(* Content-type: application/vnd.wolfram.mathematica *) (*** Wolfram Notebook File ***) (* http://www.wolfram.com/nb *) (* CreatedBy='Mathematica 14.0' *) (*CacheID: 234*) (* Internal cache information: NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 158, 7] NotebookDataLength[ 1194152, 24077] NotebookOptionsPosition[ 1174526, 23766] NotebookOutlinePosition[ 1174925, 23782] CellTagsIndexPosition[ 1174882, 23779] WindowFrame->Normal*) (* Beginning of Notebook Content *) Notebook[{ Cell[CellGroupData[{ Cell["Settings", "Section", CellChangeTimes->{{3.915530723154801*^9, 3.915530723762684*^9}},ExpressionUUID->"926df485-ea0b-4c71-a1d6-\ 03ba4988e06d"], Cell[BoxData[ RowBox[{ RowBox[{"fontSize", "=", "11"}], ";"}]], "Input", CellChangeTimes->{{3.9267606761876593`*^9, 3.926760678954088*^9}}, CellLabel->"In[13]:=",ExpressionUUID->"ee12c51c-6b29-47d4-ae25-f1f7fff92040"], Cell[BoxData[ RowBox[{ RowBox[{"labelStyle", "=", RowBox[{"LabelStyle", "->", RowBox[{"{", RowBox[{ RowBox[{"FontFamily", "->", "\"\\""}], ",", "Black", ",", RowBox[{"FontSize", "->", "fontSize"}]}], "}"}]}]}], ";"}]], "Input", CellChangeTimes->{{3.91553073185975*^9, 3.915530734154885*^9}, { 3.9155307742942944`*^9, 3.915530775499718*^9}, {3.91553085987768*^9, 3.915530886189825*^9}, {3.924161179907159*^9, 3.924161182353354*^9}, { 3.926760681810741*^9, 3.9267606859704237`*^9}}, CellLabel->"In[14]:=",ExpressionUUID->"a4718025-6526-4aa1-b1d9-23f283157609"], Cell[BoxData[{ RowBox[{ RowBox[{"SetOptions", "[", RowBox[{"Plot", ",", "labelStyle", ",", RowBox[{"Frame", "->", "True"}], ",", RowBox[{"FrameStyle", "->", "Black"}]}], "]"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"SetOptions", "[", RowBox[{"ListPlot", ",", "labelStyle", ",", RowBox[{"Frame", "->", "True"}], ",", RowBox[{"FrameStyle", "->", "Black"}]}], "]"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"SetOptions", "[", RowBox[{"LineLegend", ",", "labelStyle"}], "]"}], ";"}]}], "Input", CellChangeTimes->{{3.915530863366059*^9, 3.915530917598553*^9}, { 3.9155330354943447`*^9, 3.915533038598446*^9}}, CellLabel->"In[15]:=",ExpressionUUID->"6297bd5f-9997-4788-b876-fdf7032919da"] }, Open ]], Cell[CellGroupData[{ Cell["Large deviation function", "Section", CellChangeTimes->{{3.915530936792725*^9, 3.9155309437666197`*^9}},ExpressionUUID->"e26a72a6-0937-45b0-a625-\ f1bdf166fa4e"], Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"G", "[", "\[Sigma]_", "]"}], "[", "\[Omega]_", "]"}], ":=", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["\[Omega]", RowBox[{"2", "\[Sigma]"}]]}], SqrtBox[ RowBox[{ FractionBox[ SuperscriptBox["\[Omega]", "2"], SuperscriptBox[ RowBox[{"(", RowBox[{"2", "\[Sigma]"}], ")"}], "2"]], "-", "1"}]]}], "+", RowBox[{"Log", "[", RowBox[{ FractionBox["\[Omega]", RowBox[{"2", "\[Sigma]"}]], "+", SqrtBox[ RowBox[{ FractionBox[ SuperscriptBox["\[Omega]", "2"], SuperscriptBox[ RowBox[{"(", RowBox[{"2", "\[Sigma]"}], ")"}], "2"]], "-", "1"}]]}], "]"}]}]}]], "Input", CellChangeTimes->{{3.915530599745296*^9, 3.915530671233981*^9}}, CellLabel->"In[18]:=",ExpressionUUID->"50c08a66-4e65-4112-8ad7-d5d45f281a8c"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"pG", "=", RowBox[{"Plot", "[", RowBox[{ RowBox[{"Evaluate", "[", RowBox[{"ReIm", "[", RowBox[{ RowBox[{"G", "[", "1", "]"}], "[", "\[Omega]", "]"}], "]"}], "]"}], ",", RowBox[{"{", RowBox[{"\[Omega]", ",", RowBox[{"-", "0.1"}], ",", "4.1"}], "}"}], ",", RowBox[{"FrameLabel", "->", RowBox[{"{", RowBox[{"\"\<\[Mu] / \[Sigma]\>\"", ",", RowBox[{ SubscriptBox["G", "0"], "[", "\[Mu]", "]"}]}], "}"}]}], ",", RowBox[{"Epilog", "->", RowBox[{"Inset", "[", RowBox[{ RowBox[{"LineLegend", "[", RowBox[{ RowBox[{ RowBox[{"ColorData", "[", "97", "]"}], "/@", RowBox[{"Range", "[", "2", "]"}]}], ",", RowBox[{"{", RowBox[{"\"\\"", ",", "\"\\""}], "}"}]}], "]"}], ",", RowBox[{"Scaled", "[", RowBox[{"{", RowBox[{"0.23", ",", "0.15"}], "}"}], "]"}]}], "]"}]}], ",", RowBox[{"PlotRange", "->", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "0.1"}], ",", "4.1"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "1.7"}], ",", "1.7"}], "}"}]}], "}"}]}], ",", RowBox[{"ImageSize", "->", "340"}]}], "]"}]}]], "Input", CellChangeTimes->{{3.914674053452658*^9, 3.914674367442272*^9}, { 3.914674480941107*^9, 3.914674575350315*^9}, {3.914674677944824*^9, 3.914674791554554*^9}, {3.9155306818184958`*^9, 3.915530695322906*^9}, { 3.915530737284401*^9, 3.915530746827622*^9}, {3.915530779484833*^9, 3.915530780148059*^9}, {3.915530891127125*^9, 3.915530922455567*^9}, { 3.9241609780538807`*^9, 3.924160982965692*^9}, {3.924162186828877*^9, 3.9241621901083317`*^9}, {3.924162311335291*^9, 3.924162320022914*^9}, { 3.9267607225073347`*^9, 3.926760768524247*^9}, {3.9267620978944073`*^9, 3.9267621072226877`*^9}, {3.926762329962654*^9, 3.9267623500744543`*^9}}, CellLabel-> "In[250]:=",ExpressionUUID->"6c00d5eb-8ba7-405a-9bf1-5d71e992492f"], Cell[BoxData[ GraphicsBox[ InterpretationBox[{ TagBox[{{{}, {}, TagBox[ {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[2], Opacity[1.], LineBox[{{-0.0999999142857143, -7.675411500440888*^-17}, \ {-0.09871178473364958, 2.0122545278399397`*^-17}, {-0.09742365518158486, 2.6030553560758866`*^-17}, {-0.09484739607745543, 2.8253767851352487`*^-17}, {-0.08969487786919655, 6.859234331144472*^-18}, {-0.0793898414526788, 5.2334362616619694`*^-17}, {-0.05877976861964332, \ -1.769167389050454*^-17}, {-0.01755962295357235, -2.91692446950796*^-18}, \ {-0.001339285714285714, 5.063646068673217*^-17}}], LineBox[CompressedData[" 1:eJwB4QEe/iFib1JlAgAAAB0AAAACAAAAFV/xFV/xVT+XnOdlnzCNPGXl7u3K 38M/W+s4od8CWTwARMECtVjOP6Sp7G+7DW08MH/JqGza1D+wc6QvglRlvEsw LCl1J9o/MPfEPNhZkbxJj47GGubfP4x93995KnA8GLDLKffE4j+gr0kTYXaD PIECzRxcZuU/3jdob0Yyd7zcK06ej0DoP6j3alf0Eng8LD9MTD7q6j/olA4e XPyFPHGLHfKDhu0/HsU+Rh2+XbxUVzcTzC3wP2DM/8vAAFO86V2ewxOA8T8o eiJfI6loPPdPRbvC7vI/L3mXwssPkLx/3tUuvVb0P05nylKfgIa8AuKkOHWm 9T/2hL95daJ/vP7Qs4mUEvc/sFlYFXdsfbz1NAFxcWb4P0cbqzUdpI68ZISO n7XW+T8A+G+Z3/savE1wBUpFQPs/HK3QwCKMabwx0bqKkpH8PxYtkvWVHXq8 jh2wEkf//T/vtUVwigZrvObe4zC5VP8/sdXVOY7QcDxdVEwn9Fn/P/xfGV2q 2nK81Mm0HS9f/z+b+vdyhCpyvMO0hQqlaf8/Wkg36JyBdjygiifkkH7/Pyit 