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Marginal optima are minima or maxima of a function with many nearly flat

directions. In settings with many competing optima, marginal ones tend to

attract algorithms and physical dynamics. Often, the important family of

marginal attractors iares a vanishing minority compared with nonmarginal

optima and other unstable stationary points. We introduce a generic

technique for conditioning the statistics of stationary points in random

landscapes on their marginality, and apply it in three isotropic settings with

qualitatively different structures: in the spherical spin-glasses, where the

energy is Gaussian and its Hessian is a Gaussian orthogonal ensemble

(GOE); in multispherical spin glasses, which are Gaussian but non-GOE;

and in sums of squared spherical random functions, which are non-

Gaussian. In these problems, we are able to fully characterize the

distribution of marginal optima in the landscape, including when they are in

the minority.
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I. INTRODUCTION

Systems with rugged landscapes are important across many disciplines, from the physics of glasses and

spin glassesspin-glasses to statistical inference problems [1]. The behavior of these systems is best

understood when equilibrium or optimal solutions are studied and weighted averages can be taken

statically over all possible configurations. However, such systems are also infamous for their tendency

to defy equilibrium and optimal expectations in practice, due to the presence of dynamic transitions or

crossovers that leave physical or algorithmic dynamics stuck exploring only a subset of configurations

[2,3].

In mean-field settings, it was long thought that physical and many algorithmic dynamics would get stuck

at a specific energy level, called the threshold energy. The threshold energy is the energy level at which

level sets of the landscape transition from containing mostly saddle points to containing mostly minima.

The level set associated with this threshold energy contains mostly marginal minima, or minima whose

Hessian matrix have a continuous spectral density over all sufficiently small positive eigenvalues. In

most circumstances the spectrum is pseudogapped, which means that the spectral density smoothly

approaches zero as zero eigenvalue is approached from above.

However, recent work found that the threshold energy is not important even for simple gradient descent

dynamics [4–6]. Depending on the initial condition of the system and the nature of the dynamics, the

energy reached can be above or below the threshold energy, while in some models the threshold energy

is completely inaccessible to any dynamics [7]. Though it is still not known how to predict the energy

level that many simple algorithms will reach, the results all share one commonality: the minima found

are still marginal, despite being in the minority compared to stiff minima or saddle points. This ubiquity

of behavior suggests that the distribution of marginal minima can be used to bound out-of-equilibrium

dynamical behavior.

Despite their importance in a wide variety of in- and out- of -equilibrium settings [8–17], it is not

straightforward to condition on the marginality of minima using the traditional methods for analyzing

the distribution of minima in rugged landscapes. Using the method of a Legendre transformation of the

Parisi parameter corresponding to a set of real replicas, one can force the result to correspond with

marginal minima by tuning the value of that parameter [18]. However, this results only in only a

characterization of the threshold energy and cannot characterize marginal minima at other energies

where they are a minority.
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The alternative approach, used to great success in the spherical spin glasses, is to start by making a

detailed understanding in detailof the Hessian matrix at stationary points. Then, one can condition the

analysis on whatever properties of the Hessian are necessary to lead to marginal minima. This strategy is

so successful in the spherical spin glasses because it is straightforward to implement. First, the shape of

the Hessian's spectrum is independent of energy, regardless of  and even whether one sits at a stationary

point or not. This is a property of models whose energy is a Gaussian random variable [19,20].

Furthermore, a natural parameter in the analysis of these models linearly shifts the spectrum of the

Hessian. Therefore, tuning this parameter to a specific constant value allows one to require that the

Hessian spectrum hasve a pseudogap, and therefore that the associated minima be marginal.

Unfortunately, this strategy is less straightforward to generalize to other models. Many models of

interest, especially in inference problems, have Hessian statistics that are poorly understood. This is

especially true for the statistics of the Hessian conditioned to lie at stationary points, which is necessary

to understand in models whose energy is non-Gaussian.

Here, we introduce a generic method for conditioning the statistics of stationary points on their

marginality. The technique makes use of a novel way to condition an integration measure to select only

configurations that result in a certain value of the smallest eigenvalue of a matrix. By requiring that the

smallest eigenvalue of the Hessian at stationary points be zero, and further looking for a sign that the

zero eigenvalue lies at the edge of a continuous spectrum, we enforce the condition that the spectrum

has a pseudogap, and is therefore marginal. We demonstrate the method on the spherical spin glasses,

where it is unnecessary but instructive, and on extensions of the spherical models where the technique is

more useful. In a related work, we compare the marginal complexity with the performance of gradient

descent and approximate message -passing algorithms [21].

An outline of this paper  follows. In Sec.tion II we introduce the technique for conditioning on the

smallest eigenvalue and how to extend it to further condition on the presence of a pseudogap. We

provide a simple but illustrative example using a Gaussian orthogonal ensemble (GOE) matrix with a

shifted diagonal. In Sec.tion III we apply this technique to the problem of characterizing marginal

minima in random landscapes. The following Section IV gives several examples of the marginal

complexity applied to specific models of increasing difficulty. Finally, Sec.tion V summarizes this work

and suggests necessary extensions.

II. CONDITIONING ON THE SMALLEST EIGENVALUE
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In this section, we introduce a general method for conditioning a measure on the smallest eigenvalue of

some matrix that depends on it. In Sec.tion II B we show how this works in perhaps the simplest

example of GOE random matrices with a shifted diagonal. In the final subsection we describe how to

extend this method to condition on the presence of a pseudogap at the bottom on the spectrum.

A. The general method

Consider an  real symmetric matrix . An arbitrary function  of the minimum eigenvalue of 

can be expressed using integrals over  as

(1)

In the limit of large , each integral concentrates among vectors  in the eigenspace of  corresponding
to the smallest eigenvalue of . This produces

(2)

CQ1as desired. The first relation extends a technique for calculating the typical minimum eigenvalue of
an ensemble of matrices first introduced by Ikeda and later used by Kent-Dobias in the context of
random landscapes, and is similar to an earlier technique for conditioning the value of the ground state
energy in random landscapes by Fyodorov and Le Doussal [21,22,24,25]. A Boltzmann distribution is
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introduced over a spherical model whose Hamiltonian is quadratic with interaction matrix given by .
In the limit of zero temperature, the measure will concentrate on the ground states of the model, which
correspond with the eigenspace of  associated with its minimum eigenvalue . The second relation
uses the fact that, once restricted to the sphere  and the minimum eigenspace,

.

