR8vZSmeOJmpSzQCDwk5D388/IR3MtE1/oxfhLKu6Vjx/Xf+8DjYx/ahUgI -tio0fMKf94/Wn2mpm0hI9nuA22nc7QKmr55JkdBkm2v9f++Tms+1R3rLkpBh -xu/rH/H1VdxFuWugREKnXA5kbsX9TkzbW2U3CXHNPNZrxdfrW7PKG5v2kVDb -Ld2DXrjDfuaZTarj9/e4RqgCX+/B0kpnuzRJ6KrtIJMJ7jtWqfo12iRUPq2m -NYPvD7vhuP0Rx0lILW53tRjuI1P3+FTNSIifeaFQQ5QGB/cwsG+xIKH+RDO9 -Cnz/7XL3XuWwwneH2UHlg7gl6I4j3+xJ6IpRD6Mcvl/nGIzqfG/h9+9ITP+8 -gQajhz+V2fqR0IiX58g+3H2BBu9PBZLQYpnq3ed4PKCxayZIh5BQuxyx8Cge -L1J55b0aYknoiViDvB8vfr0B4wXCKxI67MYrX8BDg5KyB56H35DQUon8t//i -EcV62L08k4S6vGdPH8Tj1eiHVJe8chLaEn4pOpuDBm5hnVOT1SRU9qZMroad -Bis27M5K9SRU2Dlr04LHQ24BW6c0jIRYlH+u/MDj5c5rcvYJP0io6fXmO02M -+PxrXBjp/kVC17TYY8oY8PUkGHRddIiEwtIMbVLweHyycsD2+SQJpaY83OCC -x2uXDclWjxi5kD2PWXnbAgaF1TKXPKW5ULuiuAh5HAONF2e/58txIYa4XlXX -MQwa7APNpndwoTDPi+yioxh0CvebOOzlQo8kPd9fHMaA7pBkdEWbC30ibFBI -/YWfl6JSp0/YcCHFojeurh0YfHTZrC2XwYUO+5z7Qi7DYHl24ql4NheKv6Gu -wlGKwT6vqm6+PC408z2qQbsYg3RfC7flUi50pG/BPy8fg7CQpKRWChe6mCmt -aYGfv5bJcky3/nAhUfTKnwU/vxm+7qxs2c6NrpE7XBxuYXDQjIFYr8iN5N2P -Ku3B8wO33pbzZcrcyHZRhzjricHQgPP42wPcqFXcQs7BFYOWv3kSPnp4+/5H -X5SuY5DApXpr6zVuxPZ7yWn+PD4fmuiAdyo3mg5osI/C85fNgleemmRyo0qL -rXnj8vj1B+8NquVwI+P7LvKa2zCoCWl6vlaEt5cLSv0qhYFO5/npwAZuVG7+ -h/JDGIPjTg4ZTwa4kfp75t/KjBiYvoyReCvDg+pqr46Pt1BB/Ua52/1tPEj0 -0cewRioVNmn1Ntko8KDfAV16ryhU6B3a6i2/lwcJl/aOaNZS4ere3PZsLR50 -cPxn77kiKtg3NTwpteRBF4OEIyrjqOBDn2FsecWDdp6jfHt2lQrjl6g/Wd7i -7S9/XYu7TAXL+rfVh9J4UIXuwvkkUyrohp/3T8nlQTvu+r1IPEsFQcViBt8a -HuTXzKx89QgVMi/7rCn28yBr7SMqDNJUmPjlt1onwIvSztBO3O9uhm3CDuO9 -G3jRG57gIzMdzWCpb/x9SZgXFeXw7TRra4b2HOUKZXFelLjI2rOZ0gwfbvfd -finDi2RfFF2yLWqGYOEjK24qvEikcYiL8KwZthxjW5a+wIt+fof351Az7P2i -9UnUmBeZK8W98DyE59OX/FL5THiRkexaR8Q+PB93pZ9dM+dFB8uOW1QrNEN+ -7EjWV2tedDLyoXGfCN5+lHbpmQcv8iZ+nNKcbILrj6M+rj7nRWOzZ+JsYpsg -n7b9UddnXqR2O169qo8CT6Wr3y628yLGK5qXpbopYOdpVCXWxYvknXsN7nyh -gNTmoFmzHl5kGxDlJk2mwBPH/kt9v3nR+UdXn0plUeA6V8LekTleVKjD4DPp -TgHJY4Lfl0X4kNlHJtZ3TBQIqV/dJWnGhzRmd28rYGsE5DygLHGJDy1aJ7fP -rJFhRgzbLWrBh1T3zEgoLeD1qPPLvYJWfCjfH1k/HiKDoriaKrsDHzK36bZe -JeP1pLMXTN7iQ/qfybbJeP3JKzFzvCqOD6lUxs5PMJEh3HX4+uVuPlT8rnze -ua8eRHW8nc9850OffAYObO2qh9cixJs6vXxo5tQ2vVZaPbwvV7in0M+Hft+O -qxQor4cWthsJCyN8KKxB/bXmi3rgjptre7rEh87eS2HV0K+H4Fpm9WpRfnTg -XcfNxPQ6uLVhE4+UMT96thL/w+9sLVBzOS6CCT/aVjykbKZbC5sMZ9+YmvGj -T/J5lrvUaqHyfvPBFxb86OBSo0WZdC0wLXhbk67zo0v9V0avTH+EoK8d5XPe -/EjfM8maIfQjhCU8s2+K40cq+75F3KyogbTtLBS3Xn4Ua5tueomlGj6Jay45 -9PGjzJztY4wLVbDMc1vBpp8fDS0qOr/8UwWGczOhxkO4z+ZaVNKqYKam/4zG -JD+KPBuulh1dBci0toeNQQDZCo2NIYUq6Ay9OxWzWQBxHhyaMI2qANYZxo3V -5gLozJrS+5KRUljIiQrtvyyA3m1yb8inlMKIw04C+xUBlCP0ojU6rRRaBk0n -DG0EkL3JLW9Jm1KI+VZU1+0kgPSUXZyFfpaA0kcHlwU/AcTsmT5p0FIM58O6 -mnYmCaDQeEKvaVQh6J64oXnmrQBacDmbludaCIdIbEUeKQKIv1iiqs+wECTv -731dniGAsiq2a9YTCuGP15Obx/IF0OPvO1uCHAvgjoX2Vps6AUTl1j3PdCAf -Unbl3okfFEA6hZ1s7Qm54Lhhil40LIDUZcrG/N1yYe/iLvfWEQFkXVFx6Ytu -LlR9zLEjTAqgWFNBT5vJHOg8n2N0fUEADTYtSPUezAH229m793EIomqjTHjg -mgWYxUTWCaIgKo09OWHNnQUROju3X+MSRFmJnAEcqZkgyZu9OY5PEDFCtIRV -RwaoJr0jMYkKIvrx/gM5Mulg25g1QJUXRG/2hB82sE4GpXdjFoMKgmiyq/1R -26+3MBOm2MOwUxBNbffKdzB/C36mWW179gii7GndE5N6b0BHc8zwuIogCsN8 -606UJgFJVpFivV8QdYY/nMqUTYKoicyq6EOCqEhVPYw2lQjmn0cP5anj12sZ -OZp4IhFkShTwqCSIPM+6SvmlvIKcgMysNS1BVBNaExsWGA8eNqPbNuoIok0k -SWYz1pegZqDwZreuIJJgZR/87RoL5A2ZMVYGeP+mz2IEmKIgdHFkg6+hIDK9 -PnS2VCgSzv7Y8SzqpCA6J/gnhnclHERr7UjvTwuiYBe92GdvnkFvakZQ01lB -RCWJ0r1/PIbkxyNMv88LIjs/Jn0v9SCwd9lxZ9UIv76Ki9yKkw/svmBHFzYR -RP/7/3oLhzLclM3WXSE5MqF/ad2BLDvsrlqsm5eWbvHCat3bLdMNVxzWTX55 -MGfaad3WXRS+Ied1vzk58vmT+7olQcEk9fa6hcTf2Zx5vG6m9ly/tMx1f9Mr -eX9uZN2fkrwVwXXD+njyTqlJTa97rdil4L6j0D8f26WjfWt23Q1mO6/ZuQr/ -M/8V27KX7us2t03kavFc95yLwPu9t9YtEzy/uBK4br/3lSFPI9d9kO1kTkHJ -uu+THjANla27la/mrGjFum3F99Lv1Kz7hbLIYd2mdc+Y9LZ97V43stgoy/Vj -3Y+sT9+En+uWcq4Vf/N73afup1o5jK877tHPooTJdQ89FeX8NP1/xhMb8m7f -/LqbX9UxXKOvWzh59XTs0rotM/a/pa6s+13Ojfm1tXX/D9n23L8= +PuVbyQV4/NjhaBPZeX4JQq3YPj3kpgHB/OU1LHoJzKrkVK6w0WBNjCCj+HoJ +rBp3+13H49ti1/Xvj9KXINZA7KoDCw0mz6me0StbgrbPbtNWeHzsOd6mVtu9 +BC+faJKk1jAoVOfgLd28DIu5o4frZjHIXXKiiGxbhup6tbh7MxhklrQHeu5a +hoEtw7c0/2LwWuUNfa/mMrw5Gk7LmMTjsSL8yrZchktxu6P0RzCwkXAvfPt2 +Ge5tEn2Z/QOD+n0SnG5Zy8C144Pl4e8YyJysMztcsAzi0bJ7WvHzpTdgA8uP +2mVg29cz0deFn8dDBWdE+pdB4StHSTt+PunmzU0+lFoB7MeJwNV6PGtvjj9i +LL8C7woe252qw4AwoBMlt3sFUrtf6b/6iEGVyAuo1VyB8Kq9I8pVGKje2R+6 +cnkFtt9gCZMpwWC73s0dNxJWoJbD/7hOOgbBlpK+GikrINKdJmiUiucLPuRP +pOwV0P2rUmGVjI/3nYh3WsUKhAxWvnd7jYGoYAm5r2cFCCtLC5djMOD8Qbc6 +J74KnGT5TOcHGIy4+bw6GL0KSnyyGbZXMXAsCGV5n7gKPkf9zSosMJicTby+ +PX0V9j3ftsx9CYMZD/JekbJVYJs7MPsKzzdWb25onO1eBc/WJ8+D8HyE93b2 +VI7kGuwq3uVtth+Dffd+HZZLXYNYm1ZtURYMiuvmUuJz1mA41/QjmRGDQ6yc +XEIla5BeSfnmvEoFFLSrg0BZg9ZnU61581TQe3Dbrm9kDSRufQ6YG6bCu3oi +BRNmQA2VVEs3KhWqKW+nH5gwoPolpQA1PJ/LF2lxvn2JATGKSCreDqFCsvXi +5I0rDMhzMzNWHEyFEKYTExfsGNCnJO8BSX8qnD+4MLLVhwEx0Fyk852pMJqm +/7s6hgEZOxYa9J+igtCDiQ56FwO6+GI89zw3Fdg7Nl4Y62FArKcGbk5yUGFJ +5kh7708GpPWkrj2QhQq9VVGfG4YZkH91pv7L5WbIWNBsfU5nQEWe30tD/jQD +so2gKG9kRBnDLnOWdc1gd/RA+TUjRmR34Etou0czTG7bWJdryohKC6ayTzg3 +gxsnvZl+mRFZf05bq7ZrhjvU4u4H1xgR/doVsbDLzRB2RnU5zZsRNTXnd/7Q +a4biS/sP/YljRDW7/iooiTUD4aZKyfWfjEhWjp3Bt7gJ4lOVC+yuM6Hhhxkc +YT0UoHRdISc4MiHRtBtHbdopMMcZ+a3NhQkFvcR+qNAocNxhkVHNhwmZfWzT +qqyiwLLyR0NSCBPSP808czeJAiZlZ4cys5hQim/A5l4bCohgnmLjk0yIVFJI +dRhthCNraUpSs0zoZXvU6Sf9jXBjV7fmeToT2t8xJ5HV3QjkMGRbwciMpvg7 +db83N4LnBY6CUH5mpOOXVSiehddbvTGGO/cyIxeOsWHk0Ajhf8v9b3gyo5LL +b7XCxslw49NTC1MfZrRHV2baaJAMhrlXNHV9mdFriRtn5HrJwO7EwSgZxIzS +nzbc62klw50/Z/1okcyoJTtapbqADLY/R+4oFTKjTffo7gQ/MuhUVZiLljKj +itQH0y+8yCCd8EyDtYIZ/Y26wgauZPhuun+1p44Z2dmNfGiyJsOZzoDbj78w +oy6Vzs5FQzLsKjpn5tXFjK63XHfS0SMDd+Q2daseZiSab5aWpUUG8hlsWe03 +MzrRHX25TZUMGrSNt0ZnmJF0Ff1PjAwZxN6NmnQuMKOhCLmQvs1kWAipPFS7 +zIyYHOllhmJkyNO3WoolEFDwsfNHo/nJeL2q+i2InYCuxRX3eHGTwZGdWOZK +IqDZE+UedznJsK0+x/uYIAFlDXiubGAmA+vbuxf3i+DtVWKYE9ca4Nfd8wel +xQnIj/HYIePlBqiy3C7KI0lA5jvt44HeAPGay/RFaQKq//ZR4txcA/hI0roG +5AiIbWI1IeZvAxitJZZ82kFAx3kLGfimGmDfd7foip0EdEXMk6dkvAEEyo96 +pe8hIP7jX0LDRxtgMlbUOHI/AYlbBexJ/IPX995jqgGHCChs1SWpb6gBMoyr +RByBgFYu8LobDTZAsGr4grEWAQ3neSkxDzSAtbB1p/ZRAqq41HHkV38DaM2p +FisfIyBn/Wox+q8GkPxCjJI4gd/vQClBG/dq3ndPjjME9PZ7nUZDXwN8C8u9 +MHuegOy/k+Z8cRc7B+7/eRH/vneKlhPuyJMXhKnmBKQ84Kn4HLfrTvn5YksC +Sh2QSp7CfZJ7pf2NNQH5ikg9DsT7VxqjFT69TkATpybfHcfvh9j8OvKWIwGJ +RZ2oM/jdAEPp7h62LgT0/VOKpz9+/0YSq99TPQhoWeutBgkfb8OT+0eHvQmI +tMY//nkYnz8mnpztvgTESVZt+TrSAMluL0Su3yWgpQb7jRL4fAoNbvZPDyKg +MSsYjplsgHvGqcN/HhEQh2rFsTP487iqUVJqF4HPT/+tBCf8+X3O0ZTOjCKg +i3eiz7Tiz1dLmvJoNI6App4TpK8xkEGK/Zupw1sCCmQbZN3HToYw7yt1WWn4 +9UDWx5ZEBsaxEcXxLAJ6naFEbeIlQ2/r8qpjIT7eHz88N4uS4eSRezbZpQRU +neK5RMLXa2UhV8tEBQGxM+kWbMXXc3zspsQbDQS0f4XO3qZEBlMrpOXSSUD+ +QZ6EWW0ydCzcDXJfJCDVyF5WSW98/9mRJgtWCShXiTV2oz8ZCnsijOaYWBDt ++fD8tmAyRNS83e5JZEEe1XJPAyPJcDqkoemmOAuq3UWM58snA7aZyHtLgwUF +KXGk5UyRoV4nLCoggAXd/yPHMe7cCIPWZVTv+yzoDU3L2durEdiD+plcH7Ig +toiVIFb/RtBv2OdwJYwFLWt0Zog/bQTs6DfNI69ZUPdNdtqBd43wRVdmhKWG +BQUmLPmx/WmEfv1C9QeMrOisGH30izkFWOx+uPizsKKSKv3FRSsKyD5iT/Xi +YEXRh+LaRR0oYNt0kf86Hyuycggt0fehwOixtQH9Lazob5hIwLUXFJgx0H1K +0mRFCjSdPVEYBZhPfO174seKGq/vK/dVbQJKxTlpt0BWlHOYlY2i0QRhSq1X +jIJZkXHUR3Nu7SaQ4ib3Sz5lReIrTcr3TjXBYWrBQG4CK/pK/a6943oTBBx7 +9qetghW9HpQuM4ppAiZd3WnhFVb0E0hDanN4/0Ufdy8zsCH7l59nyEt4/3Lg +2ktgQ4FKPTInGJtBim3fTCqJDX2QfT2vR2qGw/XScwfE2dCLiNtp9C3NEHBk +jW5yiA1Zr+120jJoBibNQsZXXmyIlUc1LzyuGUyPDFI6b7MhBfdTs62JzVB4 +VCSCL4ANpXZ+K+ZIaYbrht6ydx+yIe64mjar3GZoM9E4Zh3LhnoCX9a14Ofl +G4/6CIVyNsT10IzRfawZdDLb5UoY2NHDY9QRPlUqvMpmm5oisKP7Bxi+BalR +YfG9aqk8BzvKPXK5fh7h+UNJjEEcHzvay33pVZ0eFYQbzJ19pdhR6N6HDRtN +qDD0c6BU+wg7CtDSZ0u5RYWHwvPHPwXh/U89i3Aoo0Ikmfyr5hE70iKNyf2p +oEKiV4xX3hP87+EVPRY1VCj+pv424gU70v+yUHq4kQqDCYHL51PYUXCVYwCl +nQpHtvFnfKtnRyofvzrOTFJhVVWR/TcLBxJPunOiZguen/1ZffmFgwN1BLb9 +SJHBYENsy556Lg70IcavJ1gOA4UV10spGzhQgcL57eqKGJhUlxZe28qBNFLP +qjup4vmVnq7V+BEO1CRP2bR0HAOXi1dq5u9yoIc7jE0r3fH8LOFPr1owBxpX +PeemexODd7+c1/xDOFCwvrV7szcGw/Z+aqTnHCjayOtQnS8Gl31fFkomc6Ce +QxcEvPF80fBNR7oemQON5UjUTsdiMDpk3hjazIGMyR+u7YjH4KHiwGBbC97f +oNnGS68wqCuckTHv4kDa5efii95goNbIl+DyhwPRQ3jcFLMwkB8/Fh5L4kRm +VvXDiuUYkHe35fbyciLhO/LcIpUYWHtebNm6gRM99nhuvILnx4kM17hyJDiR +pAnYl9RiICJwP6hWiRM59Z/Nnm/CgFW1ymfsJCci5bgLhuL5+ZtbR2N2n+NE +gbXn7Xd8w+BwNVbsacyJfAVfE2rxfP62fs8soyUnCvO9sDyA5/8zpotOQq6c +iLX99a6Z3xj88t97FZ5zIvI2gd8KUxhsE+IOvRHNiZDkSNPNaQzs0weLEl9y +ouFGo71VeL0x9ymGSEjmREqcVaGac/jzlGHMIxdyopjXKQ+5lzA4Ufy1m17K +iU5t2pGwbxmDCIN81h2VnCihP1Tj4goGEu42Fx83cKLGC9ZSEXi9s6ueyni6 +kxPNF1XFfcLrIfeLKTvudnMiveP1sh0EGpSO+53L7+VEXvc0j3Tg9ZOW8N40 +oWFOZD33Tp2C11vnbWNOfqNzIh8GWx0fIg1il129SaucaHLjrmBTEg16nx5/ +o85ERLP3zlgd4KLBtRKGhQROIuJUsJ/9jddvtzhtEq6KEVGG75P7nPw0qI5H +jc83E5Fj7sQHMm7WPaJ/66WJqNth4HkAXg8+MaHqbFcgot7nzHuG8frxdeae +8TE1IjoobqEcgNeXg4hLZLMmEX3VGw2XwOtPhS8Dmie1iagjNCkhH3fhSvTz +98eJ6OZETsEXvF5tNGRQ9zTH+/viNvULr3e5f3VZp1oS0ajqq/emeH182jPv +aZc1EUmujki14u5OsO4/5EREK53ZAll4Pb1lL+J2cCUiW+ug54J4/W1N3qga +70lESE+j0RP35GTzIwY/IiKhcV1lvH5XuZdcoBxIRMkWeyKDcHtv9PthGUxE +z+YnXnThrsgy5ogIIaKfLLWGcpI0YD68Z0/dUyI6qXC87AZu3XaS2VwEEc2l +yH4vwB1yfeC+XDQRTZ8dLprDLRQe/fVBIhGldfqH2W2hAemLQKvLWyIiJ4ru +j8PNJBzaYJKGj9/gkHQj7gUj9oojWUTk63f+wjTuiZiAfMVcIhre3NMmLEWD +ge7ldKECIpLW1Yg+gLt7k2fiWjERsZ8ZTLmA+9PlqRdDH4hopkOLwQU3+bVd +aGsVEWGZ5a+DcVf0/w4srSUigcEPT/7f+yLZyz5JZCJq605pSMedbvvVOaSZ +iEq2/tIvxJ2YftbWvYWI2OJaN1bgjhrFzM0/E1GI2ee9/70vClXSO3e0k4ji +mvXj/nPgjY/HdnUTEcuzsJP/vV/yfq9+eGMvES1HsZ0uxn1jpkiVqZ+IWEUJ +iVm4rfft3jkySET9z3rVE3Cb3szc+nmEiLwa/m57/N/7sVJZ8fIJInrTFGbp +iVt/+RV/8l8iklnkHTHDjTTEOJ7ME5HLYmUNwr3P7/ma5xIRhVdNDG/GrVDD +M3d5jYgmH49fXsLnU4rwcFSPmYRkptm3teHeqEP4tZuNhBqbHkAKbt7gO11i +RBK+XkpTPHGzUhZoBB4S8h7+efkI7mWia/0YPwnl3dKx4/rvfeDxsQ/tQiQE +WxUaPuHP+0frz7TUTSQk+z3A7TTudgHTV8+kSGiyzbX+v/dJzefaI71lScgw +4/f1j/j6Ku6i3DVQIqFTLgcyt+J+J6btrbKbhLhmHuu14uv1rVnljU37SKjt +lu5BL9xhP/PMJtXx+3tcI1SBr/dgaaWzXZokdNV2kMkE9x2rVP0abRIqn1bT +msH3h91w3P6I4ySkFre7Wgz3kal7fKpmJMTPvFCoIUqDg3sY2LdYkFB/ople +Bb7/drl7r3JY4bvD7KDyQdwSdMeRb/YkdMWoh1EO369zDEZ1vrfw+3ckpn/e +QIPRw5/KbP1IaMTLc2Qf7r5Ag/enAklosUz17nM8HtDYNROkQ0ioXY5YeBSP +F6m88l4NsST0RKxB3o8Xv96A8QLhFQkdduOVL+ChQUnZA8/Db0hoqUT+23/x +iGI97F6eSUJd3rOnD+LxavRDqkteOQltCb8Unc1BA7ewzqnJahIqe1MmV8NO +gxUbdmelehIq7Jy1acHjIbeArVMaRkIsyj9XfuDxcuc1OfuEHyTU9HrznSZG +fP41Lox0/yKha1rsMWUM+HoSDLouOkRCYWmGNil4PD5ZOWD7fJKEUlMebnDB +47XLhmSrR4xcyJ7HrLxtAYPCaplLntJcqF1RXIQ8joHGi7Pf8+W4EENcr6rr +GAYN9oFm0zu4UJjnRXbRUQw6hftNHPZyoUeSnu8vDmNAd0gyuqLNhT4RNiik +/sLPS1Gp0ydsuJBi0RtX1w4MPrps1pbL4EKHfc59IZdhsDw78VQ8mwvF31BX +4SjFYJ9XVTdfHhea+R7VoF2MQbqvhdtyKRc60rfgn5ePQVhIUlIrhQtdzJTW +tMDPX8tkOaZbf7iQKHrlz4Kf3wxfd1a2bOdG18gdLg63MDhoxkCsV+RG8u5H +lfbg+YFbb8v5MmVuZLuoQ5z1xGBowHn87QFu1CpuIefgikHL3zwJHz28ff+j +L0rXMUjgUr219Ro3Yvu95DR/Hp8PTXTAO5UbTQc02Efh+ctmwStPTTK5UaXF +1rxxefz6g/cG1XK4kfF9F3nNbRjUhDQ9XyvC28sFpX6VwkCn8/x0YAM3Kjf/ +Q/khjMFxJ4eMJwPcSP09829lRgxMX8ZIvJXhQXW1V8fHW6igfqPc7f42HiT6 +6GNYI5UKm7R6m2wUeNDvgC69VxQq9A5t9Zbfy4OES3tHNGupcHVvbnu2Fg86 +OP6z91wRFeybGp6UWvKgi0HCEZVxVPChzzC2vOJBO89Rvj27SoXxS9SfLG/x +9pe/rsVdpoJl/dvqQ2k8qEJ34XySKRV0w8/7p+TyoB13/V4knqWCoGIxg28N +D/JrZla+eoQKmZd91hT7eZC19hEVBmkqTPzyW60T4EVpZ2gn7nc3wzZhh/He +DbzoDU/wkZmOZrDUN/6+JMyLinL4dpq1NUN7jnKFsjgvSlxk7dlMaYYPt/tu +v5ThRbIvii7ZFjVDsPCRFTcVXiTSOMRFeNYMW46xLUtf4EU/v8P7c6gZ9n7R ++iRqzIvMleJeeB7C8+lLfql8JrzISHatI2Ifno+70s+umfOig2XHLaoVmiE/ +diTrqzUvOhn50LhPBG8/Srv0zIMXeRM/TmlONsH1x1EfV5/zorHZM3E2sU2Q +T9v+qOszL1K7Ha9e1UeBp9LVbxfbeRHjFc3LUt0UsPM0qhLr4kXyzr0Gd75Q +QGpz0KxZDy+yDYhykyZT4Ilj/6W+37zo/KOrT6WyKHCdK2HvyBwvKtRh8Jl0 +p4DkMcHvyyJ8yOwjE+s7JgqE1K/ukjTjQxqzu7cVsDUCch5QlrjEhxatk9tn +1sgwI4btFrXgQ6p7ZiSUFvB61PnlXkErPpTvj6wfD5FBUVxNld2BD5nbdFuv +kvF60tkLJm/xIf3PZNtkvP7klZg5XhXHh1QqY+cnmMgQ7jp8/XI3Hyp+Vz7v +3FcPojrezme+86FPPgMHtnbVw2sR4k2dXj40c2qbXiutHt6XK9xT6OdDv2/H +VQqU10ML242EhRE+FNag/lrzRT1wx821PV3iQ2fvpbBq6NdDcC2zerUoPzrw +ruNmYnod3NqwiUfKmB89W4n/4Xe2Fqi5HBfBhB9tKx5SNtOthU2Gs29MzfjR +J/k8y11qtVB5v/ngCwt+dHCp0aJMuhaYFrytSdf50aX+K6NXpj9C0NeO8jlv +fqTvmWTNEPoRwhKe2TfF8SOVfd8iblbUQNp2FopbLz+KtU03vcRSDZ/ENZcc ++vhRZs72McaFKljmua1g08+PhhYVnV/+qQLDuZlQ4yHcZ3MtKmlVMFPTf0Zj +kh9Fng1Xy46uAmRa28PGIIBshcbGkEIVdIbenYrZLIA4Dw5NmEZVAOsM48Zq +cwF0Zk3pfclIKSzkRIX2XxZA7za5N+RTSmHEYSeB/YoAyhF60RqdVgotg6YT +hjYCyN7klrekTSnEfCuq63YSQHrKLs5CP0tA6aODy4KfAGL2TJ80aCmG82Fd +TTuTBFBoPKHXNKoQdE/c0DzzVgAtuJxNy3MthEMktiKPFAHEXyxR1WdYCJL3 +974uzxBAWRXbNesJhfDH68nNY/kC6PH3nS1BjgVwx0J7q02dAKJy655nOpAP +Kbty78QPCiCdwk629oRccNwwRS8aFkDqMmVj/m65sHdxl3vriACyrqi49EU3 +F6o+5tgRJgVQrKmgp81kDnSezzG6viCABpsWpHoP5gD77ezd+zgEUbVRJjxw +zQLMYiLrBFEQlcaenLDmzoIInZ3br3EJoqxEzgCO1EyQ5M3eHMcniBghWsKq +IwNUk96RmEQFEf14/4EcmXSwbcwaoMoLojd7wg8bWCeD0rsxi0EFQTTZ1f6o +7ddbmAlT7GHYKYimtnvlO5i/BT/TrLY9ewRR9rTuiUm9N6CjOWZ4XEUQhWG+ +dSdKk4Akq0ix3i+IOsMfTmXKJkHURGZV9CFBVKSqHkabSgTzz6OH8tTx67WM +HE08kQgyJQp4VBJEnmddpfxSXkFOQGbWmpYgqgmtiQ0LjAcPm9FtG3UE0SaS +JLMZ60tQM1B4s1tXEEmwsg/+do0F8obMGCsDvH/TZzECTFEQujiywddQEJle +HzpbKhQJZ3/seBZ1UhCdE/wTw7sSDqK1dqT3pwVRsIte7LM3z6A3NSOo6awg +opJE6d4/HkPy4xGm3+cFkZ0fk76XehDYu+y4s2qEX1/FRW7FyQd2X7CjC5sI +ov/9f72FQxluymbrrpAcmdC/tO5Alh12Vy3WzUtLt3hhte7tlumGKw7rJr88 +mDPttG7rLgrfkPO635wc+fzJfd2SoGCSenvdQuLvbM48XjdTe65fWua6v+mV +vD83su5PSd6K4LphfTx5p9Skpte9VuxScN9R6J+P7dLRvjW77gazndfsXIX/ +mf+KbdlL93Wb2yZytXiue85F4P3eW+uWCZ5fXAlct9/7ypCnkes+yHYyp6Bk +3fdJD5iGytbdyldzVrRi3bbie+l3atb9QlnksG7TumdMetu+dq8bWWyU5fqx +7kfWp2/Cz3VLOdeKv/m97lP3U60cxtcd9+hnUcLkuoeeinJ+mv4/44kNebdv +ft3Nr+oYrtHXLZy8ejp2ad2WGfvfUlfW/S7nxvza2rr/B7ye3L4= "]]}, "Charting`Private`Tag#3"], Annotation[{ Directive[ @@ -19999,9 +19489,9 @@ bNo061AKtrbpd3l2Cxsbm/4/R/VtRQ== Scaled[0.02], Scaled[0.02]}, {0, 0}}, Ticks->{Automatic, Automatic}]], "Output", - CellChangeTimes->{{3.9272739527356052`*^9, 3.927273997648509*^9}}, - CellLabel-> - "Out[225]=",ExpressionUUID->"1b504264-fa72-481b-b85f-43a544e0eee7"] + CellChangeTimes->{{3.9272739527356052`*^9, 3.927273997648509*^9}, { + 3.928308525478657*^9, 3.928308564723075*^9}, 3.928310955577527*^9}, + CellLabel->"Out[81]=",ExpressionUUID->"86f86a23-4b87-4d46-b71f-4c335e4183d9"] }, Open ]], Cell[BoxData[{ @@ -20022,12 +19512,113 @@ pdf\>\"", ",", "mplot2"}], "]"}], ";"}], "\[IndentingNewLine]", \>\"", ",", "mlegend"}], "]"}], ";"}]}], "Input", CellChangeTimes->{{3.9272696181002073`*^9, 3.927269657220293*^9}, { 3.927270269287866*^9, 3.927270282296212*^9}}, - CellLabel-> - "In[226]:=",ExpressionUUID->"c4b7a709-0c12-406e-817b-d5ab6248e215"] + CellLabel->"In[82]:=",ExpressionUUID->"c4b7a709-0c12-406e-817b-d5ab6248e215"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell["Least squares", "Section", + CellChangeTimes->{{3.927356712189589*^9, + 3.9273567156963577`*^9}},ExpressionUUID->"f122010c-d89c-48b6-a849-\ +06e9f4254e7f"], + +Cell[BoxData[ + RowBox[{"\[ScriptCapitalS]LS", "=", + RowBox[{ + RowBox[{ + OverscriptBox["\[Beta]", "^"], "e"}], "-", + RowBox[{"\[Mu]", + RowBox[{"(", + RowBox[{"r", "+", "g"}], ")"}]}], "-", + RowBox[{ + FractionBox["1", "2"], "\[Mu]", " ", + OverscriptBox["\[Lambda]", "^"]}], "+", + RowBox[{ + OverscriptBox["\[Lambda]", "^"], "\[Lambda]"}], "+", + RowBox[{ + FractionBox["1", "2"], + RowBox[{"Log", "[", + RowBox[{ + FractionBox[ + RowBox[{"d", "+", + SuperscriptBox["r", "2"]}], + SuperscriptBox["g", "2"]], + FractionBox[ + RowBox[{ + SuperscriptBox["y0", "2"], "-", "\[CapitalDelta]z"}], + SuperscriptBox["y0", "2"]]}], "]"}]}], "-", + RowBox[{ + FractionBox["\[Alpha]", "2"], + RowBox[{"Log", "[", + FractionBox[ + RowBox[{"1", "-", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"2", "y0"}], "+", + OverscriptBox["\[Lambda]", "^"]}], ")"}], + RowBox[{ + RowBox[{"f", "'"}], "[", "1", "]"}]}], "+", + RowBox[{ + RowBox[{"(", + RowBox[{ + SuperscriptBox["y0", "2"], "-", "\[CapitalDelta]z"}], ")"}], + SuperscriptBox[ + RowBox[{ + RowBox[{"f", "'"}], "[", "1", "]"}], "2"]}]}], + SuperscriptBox[ + RowBox[{"(", + RowBox[{"1", "-", + RowBox[{"y0", " ", + RowBox[{ + RowBox[{"f", "'"}], "[", "1", "]"}]}]}], ")"}], "2"]], "]"}]}], + "-", + RowBox[{ + FractionBox["\[Alpha]", "2"], + RowBox[{"Log", "[", + FractionBox[ + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"f", "'"}], "[", "1", "]"}], "d"}], "-", + OverscriptBox["\[Beta]", "^"], "-", + RowBox[{ + RowBox[{ + RowBox[{"f", "''"}], "[", "1", "]"}], + RowBox[{"(", + RowBox[{ + SuperscriptBox["r", "2"], "-", + SuperscriptBox["g", "2"], "+", + RowBox[{"2", "y0", " ", + OverscriptBox["\[Lambda]", "^"]}], "+", "\[CapitalDelta]z", "+", + RowBox[{ + FractionBox["1", "2"], + SuperscriptBox[ + OverscriptBox["\[Lambda]", "^"], "2"]}]}], ")"}]}]}], ")"}], + RowBox[{"f", "[", "1", "]"}]}], "+", + SuperscriptBox[ + RowBox[{"(", + RowBox[{"1", "-", + RowBox[{"r", " ", + RowBox[{ + RowBox[{"f", "'"}], "[", "1", "]"}]}]}], ")"}], "2"]}], + SuperscriptBox[ + RowBox[{"(", + RowBox[{"1", "+", + RowBox[{"g", " ", + RowBox[{ + RowBox[{"f", "'"}], "[", "1", "]"}]}]}], ")"}], "2"]], + "]"}]}]}]}]], "Input", + CellChangeTimes->{{3.9273567292650757`*^9, + 3.9273569425602083`*^9}},ExpressionUUID->"97f59fe8-af38-42ea-9678-\ +6cb9b2e573e2"] }, Open ]] }, -WindowSize->{952.5, 1023.75}, -WindowMargins->{{0, Automatic}, {-537.75, -1.5}}, +WindowSize->{1920, 1023.75}, +WindowMargins->{{0, Automatic}, {Automatic, 0}}, FrontEndVersion->"14.0 for Linux x86 (64-bit) (December 12, 2023)", StyleDefinitions->"Default.nb", ExpressionUUID->"fe7785c4-a5eb-46c5-8188-772697b31ba4" @@ -20053,180 +19644,188 @@ Cell[CellGroupData[{ Cell[2355, 70, 171, 3, 50, "Section",ExpressionUUID->"e26a72a6-0937-45b0-a625-f1bdf166fa4e"], Cell[2529, 75, 899, 29, 48, "Input",ExpressionUUID->"50c08a66-4e65-4112-8ad7-d5d45f281a8c"], Cell[CellGroupData[{ -Cell[3453, 108, 2084, 50, 58, "Input",ExpressionUUID->"6c00d5eb-8ba7-405a-9bf1-5d71e992492f"], -Cell[5540, 160, 29585, 583, 177, "Output",ExpressionUUID->"96d8c022-71f7-4175-ad56-0b948701a2c3"] +Cell[3453, 108, 2084, 50, 24, "Input",ExpressionUUID->"6c00d5eb-8ba7-405a-9bf1-5d71e992492f"], +Cell[5540, 160, 29582, 583, 177, "Output",ExpressionUUID->"96d8c022-71f7-4175-ad56-0b948701a2c3"] }, Open ]], Cell[CellGroupData[{ -Cell[35162, 748, 355, 7, 22, "Input",ExpressionUUID->"0c67dbb9-49b6-4edb-9219-e0a5cdf9b31d"], -Cell[35520, 757, 492, 7, 25, "Output",ExpressionUUID->"85074921-98fb-4fbd-91ef-b733df3a8845"] +Cell[35159, 748, 355, 7, 22, "Input",ExpressionUUID->"0c67dbb9-49b6-4edb-9219-e0a5cdf9b31d"], +Cell[35517, 757, 492, 7, 25, "Output",ExpressionUUID->"85074921-98fb-4fbd-91ef-b733df3a8845"] }, Open ]], -Cell[36027, 767, 435, 12, 35, "Input",ExpressionUUID->"06818f5b-ee0e-4634-b547-e05e415c12a6"], -Cell[36465, 781, 312, 8, 27, "Input",ExpressionUUID->"ab28ae26-b52f-4a56-978d-e7ee3f806eda"], -Cell[36780, 791, 676, 19, 44, "Input",ExpressionUUID->"eec97d73-ae34-443d-825f-cbb8adebe02f"], +Cell[36024, 767, 435, 12, 35, "Input",ExpressionUUID->"06818f5b-ee0e-4634-b547-e05e415c12a6"], +Cell[36462, 781, 312, 8, 27, "Input",ExpressionUUID->"ab28ae26-b52f-4a56-978d-e7ee3f806eda"], +Cell[36777, 791, 676, 19, 44, "Input",ExpressionUUID->"eec97d73-ae34-443d-825f-cbb8adebe02f"], Cell[CellGroupData[{ -Cell[37481, 814, 196, 3, 22, "Input",ExpressionUUID->"83c0ad8f-8d45-4089-b5a6-d03efc9cdfbe"], -Cell[37680, 819, 217, 3, 25, "Output",ExpressionUUID->"8a53c8d7-c295-47d2-aa7f-189bb8a2f899"] +Cell[37478, 814, 196, 3, 22, "Input",ExpressionUUID->"83c0ad8f-8d45-4089-b5a6-d03efc9cdfbe"], +Cell[37677, 819, 217, 3, 25, "Output",ExpressionUUID->"8a53c8d7-c295-47d2-aa7f-189bb8a2f899"] }, Open ]], -Cell[37912, 825, 2505, 60, 77, "Input",ExpressionUUID->"def223fd-aeee-4091-9e76-97462b62b6cc"], -Cell[40420, 887, 5604, 139, 228, "Input",ExpressionUUID->"f1078ecd-48ad-4003-b086-93bd8c2242bb"], -Cell[46027, 1028, 7652, 192, 311, "Input",ExpressionUUID->"244eac76-0bbb-4e5a-9b06-0f294e654a3f"], +Cell[37909, 825, 2505, 60, 39, "Input",ExpressionUUID->"def223fd-aeee-4091-9e76-97462b62b6cc"], +Cell[40417, 887, 5604, 139, 116, "Input",ExpressionUUID->"f1078ecd-48ad-4003-b086-93bd8c2242bb"], +Cell[46024, 1028, 7652, 192, 193, "Input",ExpressionUUID->"244eac76-0bbb-4e5a-9b06-0f294e654a3f"], Cell[CellGroupData[{ -Cell[53704, 1224, 