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Conditioning the complexity of random landscapes on marginal optima1
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Marginal optima are minima or maxima of a function with many nearly flat directions. In settings with
many competing optima, marginal ones tend to attract algorithms and physical dynamics. Often, the important
family of marginal attractors is a vanishing minority compared with nonmarginal optima and other unstable
stationary points. We introduce a generic technique for conditioning the statistics of stationary points in random
landscapes on their marginality and apply it in three isotropic settings with qualitatively different structures:
in the spherical spin-glasses, where the energy is Gaussian and its Hessian is a Gaussian orthogonal ensemble
(GOE); in multispherical spin glasses, which are Gaussian but non-GOE; and in sums of squared spherical
random functions, which are non-Gaussian. In these problems, we are able to fully characterize the distribution
of marginal optima in the landscape, including when they are in the minority.
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I. INTRODUCTION16

Systems with rugged landscapes are important across many17

disciplines, from the physics of glasses and spin glasses to18

statistical inference problems [1]. The behavior of these sys-19

tems is best understood when equilibrium or optimal solutions20

are studied and weighted averages can be taken statically over21

all possible configurations. However, such systems are also22

infamous for their tendency to defy equilibrium and opti-23

mal expectations in practice due to the presence of dynamic24

transitions or crossovers that leave physical or algorithmic dy-25

namics stuck exploring only a subset of configurations [2,3].26

In mean-field settings, it was long thought that physical and27

many algorithmic dynamics would get stuck at a specific en-28

ergy level, called the threshold energy. The threshold energy is29

the energy level at which level sets of the landscape transition30

from containing mostly saddle points to containing mostly31

minima. The level set associated with this threshold energy32

contains mostly marginal minima, or minima whose Hessian33

matrix have a continuous spectral density over all sufficiently34

small positive eigenvalues. In most circumstances the spec-35

trum is pseudogapped, which means that the spectral density36

smoothly approaches zero as zero eigenvalue is approached37

from above.38

However, recent work found that the threshold energy39

is not important even for simple gradient descent dynamics40

[4–6]. Depending on the initial condition of the system and41

the nature of the dynamics, the energy reached can be above42

or below the threshold energy, while in some models the43

threshold energy is completely inaccessible to any dynamics44

[7]. Though it is still not known how to predict the energy level45

that many simple algorithms will reach, the results all share46

one commonality: the minima found are still marginal despite47

being in the minority compared to stiff minima or saddle48

*Contact author: jaron.kent-dobias@roma1.infn.it

points. This ubiquity of behavior suggests that the distribution 49

of marginal minima can be used to bound out-of-equilibrium 50

dynamical behavior. 51

Despite their importance in a wide variety of in- and out- 52

of-equilibrium settings [8–17], it is not straightforward to 53

condition on the marginality of minima using the traditional 54

methods for analyzing the distribution of minima in rugged 55

landscapes. Using the method of a Legendre transformation of 56

the Parisi parameter corresponding to a set of real replicas, one 57

can force the result to correspond with marginal minima by 58

tuning the value of that parameter [18]. However, this results 59

only in a characterization of the threshold energy and cannot 60

characterize marginal minima at other energies where they are 61

a minority. 62

The alternative approach, used to great success in the 63

spherical spin glasses, is to start by understanding in detail 64

the Hessian matrix at stationary points. Then, one can con- 65

dition the analysis on whatever properties of the Hessian are 66

necessary to lead to marginal minima. This strategy is suc- 67

cessful in spherical spin glasses because it is straightforward 68

to implement. First, the shape of the Hessian’s spectrum is 69

independent of energy, regardless of whether one sits at a 70

stationary point. This is a property of models whose energy 71

is a Gaussian random variable [19,20]. Furthermore, a natural 72

parameter in the analysis of these models linearly shifts the 73

spectrum of the Hessian. Therefore, tuning this parameter 74

to a specific constant value allows one to require that the 75

Hessian spectrum has a pseudogap and therefore that the asso- 76

ciated minima be marginal. Unfortunately, this strategy is less 77

straightforward to generalize to other models. Many models 78

of interest, especially in inference problems, have Hessian 79

statistics that are poorly understood. This is especially true 80

for the statistics of the Hessian conditioned to lie at stationary 81

points, which is necessary to understand in models whose 82

energy is non-Gaussian. 83

Here, we introduce a generic method for conditioning the 84

statistics of stationary points on their marginality. The tech- 85
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nique makes use of a novel way to condition an integration86

measure to select only configurations that result in a certain87

value of the smallest eigenvalue of a matrix. By requiring that88

the smallest eigenvalue of the Hessian at stationary points be89

zero and further looking for a sign that the zero eigenvalue lies90

at the edge of a continuous spectrum, we enforce the condition91

that the spectrum has a pseudogap and is therefore marginal.92

We demonstrate the method on the spherical spin glasses,93

where it is unnecessary but instructive, and on extensions of94

the spherical models where the technique is more useful. In95

related work, we compare the marginal complexity with the96

performance of gradient descent and approximate message-97

passing algorithms [21].98

An outline of this paper follows. In Sec. II we introduce99

the technique for conditioning on the smallest eigenvalue100

and how to extend it to further condition on the presence of101

a pseudogap. We provide a simple but illustrative example102

using a Gaussian orthogonal ensemble (GOE) matrix with103

a shifted diagonal. In Sec. III we apply this technique to104

the problem of characterizing marginal minima in random105

landscapes. Section IV gives several examples of the marginal106

complexity applied to specific models of increasing difficulty.107

Finally, Sec. V summarizes this work and suggests necessary108

extensions.109

II. CONDITIONING ON THE SMALLEST EIGENVALUE 110

In this section, we introduce a general method for condi- 111

tioning a measure on the smallest eigenvalue of some matrix 112

that depends on it. In Sec. II B we show how this works 113

in perhaps the simplest example of GOE random matrices 114

with a shifted diagonal. In the final subsection we describe 115

how to extend this method to condition on the presence of a 116

pseudogap at the bottom on the spectrum. 117

A. The general method 118

Consider an N × N real symmetric matrix A. An arbitrary 119

function g of the minimum eigenvalue of A can be expressed 120

using integrals over s ∈ RN as 121

g(λmin(A)) = lim
β→∞

∫
ds δ(N − ‖s‖2)e−βsT As∫
ds′ δ(N − ‖s′‖2)e−βs′T As′ g

(
sT As

N

)
.

(1)

In the limit of large β, each integral concentrates among 122

vectors s in the eigenspace of A corresponding to the smallest 123

eigenvalue of A. This produces 124

lim
β→∞

∫
ds δ(N − ‖s‖2)e−βsT As∫
ds′ δ(N − ‖s′‖2)e−βs′T As′ g

(
sT As

N

)
=
∫

ds δ(N − ‖s‖2)1ker(A−λmin (A)I )(s)∫
ds′ δ(N − ‖s′‖2)1ker(A−λmin (A)I )(s′)

g

(
sT As

N

)

= g(λmin(A))

∫
ds δ(N − ‖s‖2)1ker(A−λmin (A)I )(s)∫

ds′ δ(N − ‖s′‖2)1ker(A−λmin (A)I )(s′)

= g(λmin(A)), (2)

as desired. The first relation extends a technique for calcu-125

lating the typical minimum eigenvalue of an ensemble of126

matrices first introduced by Ikeda and later used by Kent-127

Dobias in the context of random landscapes and is similar128

to an earlier technique for conditioning the value of the129

ground state energy in random landscapes by Fyodorov and130

Le Doussal [21,22,24,25]. A Boltzmann distribution is intro-131

duced over a spherical model whose Hamiltonian is quadratic132

with interaction matrix given by A. In the limit of zero133

temperature, the measure will concentrate on the ground134

states of the model, which correspond with the eigenspace135

of A associated with its minimum eigenvalue λmin. The sec-136

ond relation uses the fact that, once restricted to the sphere137

‖s‖2 = N and the minimum eigenspace, sT As = sT sλmin(A)138

= Nλmin(A).139

The relationship is formal, but we can make use of the140

fact that the integral expression with a Gibbs distribution141

can be manipulated with replica techniques, averaged over,142

and in general treated with a physicist’s toolkit. In particular,143

we have specific interest in using g(λmin(A)) = δ(λmin(A)),144

a Dirac delta function, which can be inserted into averages145

over ensembles of matrices A (or indeed more complicated146

averages) in order to create the condition that the minimum147

eigenvalue is zero.148

B. Simple example: Shifted Gaussian orthogonal ensemble 149

We demonstrate the efficacy of the technique by rederiving 150

a well-known result: the large-deviation function for pulling 151

an eigenvalue from the bulk of the GOE spectrum. Consider 152

an ensemble of N × N matrices A = B + μI for B drawn from 153

the GOE ensemble with entries whose variance is σ 2/N . We 154

know that the bulk spectrum of A is a Wigner semicircle with 155

radius 2σ shifted by a constant μ. Therefore, for μ = 2σ , 156

the minimum eigenvalue will typically be zero, while for 157

μ > 2σ the minimum eigenvalue would need to be a large 158

deviation from the typical spectrum and its likelihood will 159

be exponentially suppressed with N . For μ < 2σ , the bulk of 160

the typical spectrum contains zero and therefore a larger N2
161

deviation, moving an extensive number of eigenvalues, would 162

be necessary [26]. This final case cannot be quantified by 163

this method, but instead the nonexistence of a large deviation 164

linear in N appears as the emergence of an imaginary part in 165

the large deviation function. 166

To compute this large deviation function, we employ the 167

method outlined in the previous subsection to calculate 168

eNGλ∗ (μ) = P(λmin(B + μI ) = λ∗)

= δ(Nλ∗ − Nλmin(B + μI )), (3)

004100-2
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where the overline is the average over B, and we have defined the large-deviation function Gλ∗ (μ). Using the representation of169

λmin defined in (1), we have170

eNGλ∗ (μ) = lim
β→∞

∫
ds δ(N − ‖s‖2)e−βsT (B+μI )s∫
ds′ δ(N − ‖s′‖2)e−βs′T (B+μI )s′ δ(Nλ∗ − sT (B + μI )s), (4)

Using replicas to treat the denominator (x−1 = limm→0 xm−1) and transforming the δ function to its Fourier representation, we171

have172

eNGλ∗ (μ) = lim
β→∞

lim
m→0

∫
dλ̂

m∏
α=1

[dsα δ(N − ‖sα‖2)] exp

{
−β

m∑
α=1

(sα )T (B + μI )sα + λ̂[Nλ∗ − (s1)T (B + μI )s1]

}
, (5)

having introduced the auxiliary parameter λ̂ in the Fourier representation of the δ function. The whole expression, so transformed,173

is an exponential integral linear in the matrix B. Taking the average over B, we find174

eNGλ∗ (μ) = lim
β→∞

lim
m→0

∫
dλ̂

m∏
α=1

[dsα δ(N − ‖sα‖2)]

× exp

{
N[λ̂(λ∗ − μ) − mβμ] + σ 2

N

[
β2

m∑
αγ

(sα · sγ )2 + 2βλ̂

m∑
α

(sα · s1)2 + λ̂2N2

]}
. (6)

We make the Hubbard–Stratonovich transformation to the matrix field Qαβ = 1
N sα · sβ . This produces an integral expression of175

the form176

eNGλ∗ (μ) = lim
β→∞

lim
m→0

∫
dλ̂ dQ eNUGOE(λ̂,Q|β,λ∗,μ), (7)

where the effective action UGOE is given by1 177

UGOE(λ̂, Q|β, λ∗, μ) = λ̂(λ∗ − μ) + lim
m→0

⎧⎨
⎩−mβμ + σ 2

⎡
⎣β2

m∑
αγ

(Qαγ )2 + 2βλ̂

m∑
α

(Q1α )2 + λ̂2

⎤
⎦+ 1

2
log det Q

⎫⎬
⎭, (8)

and Qαα = 1 because of the spherical constraint. We can178

evaluate this integral using the saddle-point method. We make179

a replica symmetric ansatz for Q, because this is a 2-spin180

spherical model but with the first row singled out because of181

its unique coupling with λ̂. The resulting matrix has the form182

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 q̃0 q̃0 · · · q̃0

q̃0 1 q0 · · · q0

q̃0 q0 1 . . . q0

...
...