6JckO3E8WjZrl2io/z9oHUQb2RR+PKiDOqiD+v8/1HV/8cLcXTzkY+yK "]], LineBox[CompressedData[" 1:eJwdjwtMk1cUgP+/VV6WTXkoW5h23QhTZKxMCSKOExgp8y0gOimPoQhBEVFU pAjUKcIo2gKVARMqyuhmodJiFakceRTNwKG2tYiPKbjy1IA4i+Jjd7vJzc2X 75wvuZ/GpYTGMyiKCiL3v3dxS79HC4MCKjZpyoZD4x3uH6NCG8K+ZX52Ce5Y tPPd9gWzCI+9H0rM4uLaWu9+rT3hvQb9M6Yv2vVvj9oym7DpWmUQNwB1rhW9 FgcKcorz07wygzBnU0+Y1Jl4yd9rObU89C9i9ni7EM8/Y7RyXo2N1jt1yZ8Q fxK2qYyhuDtQBrPYxN/bZaQTNqLHIUOznENY/1Kqd9yM1c/9VQPuZJ51QjLS HIXRnqmewkUUXE2DtsYtsfhRYo18vieZ9yvpThr4AcUP7Ku+96YADMUzYubF Y/b1hwU9/oTNeslGeif6MR2tkwNIrzEs4aAxGV+u4B22CyQsBEGqOgV3qZXp wTzSC/YI+KAzFfmVOfHNGyiIjdTm3zLuw2ebg5SScMLrayPfTO9HoaPVq4RN FLAXd6z90j0df80rEDlFEV9e9yhClIETe06qkxNJf0pQcelENubyFDQ7m4LZ O5ou5PocRRdGyqqXQuLV5oLBp0fxnJYr7T5CgSwjVBNWm4s3uRe/OPgT6Y+J W33Zefixa9u621LSp7YN/7awAJXjplNHFBTcHBnTVHWJMfBc+eAWJdnXrAwu 8pGgIT6Ky1WR+cKBgYRqCb7u6+94cJH8r+d+wYXMIvxW93TUp52C9bIbYXXL S7C3jOk3fJcCsT+rou1xKTKCvO6ssaYBdCvfVemqMCtjfsWkLQ0u7ctCVGwZ TjfYx5axaKAOnHY1R8vwBXts+MkcGtjV6gm4L0PzO/lbgSsNQ8cFcU19p7Hr Msftdy4NYp1HYJL5DJZ4z02z4tMQ8vnZzjofObpx3s7B82Tf4fzl0DvnMf1u Rs0pNQ15oxVOF+gG7BZP+WZqaHDaoxlb4dmAe99PxizTkp5oSN52pAFb74/U qa/R8ETPiJQuVWFUae938oc0jIeF60Mq1ShlNQolLAbYtFOLvynQ4ExL0sTW RAaMdy2wvfKnFjnlN47XuzJBlv26cPlqHWoPrLOYOpiQ+CJujUjUjQ6rUplL BTNg7vhVt3lVt9G8WdW3220mXGfU99AsE1qWDKWEds8EF5nkcZPmHnZYtcgT hFagrOdRveJH+KGjWhG5yBqOHUpXTMMAznUOCf/xsTVoeaWKrAgzlm9405kv sgEnrnnrzzHDyOfXWJYusYVfBClK26wx7OM/63IesYV9z/cjZ8Y4GksjdhiK 7eCQ+ZKX5MoEFl6Pru9cNQvOVi0U3VJO4uFrkcpoigWSXQaTQfEPvqDSBUY5 C8LSHF67l1nws6+WjGbH2MPtW3/19bW+Qq2pfbDQaA9f/3+m8V8uZ/2X "]]}, Annotation[#, "Charting`Private`Tag#1"]& ], TagBox[ {RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[2], Opacity[1.], LineBox[{{-0.0999999142857143, 1.6707545588821862`}, {-0.09871178473364958, 1.6694680198193697`}, {-0.09742365518158486, 1.6681814397590167`}, {-0.09484739607745543, 1.665608158790747}, {-0.08969487786919655, 1.6604611284764783`}, {-0.0793898414526788, 1.65016531439713}, {-0.05877976861964332, 1.6295676323304158`}, {-0.01755962295357235, 1.5883557241483424`}, {-0.001339285714285714, 1.5721356124090882`}}], LineBox[CompressedData[" 1:eJwVzQ0w1GkcB/AlyunMlXRcKELrZcld7mgrXyqF1Ko2bMPYM7E4yV6HOSnK S9NWrFqq9XJKFon2RHkd1UYhJW93hFBe2hB73tau3fs38zzzzGe+39/vMQ44 dSRQlUQiHSbu13e9/wxxjiE3LUl+zkCKwJGpyeb3IuhFKQT5gnmQ9j5VrfB5 jYNDHmQKYw62cU2FYb2d2KzNv3Vw5j8csKVYRJJ7MRDoU9udJ4FbakrjhtH3 6Mvq/tC0awZ6whaLhefDELDNVFuef8F51VYD36ARnAikqP/pMok+q0M5qU7j 8FqZMuWXKQYFHh6OYjF8OMm66ZbjYF82lCQkT+KlY7tpT/sI6N72615ZT6N2 bPcRqs8HfPLLEa2Ln8GTppIA0g9DWKC51DybkmDx8tpb3rH9iBvosqnzmsX2 p53t2at7oDp81yFSMIf9RaN85vddULQ9vMTTXkClX7rjv2pvMWenwmYHLcKS +0neL27GicSUvyq6pXj0rntHTbMIByPU3V2cZLgbnmb0h7QabS4acRwXGbKm ub4HWqtB119d/sZdhsqwSIftt6vh27hm4/FjMtQyNq5huFUj1MBAEh4qg/lw g3oxvwrJL3/i3+TJQOk4myFwrkS9EVP8eVwG3s6I4KjbFfjxbTXnWpocGrEN e8vvCxEg6PV1uyFH7sc0c16CELwzSzakbDnK5zOTeceFmDejdpwslOOE56pt CxpC1MZU6bvVy/Ek505H6utSuJpW3ldOyCF09+KE0O+DGV3xOsx1GRFHu0fO 8gpwzaMr1+TQMtpsWUOj7gUQGc/93nt0GQ4x62l8lQJseWWn6+q/DFL6zOeh UwJMGJX7m0Qtw3PMxEdBy0d0c9l0T94yBidYbk835iHFUKi9X0n0+cq/n0uy wZswf5elpsCaRM19VrHZuFVzO0/yjQJtJTkyq5XZuMu4bpejowBzW2+QUj8L VelRXnMWhI/UHNCg8fFRaxc/j66ArXL/l7iODIj7KgKkDAVyL2sty4My8KXY xormT/RvNEaZytKx5GZUuxRC5HuKgqPN0vFd8oqBw3EKPNkTUUS7cB1URZMx 6R7xvzbLQeLHhVPrbvGxB0RuvM09QJoKl6yasuJyYt5C/JnpkApPaske73oF BmkT9ZPVVxEYxQ0s7VSAdPNdo6CdA+6UV5Gvksgp04wpWhIy6t6wy9SU4KoH tvxckIjMK65UDU0lBhc3OTuSEiGwpLY81CFyaegDweMLqAkynNS0VGKaTc0O 3xmP0YEPtlV0JZgMk4v39kXDj+5BnmUokatuMebnEIXOpnLDrf6EycwK2ERC VJ6kmR+iBInp8Lh7y2nkcsgfuecIv9gxqZIZDl0St7clQYl4neldeQ1hSIlc bFt5ibDWUJVUGoqzzKa62OuEG3TMC+JZOP7LbzeCC5VwmhUKdbV+xdvijqt5 JcS+jIjMJj1/uBrvTBwoI3yv1pK+1Rf232qx6XWEC7MsUwu8UHo+kpX6jJjv 39pltpqOLQv9fs0vvu4r1E/gHIbOcKm7UzvR32BvLRK54Yq3rvOZfwizQ0LJ MS5Y0Rpn/6iPcH5S/6ZIZ8TsHreeGSJckb3W9fQOSB57mlLGCHP7B3sy7RBi XbWBNUG4zfUKa5yCwTvGa+/MENY8mSU02wwfPc6q/nnCpFlyUrA2ChOohQlL hNWmwsjGKvgfw+mI8A== "]], LineBox[CompressedData[" 1:eJxFx2tIk3EAhfHXmc7N1trWIstLGtNYrotMtJhQEzKwzWZrWm5rpc5RylKi BkJzJZFs3VYpGRpE1j6MzWYfIqcGORtZDKmpLCpcENVipQhLtFlB/M+Bh8Mv +7ixsp5GUdSev/37/OHwlmEatZv6v8kdLyOWFNjeGNdnpcLyhwVhLwv2pd+Z jnHhtqrAwVt8WGJPDBSsgx/TG31NGfC9OYnnUx6sFTWLLEI4zdDnyBTB196z 7h4ugM3+D9aABFb3ttUPKuBodan7uhK28JIXGqrgB5estjUaeLalc6DJAF8s cyZsNMPun1M97U6YVrptUkZPIBbk/OaM9MNJsROztQYacU736yuu9ERi79mK 2NQozC1vTixsXUH8udoTOiVIIo6JvxgrX8GjycOOBksyMZs34KwR0onX8vcp L8zA3YqlsQ5bCrFa3RcrFDOIQ+roOP8bHOxSnXx7g0l82a91jZWnEp9/UePW UiuJ5ylTa9ABb9oujpiPsogDt9m5DOYq4icTHzOLH8Ga5YrBbj2b+NmAkROl ryaW2ZxzDQw4VPf1zQwTnufXdgZZ8GaTasMQD74qKRHYsmCtj7lTWARHesrW 3y+GTWfaFzN2wfa8+BCnBB7rmJUuSGGRfHq/Xw4/zeVvlR6A9y4r2F4FrOsf n3Ar4ZvcEVXXETg7sljEUcOu58VpVg3sP+15d04HH5L98P46BocF+b0ttbAx bjB/r4OXJvt0ej38B+c4z40= "]]}, Annotation[#, "Charting`Private`Tag#2"]& ], {}}, {}}, {"WolframDynamicHighlight", <| "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>}], StyleBox[ DynamicBox[(Charting`HighlightActionBox["DynamicHighlight", {}, Slot["HighlightElements"], Slot["LayoutOptions"], Slot["Meta"], Charting`HighlightActionFunction["DynamicHighlight", {{{{}, {}, Annotation[{ Directive[ Opacity[1.], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[2]], Line[{{-0.0999999142857143, -7.675411500440888*^-17}, \ {-0.09871178473364958, 2.0122545278399397`*^-17}, {-0.09742365518158486, 2.6030553560758866`*^-17}, {-0.09484739607745543, 2.8253767851352487`*^-17}, {-0.08969487786919655, 6.859234331144472*^-18}, {-0.0793898414526788, 5.2334362616619694`*^-17}, {-0.05877976861964332, \ -1.769167389050454*^-17}, {-0.01755962295357235, -2.91692446950796*^-18}, \ {-0.001339285714285714, 5.063646068673217*^-17}}], Line[CompressedData[" 1:eJwB4QEe/iFib1JlAgAAAB0AAAACAAAAFV/xFV/xVT+XnOdlnzCNPGXl7u3K 38M/W+s4od8CWTwARMECtVjOP6Sp7G+7DW08MH/JqGza1D+wc6QvglRlvEsw LCl1J9o/MPfEPNhZkbxJj47GGubfP4x93995KnA8GLDLKffE4j+gr0kTYXaD PIECzRxcZuU/3jdob0Yyd7zcK06ej0DoP6j3alf0Eng8LD9MTD7q6j/olA4e XPyFPHGLHfKDhu0/HsU+Rh2+XbxUVzcTzC3wP2DM/8vAAFO86V2ewxOA8T8o eiJfI6loPPdPRbvC7vI/L3mXwssPkLx/3tUuvVb0P05nylKfgIa8AuKkOHWm 9T/2hL95daJ/vP7Qs4mUEvc/sFlYFXdsfbz1NAFxcWb4P0cbqzUdpI68ZISO n7XW+T8A+G+Z3/savE1wBUpFQPs/HK3QwCKMabwx0bqKkpH8PxYtkvWVHXq8 