The relationship is formal, but we can make use of the fact that the integral expression with a Gibbs

distribution can be manipulated with replica techniques, averaged over, and in general treated with a

physicist's toolkit. In particular, we have specific interest in using ,CQ2 a

Dirac delta- function, which can be inserted into averages over ensembles of matrices  (or indeed more

complicated averages) in order to create the condition that the minimum eigenvalue is zero.

B. Simple example: shifted Gaussian orthogonal ensembleGOE

We demonstrate the efficacy of the technique by rederiving a well-known result: the large-deviation

function for pulling an eigenvalue from the bulk of the GOE spectrum. Consider an ensemble of 

matrices  for  drawn from the GOE ensemble with entries whose variance is . We

know that the bulk spectrum of  is a Wigner semicircle with radius  shifted by a constant .

Therefore, for , the minimum eigenvalue will typically be zero, while for  the minimum

eigenvalue would need to be a large deviation from the typical spectrum and its likelihood will be

exponentially suppressed with . For , the bulk of the typical spectrum contains zero and

therefore a larger  deviation, moving an extensive number of eigenvalues, would be necessary [26].

This final case cannot be quantified by this method, but instead the nonexistence of a large deviation

linear in  appears as the emergence of an imaginary part in the large deviation function.

To compute this large deviation function, we will employ the method outlined in the previous subsection

to calculateCQ3

(3)

where the overline is the average over , and we have defined the large- deviation function .
Using the representation of  defined in (1), we haveCQ4
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(4)

Using replicas to treat the denominator ( ) and transforming the  -function to its
Fourier representation, we have

(5)

having introduced the auxiliary parameter  in the Fourier representation of the - function. The whole
expression, so transformed, is an exponential integral linear in the matrix . Taking the average over ,
we find

(6)

We make the Hubbard–Stratonovich transformation to the matrix field . This produces
an integral expression of the form

(7)

where the effective action  is given by[AQ: Author, please see

https://journals.aps.org/authors/logarithms-h14 for Physical Review guidelines on logarithmic notation.]
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(8)

and  because of the spherical constraint. We can evaluate this integral using the saddle- point
method. We make a replica symmetric ansatz for , because this is a 2-spin spherical model, but with
the first row singled out because of its unique coupling with . The resulting matrix has the form

(9)

The relevant expressions in the effective action produce

(10)

(11)
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(12)

Inserting these expressions into the effective action and taking the limit of  to zero, we arrive at

(13)

with the new effective action

(14)

We need to evaluate the integral above using the saddle- point method, but in the limit of . We
expect the overlaps to concentrate on one as  goes to infinity. We therefore take

(15)

(16)

However, taking the limit with  results in an expression for the action that diverges with . To cure
this, we must take . The result is
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(17)

Extremizing this action over the new parameters , , and , we find

(18)

(19)

(20)

Inserting this solution into the effective action we arrive at
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(21)

This function is plotted in Fig. 1 for . For ,  has an imaginary part. This indicates
that the existence of a zero minimum eigenvalue when  corresponds towith a large deviation that
grows faster than , rather like , since in this regime the bulk of the typical spectrum is over zero
and therefore extensively many eigenvalues musthave to have large deviations in order for the smallest
eigenvalue to be zero [26]. For  this function gives the large deviation function for the
probability of seeing a zero eigenvalue given the shift .  is the maximum of the function with a
real value, and corresponds to the intersection of the typical bulk spectrum with zero, i.e., a pseudogap.

FIG. 1. The large deviation function  defined in (3) as a function of the shift  to the GOE diagonal.

, while for  it is negative and for  it gains an imaginary part. The top panels

show schematically what happens to the spectral density in each of these regimes. For , an -

large deviation would be required to fix the smallest eigenvalue to zero and the calculation breaks down,

leading to the imaginary part. For  the spectrum can satisfy the constraint on the smallest

eigenvalue by isolating a single eigenvalue at zero at the cost of an order- - large deviation. At the

transition point  the spectrum is pseudogapped.

Here, we see what appears to be a general heuristic for identifying the saddle parameters for which the

spectrum is pseudogapped: the equivalent of this large-deviation function will lie on the singular

boundary between a purely real and complex value.
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C. Conditioning on a pseudogap

We have seen that this method effectively conditions a random matrix ensemble on its lowest eigenvalue

being zero. However, this does not correspond on its own to marginality. In the previous example, most

values of  where the calculation was valid correspond to matrices with a single isolated eigenvalue.

However, the marginal minima we are concerned with have pseudogapped spectra, where the

continuous part of the spectral density has a lower bound at zero.

Fortunately, our calculation can be modified to ensure that we consider only pseudogapped spectra.

First, we insert a shift  by hand into the ‘‘natural’’ spectrum of the problem at hand, conditioning the

trace to have a specific value . Then, we choose this artificial shift so that the resulting

conditioned spectra are pseudogapped. As seen the previous subsection, this can be done by starting

from a sufficiently large  and decreasing it until the calculation develops an imaginary part, signaling

the breakdown of the large-deviation principle at order .

In isotropic or zero-signal landscapes, there is another way to condition on a pseudogap. In such

landscapes, the typical spectrum does not have an isolated eigenvalue. Therefore, for a given  the

bottom of the spectrum can be located by looking for the value  that maximizes the (real) large

deviation function. Inverting this reasoning, we can find the value  corresponding to a marginal

spectrum by requiring that the large deviation function has a maximum in  at , or

(22)

In the example problem of Sec.section II B, this corresponds precisely to , the correct marginal
shift. Note that when we treat the Dirac  function using its Fourier representation with auxiliary
parameter , as in the previous subsection, this condition corresponds with choosing  such that .

III. MARGINAL COMPLEXITY IN RANDOM
LANDSCAPES

The methods of the previous section can be used in diverse settings. However, we are interested in

applying them to study stationary points in random landscapes whose Hessian spectrum has a pseudogap

– ; that is, that are marginal. In Sec.tion III A we define the marginal complexity using the tools of the
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previous section. In Sec.tion III B we review several general features in a physicist's' approach to

computing the marginal complexity. In Sec.tion III C we introduce a representation of the marginal

complexity in terms of an integral over a superspace, which condenses the notation and the resulting

calculation and which we will use in one of our examples in the next section.

A. Marginal complexity from Kac–Rice

The situation in the study of random landscapes is often as follows: an ensemble of smooth energy

functions  defines a family of random landscapes, often with their configuration space

subject to one or more constraints of the form  for . The typical geometry of

landscapes drawn from the ensemble is studied by their complexity, or the average logarithm of the

number of stationary points with certain properties, e.g., of marginal minima at a given energy.