. . .
. . .

...

q̃0 q0 q0 · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (9)

The relevant expressions in the effective action produce183 ∑
αβ

(Qαβ )2 = m + 2(m − 1)q̃2
0 + (m − 1)(m − 2)q2

0, (10)

∑
α

(Q1α )2 = 1 + (m − 1)q̃2
0, (11)

log det Q = (m − 2) log(1 − q0)

+ log
[
1 + (m − 2)q0 − (m − 1)q̃2

0

]
. (12)

Inserting these expressions into the effective action and taking184

the limit of m to zero, we arrive at185

eNGλ∗ (μ) = lim
β→∞

∫
dλ̂ dq0 dq̃0 eNUGOE(λ̂,q0,q̃0|β,λ∗,μ), (13)

with the new effective action 186

UGOE(λ̂, q0, q̃0|β, λ∗, μ)

= λ̂(λ∗ − μ) + σ 2
[
2β2

(
q2

0 − q̃2
0

)+ 2βλ̂
(
1 − q̃2

0

)+ λ̂2
]

− log(1 − q0) + 1
2 log

(
1 − 2q0 + q̃2

0

)
. (14)

We need to evaluate the integral above using the saddle-point 187

method, but in the limit β → ∞. We expect the overlaps to 188

concentrate on one as β goes to infinity. We therefore take 189

q0 = 1 − yβ−1 − zβ−2 + O(β−3), (15)

q̃0 = 1 − ỹβ−1 − (z + 	z)β−2 + O(β−3). (16)

However, taking the limit with y �= ỹ results in an expression 190

for the action that diverges with β. To cure this, we must take 191

ỹ = y. The result is 192

UGOE(λ̂, y,	z|∞, λ∗, μ) = λ̂(λ∗ − μ) + σ 2[λ̂2 + 4(y + 	z)]

+ 1

2
log

(
1 − 2	z

y2

)
. (17)

Extremizing this action over the new parameters y, 	z, and λ̂, 193

we find 194

λ̂ = 1

σ

√(
μ − λ∗

2σ

)2

− 1, (18)

004100-3
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FIG. 1. The large deviation function G0(μ) defined in (3) as a
function of the shift μ to the GOE diagonal. G0(2σ ) = 0, while for
μ > 2σ it is negative and for μ < 2σ it gains an imaginary part. The
top panels show schematically what happens to the spectral density
in each of these regimes. For μ < 2σ , an N2-large deviation would
be required to fix the smallest eigenvalue to zero and the calculation
breaks down, leading to the imaginary part. For μ > 2σ the spectrum
can satisfy the constraint on the smallest eigenvalue by isolating a
single eigenvalue at zero at the cost of an order-N-large deviation. At
the transition point μ = 2σ the spectrum is pseudogapped.

y = 1

2σ

⎡
⎣μ − λ∗

2σ
+
√(

μ − λ∗

2σ

)2

− 1

⎤
⎦

−1

, (19)

	z = 1

4σ 2

⎡
⎣(μ − λ∗

2σ

)2

− 1 − μ − λ∗

2σ

√(
μ − λ∗

2σ

)2

− 1

⎤
⎦.

(20)

Inserting this solution into the effective action we arrive at195

Gλ∗ (μ) = extremum
λ̂,y,	z

UGOE(λ̂, y,	z|∞, λ∗, μ)

=−μ − λ∗

2σ

√(
μ − λ∗

2σ

)2

− 1

− log

⎡
⎣μ − λ∗

2σ
−
√(

μ − λ∗

2σ

)2

− 1

⎤
⎦. (21)

This function is plotted in Fig. 1 for λ∗ = 0. For μ < 2σ ,196

G0(μ) has an imaginary part. This indicates that the existence197

of a zero minimum eigenvalue when μ < 2σ corresponds to a198

large deviation that grows faster than N , rather like N2, since199

in this regime the bulk of the typical spectrum is over zero200

and therefore extensively many eigenvalues must have large201

deviations in order for the smallest eigenvalue to be zero [26].202

For μ � 2σ this function gives the large deviation function for203

the probability of seeing a zero eigenvalue given the shift μ. 204

μ = 2σ is the maximum of the function with a real value and 205

corresponds to the intersection of the typical bulk spectrum 206

with zero, i.e., a pseudogap. 207

Here, we see what appears to be a general heuristic for 208

identifying the saddle parameters for which the spectrum is 209

pseudogapped: the equivalent of this large-deviation function 210

will lie on the singular boundary between a purely real and 211

complex value. 212

C. Conditioning on a pseudogap 213

We have seen that this method effectively conditions a 214

random matrix ensemble on its lowest eigenvalue being zero. 215

However, this does not correspond on its own to marginality. 216

In the previous example, most values of μ where the calcu- 217

lation was valid correspond to matrices with a single isolated 218

eigenvalue. However, the marginal minima we are concerned 219

with have pseudogapped spectra, where the continuous part of 220

the spectral density has a lower bound at zero. 221

Fortunately, our calculation can be modified to ensure that 222

we consider only pseudogapped spectra. First, we insert a shift 223

μ by hand into the “natural” spectrum of the problem at hand, 224

conditioning the trace to have a specific value μ = 1
N Tr A. 225

Then, we choose this artificial shift so that the resulting 226

conditioned spectra are pseudogapped. As seen the previous 227

subsection, this can be done by starting from a sufficiently 228

large μ and decreasing it until the calculation develops an 229

imaginary part, signaling the breakdown of the large-deviation 230

principle at order N . 231

In isotropic or zero-signal landscapes, there is another way 232

to condition on a pseudogap. In such landscapes, the typical 233

spectrum does not have an isolated eigenvalue. Therefore, 234

for a given μ the bottom of the spectrum can be located by 235

looking for the value λ∗ that maximizes the (real) large devi- 236

ation function. Inverting this reasoning, we can find the value 237

μ = μm corresponding to a marginal spectrum by requiring 238

that the large deviation function has a maximum in λ∗ at 239

λ∗ = 0, or 240

0 = ∂

∂λ∗ Gλ∗ (μm )

∣∣∣∣
λ∗=0

. (22)

In the example problem of Sec. II B, this corresponds pre- 241

cisely to μm = 2σ , the correct marginal shift. Note that when 242

we treat the Dirac δ function using its Fourier representation 243

with auxiliary parameter λ̂, as in the previous subsection, this 244

condition corresponds with choosing μ such that λ̂ = 0. 245

III. MARGINAL COMPLEXITY IN RANDOM 246

LANDSCAPES 247

The methods of the previous section can be used in diverse 248

settings. However, we are interested in applying them to study 249

stationary points in random landscapes whose Hessian spec- 250

trum has a pseudogap; that is, that are marginal. In Sec. III A 251

we define the marginal complexity using the tools of the previ- 252

ous section. In Sec. III B we review several general features in 253

a physicist’s approach to computing the marginal complexity. 254

In Sec. III C we introduce a representation of the marginal 255

complexity in terms of an integral over a superspace, which 256
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condenses the notation and the resulting calculation and which257

we will use in one of our examples in the next section.258

A. Marginal complexity from Kac–Rice259

The situation in the study of random landscapes is often as260

follows: an ensemble of smooth energy functions H : RN →261

R defines a family of random landscapes, often with their262

configuration space subject to one or more constraints of the263

form g(x) = 0 for x ∈ RN . The typical geometry of landscapes264

drawn from the ensemble is studied by their complexity, or265

the average logarithm of the number of stationary points with266

certain properties, e.g., of marginal minima at a given energy.267

Such problems can be studied using the method of La-268

grange multipliers, with one introduced for every constraint.269

If the configuration space is defined by r constraints, then270

the problem of identifying stationary points is reduced to271

extremizing the Lagrangian

2

272

L(x, ω) = H (x) +
r∑

i=1

ωigi(x) (23)

with respect to x and the Lagrange multipliers ω =273

{ω1, . . . , ωr}. To write the gradient and Hessian of the energy,274

which are necessary to count stationary points, care must be275

taken to ensure they are constrained to the tangent space of the276

configuration manifold. For our purposes, the Lagrangian for-277

malism offers a solution: the gradient ∇H : RN × Rr → RN
278

and Hessian Hess H : RN × Rr → RN×N of the energy H can279

be written as the simple vector derivatives of the Lagrangian280

L, with281

∇H (x, ω) = ∂L(x, ω) = ∂H (x) +
r∑

i=1

ωi∂gi(x), (24)

Hess H (x, ω) = ∂∂L(x, ω)

= ∂∂H (x) +
r∑

i=1

ωi∂∂gi(x), (25)

where ∂ = ∂
∂x will always represent the derivative with respect 282

to the vector argument x. Note that, unlike the energy, which 283

is a function of the configuration x alone, the gradient and 284

Hessian depend also on the Lagrange multipliers ω. In situa- 285

tions with an extensive number of constraints, it is important 286

to take seriously contributions of the form ∂2L
∂x∂ω

to the Hessian 287

[27]. However, the cases we study here have N0 constraints 288

and these contributions appear as finite-N corrections. 289

The number of stationary points in a landscape for a par- 290

ticular function H is found by integrating over the Kac–Rice 291

measure 292

dνH (x, ω) = dx dω δ(g(x)) δ(∇H (x, ω))

× | det Hess H (x, ω)|, (26)

with a δ function of the gradient and the constraints ensuring 293

that we count valid stationary points, and the determinant of 294

the Hessian serving as the Jacobian of the argument to the δ 295

function [28,29]. It is usually more interesting to condition the 296

count on interesting properties of the stationary points, such as 297

the energy and spectrum trace, or 298

dνH (x, ω|E , μ) = dνH (x, ω) δ(NE − H (x))

× δ(Nμ − Tr Hess H (x, ω)). (27)

We specifically want to control the value of the minimum 299

eigenvalue of the Hessian at the stationary points. Using the 300

method introduced in Sec. II, we can write the number of 301

stationary points with energy E , the Hessian trace μ, and the 302

smallest eigenvalue λ∗ as 303

NH (E , μ, λ∗) =
∫

dνH (x, ω|E , μ) δ(Nλ∗ − λmin( Hess H (x, ω)))

= lim
β→∞

∫
dνH (x, ω|E , μ)

ds δ(N − ‖s‖2)δ(sT ∂g(x))e−βsT Hess H (x,ω)s∫
ds′ δ(N − ‖s′‖2)δ(s′T ∂g(x))e−βs′T Hess H (x,ω)s′ δ(Nλ∗ − sT Hess H (x, ω)s), (28)

where the additional δ functions 304

δ(sT ∂g(x)) =
r∏

s=1

δ(sT ∂gi(x)) (29)

ensure that the integrals involving potential eigenvectors s are constrained to the tangent space of the configuration manifold at 305

the point x. 306

The complexity of points with a specific energy, stability, and minimum eigenvalue is defined as the average over the ensemble 307

of functions H of the logarithm of the number NH of stationary points, or 308

�λ∗ (E , μ) = 1

N
logNH (E , μ, λ∗). (30)