694, 11, 22, "Input",ExpressionUUID->"28a195c1-e132-4911-80e7-05e2e1470f78"], -Cell[54401, 1237, 32305, 586, 74, "Output",ExpressionUUID->"577d2755-a6c5-47a3-9e67-78c4a4c9e8b1"] +Cell[53701, 1224, 694, 11, 22, "Input",ExpressionUUID->"28a195c1-e132-4911-80e7-05e2e1470f78"], +Cell[54398, 1237, 32305, 586, 74, "Output",ExpressionUUID->"577d2755-a6c5-47a3-9e67-78c4a4c9e8b1"] }, Open ]], Cell[CellGroupData[{ -Cell[86743, 1828, 676, 13, 22, "Input",ExpressionUUID->"e68d9ce5-814e-4498-aeeb-52ccf1b87537"], -Cell[87422, 1843, 31492, 576, 74, "Output",ExpressionUUID->"9496b18b-d8fb-4070-8783-a932a49d22f3"] +Cell[86740, 1828, 676, 13, 22, "Input",ExpressionUUID->"e68d9ce5-814e-4498-aeeb-52ccf1b87537"], +Cell[87419, 1843, 31492, 576, 74, "Output",ExpressionUUID->"9496b18b-d8fb-4070-8783-a932a49d22f3"] }, Open ]], Cell[CellGroupData[{ -Cell[118951, 2424, 725, 13, 22, "Input",ExpressionUUID->"9df7247c-bae3-4562-95d7-d5d547f8369d"], -Cell[119679, 2439, 31656, 579, 74, "Output",ExpressionUUID->"9cd54024-e29b-456b-a509-0492f8827637"] +Cell[118948, 2424, 725, 13, 22, "Input",ExpressionUUID->"9df7247c-bae3-4562-95d7-d5d547f8369d"], +Cell[119676, 2439, 31654, 579, 74, "Output",ExpressionUUID->"9cd54024-e29b-456b-a509-0492f8827637"] }, Open ]], -Cell[151350, 3021, 795, 19, 53, "Input",ExpressionUUID->"9c8fbe7e-534f-4567-b9e1-d7a5c3ce1086"] +Cell[151345, 3021, 795, 19, 53, "Input",ExpressionUUID->"9c8fbe7e-534f-4567-b9e1-d7a5c3ce1086"] }, Open ]], Cell[CellGroupData[{ -Cell[152182, 3045, 157, 3, 50, "Section",ExpressionUUID->"8475cc42-326a-4ebf-b66b-7d80366a5280"], -Cell[152342, 3050, 6531, 182, 341, "Input",ExpressionUUID->"830d12ec-ccc1-4fbc-9de0-2282430f4840"], -Cell[158876, 3234, 1566, 47, 53, "Input",ExpressionUUID->"bcf9e08b-5bc8-4156-8987-ae991b3777be"], -Cell[160445, 3283, 701, 18, 38, "Input",ExpressionUUID->"90676af5-535d-4801-950c-574cc68db098"], +Cell[152177, 3045, 157, 3, 50, "Section",ExpressionUUID->"8475cc42-326a-4ebf-b66b-7d80366a5280"], +Cell[152337, 3050, 6532, 182, 341, "Input",ExpressionUUID->"830d12ec-ccc1-4fbc-9de0-2282430f4840"], +Cell[158872, 3234, 1567, 47, 22, "Input",ExpressionUUID->"bcf9e08b-5bc8-4156-8987-ae991b3777be"], +Cell[160442, 3283, 702, 18, 38, "Input",ExpressionUUID->"90676af5-535d-4801-950c-574cc68db098"], Cell[CellGroupData[{ -Cell[161171, 3305, 237, 4, 22, "Input",ExpressionUUID->"3e4fb69d-9599-4326-945e-414023395a5f"], -Cell[161411, 3311, 1395, 30, 111, "Output",ExpressionUUID->"ab6f4526-c3bb-4b3a-81ed-e5649ee31393"] +Cell[161169, 3305, 237, 4, 22, "Input",ExpressionUUID->"3e4fb69d-9599-4326-945e-414023395a5f"], +Cell[161409, 3311, 1418, 31, 111, "Output",ExpressionUUID->"dc8c4d24-e3b9-4519-b25a-d1b37a8ca665"] }, Open ]], Cell[CellGroupData[{ -Cell[162843, 3346, 468, 12, 22, "Input",ExpressionUUID->"692c829b-e066-4a5e-bd71-7d2bb33fb03d"], -Cell[163314, 3360, 1401, 31, 111, "Output",ExpressionUUID->"f0727734-e4df-49a4-948d-8f277e06e8c3"] +Cell[162864, 3347, 468, 12, 22, "Input",ExpressionUUID->"692c829b-e066-4a5e-bd71-7d2bb33fb03d"], +Cell[163335, 3361, 1427, 32, 111, "Output",ExpressionUUID->"1d662128-382e-4f15-b860-f781d0e058f9"] }, Open ]], Cell[CellGroupData[{ -Cell[164752, 3396, 710, 20, 22, "Input",ExpressionUUID->"9dee447a-c909-40cb-8546-4295c33c7ecb"], -Cell[165465, 3418, 623, 9, 25, "Output",ExpressionUUID->"1ba86785-13f6-440b-acc6-140d6fc7710d"] +Cell[164799, 3398, 710, 20, 22, "Input",ExpressionUUID->"9dee447a-c909-40cb-8546-4295c33c7ecb"], +Cell[165512, 3420, 647, 9, 25, "Output",ExpressionUUID->"f17e3a44-13b0-4bd9-987a-b8c0d0f58652"] }, Open ]], -Cell[166103, 3430, 3806, 98, 110, "Input",ExpressionUUID->"ae225317-c8f2-42eb-a092-5a3d6696fcf1"], +Cell[166174, 3432, 3806, 98, 78, "Input",ExpressionUUID->"ae225317-c8f2-42eb-a092-5a3d6696fcf1"], Cell[CellGroupData[{ -Cell[169934, 3532, 929, 26, 24, "Input",ExpressionUUID->"441c736d-f94a-4b61-ae4a-050ffb34f1d4"], -Cell[170866, 3560, 4888, 136, 135, "Output",ExpressionUUID->"0fe05580-3c79-4e5d-9205-fc1ac479e5a6"] +Cell[170005, 3534, 925, 25, 24, "Input",ExpressionUUID->"441c736d-f94a-4b61-ae4a-050ffb34f1d4"], +Cell[170933, 3561, 4940, 137, 84, "Output",ExpressionUUID->"7e5b218a-4bf7-4e16-b6af-f640354de52c"] }, Open ]], Cell[CellGroupData[{ -Cell[175791, 3701, 994, 24, 22, "Input",ExpressionUUID->"27f3f5fd-a103-416e-9e22-49288939ab46"], -Cell[176788, 3727, 6520, 175, 141, "Output",ExpressionUUID->"4d658288-3cec-4eb5-98c5-3d00b7ee767f"] +Cell[175910, 3703, 994, 24, 22, "Input",ExpressionUUID->"27f3f5fd-a103-416e-9e22-49288939ab46"], +Cell[176907, 3729, 6542, 175, 73, "Output",ExpressionUUID->"1b144bac-a028-45f3-a721-bd16185eb07c"] }, Open ]], Cell[CellGroupData[{ -Cell[183345, 3907, 906, 25, 24, "Input",ExpressionUUID->"ad63e4bc-666e-46ed-8c23-6d418adb2b5d"], -Cell[184254, 3934, 3889, 115, 89, "Output",ExpressionUUID->"77a1ebce-86f9-4b90-a78a-3119e0ea33a9"] +Cell[183486, 3909, 906, 25, 24, "Input",ExpressionUUID->"ad63e4bc-666e-46ed-8c23-6d418adb2b5d"], +Cell[184395, 3936, 3915, 116, 55, "Output",ExpressionUUID->"85986fc9-5212-4924-bbb0-44c85aa62f64"] }, Open ]], -Cell[188158, 4052, 984, 20, 22, "Input",ExpressionUUID->"c88cdbf9-9e5d-49a2-927e-12c0fc1e998e"], -Cell[189145, 4074, 2604, 54, 41, "Input",ExpressionUUID->"13c828e2-dc96-418a-98b1-bcedb602773f"], +Cell[188325, 4055, 984, 20, 22, "Input",ExpressionUUID->"c88cdbf9-9e5d-49a2-927e-12c0fc1e998e"], +Cell[189312, 4077, 2604, 54, 24, "Input",ExpressionUUID->"13c828e2-dc96-418a-98b1-bcedb602773f"], Cell[CellGroupData[{ -Cell[191774, 4132, 419, 10, 22, "Input",ExpressionUUID->"5547b70f-6ccc-4c3c-b7a2-430267adff70"], -Cell[192196, 4144, 5741, 144, 309, "Output",ExpressionUUID->"c03390ca-902f-4044-8505-354784ced201"] +Cell[191941, 4135, 419, 10, 22, "Input",ExpressionUUID->"5547b70f-6ccc-4c3c-b7a2-430267adff70"], +Cell[192363, 4147, 5767, 145, 160, "Output",ExpressionUUID->"f66850fa-e64c-45dd-b704-5045a5ac66bd"] }, Open ]], Cell[CellGroupData[{ -Cell[197974, 4293, 431, 10, 22, "Input",ExpressionUUID->"87393889-0e58-4140-85b8-c09bdfb83fa6"], -Cell[198408, 4305, 11240, 318, 390, "Output",ExpressionUUID->"c4a79746-5ea4-4897-b93e-15c55d36d8ed"] +Cell[198167, 4297, 431, 10, 22, "Input",ExpressionUUID->"87393889-0e58-4140-85b8-c09bdfb83fa6"], +Cell[198601, 4309, 11262, 318, 177, "Output",ExpressionUUID->"f6ce55a2-7f04-49c0-800a-b712e2e93692"] }, Open ]], Cell[CellGroupData[{ -Cell[209685, 4628, 472, 12, 22, "Input",ExpressionUUID->"4d2d8f62-3f6d-45b3-9a63-780219e0e7e8"], -Cell[210160, 4642, 1369, 36, 27, "Output",ExpressionUUID->"36d18a4d-87f3-428e-a686-2a39a067e0b6"] +Cell[209900, 4632, 472, 12, 