Such problems can be studied using the method of Lagrange multipliers, with one introduced for every

constraint. If the configuration space is defined by  constraints, then the problem of identifying

stationary points is reduced to extremizing the Lagrangian

(23)

with respect to  and the Lagrange multipliers . To write the gradient and Hessian of
the energy, which are necessary to count stationary points, care must be taken to ensure they are
constrained to the tangent space of the configuration manifold. For our purposes, the Lagrangian
formalism offers a solution: the gradient  and Hessian

 of the energy  can be written as the simple vector derivatives of the
Lagrangian , with

(24)

(25)
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where  will always represent the derivative with respect to the vector argument . Note that,
unlike the energy, which is a function of the configuration  alone, the gradient and Hessian depend also
on the Lagrange multipliers . In situations with an extensive number of constraints, it is important to
take seriously contributions of the form  to the Hessian [27]. However, the cases we study here
have  constraints and these contributions appear as finite-  corrections.

The number of stationary points in a landscape for a particular function  is found by integrating over

the Kac–Rice measureCQ5

(26)

with a  -function of the gradient and the constraints ensuring that we count valid stationary points, and
the determinant of the Hessian serving as the Jacobian of the argument to the  function [28,29]. It is
usually more interesting to condition the count on interesting properties of the stationary points, such
as like the energy and spectrum trace, or

(27)

We specifically want to control the value of the minimum eigenvalue of the Hessian at the stationary
points. Using the method introduced in Sec.tion II, we can write the number of stationary points with
energy , the Hessian trace , and the smallest eigenvalue  as

(28)
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where the additional  -functions

(29)

ensure that the integrals involving potential eigenvectors  are constrained to the tangent space of the
configuration manifold at the point .

The complexity of points with a specific energy, stability, and minimum eigenvalue is defined as the

average over the ensemble of functions  of the logarithm of the number  of stationary points, or

(30)

In practice, this can be computed by introducing replicas to treat the logarithm ( )
and introducing another set of replicas to treat each of the normalizations in the numerator (

). This leads to the expression

(31)

for the complexity of stationary points of a given energy, trace, and smallest eigenvalue.

The marginal complexity follows from the complexity as a function of  and  in an analogous way to

Sec.tion II C. In general, one sets  and tunes  from a sufficiently large value until the complexity

develops an imaginary component, which corresponds to the bulk of the spectrum touching zero. The

value  that satisfies this is the marginal stability.

In the cases studied here with zero signal- to -noise, a simpler approach is possible. The marginal

stability  can be identified by requiring that the complexity is stationary with respect to changes

in the value of the minimum eigenvalue , or

(32)
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The marginal complexity follows by evaluating the complexity conditioned on  at the marginal
stability ,

(33)

B. General features of saddle- point computation

Several elements of the computation of the marginal complexity, and indeed the ordinary dominant

complexity, follow from the formulaeformulas of the above section in the same way. The physicist's'

approach to this problem seeks to convert all of the components of the Kac–Rice measure defined in

(26) and (27) into elements of an exponential integral over configuration space. To begin with, all Dirac

 functions are expressed using their Fourier representation, with

(34)

(35)

(36)
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To do this we have introduced auxiliary fields , , and . Because the permutation symmetry of
replica vectors is preserved in replica symmetry breaking (RSB) ��� orders, the order parameters  and

 will quickly lose their indices, since they will ubiquitously be constant over the replica index at the
eventual saddle -point solution.

We would like to make a similar treatment of the determinant of the Hessian that appears in (26). The

standard approach is to drop the absolute value function around the determinant. This can potentially

lead to severe problems with the complexity [19]. However, it is a justified step when the parameters of

the problem , , and  put us in a regime where the exponential majority of stationary points have the

same index. This is true for maxima and minima, and for saddle points whose spectra have a strictly

positive bulk with a fixed number of negative outliers. It is in particular a safe operation for the present

problem of marginal minima, which lie right at the edge of disaster.

Dropping the absolute value function allows us to write

(37)

using the -dimensional Grassmann vectors  and . For the spherical models this step is
unnecessary, since there are other ways to treat the determinant keeping the absolute value signs, as in
previous works [4,7]. However, other of our examples of ours are for models where the same techniques
are impossible.

Finally, the  -function fixing the trace of the Hessian to  in (27) must be addressed. One could treat it

using a Fourier representation as in (34)–(36), but this is inconvenient because a term of the form

 in the exponential integrand cannot be neatly captured in superspace representation

introduced in the next section. However, in the cases we study in this paper a simplification can be

made: the trace of  can be separated into two pieces, one that is spatially independent and one that

is typically small, or

(38)

where  and . Then fixing the trace of the Hessian to  implies that
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(39)

for typical samples . In particular, here we study only cases with quadratic , which results in a linear
expression relating  and the  that is independent of . Since  contains the disorder of the problem,
this simplification means that the effect of fixing the trace is largely independent of the disorder and
mostly depends on properties of the constraint manifold.

C. Superspace representation

The ordinary Kac–Rice calculation involves many moving parts, and this method for incorporating

marginality adds even more. It is therefore convenient to introduce compact and simplifying notation

through a superspace representation. The use of superspace in the Kac–Rice calculation is well

established, as well as the deep connections with Becchi-Rouet-Stora-Tyutin (BRST)[AQ: Please verify

definition of "BRST."] symmetry that is implied [30–32]. Appendix A introduces the notation and

methods of superspace algebra. Here we describe how it can be used to simplify the complexity

calculation for marginal minima.

We consider the  superspace whose Grassmann indices are . Consider

the supervector defined by

(40)

Note that this supervector does not span the whole superspace: only a couple terms from the 
 sector are present, since the rest are unnecessary for our representation. With this supervector so

defined, the replicated count of stationary points with energy , trace , and smallest eigenvalue  can
be written as

(41)

Here we have also defined the operator
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(42)

which encodes various aspects of the complexity problem. When the Lagrangian is expanded in a series
with respect to the Grassmann indices and the definition of  inserted, the result of the Grassmann
integrals produces exactly the content of the integrand in (31) with the substitutions (34), (35), (36), and
(37) of the Dirac  functions and the determinant made. The new measures

(43)

(44)

collect the individual measures of the various fields embedded in the superfield, along with their
constraints.With this way of writing the replicated count, the problem of marginal complexity
temporarily takes the schematic form of an equilibrium calculation with configurations , inverse
temperature , and energy . This makes the intermediate pieces of the calculation dramatically
simpler. Of course the intricacies of the underlying problem are not banished: near the end of the
calculation, terms involving the superspace must be expanded. We will make use of this representation
to simplify the analysis of the marginal complexity when analyzing random sums of squares in
Sec.tion IV C.