In practice, this can be computed by introducing replicas to treat the logarithm (log x = limn→0
∂
∂n xn) and introduc- 309

ing another set of replicas to treat each of the normalizations in the numerator (x−1 = limm→−1 xm). This leads to the 310
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expression311

�λ∗ (E , μ) = lim
β→∞

lim
n→0

1

N

∂

∂n

∫ n∏
a=1

[
dνH (xa, ωa|E , μ) δ

(
Nλ∗ − (

s1
a

)T
Hess H (xa, ωa)s1

a

)

× lim
ma→0

(
ma∏

α=1

dsα
a δ
(
N − ∥∥sα

a

∥∥2)
δ
((

sα
a

)T
∂g(xa)

)
e−β(sα

a )T Hess H (xa,ωa )sα
a

)]
(31)

for the complexity of stationary points of a given energy, trace,312

and smallest eigenvalue.313

The marginal complexity follows from the complexity as314

a function of μ and λ∗ in an analogous way to Sec. II C. In315

general, one sets λ∗ = 0 and tunes μ from a sufficiently large316

value until the complexity develops an imaginary component,317

which corresponds to the bulk of the spectrum touching zero.318

The value μ = μm that satisfies this is the marginal stability.319

In the cases studied here with zero signal to noise, a simpler320

approach is possible. The marginal stability μ = μm can be321

identified by requiring that the complexity is stationary with322

respect to changes in the value of the minimum eigenvalue λ∗,323

or324

0 = ∂

∂λ∗ �λ∗ (E , μm(E ))
∣∣
λ∗=0. (32)

The marginal complexity follows by evaluating the com-325

plexity conditioned on λ∗ = 0 at the marginal stability μ =326

μm(E ),327

�m(E ) = �0(E , μm(E )). (33)

B. General features of saddle-point computation328

Several elements of the computation of the marginal com-329

plexity, and indeed the ordinary dominant complexity, follow330

from the formulas of the above section in the same way. The331

physicist’s approach to this problem seeks to convert all of the332

components of the Kac–Rice measure defined in (26) and (27)333

into elements of an exponential integral over configuration334

space. To begin with, all Dirac δ functions are expressed using335

their Fourier representation, with336

δ(∇H (xa, ωa)) =
∫

d x̂a

(2π )N
eix̂T

a ∇H (xa,ωa ), (34)

δ(NE − H (xa)) =
∫

dβ̂a

2π
eβ̂a[NE−H (xa )], (35)

δ
(
Nλ∗ − (

s1
a

)T
Hess H (xa, ω)s1

a

)
=
∫

dλ̂a

2π
eλ̂a[Nλ∗−(s1

a )T Hess H (xa,ω)s1
a]. (36)

To do this we introduced auxiliary fields x̂a, β̂a, and λ̂a.337

Because the permutation symmetry of replica vectors is pre-338

served in replica symmetry breaking (RSB) orders, the order339

parameters β̂ and λ̂ will quickly lose their indices, since they340

will ubiquitously be constant over the replica index at the341

eventual saddle-point solution.342

We would like to make a similar treatment of the de-343

terminant of the Hessian that appears in (26). The standard344

approach is to drop the absolute value function around the345

determinant. This can potentially lead to severe problems with 346

the complexity [19]. However, it is a justified step when the 347

parameters of the problem E , μ, and λ∗ put us in a regime 348

where the exponential majority of stationary points have the 349

same index. This is true for maxima and minima, and for 350

saddle points whose spectra have a strictly positive bulk with 351

a fixed number of negative outliers. It is in particular a safe 352

operation for the present problem of marginal minima, which 353

lie right at the edge of disaster. 354

Dropping the absolute value function allows us to write 355

det Hess H (xa, ωa) =
∫

d η̄a dηa e−η̄T
a Hess H (xa,ωa )ηa (37)

using the N-dimensional Grassmann vectors η̄a and ηa. For 356

the spherical models this step is unnecessary, since there are 357

other ways to treat the determinant keeping the absolute value 358

signs, as in previous works [4,7]. However, other examples of 359

ours are for models where the same techniques are impossible. 360

Finally, the δ function fixing the trace of the Hessian to μ 361

in (27) must be addressed. One could treat it using a Fourier 362

representation as in (34)–(36), but this is inconvenient because 363

a term of the form Tr ∂∂H (x) in the exponential integrand 364

cannot be neatly captured in superspace representation intro- 365

duced in the next section. However, in the cases we study in 366

this paper a simplification can be made: the trace of ∂∂H can 367

be separated into two pieces, one that is spatially independent 368

and one that is typically small, or 369

Tr ∂∂H (x) = Nμ∗
H + 	H (x), (38)

where μ∗
H = μ∗ and 	H (x) = O(N0). Then fixing the trace of 370

the Hessian to μ implies that 371

μ = 1

N
Tr Hess H (x) = 1

N

(
∂∂H (x) +

r∑
i=1

ωi Tr ∂∂gi(x)

)

= μ∗ + 1

N

r∑
i=1

ωi Tr ∂∂gi(x) + O(N−1) (39)

for typical samples H . In particular, here we study only cases 372

with quadratic gi, which results in a linear expression relating 373

μ and the ωi that is independent of x. Since H contains the 374

disorder of the problem, this simplification means that the 375

effect of fixing the trace is largely independent of the disorder 376

and mostly depends on properties of the constraint manifold. 377

C. Superspace representation 378

The ordinary Kac–Rice calculation involves many moving 379

parts, and this method for incorporating marginality adds even 380

more. It is therefore convenient to introduce compact and sim- 381
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plifying notation through a superspace representation. The use382

of superspace in the Kac–Rice calculation is well established,383

as well as the deep connections with Becchi-Rouet-Stora-384

Tyutin (BRST) symmetry that is implied [30–32]. Appendix A3 385

introduces the notation and methods of superspace algebra.386

Here we describe how it can be used to simplify the complex-387

ity calculation for marginal minima.388

We consider the RN |4 superspace whose Grassmann indices389

are θ̄1, θ1, θ̄2, θ2. Consider the supervector defined by390

φα
a (1, 2) = xa + θ̄1ηa + η̄aθ1 + ix̂aθ̄1θ1 + sα

a (θ̄1θ2 + θ̄2θ1).

(40)

Note that this supervector does not span the whole superspace:391

only a couple terms from the θ̄2, θ2 sector are present, since392

the rest are unnecessary for our representation. With this su-393

pervector so defined, the replicated count of stationary points394

with energy E , trace μ, and smallest eigenvalue λ∗ can be395

written as396

NH (E , μ, λ∗)n

= lim
β→∞

∫
dω dβ̂ dλ̂

n∏
a=1

lim
ma→0

ma∏
α=1

dφα
a exp

{
δα1N (β̂E

+ λ̂λ∗) +
∫

d1 d2 Bα (1, 2)L
(
φα

a (1, 2), ω
)}

. (41)

Here we have also defined the operator397

Bα (1, 2) = δα1θ̄2θ2(1 − β̂θ̄1θ1) − δα1λ̂ − β, (42)

which encodes various aspects of the complexity problem.398

When the Lagrangian is expanded in a series with respect to399

the Grassmann indices and the definition of B inserted, the400

result of the Grassmann integrals produces exactly the content401

of the integrand in (31) with the substitutions (34), (35), (36),402

and (37) of the Dirac δ functions and the determinant made.403

The new measures404

dφα
a =

[
dxa δ(g(xa))

d x̂a

(2π )N
dηa d η̄a δα1 + (1 − δα1)

]

× dsα
a δ
(∥∥sα

a

∥∥2 − N
)
δ
((

sα
a

)T
∂g(xa)

)
, (43)

dω =
( r∏

i=1

dωi

)
δ

(
Nμ − μ∗ −

r∑
i

ωi Tr ∂∂gi

)
(44)

collect the individual measures of the various fields embed-405

ded in the superfield, along with their constraints. With this406

way of writing the replicated count, the problem of marginal407

complexity temporarily takes the schematic form of an equi-408

librium calculation with configurations φ, inverse temperature409

B, and energy L. This makes the intermediate pieces of the410

calculation dramatically simpler. Of course the intricacies of411

the underlying problem are not banished: near the end of the412

calculation, terms involving the superspace must be expanded.413

We will make use of this representation to simplify the analy-414

sis of the marginal complexity when analyzing random sums 415

of squares in Sec. IV C. 416

IV. EXAMPLES 417

In this section we present analysis of marginal complexity 418

in three random landscapes. In Sec. IV A we treat the spherical 419

spin glasses, which reveals some general aspects of the calcu- 420

lation. Since the spherical spin glasses are Gaussian and have 421

identical GOE spectra at each stationary point, the approach 422

introduced here is overkill. In Sec. IV B we apply the methods 423

to a multispherical spin glass, which is still Gaussian but has a 424

non-GOE spectrum whose shape can vary between stationary 425

points. Finally, in Sec. IV C we analyze a model of sums of 426

squared random functions, which is non-Gaussian and whose 427

Hessian statistics depend on the conditioning of the energy 428

and gradient. 429

A. Spherical spin glasses 430

The spherical spin glasses are a family of models that 431

encompass every isotropic Gaussian field on the hypersphere. 432

Their configuration space is the sphere SN−1 defined by all 433

x ∈ RN such that 0 = g(x) = 1
2 (‖x‖2 − N ). One can consider 434

the models as defined by ensembles of centered Gaussian 435

functions H such that the covariance between two points in 436

the configuration space is 437

H (x)H (x′) = N f

(
x · x′

N

)
(45)

for some function f with positive series coefficients. Such 438

functions can be considered to be made up of all-to-all ten- 439

sorial interactions, with 440

H (x) =
∞∑

p=0

1

p!

√
f (p)(0)

N p−1

N∑
i1,...,ip

Ji1,...,ipxi1 · · · xip, (46)

and the elements of the tensors J being independently dis- 441

tributed with the unit normal distribution [33]. We focus on 442

marginal minima in models with f ′(0) = 0, which corre- 443

sponds to models without a random external field. Such a 444

random field would correspond in each individual sample H to 445

a signal, and therefore complicate the analysis by correlating 446

the positions of stationary points and the eigenvectors of their 447

Hessians. Here, μ∗ of (38) is zero. 448

The marginal optima of these models can be studied with- 449

out the methods introduced in this paper, and have been in 450

the past [4,7]. First, these models are Gaussian, so at large 451

N the Hessian is statistically independent of the gradient and 452

energy [19,20]. Therefore, conditioning the Hessian can be 453

done mostly independently from the problem of counting 454

stationary points. Second, in these models the Hessian at every 455

point in the landscape belongs to the GOE class with the same 456

width of the spectrum μm = 2
√

f ′′(1). Therefore, all marginal 457

minima in these systems have the same constant shift μ = μm. 458

Despite the fact that the complexity of marginal optima is well 459

known by simpler methods, it is instructive to carry through 460

the calculation for this case, since we will learn some things 461

about its application in more nontrivial settings. 462
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Note that in the pure version of these models with f (q) =463

1
2 qp, the methods of this section must be amended slightly.464

This is because in these models there is an exact correspon-465

dence μ = −pE between the trace of the Hessian and the466

energy, and therefore they cannot be fixed independently. This467

correspondence implies that when μ = μm, the corresponding468

energy level Eth = − 1
pμm contains all marginal minima. This469

is what gives this threshold energy such singular importance470

to dynamics in the pure spherical models.471

The procedure to treat the complexity of the spherical472

models has been made in detail elsewhere [7]. Here we make473

only a sketch of the steps involved. First we notice that μ =474

1
N ω Tr ∂∂g(x) = ω, so that the only Lagrange multiplier ω in475

this problem is set directly to the shift μ. The substitutions476

(34), (35), and (36) are made to convert the Dirac δ functions477

into exponential integrals, and the substitution (37) is made to478

likewise convert the determinant.479

Once these substitutions have been made, the entire ex-480

pression (31) is an exponential integral whose argument is a481

linear functional of H . This allows for the average to be taken482

over the disorder. If we gather all the H-dependant pieces483

associated with replica a into the linear functional Oa then484

the average over the ensemble of functions H gives 485

e
∑n

a OaH (xa ) = e
1
2

∑n
a

∑n
b OaObH (xa )H (xb)