22, "Input",ExpressionUUID->"4d2d8f62-3f6d-45b3-9a63-780219e0e7e8"], +Cell[210375, 4646, 1391, 36, 27, "Output",ExpressionUUID->"de5a6a45-70fe-4fde-8b20-59e5cc7175f7"] }, Open ]], Cell[CellGroupData[{ -Cell[211566, 4683, 947, 20, 22, "Input",ExpressionUUID->"83eebe5d-3503-4b31-b14f-639ea14a0248"], -Cell[212516, 4705, 822, 16, 22, "Message",ExpressionUUID->"cdf4559f-03c0-42c4-9176-18b5009a37cf"] +Cell[211803, 4687, 947, 20, 22, "Input",ExpressionUUID->"83eebe5d-3503-4b31-b14f-639ea14a0248"], +Cell[212753, 4709, 844, 16, 22, "Message",ExpressionUUID->"55c5134f-0549-48cf-b7a6-054801bf5ad4"] }, Open ]], -Cell[213353, 4724, 1106, 22, 22, "Input",ExpressionUUID->"4c448220-e031-41d2-9096-b9e341dcd981"], -Cell[214462, 4748, 3835, 83, 58, "Input",ExpressionUUID->"63ea8c17-6059-4955-9b14-1b9deb692962"], +Cell[213612, 4728, 1106, 22, 22, "Input",ExpressionUUID->"4c448220-e031-41d2-9096-b9e341dcd981"], +Cell[214721, 4752, 3835, 83, 41, "Input",ExpressionUUID->"63ea8c17-6059-4955-9b14-1b9deb692962"], Cell[CellGroupData[{ -Cell[218322, 4835, 1251, 26, 24, "Input",ExpressionUUID->"7fe546c9-0af1-4973-85bb-971e16ca3307"], -Cell[219576, 4863, 1698, 38, 38, "Output",ExpressionUUID->"47691ab5-e9b8-4c29-9c2e-87886cec4f26"] +Cell[218581, 4839, 1251, 26, 24, "Input",ExpressionUUID->"7fe546c9-0af1-4973-85bb-971e16ca3307"], +Cell[219835, 4867, 1722, 38, 38, "Output",ExpressionUUID->"d2c67767-48a3-43d0-8cac-dbcdc66f4cec"] }, Open ]], -Cell[221289, 4904, 964, 25, 24, "Input",ExpressionUUID->"84934d64-fc27-4a55-a1de-6f9f09494033"], -Cell[222256, 4931, 358, 9, 22, "Input",ExpressionUUID->"83f76904-20b3-4c92-8479-9704a86e9bc3"], +Cell[221572, 4908, 964, 25, 24, "Input",ExpressionUUID->"84934d64-fc27-4a55-a1de-6f9f09494033"], +Cell[222539, 4935, 358, 9, 22, "Input",ExpressionUUID->"83f76904-20b3-4c92-8479-9704a86e9bc3"], Cell[CellGroupData[{ -Cell[222639, 4944, 178, 3, 22, "Input",ExpressionUUID->"18644ace-46f3-463e-bb29-b07ed4d9811c"], -Cell[222820, 4949, 25956, 544, 622, "Output",ExpressionUUID->"22aca13c-5dae-4ac2-8dc1-059e767b7a58"] +Cell[222922, 4948, 174, 2, 22, "Input",ExpressionUUID->"18644ace-46f3-463e-bb29-b07ed4d9811c"], +Cell[223099, 4952, 25974, 543, 281, "Output",ExpressionUUID->"095ac6f5-3be6-431b-ab90-af3de346ca5f"] }, Open ]], -Cell[248791, 5496, 886, 18, 22, "Input",ExpressionUUID->"82f4b3f0-5071-4e29-8e26-febf3110e5e0"], +Cell[249088, 5498, 886, 18, 22, "Input",ExpressionUUID->"82f4b3f0-5071-4e29-8e26-febf3110e5e0"], Cell[CellGroupData[{ -Cell[249702, 5518, 3660, 86, 125, "Input",ExpressionUUID->"acfb6249-e04b-4f94-810b-05af73aac0bc"], -Cell[253365, 5606, 3554, 68, 90, "Output",ExpressionUUID->"d807d019-8ba4-4c91-8850-4ccda5fd9c8e"] +Cell[249999, 5520, 3660, 86, 107, "Input",ExpressionUUID->"acfb6249-e04b-4f94-810b-05af73aac0bc"], +Cell[253662, 5608, 3558, 71, 59, "Output",ExpressionUUID->"06f5dbb6-66c5-4be6-bfb0-0ba8e6dc498e"] }, Open ]], Cell[CellGroupData[{ -Cell[256956, 5679, 2809, 62, 72, "Input",ExpressionUUID->"2a2f7dd9-b465-4d3a-81cf-abf195bcfc21"], -Cell[259768, 5743, 702, 14, 36, "Message",ExpressionUUID->"4692e6b0-96ac-4677-8a36-e5e38fc7acee"], -Cell[260473, 5759, 702, 14, 36, "Message",ExpressionUUID->"fd1344b0-e7b7-423b-8b2f-4e71acb0f17c"], -Cell[261178, 5775, 702, 14, 36, "Message",ExpressionUUID->"795d0375-6c9a-420c-8812-2ab30333bc33"], -Cell[261883, 5791, 573, 12, 22, "Message",ExpressionUUID->"15ea9d46-2e6b-4e49-92b8-ca963c9b6130"] +Cell[257257, 5684, 2809, 62, 24, "Input",ExpressionUUID->"2a2f7dd9-b465-4d3a-81cf-abf195bcfc21"], +Cell[260069, 5748, 724, 14, 22, "Message",ExpressionUUID->"786007c0-0f52-4a68-90a6-bffa68476339"], +Cell[260796, 5764, 724, 14, 22, "Message",ExpressionUUID->"8343f91d-bee2-4489-a09e-c242d7f6db9f"], +Cell[261523, 5780, 725, 14, 22, "Message",ExpressionUUID->"8a7a66b8-fdaa-4895-86b5-f2f9772834e4"], +Cell[262251, 5796, 594, 12, 22, "Message",ExpressionUUID->"9bbcb702-372f-43ae-8c39-af496c0a7ec4"] }, Open ]], Cell[CellGroupData[{ -Cell[262493, 5808, 1903, 52, 70, "Input",ExpressionUUID->"f6acd6ad-220b-4828-a7d3-5558b5c91e4c"], -Cell[264399, 5862, 3400, 89, 136, "Output",ExpressionUUID->"8e088654-6144-4e7e-ae52-b08db69f12e9"] +Cell[262882, 5813, 1903, 52, 39, "Input",ExpressionUUID->"f6acd6ad-220b-4828-a7d3-5558b5c91e4c"], +Cell[264788, 5867, 3408, 87, 75, "Output",ExpressionUUID->"5b9fabee-d5d5-41fa-9d66-158181a4ce5a"] }, Open ]], -Cell[267814, 5954, 1579, 40, 72, "Input",ExpressionUUID->"b04acde6-1c4d-4632-b34e-b05a8c3158f7"], +Cell[268211, 5957, 1579, 40, 24, "Input",ExpressionUUID->"b04acde6-1c4d-4632-b34e-b05a8c3158f7"], Cell[CellGroupData[{ -Cell[269418, 5998, 306, 7, 22, "Input",ExpressionUUID->"bb7ea87c-a295-4530-bdcd-103371a64b77"], -Cell[269727, 6007, 75728, 1307, 183, "Output",ExpressionUUID->"88fd1897-8c0a-468d-9d2b-390b68a5128e"] +Cell[269815, 6001, 306, 7, 22, "Input",ExpressionUUID->"bb7ea87c-a295-4530-bdcd-103371a64b77"], +Cell[270124, 6010, 75750, 1307, 183, "Output",ExpressionUUID->"039f6472-f8d6-4898-919b-ff05699a256c"] }, Open ]], Cell[CellGroupData[{ -Cell[345492, 7319, 23733, 404, 174, "Input",ExpressionUUID->"c8acd08e-419d-47df-95d8-cd474e7cf4f4"], -Cell[369228, 7725, 23710, 404, 177, "Output",ExpressionUUID->"258a3fb8-1858-449e-81cf-7305a0050158"] +Cell[345911, 7322, 23733, 404, 174, "Input",ExpressionUUID->"c8acd08e-419d-47df-95d8-cd474e7cf4f4"], +Cell[369647, 7728, 23734, 404, 177, "Output",ExpressionUUID->"0cdb0669-18fb-49e4-894f-65cf01920ce6"] }, Open ]], Cell[CellGroupData[{ -Cell[392975, 8134, 3688, 86, 104, "Input",ExpressionUUID->"0012cb53-2118-4c32-9687-3900486d9017"], -Cell[396666, 8222, 631, 13, 36, "Message",ExpressionUUID->"1dbf7ac6-ed08-415b-9217-21822168aafb"], -Cell[397300, 8237, 633, 13, 36, "Message",ExpressionUUID->"730f5176-d4ff-4335-8127-b006765df617"], -Cell[397936, 8252, 631, 13, 36, "Message",ExpressionUUID->"65f2ef6d-d552-46ba-88a6-14db70c55524"], -Cell[398570, 8267, 500, 11, 22, "Message",ExpressionUUID->"ed1cd31f-d5b3-48f5-9989-05bd6a911b44"] +Cell[393418, 8137, 3785, 87, 56, "Input",ExpressionUUID->"0012cb53-2118-4c32-9687-3900486d9017"], +Cell[397206, 8226, 701, 14, 22, "Message",ExpressionUUID->"cc6071c7-90c8-44e6-a05d-139fcf893f9f"], +Cell[397910, 8242, 1623, 29, 22, "Message",ExpressionUUID->"445bfe58-b467-43b4-9f8a-4f09d47858a6"], +Cell[399536, 8273, 1623, 29, 22, "Message",ExpressionUUID->"a2709c3e-f5dc-4790-bafb-ccde8842d1ce"], +Cell[401162, 8304, 1623, 29, 22, "Message",ExpressionUUID->"fa094df9-6af9-4495-a07c-a010e433523f"], +Cell[402788, 8335, 570, 12, 22, "Message",ExpressionUUID->"215a4a4b-5897-4135-97c4-a3567b3a0ea7"], +Cell[403361, 8349, 703, 14, 