IV. EXAMPLES

In this section we present analysis of marginal complexity in three random landscapes. In Sec.tion IV A

we treat the spherical spin glasses, which reveals some general aspects of the calculation. Since the

spherical spin glasses are Gaussian and have identical GOE spectra at each stationary point, the

approach introduced here is overkill. In Sec.tion IV B we apply the methods to a multispherical spin

glass, which is still Gaussian but has a non-GOE spectrum whose shape can vary between stationary

points. Finally, in Sec.tion IV C we analyze a model of sums of squared random functions, which is non-

Gaussian and whose Hessian statistics depend on the conditioning of the energy and gradient.
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A. Spherical spin glasses

The spherical spin glasses are a family of models that encompass every isotropic Gaussian field on the

hypersphere. Their configuration space is the sphere  defined by all  such that

. One can consider the models as defined by ensembles of centered Gaussian

functions  such that the covariance between two points in the configuration space is

(45)

for some function  with positive series coefficients. Such functions can be considered to be made up of
all-to-all tensorial interactions, with

(46)

and the elements of the tensors  being independently distributed with the unit normal distribution [33].
We focus on marginal minima in models with , which corresponds to models without a
random external field. Such a random field would correspond in each individual sample  to a signal,
and therefore complicate the analysis by correlating the positions of stationary points and the
eigenvectors of their Hessians. Here,  of (38) is zero.

The marginal optima of these models can be studied without the methods introduced in this paper, and

have been in the past [4,7]. First, these models are Gaussian, so at large  the Hessian is statistically

independent of the gradient and energy [19,20]. Therefore, conditioning the Hessian can be done mostly

independently from the problem of counting stationary points. Second, in these models the Hessian at

every point in the landscape belongs to the GOE class with the same width of the spectrum

. Therefore, all marginal minima in these systems have the same constant shift .

Despite the fact that the complexity of marginal optima is well known by simpler methods, it is

instructive to carry through the calculation for this case, since we will learn some things about its

application in more nontrivial settings.

Note that in the pure version of these models with , the methods of this section must be

amended slightly. This is because in these models there is an exact correspondence  between

the trace of the Hessian and the energy, and therefore they cannot be fixed independently. This
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correspondence implies that when , the corresponding energy level  contains all

marginal minima. This is what gives this threshold energy such singular importance to dynamics in the

pure spherical models.

The procedure to treat the complexity of the spherical models has been made in detail elsewhere [7].

Here we make only a sketch of the steps involved. First we notice that , so that

the only Lagrange multiplier  in this problem is set directly to the shift . The substitutions (34), (35),

and (36) are made to convert the Dirac  functions into exponential integrals, and the substitution (37) is

made to likewise convert the determinant.

Once these substitutions have been made, the entire expression (31) is an exponential integral whose

argument is a linear functional of . This allows for the average to be taken over the disorder. If we

gather all the -dependant pieces associated with replica  into the linear functional  then the average

over the ensemble of functions  gives

(47)

The result is an integrand that depends on the many vector variables we have introduced only through
their scalar products with each other. We therefore make a change of variables in the integration from
those vectors to matrices that encode their possible scalar products. These matrices are

(48)

Order parameters that mix the normal and Grassmann variables generically vanish in these settings and
we don't consider them here [34]. This transformation changes the measure of the integral, with
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(49)

where  is the Jacobian of the transformation in the real-valued fields. This Jacobian takes a block form

(50)

The Grassmann integrals produces their own inverted Jacobian. The matrix that make up the blocks of
the matrix  are such that , , and  are  matrices indexed by their lower indices,  is an

 matrix indexed by its upper indices, while  is an  matrix with one lower and one
upper index.

These steps follow identically to those more carefully outlined in the cited papers [4,7]. Following them

in the present case, we arrive at a form for the complexity of stationary points with fixed energy ,

stability , and lowest eigenvalue  with

(51)
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The exponential integrand is split into two effective actions coupled only by a residual determinant. The
first of these actions is the usual effective action for the complexity of the spherical spin glasses, or

(52)

The second of these actions is analogous to the effective action (8) from the GOE example of
Sec.tion II B and contains the contributions from the marginal pieces of the calculation, and is given by

(53)

The fact that the complexity can be split into two relatively independent pieces in this way is a
characteristic of the isotropic and Gaussian nature of the spherical spin glass. In Sec.tion IV C we will
study a model whose energy is isotropic but not Gaussian and where such a decomposition is
impossible.

There are some dramatic simplifications that emerge from the structure of this particular problem. First,

notice that the dependence on the parameters  and  are purely quadratic. Therefore, there will always

be a saddle- point condition where they are both zero. In this case without a fixed or random field, we

except this solution to be correct. We can reason about why this is so: , for instance, quantifies the

correlation between the typical position of stationary points and the direction of their typical

eigenvectors. In a landscape without a signal, where no direction is any more important than any other,

we expect such correlations to be zero: where a state is located does not give any information as to the

orientation of its soft directions. On the other hand, in the spiked case, or with an external field, the

preferred direction can polarize both the direction of typical stationary points and their soft

eigenvectors. Therefore, in these instances one must account for solutions with nonzero  and .

We similarly expect that  for . For the contrary to be true, eigenvectors at independently

sampled stationary points would need to have their directions correlated. This is expected in situations

with a signal, where such correlations would be driven by a shared directional bias towards the signal. In
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the present situation, where there is no signal, such correlations do not exist.

When we take  and , we find that

(54)

with . That is, the effective action for the terms related to fixing the eigenvalue in the
spherical Kac–Rice problem is exactly the same as that for the GOE problem. This is perhaps not so
surprising, since we established from the beginning that the Hessian of the spherical spin glasses
belongs to the GOE class.

The remaining analysis of the eigenvalue-dependent part  follows precisely the same steps as were

made in Sec.tion II B for the GOE example. The result of the calculation is also the same: the

exponential factor containing  produces precisely the large deviation function  of (21)

[(again with ]). The remainder of the integrand depending on  produces the ordinary

complexity of the spherical spin glasses without conditions on the Hessian eigenvalue. We therefore find

that

(55)

We find the marginal complexity by solving

(56)

which gives  independent of , as we presaged above. Since ,
this gives finally

(57)

Tthat the marginal complexity in these models is thus simply the ordinary complexity evaluated at a
fixed trace  of the Hessian.
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B. Multispherical spin glasses

The multispherical spin glasses are a simple extension of the spherical ones, where the configuration

space is taken to be the union of more than one hypersphere. Here we consider the specific case where

the configuration space is the union of two -spheres, with .[AQ: Please see

http://publish.aps.org/authors/multiplication-signs-h11 for information on the use of multiplication signs.] The

two spheres give rise to two constraints: for  with components , the

constraints are  and . These two constraints

are fixed by two Lagrange multipliers  and .