= eN 1
2

∑n
a

∑n
b OaOb f (

xa ·xb
N ). (47)

The result is an integrand that depends on the many vector 486

variables we have introduced only through their scalar prod- 487

ucts with each other. We therefore make a change of variables 488

in the integration from those vectors to matrices that encode 489

their possible scalar products. These matrices are 490

Cab = 1

N
xa · xb, Rab = −i

1

N
xa · x̂b, Dab = 1

N
x̂a · x̂b,

Qαγ

ab = 1

N
sα

a · sγ

b , X̂ α
ab = −i

1

N
x̂a · sα

b , X α
ab = 1

N
xa · sα

b ,

Gab = 1

N
η̄a · ηb. (48)

Order parameters that mix the normal and Grassmann vari- 491

ables generically vanish in these settings and we don’t 492

consider them here [34]. This transformation changes the 493

measure of the integral, with 494

n∏
a=1

dxa
d x̂a

(2π )N
d η̄a dηa

ma∏
α=1

dsα
a = dC dR dD dG dQ dX dX̂ (det J )N/2(det G)−N , (49)

where J is the Jacobian of the transformation in the real-valued fields. This Jacobian takes a block form 495

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

C iR X1 · · · Xn

iR D iX̂1 · · · iX̂n

X T
1 iX̂ T

1 Q11 · · · Q1n

...
...

...
. . .

...

X T
n iX̂ T

n Qn1 · · · Qnn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (50)

The Grassmann integrals produces their own inverted Jacobian. The matrix that make up the blocks of the matrix J are such that 496

C, R, and D are n × n matrices indexed by their lower indices, Qab is an ma × mb matrix indexed by its upper indices, while Xa 497

is an n × ma matrix with one lower and one upper index. 498

These steps follow identically to those more carefully outlined in the cited papers [4,7]. Following them in the present case, 499

we arrive at a form for the complexity of stationary points with fixed energy E , stability μ, and lowest eigenvalue λ∗ with 500

�λ∗ (E , μ) = lim
β→∞

lim
n→0

lim
m1···mn→0

1

N

∂

∂n

∫
dC dR dD dG dQ dX dX̂ dβ̂ dλ̂

× exp

⎧⎪⎪⎨
⎪⎪⎩nNSSSG(β̂,C, R, D, G|E , μ) + nNUSSG(λ̂, Q, X, X̂ |β, λ∗, μ,C)

+ N

2
log det

⎡
⎢⎢⎢⎣I −

⎡
⎢⎢⎣

Q11 · · · Q1n

...
. . .

...

Qn1 · · · Qnn

⎤
⎥⎥⎦

−1⎡
⎢⎢⎣

X T
1 iX̂ T

1

...
...

X T
n iX̂ T

n

⎤
⎥⎥⎦
[

C iR

iR D

]−1[
X1 · · · Xn

iX̂1 · · · iX̂n

]⎤⎥⎥⎥⎦
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (51)
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The exponential integrand is split into two effective actions coupled only by a residual determinant. The first of these actions is501

the usual effective action for the complexity of the spherical spin glasses, or502

SSSG(β̂,C, R, D, G|E , μ) = β̂E + lim
n→0

1

n

{
−μ Tr(R + G) + 1

2

∑
ab

[
β̂2 f (Cab) + (2β̂Rab − Dab) f ′(Cab)

+ (
R2

ab − G2
ab

)
f ′′(Cab)

]+ 1

2
log det

[
C iR

iRT D

]
− log det G

}
. (52)

The second of these actions is analogous to the effective action (8) from the GOE example of Sec. II B and contains the503

contributions from the marginal pieces of the calculation, and is given by504

USSG(λ̂, Q, X, X̂ |β, λ∗, μ,C)

= λ̂λ∗ + lim
n→0

lim
m1···mn→0

1

n

{
1

2
log det Q −

n∑
a=1

( ma∑
α=1

βμQαα
aa + λ̂μQ11

aa

)
+ 2

n∑
ab

f ′′(Cab)

×
[
β

ma∑
α

(
β

mb∑
γ

(
Qαγ

ab

)2 − β̂
(
X α

ab

)2 − 2X α
abX̂ α

ab

)
+ λ̂

(
λ̂
(
Q11

ab

)2 − β̂
(
X 1

ab

)2 − 2X 1
abX̂ 1

ab

)+ βλ̂

(
ma∑
α

Qα1
ab +

mb∑
α

Q1α
ab

)]}
.

(53)

The fact that the complexity can be split into two relatively in-505

dependent pieces in this way is a characteristic of the isotropic506

and Gaussian nature of the spherical spin glass. In Sec. IV C507

we study a model whose energy is isotropic but not Gaussian508

and where such a decomposition is impossible.509

There are some dramatic simplifications that emerge from510

the structure of this particular problem. First, notice that the511

dependence on the parameters X and X̂ are purely quadratic.512

Therefore, there will always be a saddle-point condition where513

they are both zero. In this case without a fixed or random field,514

we except this solution to be correct. We can reason about why515

this is so: X , for instance, quantifies the correlation between516

the typical position of stationary points and the direction of517

their typical eigenvectors. In a landscape without a signal,518

where no direction is any more important than any other, we519

expect such correlations to be zero: where a state is located520

does not give any information as to the orientation of its soft521

directions. On the other hand, in the spiked case, or with an522

external field, the preferred direction can polarize both the di-523

rection of typical stationary points and their soft eigenvectors.524

Therefore, in these instances one must account for solutions525

with nonzero X and X̂ .526

We similarly expect that Qab = 0 for a �= b. For the527

contrary to be true, eigenvectors at independently sampled528

stationary points would need to have their directions cor-529

related. This is expected in situations with a signal, where530

such correlations would be driven by a shared directional bias531

towards the signal. In the present situation, where there is no532

signal, such correlations do not exist.533

When we take X = X̂ = 0 and Qαβ

ab = δabQαβ , we find that534

USSG(λ̂, Q, 0, 0|β, λ∗, μ,C) = UGOE(λ̂, Q|β, λ∗, μ), (54)

with σ 2 = f ′′(1). That is, the effective action for the terms535

related to fixing the eigenvalue in the spherical Kac–Rice536

problem is exactly the same as that for the GOE problem.537

This is perhaps not so surprising, since we established from538

the beginning that the Hessian of the spherical spin glasses539

belongs to the GOE class.540

The remaining analysis of the eigenvalue-dependent part 541

USSG follows precisely the same steps as were made in 542

Sec. II B for the GOE example. The result of the calcula- 543

tion is also the same: the exponential factor containing USSG 544

produces precisely the large deviation function Gλ∗ (μ) of 545

(21) [again with σ 2 = f ′′(1)]. The remainder of the inte- 546

grand depending on SSSG produces the ordinary complexity 547

of the spherical spin glasses without conditions on the Hessian 548

eigenvalue. We therefore find that 549

�λ∗ (E , μ) = �(E , μ) + Gλ∗ (μ). (55)

We find the marginal complexity by solving 550

0 = ∂

∂λ∗ �λ∗ (E , μm(E ))

∣∣∣∣
λ∗=0

= ∂

∂λ∗ Gλ∗ (μm(E ))

∣∣∣∣
λ∗=0

,

(56)

which gives μm(E ) = 2σ = 2
√

f ′′(1) independent of E , as 551

we presaged above. Since G0(μm ) = 0, this gives finally 552

�m(E ) = �0(E , μm(E )) = �(E , μm ). (57)

The marginal complexity in these models is thus simply the 553

ordinary complexity evaluated at a fixed trace μm of the Hes- 554

sian. 555

B. Multispherical spin glasses 556

The multispherical spin glasses are a simple extension of 557

the spherical ones, where the configuration space is taken to 558

be the union of more than one hypersphere. Here we consider 559

the specific case where the configuration space is the union 560

of two (N − 1)-spheres, with � = SN−1 × SN−1. The two 4561

spheres give rise to two constraints: for x = [x(1), x(2)] with 562

components x(1), x(2) ∈ RN , the constraints are 0 = g1(x) = 563

1
2 (‖x(1)‖2 − N ) and 0 = g2(x) = 1

2 (‖x(2)‖2 − N ). These two 564

constraints are fixed by two Lagrange multipliers ω1 and ω2. 565

The energy in our multispherical spin glass is given by 566

H (x) = H1(x(1) ) + H2(x(2) ) − εx(1) · x(2). (58)
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The energy Hi of each individual sphere is taken to be a567

centered Gaussian random function with a covariance given568

in the usual spherical spin glass way for x, x′ ∈ RN by569

Hi(x)Hj (x′) = Nδi j fi

(
x · x′

N

)
, (59)

with the functions f1 and f2 not necessarily the same. As for570

the spherical spin glasses, μ∗ of (38) is zero.571

In this problem, there is an energetic competition between572

the independent spin glass energies on each sphere and their573

tendency to align or anti-align through the interaction term.574

These models have more often been studied with random575

fully connected couplings between the spheres, for which it is576

possible to also use configuration spaces involving spheres of577

different sizes [35–41]. The deterministically coupled model578

was previously studied as a thought experiment [7].5 579

We again make use of the method of Lagrange multipli-580

ers to find stationary points on the constrained configuration581

space. The Lagrangian and its gradient and Hessian are582

L(x) = H (x) + 1
2ω1(‖x(1)‖2 − N ) + 1

2ω2(‖x(2)‖2 − N ),
(60)

∇H (x, ω) =
[
∂1H1(x(1) ) − εx(2) + ω1x(1)

∂2H2(x(2) ) − εx(1) + ω2x(2)

]
, (61)

Hess H (x, ω) =
[
∂1∂1H1(x(1) ) + ω1I −εI

−εI ∂2∂2H2(x(2) ) + ω2I

]
,

(62)

where ∂1 = ∂
∂x(1) and ∂2 = ∂

∂x(2) . Like in the spherical spin583

glasses, fixing the trace of the Hessian to μ is equivalent to584

a constraint on the Lagrange multipliers. However, in this585

case it corresponds to μ = ω1 + ω2, and therefore they are586

not uniquely fixed by fixing μ.587

Since the energy in the multispherical models is Gaussian,588

the properties of the matrix ∂∂H are again independent of the589

energy and gradient. This means that the form of the Hessian590

is parameterized solely by the values of the Lagrange multipli-591

ers ω1 and ω2, just as μ = ω alone parameterized the Hessian 592

in the spherical spin glasses. Unlike that case, however, the 593

Hessian takes different shapes with different spectral widths 594

depending on their precise combination. In Appendix C we 595

derive a variational form for the spectral density of the Hes- 596

sian in these models using standard methods. 597

Because of the independence of the Hessian, the method 598

introduced in this article is not necessary to characterize the 599

marginal minima of this system. Rather, we could take the 600

spectral density derived in Appendix C and find the Lagrange 601

multipliers ω1 and ω2 corresponding with marginality by tun- 602

ing the edge of the spectrum to zero. In some ways the current 603

method is more convenient than this, since it is a purely 604

variational method and therefore can be reduced to a single 605

root-finding exercise. 606

Unlike the constraints on the configurations x, the con- 607

straint on the tangent vectors s = [s(1), s(2)] ∈ R2N remains 608

the same spherical constraint as before, which implies N = 609

‖s‖2 = ‖s(1)‖2 + ‖s(2)‖2. Defining intra- and inter-sphere 610

overlap matrices 611

Qi j,αγ

ab = 1

N
s(i),α

a · s( j),γ
b , (63)

this problem no longer has the property that the diagonal of 612

the Qs is one, but instead that 1 = Q11,αα
aa + Q22,αα

aa . This is 613

the manifestation of the fact that a normalized vector in the 614

tangent space of the multispherical model need not be equally 615

spread over the two subspaces but can be concentrated in one 616

or the other. 617

The calculation of the marginal complexity in this problem 618

follows very closely to that of the spherical spin glasses in the 619

previous subsection. We immediately make the simplifying 620

assumptions that the soft directions of different stationary 621

points are typically uncorrelated and therefore X = X̂ = 0 622

and the overlaps Q between eigenvectors are only nonzero 623

when in the same replica. The result for the complexity has 624

the schematic form of (51), but with different effective actions 625

depending now on overlaps inside each of the two spheres 626

and between the two spheres. The effective action for the 627

traditional complexity of the multispherical spin glass is 628

SMSG(β̂,C11, R11, D11, G11,C22, R22, D22, G22,C12, R12, R21, D12, G12, G21|E , ω1, ω2)