22, "Message",ExpressionUUID->"6d8b40a1-7762-4fd5-b677-32728cbb74d0"], +Cell[404067, 8365, 701, 14, 22, "Message",ExpressionUUID->"532219ae-c3fa-48ce-8fc3-f61573c72449"], +Cell[404771, 8381, 570, 12, 22, "Message",ExpressionUUID->"dc63d757-ae64-4223-98f0-9e3e51872aa4"] }, Open ]], Cell[CellGroupData[{ -Cell[399107, 8283, 574, 16, 24, "Input",ExpressionUUID->"f60a2b45-e619-4e66-a5fe-f654a250e3c1"], -Cell[399684, 8301, 258, 6, 35, "Output",ExpressionUUID->"8c46bbcd-bf33-48d3-96cc-0fe08f4e2793"] +Cell[405378, 8398, 570, 15, 24, "Input",ExpressionUUID->"f60a2b45-e619-4e66-a5fe-f654a250e3c1"], +Cell[405951, 8415, 323, 6, 25, "Output",ExpressionUUID->"eb35fdc9-1afa-47f2-8bcc-688c6b1c0b59"] }, Open ]], Cell[CellGroupData[{ -Cell[399979, 8312, 672, 18, 24, "Input",ExpressionUUID->"966871e9-cb76-4279-9fae-2e272197164a"], -Cell[400654, 8332, 409, 8, 35, "Output",ExpressionUUID->"efa626f7-90bb-4260-b69d-c55baf79ab36"] +Cell[406311, 8426, 668, 17, 24, "Input",ExpressionUUID->"966871e9-cb76-4279-9fae-2e272197164a"], +Cell[406982, 8445, 474, 8, 25, "Output",ExpressionUUID->"2bd51368-da60-47a5-807f-28df1639de14"] }, Open ]], Cell[CellGroupData[{ -Cell[401100, 8345, 574, 16, 24, "Input",ExpressionUUID->"d19d89e4-a282-47a0-a129-6bfc594811ce"], -Cell[401677, 8363, 309, 7, 35, "Output",ExpressionUUID->"cdd73faa-648d-4c28-98b3-a11015b0f2a1"] +Cell[407493, 8458, 570, 15, 24, "Input",ExpressionUUID->"d19d89e4-a282-47a0-a129-6bfc594811ce"], +Cell[408066, 8475, 380, 7, 25, "Output",ExpressionUUID->"f418d492-7f7f-4edd-8289-968340f073ce"] }, Open ]], Cell[CellGroupData[{ -Cell[402023, 8375, 758, 19, 22, "Input",ExpressionUUID->"0a707b26-1c87-4e49-9fde-e91e569d127e"], -Cell[402784, 8396, 13360, 311, 72, "Output",ExpressionUUID->"494215f1-a332-49c8-88a1-c5b4ad751877"] +Cell[408483, 8487, 754, 18, 22, "Input",ExpressionUUID->"0a707b26-1c87-4e49-9fde-e91e569d127e"], +Cell[409240, 8507, 13426, 311, 62, "Output",ExpressionUUID->"fa4fd6f1-284d-4d76-8c72-67f727d69aed"] }, Open ]], Cell[CellGroupData[{ -Cell[416181, 8712, 3438, 82, 53, "Input",ExpressionUUID->"abdd1227-571e-42c2-ba14-b0236a50da8f"], -Cell[419622, 8796, 243041, 4060, 145, "Output",ExpressionUUID->"0d7a7567-3ca1-43a1-b591-9936a69f4cc2"] +Cell[422703, 8823, 3430, 81, 38, "Input",ExpressionUUID->"abdd1227-571e-42c2-ba14-b0236a50da8f"], +Cell[426136, 8906, 242964, 4057, 135, "Output",ExpressionUUID->"699f22d3-c3d8-4cce-b02c-34ee24abacf9"] }, Open ]] }, Open ]], Cell[CellGroupData[{ -Cell[662712, 12862, 166, 3, 50, "Section",ExpressionUUID->"e8e3024e-103e-44c3-bff6-eeb43f1280c8"], -Cell[662881, 12867, 1924, 54, 35, "Input",ExpressionUUID->"01b4718d-1b06-4ca9-9828-eb7538126c81"], +Cell[669149, 12969, 166, 3, 50, "Section",ExpressionUUID->"e8e3024e-103e-44c3-bff6-eeb43f1280c8"], +Cell[669318, 12974, 2020, 56, 35, "Input",ExpressionUUID->"01b4718d-1b06-4ca9-9828-eb7538126c81"], Cell[CellGroupData[{ -Cell[664830, 12925, 683, 19, 22, "Input",ExpressionUUID->"18b98bab-0eb8-4c66-8662-8b5e34efa820"], -Cell[665516, 12946, 43803, 825, 393, "Output",ExpressionUUID->"c1529933-4912-4020-9a36-126199861756"] +Cell[671363, 13034, 683, 19, 22, "Input",ExpressionUUID->"18b98bab-0eb8-4c66-8662-8b5e34efa820"], +Cell[672049, 13055, 1017, 15, 65, "Output",ExpressionUUID->"28d11ee2-0596-4d50-9a1e-cbeee6fe020f"] }, Open ]], -Cell[709334, 13774, 3358, 76, 53, "Input",ExpressionUUID->"54eb6310-6546-48ff-bb13-776eec083f58"], +Cell[673081, 13073, 3352, 75, 53, "Input",ExpressionUUID->"54eb6310-6546-48ff-bb13-776eec083f58"], Cell[CellGroupData[{ -Cell[712717, 13854, 1620, 42, 41, "Input",ExpressionUUID->"dfdd1eea-966a-4bd0-8f13-2b14628904cd"], -Cell[714340, 13898, 36033, 662, 183, "Output",ExpressionUUID->"c58afa76-8ece-4937-b24c-29d3c1ba58fd"] +Cell[676458, 13152, 1619, 42, 24, "Input",ExpressionUUID->"dfdd1eea-966a-4bd0-8f13-2b14628904cd"], +Cell[678080, 13196, 47641, 852, 186, "Output",ExpressionUUID->"4b18b0e6-da57-47d7-8170-1cbe02c23f44"] }, Open ]], Cell[CellGroupData[{ -Cell[750410, 14565, 618, 17, 22, "Input",ExpressionUUID->"f71f24e9-9817-4053-9bea-a250d010efff"], -Cell[751031, 14584, 87714, 1572, 288, "Output",ExpressionUUID->"b61fdba8-e6cc-4e49-8ada-29b397873cb1"] +Cell[725758, 14053, 618, 17, 22, "Input",ExpressionUUID->"f71f24e9-9817-4053-9bea-a250d010efff"], +Cell[726379, 14072, 87714, 1572, 288, "Output",ExpressionUUID->"b61fdba8-e6cc-4e49-8ada-29b397873cb1"] }, Open ]], Cell[CellGroupData[{ -Cell[838782, 16161, 707, 19, 22, "Input",ExpressionUUID->"de157c7b-b709-4e1e-8df1-e3e28f52b43f"], -Cell[839492, 16182, 44199, 801, 179, "Output",ExpressionUUID->"ee7cf310-ffc9-4000-8be1-72457e8e1cb8"] +Cell[814130, 15649, 707, 19, 22, "Input",ExpressionUUID->"de157c7b-b709-4e1e-8df1-e3e28f52b43f"], +Cell[814840, 15670, 44199, 801, 179, "Output",ExpressionUUID->"ee7cf310-ffc9-4000-8be1-72457e8e1cb8"] }, Open ]], Cell[CellGroupData[{ -Cell[883728, 16988, 703, 20, 35, "Input",ExpressionUUID->"c481b209-2bcd-4c5b-9300-64e792165889"], -Cell[884434, 17010, 191, 3, 25, "Output",ExpressionUUID->"e229148f-e3cd-49b3-a2a8-d25d53f79d45"] +Cell[859076, 16476, 703, 20, 35, "Input",ExpressionUUID->"c481b209-2bcd-4c5b-9300-64e792165889"], +Cell[859782, 16498, 191, 3, 25, "Output",ExpressionUUID->"e229148f-e3cd-49b3-a2a8-d25d53f79d45"] }, Open ]], -Cell[884640, 17016, 480, 14, 39, "Input",ExpressionUUID->"f117b50a-92dc-4e32-abab-3922821a7857"], +Cell[859988, 16504, 476, 13, 39, "Input",ExpressionUUID->"f117b50a-92dc-4e32-abab-3922821a7857"], Cell[CellGroupData[{ -Cell[885145, 17034, 4572, 110, 132, "Input",ExpressionUUID->"ac3f0bd9-271b-4050-a7c4-8134f5842c06"], -Cell[889720, 17146, 168535, 2857, 145, "Output",ExpressionUUID->"1b504264-fa72-481b-b85f-43a544e0eee7"] +Cell[860489, 16521, 4691, 113, 61, "Input",ExpressionUUID->"ac3f0bd9-271b-4050-a7c4-8134f5842c06"], +Cell[865183, 16636, 168591, 2857, 135, "Output",ExpressionUUID->"86f86a23-4b87-4d46-b71f-4c335e4183d9"] +}, Open ]], +Cell[1033789, 19496, 766, 18, 53, "Input",ExpressionUUID->"c4b7a709-0c12-406e-817b-d5ab6248e215"] }, Open ]], -Cell[1058270, 20006, 770, 19, 53, "Input",ExpressionUUID->"c4b7a709-0c12-406e-817b-d5ab6248e215"] +Cell[CellGroupData[{ +Cell[1034592, 19519, 160, 3, 50, "Section",ExpressionUUID->"f122010c-d89c-48b6-a849-06e9f4254e7f"], +Cell[1034755, 19524, 2883, 92, 49, "Input",ExpressionUUID->"97f59fe8-af38-42ea-9678-6cb9b2e573e2"] }, Open ]] } ] diff --git a/marginal.tex b/marginal.tex index 26a88fe..45d65dc 100644 --- a/marginal.tex +++ b/marginal.tex @@ -202,12 +202,14 @@ as the emergence of an imaginary part in the function. As an example, we compute \begin{equation} \label{eq:large.dev} - e^{NG_\lambda^*(\mu)} - =P_{\lambda_\mathrm{min}(B+\mu