jh2wEkf//T/vtUVwigZrvObe4zC5VP8/sdXVOY7QcDxdVEwn9Fn/P/xfGV2q 2nK81Mm0HS9f/z+b+vdyhCpyvMO0hQqlaf8/Wkg36JyBdjygiifkkH7/Pyit 6JckO3E8WjZrl2io/z9oHUQb2RR+PKiDOqiD+v8/1HV/8cLcXTzkY+yK "]], Line[CompressedData[" 1:eJwdjwtMk1cUgP+/VV6WTXkoW5h23QhTZKxMCSKOExgp8y0gOimPoQhBEVFU pAjUKcIo2gKVARMqyuhmodJiFakceRTNwKG2tYiPKbjy1IA4i+Jjd7vJzc2X 75wvuZ/GpYTGMyiKCiL3v3dxS79HC4MCKjZpyoZD4x3uH6NCG8K+ZX52Ce5Y tPPd9gWzCI+9H0rM4uLaWu9+rT3hvQb9M6Yv2vVvj9oym7DpWmUQNwB1rhW9 FgcKcorz07wygzBnU0+Y1Jl4yd9rObU89C9i9ni7EM8/Y7RyXo2N1jt1yZ8Q fxK2qYyhuDtQBrPYxN/bZaQTNqLHIUOznENY/1Kqd9yM1c/9VQPuZJ51QjLS HIXRnqmewkUUXE2DtsYtsfhRYo18vieZ9yvpThr4AcUP7Ku+96YADMUzYubF Y/b1hwU9/oTNeslGeif6MR2tkwNIrzEs4aAxGV+u4B22CyQsBEGqOgV3qZXp wTzSC/YI+KAzFfmVOfHNGyiIjdTm3zLuw2ebg5SScMLrayPfTO9HoaPVq4RN FLAXd6z90j0df80rEDlFEV9e9yhClIETe06qkxNJf0pQcelENubyFDQ7m4LZ O5ou5PocRRdGyqqXQuLV5oLBp0fxnJYr7T5CgSwjVBNWm4s3uRe/OPgT6Y+J W33Zefixa9u621LSp7YN/7awAJXjplNHFBTcHBnTVHWJMfBc+eAWJdnXrAwu 8pGgIT6Ky1WR+cKBgYRqCb7u6+94cJH8r+d+wYXMIvxW93TUp52C9bIbYXXL S7C3jOk3fJcCsT+rou1xKTKCvO6ssaYBdCvfVemqMCtjfsWkLQ0u7ctCVGwZ TjfYx5axaKAOnHY1R8vwBXts+MkcGtjV6gm4L0PzO/lbgSsNQ8cFcU19p7Hr Msftdy4NYp1HYJL5DJZ4z02z4tMQ8vnZzjofObpx3s7B82Tf4fzl0DvnMf1u Rs0pNQ15oxVOF+gG7BZP+WZqaHDaoxlb4dmAe99PxizTkp5oSN52pAFb74/U qa/R8ETPiJQuVWFUae938oc0jIeF60Mq1ShlNQolLAbYtFOLvynQ4ExL0sTW RAaMdy2wvfKnFjnlN47XuzJBlv26cPlqHWoPrLOYOpiQ+CJujUjUjQ6rUplL BTNg7vhVt3lVt9G8WdW3220mXGfU99AsE1qWDKWEds8EF5nkcZPmHnZYtcgT hFagrOdRveJH+KGjWhG5yBqOHUpXTMMAznUOCf/xsTVoeaWKrAgzlm9405kv sgEnrnnrzzHDyOfXWJYusYVfBClK26wx7OM/63IesYV9z/cjZ8Y4GksjdhiK 7eCQ+ZKX5MoEFl6Pru9cNQvOVi0U3VJO4uFrkcpoigWSXQaTQfEPvqDSBUY5 C8LSHF67l1nws6+WjGbH2MPtW3/19bW+Qq2pfbDQaA9f/3+m8V8uZ/2X "]]}, "Charting`Private`Tag#1"], Annotation[{ Directive[ Opacity[1.], RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[2]], Line[{{-0.0999999142857143, 1.6707545588821862`}, {-0.09871178473364958, 1.6694680198193697`}, {-0.09742365518158486, 1.6681814397590167`}, {-0.09484739607745543, 1.665608158790747}, {-0.08969487786919655, 1.6604611284764783`}, {-0.0793898414526788, 1.65016531439713}, {-0.05877976861964332, 1.6295676323304158`}, {-0.01755962295357235, 1.5883557241483424`}, {-0.001339285714285714, 1.5721356124090882`}}], Line[CompressedData[" 1:eJwVzQ0w1GkcB/AlyunMlXRcKELrZcld7mgrXyqF1Ko2bMPYM7E4yV6HOSnK S9NWrFqq9XJKFon2RHkd1UYhJW93hFBe2hB73tau3fs38zzzzGe+39/vMQ44 dSRQlUQiHSbu13e9/wxxjiE3LUl+zkCKwJGpyeb3IuhFKQT5gnmQ9j5VrfB5 jYNDHmQKYw62cU2FYb2d2KzNv3Vw5j8csKVYRJJ7MRDoU9udJ4FbakrjhtH3 6Mvq/tC0awZ6whaLhefDELDNVFuef8F51VYD36ARnAikqP/pMok+q0M5qU7j 8FqZMuWXKQYFHh6OYjF8OMm66ZbjYF82lCQkT+KlY7tpT/sI6N72615ZT6N2 bPcRqs8HfPLLEa2Ln8GTppIA0g9DWKC51DybkmDx8tpb3rH9iBvosqnzmsX2 p53t2at7oDp81yFSMIf9RaN85vddULQ9vMTTXkClX7rjv2pvMWenwmYHLcKS +0neL27GicSUvyq6pXj0rntHTbMIByPU3V2cZLgbnmb0h7QabS4acRwXGbKm ub4HWqtB119d/sZdhsqwSIftt6vh27hm4/FjMtQyNq5huFUj1MBAEh4qg/lw g3oxvwrJL3/i3+TJQOk4myFwrkS9EVP8eVwG3s6I4KjbFfjxbTXnWpocGrEN e8vvCxEg6PV1uyFH7sc0c16CELwzSzakbDnK5zOTeceFmDejdpwslOOE56pt CxpC1MZU6bvVy/Ek505H6utSuJpW3ldOyCF09+KE0O+DGV3xOsx1GRFHu0fO 8gpwzaMr1+TQMtpsWUOj7gUQGc/93nt0GQ4x62l8lQJseWWn6+q/DFL6zOeh UwJMGJX7m0Qtw3PMxEdBy0d0c9l0T94yBidYbk835iHFUKi9X0n0+cq/n0uy wZswf5elpsCaRM19VrHZuFVzO0/yjQJtJTkyq5XZuMu4bpejowBzW2+QUj8L VelRXnMWhI/UHNCg8fFRaxc/j66ArXL/l7iODIj7KgKkDAVyL2sty4My8KXY xormT/RvNEaZytKx5GZUuxRC5HuKgqPN0vFd8oqBw3EKPNkTUUS7cB1URZMx 6R7xvzbLQeLHhVPrbvGxB0RuvM09QJoKl6yasuJyYt5C/JnpkApPaske73oF BmkT9ZPVVxEYxQ0s7VSAdPNdo6CdA+6UV5Gvksgp04wpWhIy6t6wy9SU4KoH tvxckIjMK65UDU0lBhc3OTuSEiGwpLY81CFyaegDweMLqAkynNS0VGKaTc0O 3xmP0YEPtlV0JZgMk4v39kXDj+5BnmUokatuMebnEIXOpnLDrf6EycwK2ERC VJ6kmR+iBInp8Lh7y2nkcsgfuecIv9gxqZIZDl0St7clQYl4neldeQ1hSIlc bFt5ibDWUJVUGoqzzKa62OuEG3TMC+JZOP7LbzeCC5VwmhUKdbV+xdvijqt5 JcS+jIjMJj1/uBrvTBwoI3yv1pK+1Rf232qx6XWEC7MsUwu8UHo+kpX6jJjv 39pltpqOLQv9fs0vvu4r1E/gHIbOcKm7UzvR32BvLRK54Yq3rvOZfwizQ0LJ MS5Y0Rpn/6iPcH5S/6ZIZ8TsHreeGSJckb3W9fQOSB57mlLGCHP7B3sy7RBi XbWBNUG4zfUKa5yCwTvGa+/MENY8mSU02wwfPc6q/nnCpFlyUrA2ChOohQlL hNWmwsjGKvgfw+mI8A== "]], Line[CompressedData[" 1:eJxFx2tIk3EAhfHXmc7N1trWIstLGtNYrotMtJhQEzKwzWZrWm5rpc5RylKi BkJzJZFs3VYpGRpE1j6MzWYfIqcGORtZDKmpLCpcENVipQhLtFlB/M+Bh8Mv +7ixsp5GUdSev/37/OHwlmEatZv6v8kdLyOWFNjeGNdnpcLyhwVhLwv2pd+Z jnHhtqrAwVt8WGJPDBSsgx/TG31NGfC9OYnnUx6sFTWLLEI4zdDnyBTB196z 7h4ugM3+D9aABFb3ttUPKuBodan7uhK28JIXGqrgB5estjUaeLalc6DJAF8s cyZsNMPun1M97U6YVrptUkZPIBbk/OaM9MNJsROztQYacU736yuu9ERi79mK 2NQozC1vTixsXUH8udoTOiVIIo6JvxgrX8GjycOOBksyMZs34KwR0onX8vcp L8zA3YqlsQ5bCrFa3RcrFDOIQ+roOP8bHOxSnXx7g0l82a91jZWnEp9/UePW UiuJ5ylTa9ABb9oujpiPsogDt9m5DOYq4icTHzOLH8Ga5YrBbj2b+NmAkROl ryaW2ZxzDQw4VPf1zQwTnufXdgZZ8GaTasMQD74qKRHYsmCtj7lTWARHesrW 3y+GTWfaFzN2wfa8+BCnBB7rmJUuSGGRfHq/Xw4/zeVvlR6A9y4r2F4FrOsf n3Ar4ZvcEVXXETg7sljEUcOu58VpVg3sP+15d04HH5L98P46BocF+b0ttbAx bjB/r4OXJvt0ej38B+c4z40= "]]}, "Charting`Private`Tag#2"], {}}}, {}}, <| "HighlightElements" -> <| "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>, "LayoutOptions" -> <| "PanelPlotLayout" -> <||>, "PlotRange" -> {{-0.1, 4.1}, {-1.7, 1.7}}, "Frame" -> {{True, True}, {True, True}}, "AxesOrigin" -> {0, 0}, "ImageSize" -> {340, 340/GoldenRatio}, "Axes" -> {True, True}, "LabelStyle" -> {FontFamily -> "Times", GrayLevel[0], FontSize -> 11}, "AspectRatio" -> GoldenRatio^(-1), "DefaultStyle" -> { Directive[ Opacity[1.], RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[2]], Directive[ Opacity[1.], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[2]]}, "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& ), "ScalingFunctions" -> {{Identity, Identity}, { Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>, "Meta" -> <| "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> Plot, "GroupHighlight" -> False|>|>]]& )[<| "HighlightElements" -> <| "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>, "LayoutOptions" -> <| "PanelPlotLayout" -> <||>, "PlotRange" -> {{-0.1, 4.1}, {-1.7, 1.7}}, "Frame" -> {{True, True}, {True, True}}, "AxesOrigin" -> {0, 0}, "ImageSize" -> {340, 340/GoldenRatio}, "Axes" -> {True, True}, "LabelStyle" -> {FontFamily -> "Times", GrayLevel[0], FontSize -> 11}, "AspectRatio" -> GoldenRatio^(-1), "DefaultStyle" -> { Directive[ Opacity[1.], RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[2]], Directive[ Opacity[1.], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[2]]}, "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& ), "ScalingFunctions" -> {{Identity, Identity}, { Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>, "Meta" -> <| "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> Plot, "GroupHighlight" -> False|>|>], ImageSizeCache->{{4.503599627370496*^15, -4.503599627370496*^15}, { 4.503599627370496*^15, -4.503599627370496*^15}}], Selectable->False]}, Annotation[{{{{}, {}, Annotation[{ Directive[ Opacity[1.], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[2]], Line[{{-0.0999999142857143, -7.675411500440888*^-17}, \ {-0.09871178473364958, 2.0122545278399397`*^-17}, {-0.09742365518158486, 2.6030553560758866`*^-17}, {-0.09484739607745543, 2.8253767851352487`*^-17}, {-0.08969487786919655, 6.859234331144472*^-18}, {-0.0793898414526788, 5.2334362616619694`*^-17}, {-0.05877976861964332, \ -1.769167389050454*^-17}, {-0.01755962295357235, -2.91692446950796*^-18}, \ {-0.001339285714285714, 5.063646068673217*^-17}}], Line[CompressedData[" 1:eJwB4QEe/iFib1JlAgAAAB0AAAACAAAAFV/xFV/xVT+XnOdlnzCNPGXl7u3K 38M/W+s4od8CWTwARMECtVjOP6Sp7G+7DW08MH/JqGza1D+wc6QvglRlvEsw LCl1J9o/MPfEPNhZkbxJj47GGubfP4x93995KnA8GLDLKffE4j+gr0kTYXaD PIECzRxcZuU/3jdob0Yyd7zcK06ej0DoP6j3alf0Eng8LD9MTD7q6j/olA4e XPyFPHGLHfKDhu0/HsU+Rh2+XbxUVzcTzC3wP2DM/8vAAFO86V2ewxOA8T8o eiJfI6loPPdPRbvC7vI/L3mXwssPkLx/3tUuvVb0P05nylKfgIa8AuKkOHWm 9T/2hL95daJ/vP7Qs4mUEvc/sFlYFXdsfbz1NAFxcWb4P0cbqzUdpI68ZISO n7XW+T8A+G+Z3/savE1wBUpFQPs/HK3QwCKMabwx0bqKkpH8PxYtkvWVHXq8 jh2wEkf//T/vtUVwigZrvObe4zC5VP8/sdXVOY7QcDxdVEwn9Fn/P/xfGV2q 2nK81Mm0HS9f/z+b+vdyhCpyvMO0hQqlaf8/Wkg36JyBdjygiifkkH7/Pyit 6JckO3E8WjZrl2io/z9oHUQb2RR+PKiDOqiD+v8/1HV/8cLcXTzkY+yK "]], Line[CompressedData[" 1:eJwdjwtMk1cUgP+/VV6WTXkoW5h23QhTZKxMCSKOExgp8y0gOimPoQhBEVFU pAjUKcIo2gKVARMqyuhmodJiFakceRTNwKG2tYiPKbjy1IA4i+Jjd7vJzc2X 75wvuZ/GpYTGMyiKCiL3v3dxS79HC4MCKjZpyoZD4x3uH6NCG8K+ZX52Ce5Y tPPd9gWzCI+9H0rM4uLaWu9+rT3hvQb9M6Yv2vVvj9oym7DpWmUQNwB1rhW9 FgcKcorz07wygzBnU0+Y1Jl4yd9rObU89C9i9ni7EM8/Y7RyXo2N1jt1yZ8Q fxK2qYyhuDtQBrPYxN/bZaQTNqLHIUOznENY/1Kqd9yM1c/9VQPuZJ51QjLS HIXRnqmewkUUXE2DtsYtsfhRYo18vieZ9yvpThr4AcUP7Ku+96YADMUzYubF Y/b1hwU9/oTNeslGeif6MR2tkwNIrzEs4aAxGV+u4B22CyQsBEGqOgV3qZXp wTzSC/YI+KAzFfmVOfHNGyiIjdTm3zLuw2ebg5SScMLrayPfTO9HoaPVq4RN FLAXd6z90j0df80rEDlFEV9e9yhClIETe06qkxNJf0pQcelENubyFDQ7m4LZ O5ou5PocRRdGyqqXQuLV5oLBp0fxnJYr7T5CgSwjVBNWm4s3uRe/OPgT6Y+J W33Zefixa9u621LSp7YN/7awAJXjplNHFBTcHBnTVHWJMfBc+eAWJdnXrAwu 8pGgIT6Ky1WR+cKBgYRqCb7u6+94cJH8r+d+wYXMIvxW93TUp52C9bIbYXXL S7C3jOk3fJcCsT+rou1xKTKCvO6ssaYBdCvfVemqMCtjfsWkLQ0u7ctCVGwZ TjfYx5axaKAOnHY1R8vwBXts+MkcGtjV6gm4L0PzO/lbgSsNQ8cFcU19p7Hr Msftdy4NYp1HYJL5DJZ4z02z4tMQ8vnZzjofObpx3s7B82Tf4fzl0DvnMf1u Rs0pNQ15oxVOF+gG7BZP+WZqaHDaoxlb4dmAe99PxizTkp5oSN52pAFb74/U qa/R8ETPiJQuVWFUae938oc0jIeF60Mq1ShlNQolLAbYtFOLvynQ4ExL0sTW RAaMdy2wvfKnFjnlN47XuzJBlv26cPlqHWoPrLOYOpiQ+CJujUjUjQ6rUplL BTNg7vhVt3lVt9G8WdW3220mXGfU99AsE1qWDKWEds8EF5nkcZPmHnZYtcgT hFagrOdRveJH+KGjWhG5yBqOHUpXTMMAznUOCf/xsTVoeaWKrAgzlm9405kv sgEnrnnrzzHDyOfXWJYusYVfBClK26wx7OM/63IesYV9z/cjZ8Y4GksjdhiK 7eCQ+ZKX5MoEFl6Pru9cNQvOVi0U3VJO4uFrkcpoigWSXQaTQfEPvqDSBUY5 C8LSHF67l1nws6+WjGbH2MPtW3/19bW+Qq2pfbDQaA9f/3+m8V8uZ/2X "]]}, "Charting`Private`Tag#1"], Annotation[{ Directive[ Opacity[1.], RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[2]], Line[{{-0.0999999142857143, 1.6707545588821862`}, {-0.09871178473364958, 1.6694680198193697`}, {-0.09742365518158486, 1.6681814397590167`}, {-0.09484739607745543, 1.665608158790747}, {-0.08969487786919655, 1.6604611284764783`}, {-0.0793898414526788, 1.65016531439713}, {-0.05877976861964332, 1.6295676323304158`}, {-0.01755962295357235, 1.5883557241483424`}, {-0.001339285714285714, 1.5721356124090882`}}], Line[CompressedData[" 1:eJwVzQ0w1GkcB/AlyunMlXRcKELrZcld7mgrXyqF1Ko2bMPYM7E4yV6HOSnK S9NWrFqq9XJKFon2RHkd1UYhJW93hFBe2hB73tau3fs38zzzzGe+39/vMQ44 dSRQlUQiHSbu13e9/wxxjiE3LUl+zkCKwJGpyeb3IuhFKQT5gnmQ9j5VrfB5 jYNDHmQKYw62cU2FYb2d2KzNv3Vw5j8csKVYRJJ7MRDoU9udJ4FbakrjhtH3 6Mvq/tC0awZ6whaLhefDELDNVFuef8F51VYD36ARnAikqP/pMok+q0M5qU7j 8FqZMuWXKQYFHh6OYjF8OMm66ZbjYF82lCQkT+KlY7tpT/sI6N72615ZT6N2 bPcRqs8HfPLLEa2Ln8GTppIA0g9DWKC51DybkmDx8tpb3rH9iBvosqnzmsX2 p53t2at7oDp81yFSMIf9RaN85vddULQ9vMTTXkClX7rjv2pvMWenwmYHLcKS +0neL27GicSUvyq6pXj0rntHTbMIByPU3V2cZLgbnmb0h7QabS4acRwXGbKm ub4HWqtB119d/sZdhsqwSIftt6vh27hm4/FjMtQyNq5huFUj1MBAEh4qg/lw g3oxvwrJL3/i3+TJQOk4myFwrkS9EVP8eVwG3s6I4KjbFfjxbTXnWpocGrEN e8vvCxEg6PV1uyFH7sc0c16CELwzSzakbDnK5zOTeceFmDejdpwslOOE56pt CxpC1MZU6bvVy/Ek505H6utSuJpW3ldOyCF09+KE0O+DGV3xOsx1GRFHu0fO 8gpwzaMr1+TQMtpsWUOj7gUQGc/93nt0GQ4x62l8lQJseWWn6+q/DFL6zOeh UwJMGJX7m0Qtw3PMxEdBy0d0c9l0T94yBidYbk835iHFUKi9X0n0+cq/n0uy wZswf5elpsCaRM19VrHZuFVzO0/yjQJtJTkyq5XZuMu4bpejowBzW2+QUj8L VelRXnMWhI/UHNCg8fFRaxc/j66ArXL/l7iODIj7KgKkDAVyL2sty4My8KXY xormT/RvNEaZytKx5GZUuxRC5HuKgqPN0vFd8oqBw3EKPNkTUUS7cB1URZMx 6R7xvzbLQeLHhVPrbvGxB0RuvM09QJoKl6yasuJyYt5C/JnpkApPaske73oF BmkT9ZPVVxEYxQ0s7VSAdPNdo6CdA+6UV5Gvksgp04wpWhIy6t6wy9SU4KoH tvxckIjMK65UDU0lBhc3OTuSEiGwpLY81CFyaegDweMLqAkynNS0VGKaTc0O 3xmP0YEPtlV0JZgMk4v39kXDj+5BnmUokatuMebnEIXOpnLDrf6EycwK2ERC VJ6kmR+iBInp8Lh7y2nkcsgfuecIv9gxqZIZDl0St7clQYl4neldeQ1hSIlc bFt5ibDWUJVUGoqzzKa62OuEG3TMC+JZOP7LbzeCC5VwmhUKdbV+xdvijqt5 JcS+jIjMJj1/uBrvTBwoI3yv1pK+1Rf232qx6XWEC7MsUwu8UHo+kpX6jJjv 39pltpqOLQv9fs0vvu4r1E/gHIbOcKm7UzvR32BvLRK54Yq3rvOZfwizQ0LJ MS5Y0Rpn/6iPcH5S/6ZIZ8TsHreeGSJckb3W9fQOSB57mlLGCHP7B3sy7RBi XbWBNUG4zfUKa5yCwTvGa+/MENY8mSU02wwfPc6q/nnCpFlyUrA2ChOohQlL hNWmwsjGKvgfw+mI8A== "]], Line[CompressedData[" 1:eJxFx2tIk3EAhfHXmc7N1trWIstLGtNYrotMtJhQEzKwzWZrWm5rpc5RylKi BkJzJZFs3VYpGRpE1j6MzWYfIqcGORtZDKmpLCpcENVipQhLtFlB/M+Bh8Mv +7ixsp5GUdSev/37/OHwlmEatZv6v8kdLyOWFNjeGNdnpcLyhwVhLwv2pd+Z jnHhtqrAwVt8WGJPDBSsgx/TG31NGfC9OYnnUx6sFTWLLEI4zdDnyBTB196z 7h4ugM3+D9aABFb3ttUPKuBodan7uhK28JIXGqrgB5estjUaeLalc6DJAF8s cyZsNMPun1M97U6YVrptUkZPIBbk/OaM9MNJsROztQYacU736yuu9ERi79mK 2NQozC1vTixsXUH8udoTOiVIIo6JvxgrX8GjycOOBksyMZs34KwR0onX8vcp L8zA3YqlsQ5bCrFa3RcrFDOIQ+roOP8bHOxSnXx7g0l82a91jZWnEp9/UePW