= β̂
(
E − E1 − E2 − εc12

d

)+ SSSG(β̂,C11, R11, D11, G11|E1, ω1)

+ SSSG(β̂,C22, R22, D22, G22|E2, ω2) + lim
n→0

1

n

{
ε Tr(R12 + R21 + G12 + G21 − β̂C12)

+ 1

2
log det

⎛
⎝I −

[
C11 iR11

iR11 D11

]−1[
C12 iR12

iR21 D12

][
C22 iR22

iR22 D22

]−1[
C12 iR21

iR21 D12

]⎞⎠− log det(I − (G11G22)−1G12G21)

}
,

(64)

which is the sum of two effective actions (52) for the spherical spin glass associated with each individual sphere, and some 629

coupling terms. The order parameters are defined the same as in the spherical spin glasses, but now with raised indices to 630

indicate whether the vectors come from one or the other spherical subspace. The effective action for the eigenvalue-dependent 631
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part of the complexity is likewise given by632

UMSG(q̂, λ̂, Q11, Q22, Q12|β, λ∗, ω1, ω2)

= lim
m→0

{
m∑

α=1

[q̂α (Q11,αα + Q22,αα − 1) − β(ω1Q11,αα + ω2Q22,αα − 2εQ12,αα )] − λ̂(ω1Q11,11 + ω2Q22,11 − 2εQ12,11)

+
∑
i=1,2

f ′′
i (1)

[
β2

m∑
αγ

(Qii,αγ )2 + 2βλ̂

m∑
α

(Qii,1α )2 + λ̂2(Qii,11)2

]
+ 1

2
log det

[
Q11 Q12

Q12 Q22

]}
. (65)

The new variables q̂α are Lagrange multipliers introduced to enforce the constraint that Q11,αα + Q22,αα = 1. Because of this633

constraint, the diagonal of the Q matrices cannot be taken to be one as in Sec. II B. Instead we take each of the matrices Q11,634

Q22, and Q12 to have the planted replica symmetric form of (9), but with the diagonal not necessarily equal to one, so635

Qi j =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q̃i j
d q̃i j

0 q̃i j
0 · · · q̃i j

0

q̃i j
0 qi j

d qi j
0 · · · qi j

0

q̃i j
0 qi j

0 qi j
d

. . . qi j
0

...
...

. . .
. . .

...

q̃i j
0 qi j

0 qi j
0 · · · qi j

d

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (66)

This requires us to introduce two new order parameters q̃i j
d and qi j

d per pair (i, j), in addition to the off-diagonal order parameters636

q̃i j
0 and qi j

0 already present in (9). We also need two separate Lagrange multipliers q̂ and ˆ̃q to enforce the tangent space637

normalization q11
d + q22

d = 1 and q̃11
d + q̃22

d = 1 for the tilde and untilde replicas, respectively, which will in general take different638

values at the saddle point. When this ansatz is inserted into the expression (65) for the effective action and the limit of m → 0 is639

taken, we find640

UMSG
(
q̂, ˆ̃q, λ̂, q̃11

d , q̃11
0 , q11

d , q11
0 , q̃22

d , q̃22
0 , q22

d , q22
0 , q̃12

d , q̃12
0 , q12

d , q12
0

∣∣β, λ∗, ω1, ω2
)

=
∑
i=1,2

{
f ′′
i (1)

[
β2
((

q̃ii
d

)2 − (
qii

d

)2 + 2
(
qii

0

)2 − 2
(
q̃ii

0

)2)+ 2βλ̂
((

q̃ii
d

)2 − (
q̃ii

0

))2)+ λ̂2
(
q̃ii

d

)2]− λ̂q̃ii
dωi − β

(
q̃ii

d − qii
d

)
ωi
}

+ 1

2
log

[(
2q12

0 q̃12
0 − q̃12

0

(
q̃12

d + q12
d

)− 2q̃11
0 q22

0 + q̃11
d q̃22

0 + q̃11
0 q22

d

)(
2q12

0 q̃12
0 − q̃12

0

(
q̃12

d + q12
d

)− 2q11
0 q̃22

0 + q11
d q̃22

0

+ q̃11
0 q̃22

d

)+ 2
(
3
(
q12

0

)2 − (
q̃12

0

)2 − 2q12
0 q12

d − 3q11
0 q22

0 + q11
d q22

0 + q̃11
0 q̃22

0 + q11
0 q22

d

)((
q̃12

0

)2 − (
q̃12

d

)2 − q̃11
0 q̃22

0 + q̃11
d q̃22

d

)
− (

2
(
q12

0

)2 − (
q̃12

0

)2 − (
q12

d

)2 − 2q11
0 q22

0 + q̃11
0 q̃22

0 + q11
d q22

d

)((
q̃12

0

)2 − (
q̃12

d

)2 − q̃11
0 q̃22

0 + q̃11
d q̃22

d

)]
− log

[(
q11

d − q11
0

)(
q22

d − q22
0

)− (
q12

d − q12
0

)2]+ 2ε
[
λ̂q̃12

d + β
(
q̃12

d − q12
d

)]− q̂
(
q11

d + q22
d − 1

)+ ˆ̃q
(
q̃11

d + q̃22
d − 1

)
.

(67)

To make the limit to zero temperature, we once again need641

an ansatz for the asymptotic behavior of the overlaps. These642

take the form qi j
0 = qi j

d − yi j
0 β−1 − zi j

0 β−2. Notice that in this643

case, the asymptotic behavior of the off-diagonal elements is644

to approach the value of the diagonal rather than to approach645

one. We also require q̃i j
d = qi j

d − ỹi j
d β−1 − z̃i j

d β−2, i.e., that the646

tilde diagonal terms also approach the same diagonal value as647

the untilde terms, but with potentially different rates.648

As before, in order for the logarithmic term to stay finite,649

there are necessary constraints on the values y. These are650

1
2

(
y11

d − ỹ11
d

) = y11
0 − ỹ11

0 , (68)

1
2

(
y22

d − ỹ22
d

) = y22
0 − ỹ22

0 , (69)

1
2

(
y12

d − ỹ12
d

) = y12
0 − ỹ12

0 . (70)

One can see that when the diagonal elements are all equal, 651

this requires the ys for the off-diagonal elements to be equal, 652

as in the GOE case. Here, since the diagonal elements are not 653

necessarily equal, we have a more general relationship. 654

When the β dependence of the q variables is inserted into 655

the effective action (67) and the limit β → ∞ taken, we find 656

an expression that is too large to report here. However, it can 657

be extremized over all of the variables in the problem just as 658

in the previous examples to find the values of the Lagrange 659

multipliers ω1 and ω2 corresponding to marginal minima. 660

Figure 2(a) shows examples of the ω1 and ω2 corresponding to 661

marginal spectra for a variety of couplings ε when the covari- 662

ances of the energy on the two spherical subspaces are such 663

that 1 = f ′′
1 (1) = f ′′

2 (1). Figure 2(b) shows the Hessian spec- 664

tra associated with some specific pairs (ω1, ω2). When ε = 0 665

and the two spheres are uncoupled, we find the result for two 666

independent spherical spin glasses: if either ω1 = 2
√

f ′′(1) = 667
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FIG. 2. Properties of marginal minima in the multispherical
model. (a) Values of the Lagrange multipliers ω1 and ω2 corre-
sponding to a marginal spectrum for multispherical spin glasses
with σ 2

1 = f ′′
1 (1) = 1, σ 2

2 = f ′′
2 (1) = 1, and various ε. (b) Spectra

corresponding to the parameters ω1 and ω2 marked by the circles in
panel (a). (c) The complexity of marginal minima in a multispher-
ical model with f1(q) = 1

6 q3 and f2(q) = 1
12 q4 for a variety of ε.

Since f ′′
1 (1) = f ′′

2 (1) = 1, the marginal values correspond precisely
to those in panels (a) and (b).

2 or ω2 = 2
√

f ′′(1) = 2 and the other Lagrange multiplier is668

larger than two, then we have a marginal minimum made up of669

the Cartesian product of a marginal minimum on one subspace670

and a stable minimum on the other.671

Fig. 2(c) shows the complexity of marginal minima in672

an example where both H1 and H2 correspond to pure p-673

spin models, with f1(q) = 1
6 q3 and f2(q) = 1

12 q4. Despite674

having different covariance functions, these both satisfy 1 =675

f ′′
1 (1) = f ′′

2 (1) and therefore have marginal minima for La-676

grange multipliers that satisfy the relationships in Fig. 2(a). In677

the uncoupled system with ε = 0, the most common type of678

marginal stationary point consists of independently marginal679

stationary points in the two subsystems, with ω1 = ω2 = 2.680

As ε is increased, the most common type of marginal mini-681

mum drifts toward points with ω1 > ω2.682

Multispherical spin glasses may be an interesting platform683

for testing ideas about which among the possible marginal684

minima can attract dynamics and which cannot. In the limit685

where ε = 0 and the configurations of the two spheres are in-686

dependent, the minima found dynamically should be marginal687

on both subspaces. Just because technically on the expanded688

configuration space the Cartesian product of a deep stable 689

minimum on one sphere and a marginal minimum on the 690

other is a marginal minimum on the whole space doesn’t 691

mean the deep and stable minimum is any easier to find. This 692

intuitive idea that is precise in the zero-coupling limit should 693

continue to hold at small nonzero coupling, and perhaps reveal 694

something about the inherent properties of marginal minima 695

that do not tend to be found by algorithms. 696

C. Sums of squared random functions 697

In this subsection we consider perhaps the simplest ex- 698

ample of a non-Gaussian landscape: the problem of sums 699

of squared random functions. This problem has a close re- 700

semblance to nonlinear least squares optimization. Though, 701

for reasons we will see it is easier to make predictions for 702

nonlinear most squares, i.e., the problem of maximizing the 703

sum of squared terms. We again take a spherical configura- 704

tion space with x ∈ SN−1 and 0 = g(x) = 1
2 (‖x‖2 − N ) as in 705

the spherical spin glasses. The energy is built from a set of 706

M = αN random functions Vk : SN−1 → R that are centered 707

Gaussians with covariance 708

Vi(x)Vj (x′) = δi j f

(
x · x′

N

)
. (71)