I)=\lambda^*} - =\overline{\delta\big(N\lambda^*-N\lambda_\mathrm{min}(B+\mu I)\big)} + \begin{aligned} + e^{NG_{\lambda^*}(\mu)} + &=P\big(\lambda_\mathrm{min}(B+\mu I)=\lambda^*\big) \\ + &=\overline{\delta\big(N\lambda^*-N\lambda_\mathrm{min}(B+\mu I)\big)} + \end{aligned} \end{equation} where the overline is the average over $B$, and we have defined the large -deviation function $G_\sigma(\mu)$. +deviation function $G_{\lambda^*}(\mu)$. Using the representation of $\lambda_\mathrm{min}$ defined in \eqref{eq:λmin}, we have \begin{widetext} \begin{equation} @@ -225,10 +227,10 @@ representation, we have =\overline{\lim_{\beta\to\infty}\lim_{m\to0}\int d\hat\lambda\prod_{\alpha=1}^m\left[d\mathbf s^\alpha\,\delta(N-\|\mathbf s^\alpha\|^2)\right] \exp\left\{-\beta\sum_{\alpha=1}^m(\mathbf s^\alpha)^T(B+\mu I)\mathbf s^\alpha+\hat\lambda\left[N\lambda^*-(\mathbf s^1)^T(B+\mu I)\mathbf s^1\right]\right\}} \end{equation} -having introduced the parameter $\hat\lambda$ in the Fourier representation of -the $\delta$-function. The whole expression, so transformed, is a simple +having introduced the auxiliary parameter $\hat\lambda$ in the Fourier representation of +the $\delta$-function. The whole expression, so transformed, is an exponential integral linear in the matrix $B$. Taking the average over $B$, we -have +find \begin{equation} \begin{aligned} &e^{NG_{\lambda^*}(\mu)} @@ -241,27 +243,27 @@ have \end{equation} \end{widetext} We make the Hubbard--Stratonovich transformation to the matrix field -$Q_{ab}=\frac1N\mathbf s_a^T\mathbf s_b$. This gives +$Q^{\alpha\beta}=\frac1N\mathbf s^\alpha\cdot\mathbf s^\beta$. This gives \begin{equation} e^{NG_{\lambda^*}(\mu)} =\lim_{\beta\to\infty}\lim_{m\to0}\int d\hat\lambda\,dQ\, - e^{N\mathcal U_\mathrm{GOE}(\hat\lambda,Q\mid\mu,\lambda^*,\beta)} + e^{N\mathcal U_\mathrm{GOE}(\hat\lambda,Q\mid\beta,\lambda^*,\mu)} \end{equation} where the effective action is given by \begin{equation} \begin{aligned} - &\mathcal U_\textrm{GOE}(\hat\lambda, Q\mid\lambda^*,\mu,\beta) + &\mathcal U_\textrm{GOE}(\hat\lambda, Q\mid\beta,\lambda^*,\mu) =\hat\lambda(\lambda^*-\mu)-m\beta\mu \\ - &+\sigma^2\left[\beta^2\sum_{ab}^mQ_{ab}^2 - +2\beta\hat\lambda\sum_a^mQ_{1a}^2 + &+\sigma^2\left[\beta^2\sum_{\alpha\gamma}^m(Q^{\alpha\gamma})^2 + +2\beta\hat\lambda\sum_\alpha^m(Q^{1\alpha})^2 +\hat\lambda^2 \right]+\frac12\log\det Q \end{aligned} \end{equation} -where $Q_{aa}=1$ because of the spherical constraint. We can evaluate this +and $Q^{\alpha\alpha}=1$ because of the spherical constraint. We can evaluate this integral using the saddle point method. We make a replica symmetric ansatz for $Q$, because this is a 2-spin model, but with the first row singled out because -of its unique coupling with $\hat\lambda$. This gives +of its unique coupling with $\hat\lambda$. The resulting matrix has the form \begin{equation} \label{eq:Q.structure} Q=\begin{bmatrix} 1&\tilde q_0&\tilde q_0&\cdots&\tilde q_0\\ @@ -271,16 +273,17 @@ of its unique coupling with $\hat\lambda$. This gives \tilde q_0&q_0&q_0&\cdots&1 \end{bmatrix} \end{equation} -with $\sum_{ab}Q_{ab}^2=m+2(m-1)\tilde q_0^2+(m-1)(m-2)q_0^2$, $\sum_aQ_{1a}^2=1+(m-1)\tilde q_0^2$, +The relevant expressions in the effective action produce $\sum_{\alpha\beta}(Q^{\alpha\beta})^2=m+2(m-1)\tilde q_0^2+(m-1)(m-2)q_0^2$, $\sum_\alpha(Q^{1\alpha})^2=1+(m-1)\tilde q_0^2$, and \begin{equation} \log\det Q=(m-2)\log(1-q_0)+\log(1+(m-2)q_0-(m-1)\tilde q_0^2) \end{equation} -Inserting these expressions and taking the limit of $m$ to zero, we find +Inserting these expressions into the effective action and taking the limit of +$m$ to zero, we arrive at \begin{equation} e^{NG_{\lambda^*}(\mu)} =\lim_{\beta\to\infty}\int d\hat\lambda\,dq_0\,d\tilde q_0\, - e^{N\mathcal U_\textrm{GOE}(\hat\lambda,q_0,\tilde q_0\mid\mu,\lambda^*,\beta)} + e^{N\mathcal U_\textrm{GOE}(\hat\lambda,q_0,\tilde q_0\mid\beta,\lambda^*,\mu)} \end{equation} with the effective action \begin{equation} @@ -305,32 +308,37 @@ However, taking the limit with $y\neq\tilde y$ results in an expression for the action that diverges with $\beta$. To cure this, we must take $\tilde y=y$. The result is \begin{equation} \begin{aligned} - \mathcal U_\textrm{GOE}(\hat\lambda,y,\Delta z\mid\mu,\lambda^*,\infty) - &=\hat\lambda(\lambda^*-\mu) - +\sigma^2\big[ - \hat\lambda^2-4(y+\Delta z) - \big] \\ - &\qquad+\frac12\log\left(1+\frac{2\Delta z}{y^2}\right) + &\mathcal U_\textrm{GOE}(\hat\lambda,y,\Delta z\mid\infty,\lambda^*,\mu) + =\hat\lambda(\lambda^*-\mu) \\ + &\qquad+\sigma^2\big[ + \hat\lambda^2+4(y+\Delta z) + \big] + +\frac12\log\left(1-\frac{2\Delta z}{y^2}\right) \end{aligned} \end{equation} Extremizing this action over the new parameters $y$, $\Delta z$, and $\hat\lambda$, we have \begin{align} - \hat\lambda=-\frac1\sigma\sqrt{\frac{(\mu+\lambda^*)^2}{(2\sigma)^2}-1} + \hat\lambda&=\frac1\sigma\sqrt{\left(\frac{\mu-\lambda^*}{2\sigma}\right)^2-1} \\ - y=\frac1{2\sigma}\left(\frac{\mu+\lambda^*}{2\sigma}-\sqrt{\frac{(\mu+\lambda^*)^2}{(2\sigma)^2}-1}\right) - &\\ - \Delta z=\frac1{4\sigma^2}\left(1-\frac{\mu+\lambda^*}{2\sigma}\left(\frac{\mu+\lambda^*}{2\sigma}-\sqrt{\frac{(\mu+\lambda^*)^2}{(2\sigma)^2}-1}\right)\right) + y&=\frac1{2\sigma}\left[ + \frac{\mu-\lambda^*}{2\sigma}+\sqrt{\left(\frac{\mu-\lambda^*}{2\sigma}\right)^2-1} + \right]^{-1} + \\ + \Delta z&=\frac1{4\sigma^2}\left[ + \left(\frac{\mu-\lambda^*}{2\sigma}\right)^2-1 + -\frac{\mu-\lambda^*}{2\sigma}\sqrt{\left(\frac{\mu-\lambda^*}{2\sigma}\right)^2-1} + \right] \end{align} Inserting this solution into $\mathcal S_\infty$ we find \begin{equation} \label{eq:goe.large.dev} \begin{aligned} &G_{\lambda^*}(\mu) - =\mathop{\textrm{extremum}}_{y,\Delta z,\hat\lambda} - \mathcal U_\mathrm{GOE}(y,\Delta z,\hat\lambda\mid\mu,\lambda^*,\infty) \\ - &=-\tfrac{\mu+\lambda^*}{2\sigma}\sqrt{\Big(\tfrac{\mu+\lambda^*}{2\sigma}\Big)^2-1} - +\log\left( - \tfrac{\mu+\lambda^*}{2\sigma}+\sqrt{\Big(\tfrac{\mu+\lambda^*}{2\sigma}\Big)^2-1} - \right) + =\mathop{\textrm{extremum}}_{\hat\lambda,y,\Delta z} + \mathcal U_\mathrm{GOE}(\hat\lambda,y,\Delta z\mid\infty,\lambda^*,\mu) \\ + &=-\frac{\mu-\lambda^*}{2\sigma}\sqrt{\left(\frac{\mu-\lambda^*}{2\sigma}\right)^2-1} \\ + &\hspace{5em}-\log\left[ + \frac{\mu-\lambda^*}{2\sigma}-\sqrt{\left(\frac{\mu-\lambda^*}{2\sigma}\right)^2-1} + \right] \end{aligned} \end{equation} This function is plotted in Fig.