UiuJ5ylTa9ABb9oujpiPsogDt9m5DOYq4icTHzOLH8Ga5YrBbj2b+NmAkROl ryaW2ZxzDQw4VPf1zQwTnufXdgZZ8GaTasMQD74qKRHYsmCtj7lTWARHesrW 3y+GTWfaFzN2wfa8+BCnBB7rmJUuSGGRfHq/Xw4/zeVvlR6A9y4r2F4FrOsf n3Ar4ZvcEVXXETg7sljEUcOu58VpVg3sP+15d04HH5L98P46BocF+b0ttbAx bjB/r4OXJvt0ej38B+c4z40= "]]}, "Charting`Private`Tag#2"], {}}}, {}}, <| "HighlightElements" -> <| "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>, "LayoutOptions" -> <| "PanelPlotLayout" -> <||>, "PlotRange" -> {{-0.1, 4.1}, {-1.7, 1.7}}, "Frame" -> {{True, True}, {True, True}}, "AxesOrigin" -> {0, 0}, "ImageSize" -> {340, 340/GoldenRatio}, "Axes" -> {True, True}, "LabelStyle" -> {FontFamily -> "Times", GrayLevel[0], FontSize -> 11}, "AspectRatio" -> GoldenRatio^(-1), "DefaultStyle" -> { Directive[ Opacity[1.], RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[2]], Directive[ Opacity[1.], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[2]]}, "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& ), "ScalingFunctions" -> {{Identity, Identity}, {Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>, "Meta" -> <| "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> Plot, "GroupHighlight" -> False|>|>, "DynamicHighlight"]], AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Epilog->InsetBox[ BoxData[ FormBox[ TemplateBox[{"\"Real part\"", "\"Imaginary part\""}, "LineLegend", DisplayFunction -> (FormBox[ StyleBox[ StyleBox[ PaneBox[ TagBox[ GridBox[{{ TagBox[ GridBox[{{ GraphicsBox[{{ Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], AbsoluteThickness[1.6], RGBColor[0.368417, 0.506779, 0.709798]], { LineBox[{{0, 12.5}, {20, 12.5}}]}}, { Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], AbsoluteThickness[1.6], RGBColor[0.368417, 0.506779, 0.709798]], {}}}, AspectRatio -> Full, ImageSize -> {20, 12.5}, PlotRangePadding -> None, ImagePadding -> Automatic, BaselinePosition -> (Scaled[0.14800000000000002`] -> Baseline)], #}, { GraphicsBox[{{ Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], AbsoluteThickness[1.6], RGBColor[0.880722, 0.611041, 0.142051]], { LineBox[{{0, 12.5}, {20, 12.5}}]}}, { Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], AbsoluteThickness[1.6], RGBColor[0.880722, 0.611041, 0.142051]], {}}}, AspectRatio -> Full, ImageSize -> {20, 12.5}, PlotRangePadding -> None, ImagePadding -> Automatic, BaselinePosition -> (Scaled[0.14800000000000002`] -> Baseline)], #2}}, GridBoxAlignment -> { "Columns" -> {Center, Left}, "Rows" -> {{Baseline}}}, AutoDelete -> False, GridBoxDividers -> { "Columns" -> {{False}}, "Rows" -> {{False}}}, GridBoxItemSize -> { "Columns" -> {{All}}, "Rows" -> {{All}}}, GridBoxSpacings -> { "Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}], "Grid"], Alignment -> Left, AppearanceElements -> None, ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction -> "ResizeToFit"], LineIndent -> 0, StripOnInput -> False], { FontFamily -> "Times", GrayLevel[0], FontSize -> 11}, Background -> Automatic, StripOnInput -> False], TraditionalForm]& ), InterpretationFunction :> (RowBox[{"LineLegend", "[", RowBox[{ RowBox[{"{", RowBox[{ TemplateBox[<| "color" -> RGBColor[0.368417, 0.506779, 0.709798]|>, "RGBColorSwatchTemplate"], ",", TemplateBox[<| "color" -> RGBColor[0.880722, 0.611041, 0.142051]|>, "RGBColorSwatchTemplate"]}], "}"}], ",", RowBox[{"{", RowBox[{#, ",", #2}], "}"}]}], "]"}]& ), Editable -> True], TraditionalForm]], Scaled[{0.23, 0.15}]], Frame->{{True, True}, {True, True}}, FrameLabel->{{ FormBox[ TagBox[ RowBox[{ SubscriptBox["G", "0"], "(", "\[Mu]", ")"}], HoldForm], TraditionalForm], None}, { FormBox[ TagBox["\"\[Mu] / \[Sigma]\"", HoldForm], TraditionalForm], None}}, FrameStyle->GrayLevel[0], FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->All, ImageSize->340, LabelStyle->{FontFamily -> "Times", GrayLevel[0], FontSize -> 11}, Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}}, PlotRange->{{-0.1, 4.1}, {-1.7, 1.7}}, PlotRangeClipping->True, PlotRangePadding->{{0, 0}, {0, 0}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{ 3.91467428176404*^9, {3.914674315286446*^9, 3.914674367653089*^9}, { 3.914674511733942*^9, 3.914674575663275*^9}, {3.914674678219386*^9, 3.9146747919968357`*^9}, {3.9155306879078913`*^9, 3.9155306956452303`*^9}, 3.915530747157572*^9, 3.915530784019471*^9, {3.9155308952600613`*^9, 3.9155309238035173`*^9}, 3.915532486262419*^9, 3.915771556736268*^9, 3.916292519478231*^9, {3.924160983419207*^9, 3.924160986282316*^9}, 3.924161184537413*^9, 3.924162190364997*^9, {3.924162312284491*^9, 3.9241623202322807`*^9}, {3.926760723533168*^9, 3.926760740655086*^9}, 3.926760772978333*^9, {3.926762098244166*^9, 3.926762107827166*^9}, { 3.92676233110467*^9, 3.926762350345076*^9}}, CellLabel-> "Out[250]=",ExpressionUUID->"91d0dd3d-b26c-45d4-b0c1-2273c50e7d81"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Export", "[", RowBox[{ "\"\<~/doc/research/frsb_kac-rice/papers/marginal/figs/large_deviation.pdf\>\ \"", ",", "pG"}], "]"}]], "Input", CellChangeTimes->{{3.92416107227991*^9, 3.9241611012234797`*^9}, { 3.926760703598503*^9, 3.926760712779284*^9}}, CellLabel-> "In[251]:=",ExpressionUUID->"0c67dbb9-49b6-4edb-9219-e0a5cdf9b31d"], Cell[BoxData["\<\"~/doc/research/frsb_kac-rice/papers/marginal/figs/large_\ deviation.pdf\"\>"], "Output", CellChangeTimes->{{3.924161094512546*^9, 3.924161102039678*^9}, 3.9241611864665627`*^9, 3.924162191599287*^9, 3.924162320711782*^9, { 3.926760725505782*^9, 3.926760742789874*^9}, 3.926760774237672*^9, { 3.926762102041052*^9, 3.926762108382854*^9}, 3.926762353553878*^9}, CellLabel-> "Out[251]=",ExpressionUUID->"bb552b18-713a-411e-b9bb-b974b3ab87fd"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"f34", "=", RowBox[{"Function", "[", RowBox[{"q", ",", RowBox[{ FractionBox["1", "2"], RowBox[{"(", RowBox[{ SuperscriptBox["q", "3"], "+", SuperscriptBox["q", "4"]}], ")"}]}]}], "]"}]}], ";"}]], "Input", CellChangeTimes->{{3.924161369901463*^9, 3.924161381181401*^9}}, CellLabel->"In[21]:=",ExpressionUUID->"06818f5b-ee0e-4634-b547-e05e415c12a6"], Cell[BoxData[ RowBox[{ RowBox[{"\[Mu]m", "[", "f_", "]"}], ":=", SqrtBox[ RowBox[{"4", RowBox[{ RowBox[{"f", "''"}], "[", "1", "]"}]}]]}]], "Input", CellChangeTimes->{{3.893505745813592*^9, 3.893505753575885*^9}}, CellLabel->"In[22]:=",ExpressionUUID->"ab28ae26-b52f-4a56-978d-e7ee3f806eda"], Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"\[Rho]", "[", RowBox[{"f_", ",", "\[Mu]_"}], "]"}], "[", "\[Lambda]_", "]"}], ":=", RowBox[{ FractionBox["2", RowBox[{"\[Pi]", " ", RowBox[{"\[Mu]m", "[", "f", "]"}]}]], SqrtBox[ RowBox[{"1", "-", FractionBox[ SuperscriptBox[ RowBox[{"(", RowBox[{"\[Lambda]", "-", "\[Mu]"}], ")"}], "2"], SuperscriptBox[ RowBox[{"\[Mu]m", "[", "f", "]"}], "2"]]}]]}]}]], "Input", CellChangeTimes->{{3.895206238820385*^9, 3.895206269434855*^9}, { 3.895206301235565*^9, 3.895206327707943*^9}}, CellLabel->"In[23]:=",ExpressionUUID->"eec97d73-ae34-443d-825f-cbb8adebe02f"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"340", "/", "3."