The energy in our multispherical spin glass is given by

(58)

The energy  of each individual sphere is taken to be a centered Gaussian random function with a
covariance given in the usual spherical spin glass way for  by

(59)

with the functions  and  not necessarily the same. As for the spherical spin glasses,  of (38) is zero.

In this problem, there is an energetic competition between the independent spin glass energies on each

sphere and their tendency to align or anti-align through the interaction term. These models have more

often been studied with random fully connected couplings between the spheres, for which it is possible

to also use configuration spaces involving spheres of different sizes [35–41]. TAs far as we are aware,

the deterministically coupled model whas not been previously studied  studied, except as a thought

experiment in [7].[AQ: Author, please see https://journals.aps.org/authors/new-novel-policy-physical-review

for Physical Review policy on use of “new” and priority claims.]

We again make use of the method of Lagrange multipliers to find stationary points on the constrained

configuration space. The Lagrangian and its gradient and Hessian are
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(60)

(61)

(62)

where  and . Like in the spherical spin glasses, fixing the trace of the Hessian to 
is equivalent to a constraint on the Lagrange multipliers. However, in this case it corresponds to

, and therefore they are not uniquely fixed by fixing .

Since the energy in the multispherical models is Gaussian, the properties of the matrix  are again

independent of the energy and gradient. This means that the form of the Hessian is parameterized solely

by the values of the Lagrange multipliers  and , just as  alone parameterized the Hessian in

the spherical spin glasses. Unlike that case, however, the Hessian takes different shapes with different

spectral widths depending on their precise combination. In Appendix C we derive a variational form for

the spectral density of the Hessian in these models using standard methods.

Because of the independence of the Hessian, the method introduced in this article is not necessary to

characterize the marginal minima of this system. Rather, we could take the spectral density derived in

Appendix C and find the Lagrange multipliers  and  corresponding with marginality by tuning the

edge of the spectrum to zero. In some ways the current method is more convenient than this, since it is a

purely variational method and therefore can be reduced to a single root-finding exercise.
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Unlike the constraints on the configurations , the constraint on the tangent vectors

 remains the same spherical constraint as before, which implies

. Defining intra- and inter-sphere overlap matrices

(63)

this problem no longer has the property that the diagonal of the  is one, but instead that
. This is the manifestation of the fact that a normalized vector in the tangent space

of the multispherical model need not be equally spread overn the two subspaces, but can be concentrated
in one or the other.

The calculation of the marginal complexity in this problem follows very closely to that of the spherical

spin glasses in the previous subsection. We immediately make the simplifying assumptions that the soft

directions of different stationary points are typically uncorrelated and therefore  and the

overlaps  between eigenvectors are only nonzero when in the same replica. The result for the

complexity has the schematic form of (51), but with different effective actions depending now on

overlaps inside each of the two spheres and between the two spheres. The effective action for the

traditional complexity of the multispherical spin glass is

(64)

which is the sum of two effective actions (52) for the spherical spin glass associated with each
individual sphere, and some coupling terms. The order parameters are defined the same as in the
spherical spin glasses, but now with raised indices to indicate whether the vectors come from one or the
other spherical subspace. The effective action for the eigenvalue-dependent part of the complexity is
likewise given by
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(65)

The new variables  are Lagrange multipliers introduced to enforce the constraint that
. Because of this constraint, the diagonal of the  matrices cannot be taken to be

one1 as in Sec.tion II B. Instead we take each of the matrices , , and  to have the planted
replica symmetric form of (9), but with the diagonal not necessarily equal to one1, so

(66)

This requires us to introduce two new order parameters  and  per pair , in addition to the off-
diagonal order parameters  and  already present in (9). We also need two separate Lagrange
multipliers  and  to enforce the tangent space normalization  and  for the
tilde and untilde replicas, respectively, which will in general take different values at the saddle point.
When this ansatz is inserted into the expression (65) for the effective action and the limit of  is
taken, we find
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(67)

To make the limit to zero temperature, we once again need an ansatz for the asymptotic behavior of the
overlaps. These take the form . Notice that in this case, the asymptotic
behavior of the off-diagonal elements is to approach the value of the diagonal rather than to approach
one. We also require , i.e., that the tilde diagonal terms also approach the
same diagonal value as the untilde terms, but with potentially different rates.

As before, in order for the logarithmic term to stay finite, there are necessary constraints on the values .

These are

(68)

(69)

(70)
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One can see that when the diagonal elements are all equal, this requires the  for the off-diagonal
elements to be equal, as in the GOE case. Here, since the diagonal elements are not necessarily equal,
we have a more general relationship.

When the  -dependence of the  variables is inserted into the effective action (67) and the limit 

taken, we find an expression that is too large to report here. However, it can be extremized over all of

the variables in the problem just as in the previous examples to find the values of the Lagrange

multipliers  and  corresponding to marginal minima. Figure. 2(a) shows examples of the  and 

corresponding to marginal spectra for a variety of couplings  when the covariances of the energy on the

two spherical subspaces are such that . Figure. 2(b) shows the Hessian spectra

associated with some specific pairs . When  and the two spheres are uncoupled, we find the

result for two independent spherical spin glasses: if either  or 

and the other Lagrange multiplier is larger than two2, then we have a marginal minimum made up of the

Cartesian product of a marginal minimum on one subspace and a stable minimum on the other.

FIG. 2. Properties of marginal minima in the multispherical model. (a) Values of the Lagrange multipliers

 and  corresponding to a marginal spectrum for multispherical spin glasses with ,

, and various . (b) Spectra corresponding to the parameters  and  marked by the

circles in panel (a). (c) The complexity of marginal minima in a multispherical model with 

and  for a variety of . Since , the marginal values correspond

precisely to those in panels (a) and (–b).

Fig. 2(c) shows the complexity of marginal minima in an example where both  and  correspond to

pure -spin models, with  and . Despite having different covariance functions,

these both satisfy  and therefore have marginal minima for Lagrange multipliers that

satisfy the relationships in Fig. 2(a). In the uncoupled system with , the most common type of

marginal stationary point consists of independently marginal stationary points in the two subsystems,

with . As  is increased, the most common type of marginal minimum drifts toward points

with .