Each of the Vk is an independent spherical spin glass. The total 709

energy is minus the sum of squares of the Vk , or 710

H (x) = −1

2

M∑
k=1

Vk (x)2. (72)

The landscape complexity and large deviations of the ground 711

state for the least-squares version of this problem were 712

recently studied in a linear context, with f (q) = σ 2 + aq 713

[42–45]. Some results on the ground state of the general non- 714

linear problem can also be found in Ref. [46], and a solution 715

to the equilibrium problem can be found in Ref. [47]. Those 716

works indicate that the low-lying minima of the least squares 717

problem tend to be either replica symmetric or full replica 718

symmetry breaking. To avoid either a trivial analysis or a very 719

complex one, we instead focus on maximizing the sum of 720

squares, or minimizing (72). 721

The minima of (72) have a more amenable structure for 722

study than the maxima, as they are typically described by a 723

1RSB-like structure. There is a heuristic intuition for this: in 724

the limit of M → 1, this problem is just minus the square of a 725

spherical spin glass landscape. The distribution and properties 726

of stationary points low and high in the spherical spin glass 727

are not changed, except that their energies are stretched and 728

maxima are transformed into minima. Therefore, the bottom 729

of the landscape doesn’t qualitatively change. The top, how- 730

ever, consists of the zero-energy level set in the spherical spin 731

glass. This level set is well connected, and so the highest states 732

should also be well connected and flat. 733

Focusing on the bottom of the landscape and therefore 734

dealing with a 1RSB-like problem makes our analysis easier. 735

Algorithms will tend to be stuck in the ways they are in hard 736

optimization problems, and we will be able to predict where. 737
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Therefore, we will study the most squares problem rather738

than the least squares one. We calculate the complexity of739

minima of (72) in Appendix D, which corresponds to maxi-740

mizing the sum of squares, under a replica symmetric ansatz741

(which covers 1RSB-like problems) for arbitrary covariance f ,742

and we calculate the complexity of marginal minima in this743

section.744

As in the previous sections, we used the method of745

Lagrange multipliers to analyze stationary points on the746

constrained configuration space. The Lagrangian and its as-747

sociated gradient and Hessian are748

L(x, ω) = −1

2

(
M∑
k

Vk (x)2 − ω(‖x‖2 − N )

)
, (73)

∇H (x, ω) = −
M∑
k

Vk (x)∂Vk (x) + ωx, (74)

Hess H (x, ω) = −
M∑
k

[∂Vk (x)∂Vk (x) − Vk (x)∂∂Vk (x)] + ωI.

(75)

Unlike in the spherical and multispherical spin glasses, the 749

value μ∗ defined in (38) giving the typical value of 1
N Tr ∂∂H 750

is not always zero. Instead μ∗ = − f ′(0), nonzero where there 751

is a linear term in V . Fixing the trace of the Hessian is 752

therefore equivalent to constraining the value of the Lagrange 753

multiplier ω = μ + f ′(0). 754

The derivation of the marginal complexity for this model 755

is complicated, but can be made schematically like that of the 756

derivation of the equilibrium free energy by use of superspace 757

coordinates. Following the framework outlined in Sec. III C, 758

the replicated number of stationary points conditioned on 759

energy E , trace μ, and minimum eigenvalue λ∗ is given by 760

N (E , μ, λ∗)n =
∫

dβ̂ dλ̂

n∏
a=1

lim
ma→0

ma∏
α=1

dφα
a

× exp

{
δα1N (β̂E + λ̂λ∗) − 1

2

∫
d1 d2

[
Bα (1, 2)

M∑
k=1

Vk
(
φα

a (1, 2)
)2 − (μ + f ′(0))

∥∥φα
a (1, 2)

∥∥2

]}
, (76)

The first step to evaluate this expression is to linearize the dependence on the random functions V . This is accomplished by 761

inserting into the integral a Dirac δ function fixing the value of the energy for each replica, or 762

δ
(
Vk
(
φα

a (1, 2)
)− vα

ka(1, 2)
) =

∫
d v̂α

ka exp

[
i
∫

d1 d2 v̂α
ka(1, 2)

(
Vk
(
φα

a (1, 2)
)− vα

ka(1, 2)
)]

, (77)

where we have introduced auxiliary superfields v̂. With this inserted into the integral, all other instances of V are replaced by v, 763

and the only remaining dependence on the disorder is from the term v̂V arising from the Fourier representation of the Dirac δ 764

function. This term is linear in V , and therefore the random functions can be averaged over to produce 765

exp

[
i

M∑
k

n∑
a

ma∑
α

∫
d1 d2 v̂α

ka(1, 2)Vk
(
φα

a (1, 2)
)] = −1

2

n∑
ab

ma∑
αγ

M∑
k

∫
d1 d2 d3 d4 v̂α

ka(1, 2) f
(
φα

a (1, 2) · φ
γ

b (3, 4)
)
v̂

γ

kb(3, 4).

(78)

The entire integrand is now factorized in the indices k and quadratic in the superfields v and v̂ with the kernel 766[
Bα (1, 2)δ(1, 3)δ(2, 4)δabδ

αγ iδ(1, 3) δ(2, 4)δabδ
αγ

iδ(1, 3) δ(2, 4)δabδ
αγ f

(
φα

a (1, 2) · φ
γ

b (3, 4)
)
]
. (79)

The integration over v and v̂ results in a term in the effective action of the form 767

− M

2
log sdet

[
δ(1, 3) δ(2, 4)δabδ

αγ + Bα (1, 2) f
(
φα

a (1, 2) · φ
γ

b (3, 4)
)]

. (80)

When expanded, the supermatrix φα
a (1, 2) · φ

γ

b (3, 4) is constructed of the scalar products of the real and Grassmann vectors that 768

make up φ. The change of variables to these order parameters again results in the Jacobian of (50), contributing 769

N

2
log det J − N

2
log det G2 (81)

to the effective action. 770

Up to this point, the expressions are general and independent of a given ansatz. However, we expect that the order parameters 771

X and X̂ are zero, since again we are in a setting with no signal or external field. Applying this ansatz here avoids a dramatically 772

more complicated expression for the effective action. We also will apply the ansatz that Qαγ

ab is zero for a �= b, which is 773

equivalent to assuming that the soft directions of typical pairs of stationary points are uncorrelated, and further that Qαγ = Qαγ
aa 774

independently of the index a, implying that correlations in the tangent space of typical stationary points are the same. 775
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Given this ansatz, taking the superdeterminant in (80) yields776

− M

2
log det

{[
f ′(C) 
 D − β̂I +

(
R◦2 − G◦2 + I

∑
αγ

2(δα1λ̂ + β )(δγ 1λ̂ + β )(Qαγ )2

)

 f ′′(C)

]
f (C) + (I − R 
 f ′(C))2

}

− n
M

2
log det[δαγ − 2(δα1λ̂ + β )Qαγ ] + M log det[I + G 
 f ′(C)]. (82)

where once again 
 is the Hadamard product and A◦n gives the Hadamard power of A. We can already see one substantive777

difference between the structure of this problem and that of the spherical models: the effective action in this case mixes the778

order parameters G due to the Grassmann variables with the ones C, R, and D due to the other variables. Notice further that the779

dependence on Q due to the marginal constraint is likewise no longer separable into its own term. This is the realization of the780

fact that the Hessian is no longer independent of the energy and gradient.781

Now we have reduced the problem to an extremal one over the order parameters β̂, λ̂, C, R, D, G, and Q, it is time to make782

an ansatz for the form of order we expect to find. We will focus on a regime where the structure of stationary points is replica783

symmetric, and further where typical pairs of stationary points have no overlap. This requires that f (0) = 0, or that there is no784

constant term in the random functions. This gives the ansatz785

C = I, R = rI, D = dI, G = gI. (83)

We further take a planted replica symmetric structure for the matrix Q, identical to that in (9). This results in786

�λ∗ (E , μ) = 1

N
lim
n→0

∂

∂n

∫
dβ̂ dλ̂ dr dd dgdq0 dq̃0enNSRSS(β̂,λ̂,r,d,g,q0,q̃0|λ∗,E ,μ,β ), (84)

with an effective action787

SRSS(β̂, λ̂, r, d, g, q0, q̃0|λ∗, E , μ, β )

= β̂E − (μ + f ′(0))(r + g + λ̂) + λ̂λ∗ + 1

2
log

(
d + r2

g2
× 1 − 2q0 + q̃2

0

(1 − q0)2

)

− α

2
log

(
1 − 4 f ′(1)

[
β(1 − q0) + 1

2 λ̂ − β(β + λ̂)
(
1 − 2q0 + q̃2

0

)
f ′(1)

]
[1 − 2(1 − q0)β f ′(1)]2

× f (1)[ f ′(1)d − β̂ − f ′′(1)(r2 − g2 + 4q2
0β

2 − 4q̃2
0β(β + λ̂) + 4βλ̂ + 2λ̂2)] + (1 − r f ′(1))2

[1 + gf ′(1)]2

)
. (85)

We expect as before the limits of q0 and q̃0 as β goes to infinity to approach one, defining their asymptotic expansion like in (15)788

and (16). Upon making this substitution and taking the zero-temperature limit, we find789

SRSS(β̂, λ̂, r, d, g, y,	z|λ∗, E , μ,∞) = β̂E − (μ + f ′(0))(r + g + λ̂) + λ̂λ∗ + 1

2
log

(
d + r2

g2
× y2 − 2	z

y2

)

− α

2
log

(
1 − 2(2y + λ̂) f ′(1) + 4(y2 − 2	z) f ′(1)2

[1 − 2y f ′(1)]2

× f (1)[ f ′(1)d − β̂ − f ′′(1)(r2 − g2 + 8(yλ̂ + 	z) + 2λ̂2)] + [1 − r f ′(1)]2

[1 + gf ′(1)]2

)
. (86)

We can finally write the complexity with fixed energy E ,790

stability μ, and minimum eigenvalue λ∗ as791

�λ∗ (E , μ)

= extremum
β̂,λ̂,r,d,g,y,	z

SRSS(β̂, λ̂, r, d, g, y,	z|λ∗, E , μ,∞).

(87)

Note that, unlike the previous two examples, the effective792

action in this case does not split into two largely independent793

pieces, one relating to the eigenvalue problem and one relat-794

ing to the ordinary complexity. Instead, the order parameters795

related to the eigenvalue problem are mixed throughout the796

effective action with those of the ordinary complexity. This797

is a signal of the fact that the sum of squares problem is not 798

Gaussian, while the previous two examples are. In all non- 799

Gaussian problems, conditioning on properties of the Hessian 800

cannot be done independently from the complexity, and the 801

method introduced in this paper becomes necessary. 802

The marginal complexity can be derived from (87) using 803

the condition (32) to fix μ to the marginal stability μm(E ) 804

and then evaluating the complexity at that stability as in (33). 805

Figure 3 shows the marginal complexity in a sum-of-squares 806

model with α = 3
2 and f (q) = q2 + q3. Also shown is the 807

dominant complexity computed in Appendix D. As the figure 808

demonstrates, the range of energies at which marginal minima 809

are found can differ significantly from those implied by the 810

dominant complexity, with the lowest energy significantly 811
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FIG. 3. Dominant and marginal complexity in the nonlinear sum
of squares problem for α = 3

2 and f (q) = q2 + q3. The ground-state
energy Egs and the threshold energy Eth are marked on the plot.

higher than the ground state and the highest energy signifi-812

cantly higher than the threshold.813

Figure 4 shows the associated marginal stability μm(E ) for814

the same model. Recall that the definition of the marginal815

stability in (32) is that which eliminates the variation of816

�λ∗ (E , μ) with respect to λ∗ at the point λ∗ = 0. Unlike in the817

Gaussian spherical spin glass, in this model μm(E ) varies with818

energy in a nontrivial way. The figure also shows the dominant819

stability, which is the stability associated with the dominant820

complexity and coincides with the marginal stability only at821

the threshold energy.822

Because this version of the model has no signal, we were823

able to use the heuristic (32) to fix the marginal stability.824

However, we could also have used the more general method825

for finding a pseudogapped Hessian spectrum by locating the826

value of μ at which the complexity develops an imaginary827

part, as described in Sec. II C and pictured in Fig. 1. The real828

and imaginary parts of the complexity �0(E , μ) are plotted829

in Fig. 5 as a function of μ at fixed energy. The figure also830

shows the marginal stability μm predicted by the variational831

FIG. 4. The stability, or shift of the trace, for dominant and
marginal optima in the nonlinear sum of squares problem for α = 3

2
and f (q) = q2 + q3.