}]], "Input", CellChangeTimes->{{3.92676122589403*^9, 3.926761230869504*^9}}, CellLabel-> "In[107]:=",ExpressionUUID->"83c0ad8f-8d45-4089-b5a6-d03efc9cdfbe"], Cell[BoxData["113.33333333333333`"], "Output", CellChangeTimes->{{3.926761228984556*^9, 3.926761231318728*^9}}, CellLabel-> "Out[107]=",ExpressionUUID->"28c77ad6-9821-4980-bae1-816090bc8085"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"plotSpec", "[", RowBox[{"\[Mu]_", ",", "lab_"}], "]"}], ":=", RowBox[{"Plot", "[", RowBox[{ RowBox[{ RowBox[{"\[Rho]", "[", RowBox[{"f34", ",", "\[Mu]"}], "]"}], "[", "\[Lambda]", "]"}], ",", RowBox[{"{", RowBox[{"\[Lambda]", ",", RowBox[{"-", "3"}], ",", "15"}], "}"}], ",", RowBox[{"AspectRatio", "->", RowBox[{"2", "/", "3"}]}], ",", RowBox[{"PlotRange", "->", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "3"}], ",", "15"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", RowBox[{"4", FractionBox["4", "10"], FractionBox["2", RowBox[{"\[Pi]", " ", RowBox[{"\[Mu]m", "[", "f34", "]"}]}]]}]}], "}"}]}], "}"}]}], ",", RowBox[{"FrameStyle", "->", "Black"}], ",", RowBox[{"ImageSize", "->", "118"}], ",", RowBox[{"PlotRangeClipping", "->", "False"}], ",", RowBox[{"Frame", "->", "True"}], ",", RowBox[{"FrameTicks", "->", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"None", ",", "None"}], "}"}], ",", RowBox[{"{", RowBox[{"None", ",", RowBox[{"{", "0", "}"}]}], "}"}]}], "}"}]}], ",", RowBox[{"ImagePadding", "->", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"Automatic", ",", "Automatic"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "Automatic"}], "}"}]}], "}"}]}]}], "]"}]}]], "Input",\ CellChangeTimes->{{3.895206335716663*^9, 3.895206991361381*^9}, { 3.895207039378053*^9, 3.895207059810026*^9}, {3.895207141811533*^9, 3.895207259773934*^9}, {3.895208615831658*^9, 3.895208730425652*^9}, { 3.895208838140219*^9, 3.895208840299837*^9}, {3.924161536072356*^9, 3.924161555080598*^9}, {3.924163189991559*^9, 3.924163211615596*^9}, { 3.926760792780966*^9, 3.926760811804823*^9}, {3.926760862262025*^9, 3.926760865550117*^9}, {3.9267609191675*^9, 3.926761098970653*^9}, { 3.926761143347569*^9, 3.9267611774925413`*^9}, {3.926761234053639*^9, 3.9267612615498877`*^9}, {3.926761382752357*^9, 3.926761382912137*^9}, { 3.926761546923317*^9, 3.9267615499875097`*^9}, {3.9267615927161493`*^9, 3.926761666941782*^9}, {3.926761736607151*^9, 3.9267617376231403`*^9}, { 3.926761851425713*^9, 3.926761878833948*^9}}, CellLabel-> "In[215]:=",ExpressionUUID->"def223fd-aeee-4091-9e76-97462b62b6cc"], Cell[BoxData[ RowBox[{ RowBox[{"plotSpecWith\[Mu]Arrow", "[", RowBox[{"\[Mu]_", ",", "lab_", ",", RowBox[{"lab2_", ":", "None"}]}], "]"}], ":=", RowBox[{"Show", "[", RowBox[{ RowBox[{"plotSpec", "[", RowBox[{"\[Mu]", ",", "lab"}], "]"}], ",", RowBox[{"Prolog", "->", RowBox[{"{", RowBox[{ RowBox[{"Arrow", "[", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", RowBox[{ FractionBox["2", RowBox[{"\[Pi]", " ", RowBox[{"\[Mu]m", "[", "f34", "]"}]}]], FractionBox["1", "8"]}]}], "}"}], ",", RowBox[{"{", RowBox[{"\[Mu]", ",", RowBox[{ FractionBox["2", RowBox[{"\[Pi]", " ", RowBox[{"\[Mu]m", "[", "f34", "]"}]}]], FractionBox["1", "8"]}]}], "}"}]}], "}"}], "]"}], ",", RowBox[{"{", RowBox[{"Dashed", ",", RowBox[{"Line", "[", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\[Mu]", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"\[Mu]", ",", FractionBox["2", RowBox[{"\[Pi]", " ", RowBox[{"\[Mu]m", "[", "f34", "]"}]}]]}], "}"}]}], "}"}], "]"}], ",", RowBox[{"Text", "[", RowBox[{ RowBox[{"Style", "[", RowBox[{"\"\<\[Mu]\>\"", ",", RowBox[{"SingleLetterItalics", "->", "False"}], ",", RowBox[{"Directive", "[", RowBox[{ RowBox[{"FontFamily", "->", "\"\\""}], ",", "Black", ",", RowBox[{"FontSize", "->", "10"}]}], "]"}]}], "]"}], ",", RowBox[{"{", RowBox[{ RowBox[{"\[Mu]", "/", "2"}], ",", RowBox[{ FractionBox["2", RowBox[{"\[Pi]", " ", RowBox[{"\[Mu]m", "[", "f34", "]"}]}]], FractionBox["5", "16"]}]}], "}"}]}], "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"Arrowheads", "[", RowBox[{"{", RowBox[{ RowBox[{"-", "Automatic"}], ",", "Automatic"}], "}"}], "]"}], ",", RowBox[{"Arrow", "[", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"\[Mu]", "+", RowBox[{"\[Mu]m", "[", "f34", "]"}]}], ",", RowBox[{ FractionBox["2", RowBox[{"\[Pi]", " ", RowBox[{"\[Mu]m", "[", "f34", "]"}]}]], FractionBox["1", "8"]}]}], "}"}], ",", RowBox[{"{", RowBox[{"\[Mu]", ",", RowBox[{ FractionBox["2", RowBox[{"\[Pi]", " ", RowBox[{"\[Mu]m", "[", "f34", "]"}]}]], FractionBox["1", "8"]}]}], "}"}]}], "}"}], "]"}]}], "}"}], ",", RowBox[{"Text", "[", RowBox[{ RowBox[{"Style", "[", RowBox[{"\"\<2\[Sigma]\>\"", ",", RowBox[{"SingleLetterItalics", "->", "False"}], ",", RowBox[{"Directive", "[", RowBox[{ RowBox[{"FontFamily", "->", "\"\\""}], ",", "Black", ",", RowBox[{"FontSize", "->", "10"}]}], "]"}]}], "]"}], ",", RowBox[{"{", RowBox[{ RowBox[{"\[Mu]", "+", RowBox[{ RowBox[{"\[Mu]m", "[", "f34", "]"}], "/", "2"}]}], ",", RowBox[{ FractionBox["2", RowBox[{"\[Pi]", " ", RowBox[{"\[Mu]m", "[", "f34", "]"}]}]], FractionBox["5", "16"]}]}], "}"}]}], "]"}]}], "}"}]}], RowBox[{"(*", RowBox[{"Epilog", "->", RowBox[{"Text", "[", RowBox[{ RowBox[{"Style", "[", RowBox[{ RowBox[{"\"\<(\>\"", "<>", "lab", "<>", "\"\<)\>\""}], ",", RowBox[{"SingleLetterItalics", "->", "False"}], ",", RowBox[{"Directive", "[", RowBox[{"Bold", ",", RowBox[{"FontFamily", "->", "Times"}], ",", "Black", ",", RowBox[{"FontSize", "->", "10"}]}], "]"}]}], "]"}], ",", RowBox[{"{", RowBox[{"15.5", ",", RowBox[{ FractionBox["2", RowBox[{"\[Pi]", " ", RowBox[{"\[Mu]m", "[", "f34", "]"}]}]], FractionBox["11.25", "8"]}]}], "}"}]}], "]"}]}], "*)"}], ",", RowBox[{"FrameLabel", "->", RowBox[{"{", RowBox[{"None", ",", "lab2"}], "}"}]}], ",", RowBox[{"RotateLabel", "->", "False"}]}], "]"}]}]], "Input", CellChangeTimes->{{3.895207041002092*^9, 3.89520705502596*^9}, { 3.895207323903994*^9, 3.895207346375869*^9}, {3.895207386000701*^9, 3.895207478002494*^9}, {3.895208660000988*^9, 3.895208665288981*^9}, { 3.895208845532427*^9, 3.895208847221174*^9}, {3.895208902317669*^9, 3.895208902621669*^9}, {3.924161569803562*^9, 3.92416157199356*^9}, 3.92416160537091*^9, {3.924161669195086*^9, 3.924161677339909*^9}, { 3.924161885591449*^9, 3.924161886295874*^9}, {3.924163229224842*^9, 3.924163238832789*^9}, {3.926760887735845*^9, 3.926760895487254*^9}, { 3.926761390288784*^9, 3.926761432385374*^9}, {3.9267618276411123`*^9, 3.9267618299854116`*^9}, {3.926761917490697*^9, 3.926761920730276*^9}}, CellLabel-> "In[224]:=",ExpressionUUID->"f1078ecd-48ad-4003-b086-93bd8c2242bb"], Cell[BoxData[ RowBox[{ RowBox[{"plotSpecWithIso", "[", RowBox[{"\[Mu]_", ",", "\[Lambda]i_", ",", "lab_", ",", RowBox[{"lab2_", ":", "None"}]}], "]"}], ":=", RowBox[{"Show", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"plotSpec", "[", RowBox[{"\[Mu]", ",", "lab"}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Prolog", "->", RowBox[{"{", RowBox[{"(*", RowBox[{ RowBox[{"Line", "[", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\[Lambda]i", ",", RowBox[{ FractionBox["2", RowBox[{"\[Pi]", " ", RowBox[{"\[Mu]m", "[", "f34", "]"}]}]], FractionBox["1", "8"]}]}], "}"}], ",", RowBox[{"{", RowBox[{"\[Lambda]i", ",", RowBox[{ FractionBox["2", RowBox[{"\[Pi]", " ", RowBox[{"\[Mu]m", "[", "f34", "]"}]}]], FractionBox["5", "8"]}]}], "}"}]}], "}"}], "]"}], ",", RowBox[{"Text", "[", RowBox[{ RowBox[{"Style", "[", RowBox[{ "\"\<\!\(\*SubscriptBox[\(\[Lambda]\), \(0\)]\)\>\"", ",", RowBox[{"SingleLetterItalics", "->", "False"}], ",", RowBox[{"Directive", "[", RowBox[{ RowBox[{"FontFamily", "->", "\"\\""}], ",", "Black", ",", RowBox[{"FontSize", "->", "10"}]}], "]"}]}], "]"}], ",", RowBox[{"{", RowBox[{ RowBox[{"\[Lambda]i", "+", "0.1"}], ",", RowBox[{ FractionBox["2", RowBox[{"\[Pi]", " ", RowBox[{"\[Mu]m", "[", "f34", "]"}]}]], FractionBox["6.25", "8"]}]}], "}"}]}], "]"}], ","}], "*)"}], RowBox[{ RowBox[{"Arrow", "[", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", RowBox[{ FractionBox["2", RowBox[{"\[Pi]", " ", RowBox[{"\[Mu]m", "[", "f34", "]"}]}]], FractionBox["1", "8"]}]}], "}"}], ",", RowBox[{"{", RowBox[{"\[Mu]", ",", RowBox[{ FractionBox["2", RowBox[{"\[Pi]", " ", RowBox[{"\[Mu]m", "[", "f34", "]"}]}]], FractionBox["1", "8"]}]}], "}"}]}], "}"}], "]"}], ",", RowBox[{"{", RowBox[{"Dashed", ",", RowBox[{"Line", "[", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\[Mu]", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"\[Mu]", ",", FractionBox["2", RowBox[{"\[Pi]", " ", RowBox[{"\[Mu]m", "[", "f34", "]"}]}]]}], "}"}]}], "}"}], "]"}], ",", RowBox[{"Text", "[", RowBox[{ RowBox[{"Style", "[", RowBox[{"\"\<\[Mu]\>\"", ",", RowBox[{"SingleLetterItalics", "->", "False"}], ",", RowBox[{"Directive", "[", RowBox[{ RowBox[{"FontFamily", "->", "\"\\""}], ",", "Black", ",", RowBox[{"FontSize", "->", "10"}]}], "]"}]}], "]"}], ",", RowBox[{"{", RowBox[{ RowBox[{"\[Mu]", "/", "2"}], ",", RowBox[{ FractionBox["2", RowBox[{"\[Pi]", " ", RowBox[{"\[Mu]m", "[", "f34", "]"}]}]], FractionBox["5", "16"]}]}], "}"}]}], "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"Arrowheads", "[", RowBox[{"{", RowBox[{ RowBox[{"-", "Automatic"}], ",", "Automatic"}], "}"}], "]"}], ",", RowBox[{"Arrow", "[", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"\[Mu]", "+", RowBox[{"\[Mu]m", "[", "f34", "]"}]}], ",", RowBox[{ FractionBox["2", RowBox[{"\[Pi]", " ", RowBox[{"\[Mu]m", "[", "f34", "]"}]}]], FractionBox["1", "8"]}]}], "}"}], ",", RowBox[{"{", RowBox[{"\[Mu]", ",", RowBox[{ FractionBox["2", RowBox[{"\[Pi]", " ", RowBox[{"\[Mu]m", "[", "f34", "]"}]}]], FractionBox["1", "8"]}]}], "}"}]}], "}"}], "]"}]}], "}"}], ",", RowBox[{"Text", "[", RowBox[{ RowBox[{"Style", "[", RowBox[{"\"\<2\[Sigma]\>\"", ",", RowBox[{"SingleLetterItalics", "->", "False"}], ",", RowBox[{"Directive", "[", RowBox[{ RowBox[{"FontFamily", "->", "\"\\""}], ",", "Black", ",", RowBox[{"FontSize", "->", "10"}]}], "]"}]}], "]"}], ",", RowBox[{"{", RowBox[{ RowBox[{"\[Mu]", "+", RowBox[{ RowBox[{"\[Mu]m", "[", "f34", "]"}], "/", "2"}]}], ",", RowBox[{ FractionBox["2", RowBox[{"\[Pi]", " ", RowBox[{"\[Mu]m", "[", "f34", "]"}]}]], FractionBox["5", "16"]}]}], "}"}]}], "]"}]}], "}"}]}], ",", "\[IndentingNewLine]", RowBox[{"Epilog", "->", RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"ColorData", "[", "97", "]"}], "[", "1", "]"}], ",", RowBox[{"PointSize", "[", "0.035", "]"}], ",", RowBox[{"Point", "[", RowBox[{"{", RowBox[{"\[Lambda]i", ",", "0"}], "}"}], "]"}]}], "}"}], RowBox[{"(*", RowBox[{",", RowBox[{"Text", "[", RowBox[{ RowBox[{"Style", "[", RowBox[{ RowBox[{"\"\<(\>\"", "<>", "lab", "<>", "\"\<)\>\""}], ",", RowBox[{"SingleLetterItalics", "->", "False"}], ",", RowBox[{"Directive", "[", RowBox[{"Bold", ",", RowBox[{"FontFamily", "->", "\"\\""}], ",", "Black", ",", RowBox[{"FontSize", "->", "10"}]}], "]"}]}], "]"}], ",", RowBox[{"{", RowBox[{"15.5", ",", RowBox[{ FractionBox["2", RowBox[{"\[Pi]", " ", RowBox[{"\[Mu]m", "[", "f34", "]"}]}]], FractionBox["11.25", "8"]}]}], "}"}]}], "]"}]}], "*)"}], "}"}]}], ",", RowBox[{"PlotRangeClipping", "->", "False"}], ",", RowBox[{"FrameLabel", "->", RowBox[{"{", RowBox[{"None", ",", "lab2"}], "}"}]}], ",", RowBox[{"RotateLabel", "->", "False"}]}], "\[IndentingNewLine]", "]"}]}]], "Input", CellChangeTimes->{{3.895207524427265*^9, 