Multispherical spin glasses may be an interesting platform for testing ideas about which among the

possible marginal minima can attract dynamics and which cannot. In the limit where  and the

configurations of the two spheres are independent, the minima found dynamically should be marginal on

both subspaces. Just because technically on the expanded configuration space the Cartesian product of a
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deep stable minimum on one sphere and a marginal minimum on the other is a marginal minimum on

the whole space doesn't mean the deep and stable minimum is any easier to find. This intuitive idea that

is precise in the zero-coupling limit should continue to hold at small nonzero coupling, and perhaps

reveal something about the inherent properties of marginal minima that do not tend to be found by

algorithms.

C. Sums of squared random functions

In this subsection we consider perhaps the simplest example of a non-Gaussian landscape: the problem

of sums of squared random functions. This problem has a close resemblance to nonlinear least squares

optimization. Though, for reasons we will see it is easier to make predictions for nonlinear most squares,

i.e., the problem of maximizing the sum of squared terms. We again take a spherical configuration space

with  and  as in the spherical spin glasses. The energy is built from

a set of  random functions  that are centered Gaussians with covariance

(71)

Each of the  is an independent spherical spin glass. The total energy is minus the sum of squares of the
, or

(72)

The landscape complexity and large deviations of the ground state for the least-squares version of this
problem were recently studied in a linear context, with  [42–45]. Some results on the
ground state of the general nonlinear problem can also be found in Ref. [46], and a solution to the
equilibrium problem can be found in Ref. [47]. Those works indicate that the low-lying minima of the
least squares problem tend to be either replica symmetric or full replica symmetry breaking. To avoid
either a trivial analysis or a very complex one, we instead focus on maximizing the sum of squares, or
minimizing (72).
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The minima of (72) have a more amenable structure for study than the maxima, as they are typically

described by a 1���-like structure. There is a heuristic intuition for this: in the limit of , this

problem is just minus the square of a spherical spin glass landscape. The distribution and properties of

stationary points low and high in the spherical spin glass are not changed, except that their energies are

stretched and maxima are transformed into minima. Therefore, the bottom of the landscape doesn't

qualitatively change. The top, however, consists of the zero-energy level set in the spherical spin glass.

This level set is well -connected, and so the highest states should also be well connected and flat.

Focusing on the bottom of the landscape and therefore dealing with a 1���-like problem makes our

analysis easier. Algorithms will tend to be stuck in the ways they are in hard optimization problems, and

we will be able to predict where. Therefore, we will study the most squares problem rather than the least

squares one. We calculate the complexity of minima of (72) in Appendix D, which corresponds to

maximizing the sum of squares, under a replica symmetric ansatz (which covers 1���-like problems) for

arbitrary covariance , and we calculate the complexity of marginal minima in this section.

As in the previous sections, we used the method of Lagrange multipliers to analyseanalyze stationary

points on the constrained configuration space. The Lagrangian and its associated gradient and Hessian

are

(73)

(74)

(75)
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Unlike in the spherical and multispherical spin glasses, the value  defined in (38) giving the typical
value of  is not always zero. Instead , nonzero where there is a linear term in .
Fixing the trace of the Hessian is therefore equivalent to constraining the value of the Lagrange
multiplier .

The derivation of the marginal complexity for this model is complicated, but can be made schematically

like that of the derivation of the equilibrium free energy by use of superspace coordinates. Following the

framework outlined in Sec.tion III C, the replicated number of stationary points conditioned on energy

, trace , and minimum eigenvalue  is given by

(76)

The first step to evaluate this expression is to linearize the dependence on the random functions . This
is accomplished by inserting into the integral a Dirac  function fixing the value of the energy for each
replica, or

(77)

where we have introduced auxiliary superfields . With this inserted into the integral, all other instances
of  are replaced by , and the only remaining dependence on the disorder is from the term  arising
from the Fourier representation of the Dirac  function. This term is linear in , and therefore the
random functions can be averaged over to produce
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(78)

The entire integrand is now factorized in the indices  and quadratic in the superfields  and  with the
kernel

(79)

The integration over  and  results in a term in the effective action of the form

(80)

When expanded, the supermatrix  is constructed of the scalar products of the real and
Grassmann vectors that make up . The change of variables to these order parameters again results in
the Jacobian of (50), contributing

(81)

to the effective action.

Up to this point, the expressions are general and independent of a given ansatz. However, we expect that

the order parameters  and  are zero, since again we are in a setting with no signal or external field.

Applying this ansatz here avoids a dramatically more complicated expression for the effective action.

We also will apply the ansatz that  is zero for , which is equivalent to assuming that the soft

directions of typical pairs of stationary points are uncorrelated, and further that 

independently of the index , implying that correlations in the tangent space of typical stationary points

are the same.
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Given this ansatz, taking the superdeterminant in (80) yields

(82)

where once again  is the Hadamard product and  gives the Hadamard power of . We can already
see one substantive difference between the structure of this problem and that of the spherical models: the
effective action in this case mixes the order parameters  due to the Grassmann variables with the ones

, , and  due to the other variables. Notice further that the dependence on  due to the marginal
constraint is likewise no longer separable into its own term. This is the realization of the fact that the
Hessian is no longer independent of the energy and gradient.

Now we have reduced the problem to an extremal one over the order parameters , , , , , , and 

, it is time to make an ansatz for the form of order we expect to find. We will focus on a regime where

the structure of stationary points is replica symmetric, and further where typical pairs of stationary

points have no overlap. This requires that , or that there is no constant term in the random

functions. This gives the ansatz

(83)

We further take a planted replica symmetric structure for the matrix , identical to that in (9). This
results in

(84)

with an effective action
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(85)

We expect as before the limits of  and  as  goes to infinity to approach one, defining their
asymptotic expansion like in (15) and (16). Upon making this substitution and taking the zero-
temperature limit, we find

(86)

We can finally write the complexity with fixed energy , stability , and minimum eigenvalue  as

(87)

Note that, unlike the previous two examples, the effective action in this case does not split into two
largely independent pieces, one relating to the eigenvalue problem and one relating to the ordinary
complexity. Instead, the order parameters related to the eigenvalue problem are mixed throughout the
effective action with those of the ordinary complexity. This is a signal of the fact that the sum of squares
problem is not Gaussian, while the previous two examples are. In all non-Gaussian problems,
conditioning on properties of the Hessian cannot be done independently from the complexity, and the
method introduced in this paper becomes necessary.
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The marginal complexity can be derived from (87) using the condition (32) to fix  to the marginal

stability  and then evaluating the complexity at that stability as in (33). Figure. 3 shows the

marginal complexity in a sum-of-squares model with  and . Also shown is the

dominant complexity computed in Appendix D. As the figure demonstrates, the range of energies at

which marginal minima are found can differ significantly from those implied by the dominant

complexity, with the lowest energy significantly higher than the ground state and the highest energy

significantly higher than the threshold.