FIG. 5. Real and imaginary parts of the complexity �0(E , μ)
with fixed minimum eigenvalue λ∗ = 0 as a function of μ in the
nonlinear sum of squares problem with α = 3

2 , f (q) = q2 + q3, and
E � −6.47. The vertical line depicts the value of the marginal sta-
bility μm.

approach (32). The marginal stability corresponds to precisely 832

the point at which an imaginary part develops in the complex- 833

ity. This demonstrates that the principles we used to determine 834

the marginal stability continue to hold even in non-Gaussian 835

cases where the complexity and the condition to fix the mini- 836

mum eigenvalue are tangled together. 837

In a related paper, we use a sum of squared random func- 838

tions model to explore the relationship between the marginal 839

complexity and the performance of two generic algorithms: 840

gradient descent and approximate message passing [21]. We 841

show that the range of energies where the marginal complexity 842

is positive does effectively bound the performance of these 843

algorithms. At the moment the comparison is restricted to 844

models with small polynomial powers appearing in f (q) and 845

with small α for computational reasons. However, using the 846

dynamical mean-field theory results already found for these 847

models it should be possible to make comparisons in a wider 848

family of models [48,49]. 849

The results for the marginal complexity are complimentary 850

to rigorous results on the performance of algorithms in the 851

least squares case, which focus on bounds for α and the 852

parameters of f necessary for zero-energy solutions to exist 853

and be found by algorithms [50,51]. After more work to eval- 854

uate the marginal complexity in the full RSB case, it will be 855

interesting to compare the bounds implied by the distribution 856

of marginal minima with those made by other means. 857

V. CONCLUSIONS 858

We have introduced a method for conditioning complex- 859

ity on the marginality of stationary points. This method is 860

general, and permits conditioning without first needing to 861

understand the statistics of the Hessian at stationary points. 862

We used our approach to study marginal complexity in three 863

different models of random landscapes, showing that the 864

method works and can be applied to models whose marginal 865

complexity was not previously known. In related work, we 866

further show that marginal complexity in the third model of 867
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sums of squared random functions can be used to effectively868

bound algorithmic performance [21].869

There are some limitations to the approach we relied on in870

this paper. The main limitation is our restriction to signalless871

landscapes, where there is no symmetry-breaking favored di-872

rection. This allowed us to treat stationary points with isolated873

eigenvalues as atypical and therefore find the marginal stabil-874

ity μm using a variational principle. However, most models875

of interest in inference have a nonzero signal strength and876

therefore often have typical stationary points with an isolated877

eigenvalue. As we described, marginal complexity can still878

be analyzed in these systems by tuning the shift μ until the879

large-deviation principle breaks down and an imaginary part880

of the complexity appears. However, this is an inconvenient881

approach. It is possible that a variational approach can be882

preserved by treating the direction toward and the directions883

orthogonal to the signal differently. This problem merits fur-884

ther research.885

Finally, the problem of predicting which marginal minima886

are able to attract some dynamics and which cannot attract887

any dynamics looms large over this work. As we discussed888

briefly at the end of Sec. IV B, in some simple contexts it is889

easy to see why certain marginal minima are not viable, but890

at the moment we do not know how to generalize this. Ideas891

related to the self-similarity and stochastic stability of minima892

have recently been suggested as a route to understanding this893

problem, but this approach is still in its infancy [52].894

The title of our paper and that of Müller et al. suggest895

they address the same topic, but this is not the case [53]. That896

work differs in three important and fundamental ways. First,897

it describes minima of the Thouless, Anderson, and Palmer898

(TAP) free energy and involves peculiarities specific to the6 899

TAP. Second, it describes dominant minima which happen to900

be marginal, not a condition for finding subdominant marginal901

minima. Finally, it focuses on minima with a single soft di-902

rection (which are the typical minima of the low temperature903

Sherrington–Kirkpatrick TAP free energy), while we aim to904

avoid such minima in favor of ones that have a pseudogap905

(which we argue are relevant to out-of-equilibrium dynamics).906

The fact that the typical minima studied by Müller et al.907

are not marginal in this latter sense may provide an intuitive908

explanation for the seeming discrepancy between the proof909

that the low-energy Sherrington–Kirkpatrick model cannot be910

sampled [54] and the proof that a message-passing algorithm911

can find near-ground states [55]: the algorithm finds the atyp-912

ical low-lying states that are marginal in the sense considered913

here but cannot find the typical ones considered by Müller914

et al.915
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APPENDIX A: A PRIMER ON SUPERSPACE919

In this appendix we review the algebra of superspace [56].920

The superspace RN |2D is a vector space with N real indices and921

2D Grassmann indices θ̄1, θ1, . . . , θ̄D, θD. The Grassmann in-922

dices anticommute like fermions. Their integration is defined923

by 924∫
dθ θ = 1,

∫
dθ 1 = 0. (A1)

Because the Grassmann indices anticommute, their square is 925

always zero. Therefore, any series expansion of a function 926

with respect to a given Grassmann index will terminate ex- 927

actly at linear order, while a series expansion with respect to 928

n Grassmann variables will terminate exactly at nth order. If 929

f is an arbitrary superspace function, then the integral of f 930

with respect to a Grassmann index can be evaluated using this 931

property of the series expansion by 932∫
dθ f (a + bθ ) =

∫
dθ [ f (a) + f ′(a)bθ ] = f ′(a)b. (A2)

This kind of behavior of integrals over the Grassmann indices 933

makes them useful for compactly expressing the Kac–Rice 934

measure. To see why, consider the specific superspace RN |2, 935

where an arbitrary vector can be expressed as 936

φ(1) = x + θ̄1η + η̄θ1 + θ̄1θ1ix̂, (A3)

where x, x̂ ∈ RN and η̄, η are N-dimensional Grassmann 937

vectors. The dependence of φ on 1 indicates the index of 938

Grassmann variables θ̄1, θ1 inside, since we will sometimes 939

want to use, e.g., φ(2) defined identically save for substitu- 940

tion by θ̄2, θ2. Consider the series expansion of an arbitrary 941

function f of this supervector: 942

f (φ(1)) = f (x) + (θ̄1η + η̄θ1 + θ̄1θ1ix̂)T ∂ f (x)

+ 1
2 (θ̄1η + η̄θ1)T ∂∂ f (x)(θ̄1η + η̄θ1)

= f (x) + (θ̄1η + η̄θ1 + θ̄1θ1ix̂)T ∂ f (x)

− θ̄1θ1η̄
T ∂∂ f (x)η, (A4)

where the last step we used the fact that the Hessian matrix 943

is symmetric and that squares of Grassmann indicies vanish. 944

Using the integration rules defined above, we find 945∫
dθ1 d θ̄1 f (φ(1)) = ix̂T ∂ f (x) − η̄T ∂∂ f (x)η. (A5)

These two terms are precisely the exponential representation 946

of the Dirac δ function of the gradient and determinant of the 947

Hessian (without absolute value sign) that make up the basic 948

Kac–Rice measure, so that we can write 949∫
dx δ(∇H (x)) det Hess H (x)

=
∫

dx d η̄ dη
d x̂

(2π )N
eix̂T ∇H (x)−η̄T Hess H (x)η

=
∫

dφ e
∫

d1 H (φ(1)), (A6)

where we have written the measures d1 = dθ1 d θ̄1 and dφ = 950

dx d η̄ dη d x̂
(2π )N . Besides some deep connections to the physics 951

of BRST, this compact notation dramatically simplifies the 952

analytical treatment of the problem. The energy of stationary 953

points can also be fixed using this notation by writing 954∫
dφ dβ̂ eβ̂E+∫ d1 (1−β̂θ̄1θ1 )H (φ(1)), (A7)
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which a small calculation confirms results in the same expres-955

sion as (35).956

The reason why this transformation is a simplification is957

because there are a large variety of superspace algebraic and958

integral operations with direct corollaries to their ordinary real959

counterparts. For instance, consider a super linear operator960

M(1, 2), which like the super vector φ is made up of a linear961

combination of N × N regular or Grassmann matrices indexed962

by every nonvanishing combination of the Grassmann indices963

θ̄1, θ1, θ̄2, θ2. Such a supermatrix acts on supervectors by964

ordinary matrix multiplication and convolution in the Grass-965

mann indices, i.e.,966

(Mφ)(1) =
∫

d2 M(1, 2)φ(2). (A8)

The identity supermatrix is given by967

δ(1, 2) = (
θ̄1 − θ̄2

)
(θ1 − θ2)I. (A9)

Integrals involving superfields contracted into such operators968

result in schematically familiar expressions, like that of the969

standard Gaussian:970 ∫
dφe− 1

2

∫
d1d2φ(1)T M(1,2)φ(2) = (sdet M )−1/2, (A10)

where the usual role of the determinant is replaced by the971

superdeterminant. The superdeterminant can be defined us-972

ing the ordinary determinant by writing a block version of973

the matrix M. If e(1) = {1, θ̄1θ1} is the basis vector of the974

even subspace of the superspace and f (1) = {θ̄1, θ1} is that975

of the odd subspace, dual bases e†(1) = {θ̄1θ1, 1} and f†(1) =976

{−θ1, θ̄1} can be defined by the requirement that977 ∫
d1 e†

i (1)e j (1) = δi j,

∫
d1 f †

i (1) f j (1) = δi j, (A11)∫
d1e†

i (1) f j (1) = 0,

∫
d1 f †

i (1)e j (1) = 0. (A12)

With such bases and dual bases defined, we can form a block978

representation of M in analogy with the matrix form of an979

operator in quantum mechanics by‘980

∫
d1d2

[
e†(1)M(1, 2)e(2) e†(1)M(1, 2)f (2)

f†(1)M(1, 2)e(2) f†(1)M(1, 2)f (2)

]

=
[

A B

C D

]
, (A13)

where each of the blocks is a 2N × 2N real matrix. Then the981

superdeterminant of M is given by982

sdet M = det(A − BD−1C) det(D)−1, (A14)

which is the same as the normal expression for the determi-983

nant of a block matrix save for the inverse of det D. Likewise,984

the supertrace of M is is given by985

sTr M = Tr A − Tr D. (A15)

The same method can be used to calculate the superdeter-986

minant and supertrace in arbitrary superspaces, where for987

RN |2D each basis has 22D−1 elements. For instance, for RN |4
988

we have 989

e(1, 2) = {1, θ̄1θ1, θ̄2θ2, θ̄1θ2, θ̄2θ1, θ̄1θ̄2, θ1θ2, θ̄1θ1θ̄2θ2},
f (1, 2) = {θ̄1, θ1, θ̄2, θ2, θ̄1θ1θ̄2, θ̄2θ2θ1, θ̄1θ1θ2, θ̄2θ2θ1},