~\ref{fig:large.dev} for $\lambda^*=0$. For $\mu<2\sigma$ $G_{0}(\mu)$ has an @@ -1376,7 +1384,7 @@ taking the zero-temperature limit, we find for $\alpha=\frac32$ and $f(q)=q^2+q^3$. The ground state energy $E_\mathrm{gs}$ and the threshold energy $E_\mathrm{th}$ are marked on the plot. - } + } \label{fig:ls.complexity} \end{figure} \section{Conclusions} @@ -1572,24 +1580,28 @@ fixing the trace of the Hessian, this gives \end{align} so that the differential form of the symmetry is \begin{equation} - \mathcal D=\bar{\pmb\eta}\frac\partial{\partial\mathbf x} - -i\hat\beta\bar{\pmb\eta}\frac\partial{\partial\hat{\mathbf x}} - -i\hat{\mathbf x}\frac\partial{\partial\pmb\eta} + \mathcal D=\bar{\pmb\eta}\cdot\frac\partial{\partial\mathbf x} + -i\hat\beta\bar{\pmb\eta}\cdot\frac\partial{\partial\hat{\mathbf x}} + -i\hat{\mathbf x}\cdot\frac\partial{\partial\pmb\eta} \end{equation} The Ward identities associated with this symmetry give rise to relationships among the order parameters. These identities are \begin{align} - 0=\frac1N\mathcal D\langle\mathbf x_a^T\pmb\eta_b\rangle - =\frac1N\left[ - \langle\bar{\pmb\eta}_a^T\pmb\eta_b\rangle- - i\langle\mathbf x_a^T\hat{\mathbf x}_b\rangle - \right] - =G_{ab}+R_{ab} \\ - 0=\frac iN\mathcal D\langle\hat{\mathbf x}_a^T\pmb\eta_b\rangle - =\frac1N\left[ - \hat\beta\langle\bar{\pmb\eta}_a^T\pmb\eta_b\rangle - +\langle\hat{\mathbf x}_a^T\hat{\mathbf x}_b\rangle - \right] - =\hat\beta G_{ab}+D_{ab} + \begin{aligned} + 0&=\frac1N\mathcal D\langle\mathbf x_a\cdot\pmb\eta_b\rangle + =\frac1N\left[ + \langle\bar{\pmb\eta}_a\cdot\pmb\eta_b\rangle- + i\langle\mathbf x_a\cdot\hat{\mathbf x}_b\rangle + \right] \\ + &=G_{ab}+R_{ab} + \end{aligned} \\ + \begin{aligned} + 0&=\frac iN\mathcal D\langle\hat{\mathbf x}_a\cdot\pmb\eta_b\rangle + =\frac1N\left[ + \hat\beta\langle\bar{\pmb\eta}_a\cdot\pmb\eta_b\rangle + +\langle\hat{\mathbf x}_a\cdot\hat{\mathbf x}_b\rangle + \right] \\ + &=\hat\beta G_{ab}+D_{ab} + \end{aligned} \end{align} These identities establish $G_{ab}=-R_{ab}$ and $D_{ab}=\hat\beta R_{ab}$, allowing elimination of the matrices $G$ and $D$ in favor of $R$. Fixing the @@ -1600,74 +1612,85 @@ trace to $\mu$ explicitly breaks this symmetry, and the simplification is lost. In this appendix we derive an expression for the asymptotic spectral density in the two-sphere multispherical spin glass that we describe in Section -\ref{sec:multispherical}. \cite{Livan_2018_Introduction} +\ref{sec:multispherical}. We use a typical approach of employing replicas to +compute the resolvent \cite{Livan_2018_Introduction}. The resolvent for the +Hessian of the multispherical model is given by an integral over $\mathbf +y=[\mathbf y^{(1)},\mathbf y^{(2)}]\in\mathbb R^{2N}$ as +\begin{widetext} \begin{equation} \begin{aligned} - &G(\lambda) - =\lim_{n\to0}\int\|\mathbf y_1\|^2\,\prod_{a=1}^nd\mathbf y_a\, + G(\lambda) + &=\lim_{n\to0}\int\|\mathbf y_1\|^2\,\prod_{a=1}^nd\mathbf y_a\, \exp\left\{ - -\frac12\mathbf y_a^T(\operatorname{Hess}H(\mathbf x,\pmb\omega)+\lambda I)\mathbf y_a + -\frac12\mathbf y_a^T(\operatorname{Hess}H(\mathbf x,\pmb\omega)-\lambda I)\mathbf y_a \right\} \\ & - =\lim_{n\to0}\int\big(\|\mathbf y_1^{(1)}\|^2+\|\mathbf y_1^{(2)}\|^2\big)\,\prod_{a=1}^nd\mathbf y_a\, \\ - &\times\exp\left\{ + =\lim_{n\to0}\int\big(\|\mathbf y_1^{(1)}\|^2+\|\mathbf y_1^{(2)}\|^2\big)\,\prod_{a=1}^nd\mathbf y_a\, + \exp\left\{ -\frac12\begin{bmatrix}\mathbf y_a^{(1)}\\\mathbf y_a^{(2)}\end{bmatrix}^T \left( \begin{bmatrix} \operatorname{Hess}H_1(\mathbf x^{(1)},\omega_1) & -\epsilon \\ -\epsilon & \operatorname{Hess}H_2(\mathbf x^{(2)},\omega_2) \end{bmatrix} - +\lambda I + -\lambda I \right)\begin{bmatrix}\mathbf y_a^{(1)}\\\mathbf y_a^{(2)}\end{bmatrix} - \right\} \\ + \right\} \end{aligned} \end{equation} -If $Y_{ab}^{(ik)}=\frac1N\mathbf y_a^{(i)}\cdot\mathbf y_b^{(j)}$ is the matrix -of overlaps of the $\mathbf y$, then a short and standard calculation yields +If $Y_{ab}^{(ij)}=\frac1N\mathbf y_a^{(i)}\cdot\mathbf y_b^{(j)}$ is the matrix +of overlaps of the vectors $\mathbf y$, then a short and standard calculation involving the average over $H$ and the change of variables from $\mathbf y$ to $Y$ yields \begin{equation} - G(\lambda)=N\lim_{n\to0}\int dY\,(Y_{11}^{(11)}+Y_{11}^{(22)})\, + \overline{G(\lambda)}=N\lim_{n\to0}\int dY\,\big(Y_{11}^{(11)}+Y_{11}^{(22)}\big)\, e^{nN\mathcal S(Y)} \end{equation} -for +where the effective action $\mathcal S$ is given by \begin{equation} \begin{aligned} &\mathcal S(Y) - =\frac1n\sum_{ab}\left[ + =\lim_{n\to0}\frac1n\left\{ + \frac14\sum_{ab}^n\left[ \sigma_1^2(Y_{ab}^{(11)})^2 +\sigma_2^2(Y_{ab}^{(22)})^2 - \right]+\frac12\log\det\begin{bmatrix} - Y^{(11)}&Y^{(12)}\\Y^{(12)}&Y^{(22)} - \end{bmatrix}\\ - &+\frac1n\sum_a^n\left[ + \right] + +\frac12\sum_a^n\left[ 2\epsilon Y_{aa}^{(12)} - -\omega_1Y_{aa}^{(11)} - -\omega_2Y_{aa}^{(22)} - +\lambda(Y_{aa}^{(11)} - +Y_{aa}^{(22)}) + +(\lambda-\omega_1)Y_{aa}^{(11)} + +(\lambda-\omega_2)Y_{aa}^{(22)} \right] + +\frac12\log\det\begin{bmatrix} + Y^{(11)}&Y^{(12)}\\Y^{(12)}&Y^{(22)} + \end{bmatrix} + \right\} \end{aligned} \end{equation} -Making the replica symmetric ansatz $Y_{ab}^{(ij)}=y^{(ij)}\delta_{ab}$ yields +\end{widetext} +Making the replica symmetric ansatz $Y_{ab}^{(ij)}=y^{(ij)}\delta_{ab}$ for +each of the matrices $Y^{(ij)}$ yields \begin{equation} \begin{aligned} - &\mathcal S(y) - = - \sigma_1^2(y^{(11)})^2 - +\sigma_2^2(y^{(22)})^2 - +\frac12\log( + \mathcal S(y) + &= + \frac14\left[\sigma_1^2(y^{(11)})^2 + +\sigma_2^2(y^{(22)})^2\right]+\epsilon y^{(12)} + \\ + & + \qquad+\frac12\left[(\lambda-\omega_1)y^{(11)} + +(\lambda-\omega_2)y^{(22)}\right] \\ + & + \qquad+\frac12\log( y^{(11)}y^{(22)}-y^{(12)}y^{(12)} - )\\ - &+2\epsilon y^{(12)} - -\omega_1y^{(11)} - -\omega_2y^{(22)} - +\lambda(y^{(11)} - +y^{(22)}) + ) \end{aligned} \end{equation} +while the average resolvent becomes \begin{equation} \overline{G(\lambda)} =N(y^{(11)}+y^{(22)}) \end{equation} +for $y^{(11)}$ and $y^{(22)}$ evaluated at a saddle point of $\mathcal S$. The +spectral density at large $N$ is then given by the discontinuity in its +imaginary point on the real axis, or \begin{equation} \rho(\lambda) =\frac1{i\pi N} @@ -1840,7 +1863,9 @@ $\hat\beta$, $c_0$, $r$, and $r_0$ is \end{aligned} \end{equation} When $f(0)=0$ as in the cases directly studied in this work, this further -simplifies as $c_0=r_0=0$. +simplifies as $c_0=r_0=0$. Extremizing this expression with respect to the +order parameters $\hat\beta$ and $r$ produces the red line of dominant minima +shown in Fig.~\ref{fig:ls.complexity}. \end{widetext} -- cgit v1.2.3-70-g09d2