FIG. 3. Dominant and marginal complexity in the nonlinear sum of squares problem for  and

. The ground- state energy  and the threshold energy  are marked on the plot.

Figure. 4 shows the associated marginal stability  for the same model. Recall that the definition

of the marginal stability in (32) is that which eliminates the variation of  with respect to  at

the point . Unlike in the Gaussian spherical spin glass, in this model  varies with energy in

a nontrivial way. The figure also shows the dominant stability, which is the stability associated with the

dominant complexity and coincides with the marginal stability only at the threshold energy.

FIG. 4. The stability, or shift of the trace, for dominant and marginal optima in the nonlinear sum of squares

problem for  and .

Because this version of the model has no signal, we were able to use the heuristic (32) to fix the

marginal stability. However, we could also have used the more general method for finding a

pseudogapped Hessian spectrum by locating the value of  at which the complexity develops an

imaginary part, as described in Sec.tion II C and pictured in Fig. 1. The real and imaginary parts of the

complexity  are plotted in Fig. 5 as a function of  at fixed energy. The figure also shows the

marginal stability  predicted by the variational approach (32). The marginal stability corresponds to

precisely the point at which an imaginary part develops in the complexity. This demonstrates that the

principles we used to determine the marginal stability continue to hold even in non-Gaussian cases

where the complexity and the condition to fix the minimum eigenvalue are tangled together.
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FIG. 5. Real and imaginary parts of the complexity  with fixed minimum eigenvalue  as a

function of  in the nonlinear sum of squares problem with , , and .

The vertical line depicts the value of the marginal stability .

In a related paper, we use a sum of squared random functions model to explore the relationship between

the marginal complexity and the performance of two generic algorithms: gradient descent and

approximate message passing [21]. We show that the range of energies where the marginal complexity is

positive does effectively bound the performance of these algorithms. At the moment the comparison is

restricted to models with small polynomial powers appearing in  and with small  for computational

reasons. However, using the dynamical mean-field theory ���� results already found for these models it

should be possible to make comparisons in a wider family of models [48,49].

The results for the marginal complexity are complimentary to rigorous results on the performance of

algorithms in the least squares case, which focus on bounds for  and the parameters of  necessary for

zero-energy solutions to exist and be found by algorithms [50,51]. After more work to evaluate the

marginal complexity in the full RSB��� case, it will be interesting to compare the bounds implied by the

distribution of marginal minima with those made by other means.

V. CONCLUSIONS

We have introduced a method for conditioning complexity on the marginality of stationary points. This

method is general, and permits conditioning without first needing to understand the statistics of the

Hessian at stationary points. We used our approach to study marginal complexity in three different

models of random landscapes, showing that the method works and can be applied to models whose

marginal complexity was not previously known. In related work, we further show that marginal

complexity in the third model of sums of squared random functions can be used to effectively bound

algorithmic performance [21].

There are some limitations to the approach we relied on in this paper. The main limitation is our

restriction to signalless landscapes, where there is no symmetry-breaking favored direction. This

allowed us to treat stationary points with isolated eigenvalues as atypical, and therefore find the

marginal stability  using a variational principle. However, most models of interest in inference have a

nonzero signal strength and therefore often have typical stationary points with an isolated eigenvalue. As
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we described, marginal complexity can still be analyzed in these systems by tuning the shift  until the

large-deviation principle breaks down and an imaginary part of the complexity appears. However, this is

an inconvenient approach. It is possible that a variational approach can be preserved by treating the

direction toward and the directions orthogonal to the signal differently. This problem merits further

research.

Finally, the problem of predicting which marginal minima are able to attract some dynamics and which

cannot attract any dynamics looms large over this work. As we discussed briefly at the end of

Sec.tion IV B, in some simple contexts it is easy to see why certain marginal minima are not viable, but

at the moment we do not know how to generalize this. Ideas related to the self-similarity and stochastic

stability of minima have recently been suggested as a route to understanding this problem, but this

approach is still in its infancy [52].

The title of our paper and that of Müller et al. suggest they address the same topic, but this is not the

case [53]. That work differs in three important and fundamental ways. First, it describes minima of

the Thouless, Anderson, and Palmer (TAP) [AQ: Please verify definition of "TAP."]free energy and

involves peculiarities specific to the TAP. Second, it describes dominant minima which happen to be

marginal, not a condition for finding subdominant marginal minima. Finally, it focuses on minima with

a single soft direction (which are the typical minima of the low temperature Sherrington–Kirkpatrick

TAP free energy), while we aim to avoid such minima in favor of ones that have a pseudogap (which we

argue are relevant to out-of-equilibrium dynamics). The fact that the typical minima studied by Müller

et al. are not marginal in this latter sense may provide an intuitive explanation for the seeming

discrepancy between the proof that the low-energy Sherrington–Kirkpatrick model cannot be sampled

[54] and the proof that a message -passing algorithm can find near-ground states [55]: the algorithm

finds the atypical low-lying states that are marginal in the sense considered here but cannot find the

typical ones considered by Müller et al..
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APPENDIX A: A PRIMER ON SUPERSPACE

In this aAppendix  we review the algebra of superspace [56]. The superspace  is a

vector space with  real indices and  Grassmann indices . The

Grassmann indices anticommute like fermions. Their integration is de�ned by
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(A1)

Because the Grassmann indices anticommute, their square is always zero. Therefore, any

series expansion of a function with respect to a given Grassmann index will terminate

exactly at linear order, while a series expansion with respect to  Grassmann variables will

terminate exactly at  order. If  is an arbitrary superspace function, then the integral of

 with respect to a Grassmann index can be evaluated using this property of the series

expansion by

(A2)

This kind of behavior of integrals over the Grassmann indices makes them useful for

compactly expressing the Kac–Rice measure. To see why, consider the speci�c superspace

, where an arbitrary vector can be expressed as

(A3)

where  and  are -dimensional Grassmann vectors. The dependence of  on

1 indicates the index of Grassmann variables  inside, since we will sometimes want to

use, e.g.,  de�ned identically save for substitution by . Consider the series

expansion of an arbitrary function  of this supervector:

(A4)
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where the last step we used the fact that the Hessian matrix is symmetric and that

squares of Grassmann indicies vanish. Using the integration rules de�ned above, we �nd

(A5)

These two terms are precisely the exponential representation of the Dirac  function of

the gradient and determinant of the Hessian (without absolute value sign) that make up

the basic Kac–Rice measure, so that we can write

(A6)

where we have written the measures  and . Besides some

deep connections to the physics of BRST, this compact notation dramatically simpli�es the

analytical treatment of the problem. The energy of stationary points can also be �xed

using this notation, by writing

(A7)

12/18/24, 3:15 PM Editor, editor1

https://scixeditor.aptaracorp.com/SciXeditor/dataEditor?aid= 40/54



which a small calculation con�rms results in the same expression as (35).