(A16)

with the dual bases defined analogously to those above. 990

APPENDIX B: BECCHI-ROUET-STORA-TYUTIN 991

SYMMETRY 992

When the trace μ is not fixed, there is an unusual symmetry 993

in the dominant complexity of minima [30–32]. This arises 994

from considering the Kac–Rice formula as a kind of gauge 995

fixing procedure [57]. Around each stationary point consider 996

making the coordinate transformation u = ∇H (x). Then, in 997

the absence of fixing the trace of the Hessian to μ, the Kac– 998

Rice measure becomes 999∫
dν(x, ω|E ) =

∫ ∑
σ

duδ(u)δ(NE − H (xσ )), (B1)

where the sum is over stationary points σ . This integral has a 1000

symmetry of its measure of the form u → u + δu. Under the 1001

nonlinear transformation that connects u and x, this implies 1002

a symmetry of the measure in the Kac–Rice integral of x → 1003

x + (Hess H )−1δu. This symmetry, while exact, is nonlinear 1004

and difficult to work with. 1005

When the absolute value function has been dropped and 1006

Grassmann vectors introduced to represent the determinant 1007

of the Hessian, this symmetry can be simplified considerably. 1008

Due to the expansion properties of Grassmann integrals, any 1009

appearance of −η̄ηT in the integrand resolves to (Hess H )−1. 1010

The symmetry of the measure can then be written 1011

x → x − η̄ηT δu = x + η̄δε, (B2)

where δε = −ηT δu is a Grassmann number. This establishes 1012

that δx = η̄δε, now linear. The rest of the transformation can 1013

be built by requiring that the action is invariant after expansion 1014

in δε. This gives 1015

δx = η̄δε, δx̂ = −iβ̂η̄δε, δη = −ix̂δε, δη̄ = 0, (B3)

so that the differential form of the symmetry is 1016

D = η̄ · ∂

∂x
− iβ̂η̄ · ∂

∂ x̂
− ix̂ · ∂

∂η
, (B4)

The Ward identities associated with this symmetry give rise 1017

to relationships among the order parameters. These identities 1018

come from applying the differential symmetry to Grassmann- 1019

valued order parameters and are 1020

0 = 1

N
D〈xa · ηb〉 = 1

N
[〈η̄a · ηb〉 − i〈xa · x̂b〉]

= Gab + Rab, (B5)

0 = i

N
D〈x̂a · ηb〉 = 1

N
[β̂〈η̄a · ηb〉 + 〈x̂a · x̂b〉]

= β̂Gab + Dab. (B6)

These identities establish Gab = −Rab and Dab = β̂Rab, al- 1021

lowing elimination of the matrices G and D in favor of R. 1022

Fixing the trace to μ explicitly breaks this symmetry, and the 1023

simplification is lost. 1024
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APPENDIX C: SPECTRAL DENSITY IN THE MULTISPHERICAL SPIN GLASS1025

In this Appendix we derive an expression for the asymptotic spectral density of the Hessian in the two-sphere multispherical1026

spin glass that we describe in Sec. IV B. We use a typical approach of employing replicas to compute the resolvent [58]. The1027

resolvent for the Hessian of the multispherical model is given by an integral over y = [y(1), y(2)] ∈ R2N as1028

G(λ) = lim
n→0

∫
‖y1‖2

n∏
a=1

dya exp

{
−1

2
yT

a (Hess H (x, ω) − λI )ya

}

= lim
n→0

∫ (∥∥y(1)
1

∥∥2 + ∥∥y(2)
1

∥∥2) n∏
a=1

dya exp

⎧⎨
⎩−1

2

[
y(1)

a

y(2)
a

]T([
∂1∂1H1(x(1) ) + ω1I −εI

−εI ∂2∂2H2(x(2) ) + ω2I

]
− λI

)[
y(1)

a

y(2)
a

]⎫⎬
⎭.

(C1)

If Y (i j)
ab = 1

N y(i)
a · y( j)

b is the matrix of overlaps of the vectors y, then a short and standard calculation involving the average over1029

H and the change of variables from y to Y yields1030

G(λ) = N lim
n→0

∫
dY

(
Y (11)

11 + Y (22)
11

)
enNS(Y ), (C2)

where the effective action S is given by1031

S (Y ) = lim
n→0

1

n

{
1

4

n∑
ab

[
f ′′
1 (1)

(
Y (11)

ab

)2 + f ′′
2 (1)

(
Y (22)

ab

)2]+ 1

2

n∑
a

[
2εY (12)

aa + (λ − ω1)Y (11)
aa + (λ − ω2)Y (22)

aa

]

+ 1

2
log det

[
Y (11)Y (12)

Y (12)Y (22)

]}
, (C3)

Making the replica symmetric ansatz Y (i j)
ab = y(i j)δab for each of the matrices Y (i j) yields1032

S (y) = 1
4 [ f ′′

1 (1)(y(11))2 + f ′′
2 (1)(y(22))2] + εy(12) + 1

2 [(λ − ω1)y(11) + (λ − ω2)y(22)] + 1
2 log(y(11)y(22) − y(12)y(12)), (C4)

while the average resolvent becomes1033

G(λ) = N (y(11) + y(22)) (C5)

for y(11) and y(22) evaluated at a saddle point of S . The spectral density at large N is then given by the discontinuity in its1034

imaginary point on the real axis, or1035

ρ(λ) = 1

2π iN
(G(λ + i0+) − G(λ + i0−)). (C6)

APPENDIX D: COMPLEXITY OF DOMINANT OPTIMA FOR SUMS OF SQUARED RANDOM FUNCTIONS1036

Here we share an outline of the derivation of formulas for the complexity of dominant optima in sums of squared random1037

functions of Sec. IV C. While in this paper we only treat problems with a replica symmetric structure, formulas for the effective1038

action are generic to any RSB structure and provide a starting point for analyzing the challenging full RSB setting.1039

Using the RN |2 superfields1040

φa(1) = xa + θ̄1ηa + η̄aθ1 + θ̄1θ1x̂a, (D1)

the replicated count of stationary points can be written1041

N (E , μ)n =
∫

dβ̂

n∏
a=1

dφa exp

[
N β̂E − 1

2

∫
d1

(
B(1)

M∑
k=1

Vk (φa(1))2 − (μ + f ′(0))‖φa(1)‖2

)]
(D2)

for B(1) = 1 − β̂θ̄1θ1. The derivation of the complexity follows from here nearly identically to that in Appendix A.2 of Fyodorov1042

and Tublin with superoperations replacing standard ones [44]. First we insert Dirac δ functions to fix each of the M energies1043

Vk (φa(1)) as1044

δ(Vk (φa(1)) − vka(1)) =
∫

d v̂ka exp

[
i
∫

d1 v̂ka(1)(Vk (φa(1)) − vka(1))

]
. (D3)
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The squared Vk appearing in the energy can now be replaced by the variables vk , leaving the only remaining dependence on the1045

disordered V in the contribution of (D3), which is linear. The average over the disorder can then be computed, which yields1046

exp

[
i

M∑
k=1

n∑
a=1

∫
d1 v̂ka(1)Vk (φa(1))

]
= exp

[
−1

2

M∑
k=1

n∑
ab

∫
d1 d2 v̂ka(1) f

(
φa(1) · φb(2)

N

)
v̂kb(2)

]
. (D4)

The result is factorized in the indices k and Gaussian in the superfields v and v̂ with kernel1047 [
B(1)δabδ(1, 2) iδabδ(1, 2)

iδabδ(1, 2) f
(

φa (1)·φb(2)
N

)
]
. (D5)

Making the M independent Gaussian integrals, we find1048

N (E , μ)n =
∫

dβ̂

(
n∏

a=1

dφa

)
exp

{
nN β̂E + μ + f ′(0)

2

n∑
a

∫
d1 ‖φa‖2

− M

2
log sdet

[
δabδ(1, 2) + B(1) f

(
φa(1) · φb(2)

N

)]}
. (D6)

We make a change of variables from the fields φ to matrices Qab(1, 2) = 1
N φa(1) · φb(2). This transformation results in a change1049

of measure of the form1050

n∏
a=1

dφa = dQ (sdet Q)
N
2 = dQ exp

[
N

2
log sdet Q

]
. (D7)

We therefore have1051

N (E , μ)n =
∫

dβ̂ dQ exp

{
nN β̂E + N

μ + f ′(0)

2
sTr Q + N

2
log sdet Q − M

2
log sdet [δabδ(1, 2) + B(1) f (Qab(1, 2))]

}
.

(D8)

We now need to blow up our supermatrices into our physical order parameters. We have from the definition of φ and Q that1052

Qab(1, 2) = Cab − Gab(θ̄1θ2 + θ̄2θ1) − Rab(θ̄1θ1 + θ̄2θ2) − Dabθ̄1θ2θ̄2θ2, (D9)

where C, R, D, and G are the matrices defined in (48). Other possible combinations involving scalar products between fermionic1053

and bosonic variables do not contribute at physical saddle points [34]. Inserting this expansion into the expression above and1054

evaluating the superdeterminants and supertrace, we find1055

N (E , μ)n =
∫

dβ̂ dC dR dD dG enNSKR (β̂,C,R,D,G), (D10)

where the effective action is given by1056

SKR(β̂,C, R, D, G) = β̂E + lim
n→0

1

n

(
−(μ + f ′(0)) Tr(G + R) + 1

2
log det[G−2(CD + R2)] + α log det[I + G 
 f ′(C)]

− α

2
log det[( f ′(C) 
 D − β̂I + (G◦2 − R◦2) 
 f ′′(C)) f (C) + (I − R 
 f ′(C))2]

)
, (D11)

where 
 gives the Hadamard or componentwise product between the matrices and A◦n gives the Hadamard power of A, while1057

other products and powers are matrix products and powers.1058

In the case where μ is not specified, we can make use of the BRST symmetry of Appendix B whose Ward identities give1059

D = β̂R and G = −R. Using these relations, the effective action becomes particularly simple:1060

SKR(β̂,C, R) = β̂E + 1

2
lim
n→0

1

n
(log det(I + β̂CR−1) − α log det[I − β̂ f (C)(I − R 
 f ′(C))−1]). (D12)

This effective action is general for arbitrary matrices C and R, and therefore arbitrary RSBorder. When using a replica symmetric1061

ansatz of Cab = δab + c0(1 − δab) and Rab = rδab + r0(1 − δab), the resulting function of β̂, c0, r, and r0 is1062

SKR(β̂, c0, r, r0) = β̂E + 1

2

[
log

(
1 + β̂(1 − c0)

r − r0

)
+ β̂c0 + r0

β̂(1 − c0) + r − r0
− r0

r − r0

]
− α

2

[
log

(
1 − β̂( f (1) − f (c0))

1 − r f ′(1) + r0 f ′(c0)

)

− β̂ f (c0) + r0 f ′(c0)

1 − β̂( f (1) − f (c0)) − r f ′(1) + r f ′(c0)
+ r0 f ′(c0)

1 − r f ′(1) + r0 f ′(c0)

]
. (D13)

004100-19



EU12660 PRE December 22, 2024 6:3

JARON KENT-DOBIAS PHYSICAL REVIEW E 00, 004100 (2024)

When f (0) = 0 as in the cases directly studied in this work, this further simplifies as c0 = r0 = 0. The effective action is then1063

SKR(β̂, r) = β̂E + 1

2
log

(
1 + β̂

r

)
− α

2
log

(
1 − β̂ f (1)

1 − r f ′(1)

)
. (D14)

Extremizing this expression with respect to the order parameters β̂ and r produces the red line of dominant minima shown in1064

Fig. 3.1065
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