From f824dea3df7492fecfa95d34b33900a533bfd699 Mon Sep 17 00:00:00 2001 From: Jaron Kent-Dobias Date: Tue, 29 Oct 2024 10:24:54 +0100 Subject: Changed also convention for superbasis in R^N|4 --- marginal.tex | 13 +++++++++++-- 1 file changed, 11 insertions(+), 2 deletions(-) diff --git a/marginal.tex b/marginal.tex index 88809d2..85743c3 100644 --- a/marginal.tex +++ b/marginal.tex @@ -1843,8 +1843,17 @@ The same method can be used to calculate the superdeterminant and supertrace in arbitrary superspaces, where for $\mathbb R^{N|2D}$ each basis has $2^{2D-1}$ elements. For instance, for $\mathbb R^{N|4}$ we have \begin{align} - &\mathbf e(1,2)=\{1,i\bar\theta_1\theta_1,i\bar\theta_2\theta_2,i\bar\theta_1\theta_2,i\bar\theta_2\theta_1,i\bar\theta_1\bar\theta_2,i\theta_1\theta_2,\bar\theta_1\theta_1\bar\theta_2\theta_2\}\notag \\ - &\mathbf f(1,2)=\{i\bar\theta_1,i\theta_1,i\bar\theta_2,i\theta_2,\bar\theta_1\theta_1\bar\theta_2,\bar\theta_2\theta_2\theta_1,\bar\theta_1\theta_1\theta_2,\bar\theta_2\theta_2\theta_1\} + &\mathbf e(1,2)=\{ + 1,\bar\theta_1\theta_1,\bar\theta_2\theta_2, + \bar\theta_1\theta_2,\bar\theta_2\theta_1, + \bar\theta_1\bar\theta_2,\theta_1\theta_2, + \bar\theta_1\theta_1\bar\theta_2\theta_2 + \}\notag \\ + &\mathbf f(1,2)=\{ + \bar\theta_1,\theta_1,\bar\theta_2,\theta_2, + \bar\theta_1\theta_1\bar\theta_2,\bar\theta_2\theta_2\theta_1, + \bar\theta_1\theta_1\theta_2,\bar\theta_2\theta_2\theta_1 + \} \end{align} with the dual bases defined analogously to those above. -- cgit v1.2.3-70-g09d2