The reason why this transformation is a simpli�cation is because there are a large variety

of superspace algebraic and integral operations with direct corollaries to their ordinary

real counterparts. For instance, consider a super linear operator , which like the

super vector  is made up of a linear combination of  regular or Grassmann

matrices indexed by every nonvanishing combination of the Grassmann indices

. Such a supermatrix acts on supervectors by ordinary matrix

multiplication and convolution in the Grassmann indices, i.e.,

(A8)

The identity supermatrix is given by

(A9)

Integrals involving super�elds contracted into such operators result in schematically

familiar expressions, like that of the standard Gaussian:

(A10)

where the usual role of the determinant is replaced by the superdeterminant. The

superdeterminant can be de�ned using the ordinary determinant by writing a block

version of the matrix . If  is the basis vector of the even subspace of the

superspace and  is that of the odd subspace, dual bases 

and  can be de�ned by the requirement that

(A11)
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(A12)

With such bases and dual bases de�ned, we can form a block representation of  in

analogy withto the matrix form of an operator in quantum mechanics by

(A13)

where each of the blocks is a  real matrix. Then the superdeterminant of  is

given by

(A14)

which is the same as the normal expression for the determinant of a block matrix save for

the inverse of . Likewise, the supertrace of  is is given by

(A15)

The same method can be used to calculate the superdeterminant and supertrace in

arbitrary superspaces, where for  each basis has  elements. For instance, for

 we have

(A16)

with the dual bases de�ned analogously to those above.

APPENDIX B: Becchi-Rouet-Stora-TyutinBRST
SYMMETRY
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When the trace  is not �xed, there is an unusual symmetry in the dominant complexity of

minima [30–32]. This arises from considering the Kac–Rice formula as a kind of gauge

�xing procedure [57]. Around each stationary point consider making the coordinate

transformation . Then, in the absence of �xing the trace of the Hessian to ,

the Kac–Rice measure becomes

(B1)

where the sum is over stationary points . This integral has a symmetry of its measure of

the form . Under the nonlinear transformation that connects  and , this

implies a symmetry of the measure in the Kac–Rice integral of . This

symmetry, while exact, is nonlinear and di�cult to work with.

When the absolute value function has been dropped and Grassmann vectors introduced

to represent the determinant of the Hessian, this symmetry can be simpli�ed

considerably. Due to the expansion properties of Grassmann integrals, any appearance of

 in the integrand resolves to . The symmetry of the measure can then be

written

(B2)

where  is a Grassmann number. This establishes that , now linear. The

rest of the transformation can be built by requiring that the action is invariant after

expansion in . This gives

(B3)

so that the di�erential form of the symmetry is

(B4)
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The Ward identities associated with this symmetry give rise to relationships among the

order parameters. These identities come from applying the di�erential symmetry to

Grassmann-valued order parameters, and are

(B5)

(B6)

These identities establish  and , allowing elimination of the matrices

 and  in favor of . Fixing the trace to  explicitly breaks this symmetry, and the

simpli�cation is lost.

APPENDIX C: SPECTRAL DENSITY IN THE

MULTISPHERICAL SPIN GLASS

In this aAppendix  we derive an expression for the asymptotic spectral density of the

Hessian in the two-sphere multispherical spin glass that we describe in Sec.tion IV B. We

use a typical approach of employing replicas to compute the resolvent [58]. The resolvent

for the Hessian of the multispherical model is given by an integral over

as

(C1)
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If  is the matrix of overlaps of the vectors , then a short and standard

calculation involving the average over  and the change of variables from  to  yields

(C2)

where the e�ective action  is given by

(C3)

Making the replica symmetric ansatz  for each of the matrices  yields

(C4)

while the average resolvent becomes
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(C5)

for  and  evaluated at a saddle point of . The spectral density at large  is then

given by the discontinuity in its imaginary point on the real axis, or

(C6)

APPENDIX D: COMPLEXITY OF DOMINANT OPTIMA

FOR SUMS OF SQUARED RANDOM FUNCTIONS

Here we share an outline of the derivation of formulas for the complexity of dominant

optima in sums of squared random functions of Sec. section IV C. While in this paper we

only treat problems with a replica symmetric structure, formulas for the e�ective action

are generic to any RSBRSB structure and provide a starting point for analyzing the

challenging full RSBRSB setting.

Using the  super�elds

(D1)

the replicated count of stationary points can be written

(D2)
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for . The derivation of the complexity follows from here nearly identically

to that in Appendix A.2 of Fyodorov and Tublin with superoperations replacing standard

ones [44]. First we insert Dirac  functions to �x each of the  energies  as

(D3)

The squared  appearing in the energy can now be replaced by the variables , leaving

the only remaining dependence on the disordered  in the contribution of (D3), which is

linear. The average over the disorder can then be computed, which yields

(D4)

The result is factorized in the indices  and Gaussian in the super�elds  and  with kernel

(D5)

Making the  independent Gaussian integrals, we �nd
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(D6)

We make a change of variables from the �elds  to matrices .

This transformation results in a change of measure of the form

(D7)

We therefore have

(D8)

We now need to blow up our supermatrices into our physical order parameters. We have

from the de�nition of  and  that

(D9)

where , , , and  are the matrices de�ned in (48). Other possible combinations

involving scalar products between fermionic and bosonic variables do not contribute at

physical saddle points [34]. Inserting this expansion into the expression above and

evaluating the superdeterminants and supertrace, we �nd
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(D10)

where the e�ective action is given by

(D11)

where  gives the Hadamard or componentwise product between the matrices and 

gives the Hadamard power of , while other products and powers are matrix products

and powers.

In the case where  is not speci�ed, we can make use of the BRST symmetry of

Appendix  B whose Ward identities give  and . Using these relations, the

e�ective action becomes particularly simple:

(D12)

This e�ective action is general for arbitrary matrices  and , and therefore arbitrary

RSBRSB order. When using a replica symmetric ansatz of  and

, the resulting function of , , , and  is

(D13)
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When  as in the cases directly studied in this work, this further simpli�es as

. The e�ective action is then

(D14)

Extremizing this expression with respect to the order parameters  and  produces the

red line of dominant minima shown in Fig. 3.
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