3.8952077663032837`*^9}, 3.895207868345312*^9, {3.895208668664829*^9, 3.895208669984865*^9}, { 3.895208789995199*^9, 3.895208790603132*^9}, {3.895208852260318*^9, 3.895208852893114*^9}, {3.895208907053636*^9, 3.895208909325506*^9}, { 3.924161579145795*^9, 3.924161601233445*^9}, {3.924161683147279*^9, 3.924161706499589*^9}, {3.924161755060856*^9, 3.924161863463529*^9}, { 3.92416326394566*^9, 3.924163267761709*^9}, {3.926761195167242*^9, 3.926761202022335*^9}, {3.926761477210664*^9, 3.9267614847470922`*^9}, { 3.9267618341854877`*^9, 3.926761834514394*^9}, {3.9267619242107487`*^9, 3.926761945522861*^9}}, CellLabel-> "In[234]:=",ExpressionUUID->"244eac76-0bbb-4e5a-9b06-0f294e654a3f"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"pS1", "=", RowBox[{"plotSpecWith\[Mu]Arrow", "[", RowBox[{"4", ",", "\"\\"", ",", RowBox[{"\[Rho]", "[", "\[Lambda]", "]"}]}], "]"}]}]], "Input", CellChangeTimes->{{3.895206695763502*^9, 3.895206699170811*^9}, { 3.8952070659141197`*^9, 3.89520706748992*^9}, {3.8952078755934877`*^9, 3.895207930386267*^9}, {3.895208671944873*^9, 3.89520867356842*^9}, { 3.924161638762431*^9, 3.9241616551542883`*^9}, {3.924161914919391*^9, 3.924161915904595*^9}, 3.924163199007743*^9, 3.926760876790394*^9, 3.9267612092132807`*^9, {3.92676142139275*^9, 3.926761424824665*^9}}, CellLabel-> "In[235]:=",ExpressionUUID->"28a195c1-e132-4911-80e7-05e2e1470f78"], Cell[BoxData[ GraphicsBox[ InterpretationBox[{ TagBox[{{{}, {}, TagBox[ {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[2], Opacity[1.], LineBox[CompressedData[" 1:eJwV13c8Vf8fB3AZ2Vx7hnsvoqxKROX9LiVRSL7ID2lSRpRVSqEhlAZCRoTI yOaeW52oKJSSQmZRSSl7RX6nv87j+cfncx7nM96v96HvP2Z7iJODgyNoCQfH v2dT9pnOiMVF0iVLbM6xbSt8CDIT0h9eJIkNejPX/vrCvtBN220+LJJHpg/m uO88CT/Pb7joRS6SOxVUk2mnz0JwtOHTyNxFUnOm11VxVzhw3VjNkX19kRTX 5Jd6f/08XE3U3lhzapHMLpNL+ZR4EeTTNU51H1gkq6+12qX5R4JegdKElMEi eeXg6ONVTdHALpVbtVp5kbSscw2asb0CZixJHyu+RVLrlgmPUN1VcK4TGLz4 8S85IXJSP/nRNbjcN9U5HfqX3D6rM6KvcROSW38JXPL4S4bxpv7+XXYT7r/4 aiRt+5fkxcbAuvVx0FT84Za+2l+y+3fq5V8YDyJhlbv9GhfIITk7uLT8FigH FIVzVCyQb15tzWpIvgV6R3JKYtMWyIj7Hs0Ngomwa1eCaJHfAsn0fSp8+lsi xNEDG4dkFkibXXlqJyKTIVvKZ+7kkgUy1nHS9fzPZKjkP6zJ/2Oe3Gib5CBq fRvaRv+7tPzxPFlhXnq+RTQF5GvXmh48OE/WVXu+iwtLhTv7J4nu4j/k0u+X NXpk7kCJ/fB3r+Q/ZJxC+bcEvAO1Fl9k5yP+kHyeg3V9Hnegf/X7QHmHP2SZ 5Zf9+tV3QJ2rYrXDwhz5io5pK2wzIP+u//032+dIL7lIwicgEyoHxpOefp4h HX7tOz54IQs4rx/r8WyYIf031QtF38sCq40/GJKlMySfjIXsrxdZ8DX+c/7B sBlSfTTCeE4gG6S3vX3EozJDTiytyN8ekw1BeUWftrlMk+EFQ1WZ53Ngnc8R zaa2SbJstvtA165cOC//xdufnCQVzI627/DOhTd1bqWK9ybJqcfpfQmRueCh 7LjeO3CSvGTRfI/1OBcS35jtFJGaJJcsK3PYppkHs6tV/WxsJ8jagefqX6bz gJjuqW5tGiNtZ9zeN5zJh1Vacd2KlWNkqbO2S+7NfMh12855KH2M9Hw9kOmT lw/xL8ssJ/3GyDUGhpsrW/PB93Zkj5TMGCksEJ1guKIA1GA1t8O+UTLwhNUy nbcFoCIsmF764zd5+6BxNJ1WBE0rHJvYG4fI5C71u5zaxaDH3YChQkOk8c+P IgcNiiGue30Fdn4ntzSWSjyCYnC+ppz2PPg7ySl7lmFvWww/J78eay4bJGUV zveoBRWDcE2ARL/mN5IQG725jSwGK4ebTgLSA+T67BDNoe0lkM6b+rakq5P8 y5LSnbQohVBf/3DO052kgswThr9tKTh3WK7ZrdBJqrIVTw3vKQXZ/Lm4iT0f SXLFxmPNHqVw3crR0bCtndzv8Vpn18VSiIiX6H349j1pZHSmaNeTUnhtJtkR e6WZlN+SquKnVwanZ1nrRy4Wkt6hS4X+4yyHdFf1y1KdLfBWcvGtqksFRPXx NM7mfIG6930PA1MrwdjEyWlD5Ai4h5/NFU+pglcrpqxBZQq+Z/crGflVw5bP 5mYX102Bwq9Zmxj/aiCSbm94ZTMFIjfY9O6gasjl26T5v7ApuMSndDcotBrO f43mDPo8BQWNy/FadDVsyKRXFGVNwyRHfoVNdjXky+2UV9Kchdzv9C+SbdVw mS9rYH7VPLyxVLrYsYYFHwwfzd01nwce8590LwMWMNw/0Cz3zkPXlaSO+XUs IJ7zbUyKmQe+kd40WRMW/Az3jl/7bR4G9OSuG5mzwGrBwMwnZQG8jPlu0J1Z IDn28l7v0kUoPKj37ko4C5qHg9Z+GuZAqz0CL8dfssAxr3atxhwHJs5ODZk0 saDvoLDBsaVLsHTLwOyl1ywY6cw0WFBagqabJvok3rFAvOGVoZzNEmSMregX 72KBfQ7TeFfpElzVQOoWDbOgx7XZpCaQEyfZghdcRAk4LC8PfBGceM3dxNJd jIDf7w+CdSwnntj6QuSYBAEcO+eg+x4nBlbUxAbLEMBYr7Zptp0Tj+pZXDyh TI2XCTFdtZ4L/9fyIJ9fl4BfzermGYtc6LpyapC1g4ByyRPNRYLcWJ94+mOI FQGn9pD2D2W4kXB1+77ehgCefodDbbrc+OfmE7fK3QQoTkWGC7txo0aP5ZM4 JwIsFH88PPmEG32YOnHT7gRkezxYZRvGgxt7r3I6hhFwtPBP9d4rPGixqtam J5wAvbFt6J3Egy/fHKnff56AhyF9VpElPKiDe3QPXyKg5aqY1+NPPPjBK3DM /gr1fRUnclZsXopJqYpRfYkEOC9Zp8DFxYsXl58WTCgiQCjcvRRFeJHTyrCg 8QEBjzhvbQ+V48W64o/EYjEBStxTQbO6vBi8p4xxoIyA3qXlrb+defHJpyiG TDUB+4X0rnZV8qK5bC1Nv4aAIzIaSyqP8mHwaM5S0xYC5BMdEscD+HAus7be 7B0BDbKXdFeF8aFi2+y8eSsBK+S/uhTc4sNBEe9n5h8I+KmYRWQ+40MVa4Om tR8J8GWo+Mcq8WOwZ9fA808EBGrLfvNo4Ufh2GwH8jcB/C0XxpN6+JE5qF5w d4SAlMDxxYYhfow7261/cZSAGvK1rDaXAN43TO/fOk59r+0Fi9E1AjgttYv9 YIqAzMCxwpPxAmjgIX5Se4GAtQpuxP0MAeRLs1KbpPyCfFXXWSiAx1zc+dh/ CRjmy+vdWCeAYisaT2ziYMO623vFOKcFcKvQtf51XGx4RTb5RzkKYu+pk9ta +NjgdtA4jH1QED/rypw4w8+GMb7cKz99BfGSV0ebugAbZG0jcqwuC2J9kc1O f0E27B8wahcnBDHSO/nHrDAbZvjurb+tIIQyiT9pxeJsiC6UNG9aLoTt1g+6 TSTYoGQbbrewRgjPRIV9aaRsetvFe+8OIYx6UpvTJ8mGq9qS6cwzQjjddm9s QpoNqrZhnAU9Quj/2abuhTwbMle3KAkPCeHjwYqHaxTYoCzBXO8zKYROLt2a qZTlW5+d0BMSxr/zhIenIhtE7fm+lBsJ44xOwqnJZWyIMdizRHqrMM6lTGrY KbFBQOb+siAbYRT1Sbcqoczdbmlv5C6MIzpiHO7KbJjbE1v/KE4Yk5hUyKuw Idi4r1/pjjCKhwS4i9PZMCm/iuNcvjDmb4/ffoDySGfLus21wmjUYR3AwWDD Vxfp+3W/hdFzXNlLg8mGgybudcv/CGOG4J94H8qflKo/Ry4VwbxvC4ZllLt6 9yhYLhNBUMgbMFRlw9t9qTHNFiJIajZ80lFjg9XmX7l69iJ4eljutQflJgY8 v75PBBVp31ZnUK7r71vYHSyC36yUDwurs2HLs1XyFREi6FGWor+Jck1WuIF0 rAhe4H0YcoLyw0Oqx9qzRXBRn9P/HWVjs4BooxIRfGJqpLZkORuq1OvuJT8U wYmC1dbalEu/ufc5vxNBH5Uo4TDKei+q5x/1iCCX1VRGLuXCXH455SERLFPc 9OA15dwj+bs+cYgit1CMvrQGG9Qt5r03C4limkligSHluyt2Rt2VEcUdBrdT HSin/fhVe0hHFOtqkoduUFZogt46I1Fstc8wK6KcWHDtz/KtohhTVqrwgvJN 79X6Q/8TRbWRpaumKdOsImws3UWRXrPLT0iTOk86rV4Fx0Xxz/qqFSqUBUXV LguHiqJdubHLasqRvwOyfS6L4sv1vXymlJe+qatpjhNFicx72raUI4plevTu iOKEf0LjXsoc1z3mrueLoglH0WdPyqF+LOnxSlHs2DlyPJByT4B57ranonhu G7fWOcomp9qMUppFMfH+OvlIymmhhxtHOkWRnz9241XKC+GTzlsHRXEoiS/h BmXnS+d/JU2IYrBRDjP+33zP+TGIg4ZSRzy+/rOI+dvIjKU03GVt3RP3b/6G xLeNQjQcqHIS/DfeZ4eb/JQ4DYskoryv/Hvf6+UHVORoyA7u4r5E+bXN73wL ZRoaZdq8DaX8t6Vywl+NhmEjAy3+lHX+C92YvpKG4kdu8R+h7Nq29eLLVTSM qTwU8L9/67lHuHnckIaFGjuld1B+1Nkqo2RCQ8dyi5/GlH+6pLiZb6HmG3ea Xk5Zse9A3nELGoLaKUMJyjv2rxxLsaFhpXZWwTy1X6cHxozr7WmokNBqP0C5 4DARMepMw4KYpQYNlLsGw5oUDtCwfEDf4t/+bximufoeo+E28BXzo+x1rD0n OYBaD7rfM2vKKaPpv5+F0LCOaV+gRXl+UidMLpKGqnuL5T9R51EreOql6VUa dqRJZ1RTdp57JO4TR8MzQqbOVymz/+7Iqr1DQ7W4Jl99ykPnJId/5tDQqlOm gZuyPFfXWplCGmbf53H8d19O8XrWe7JomGmdIeb57/7QLg9JttDwR9mDufPU fTx6w2YNtNMw/uHgtBnlZEnZ00d6aNja46nJS3lO9p7w4yEapnst0wyn7juL /lzPnUsM/xdWnrSfqgeDd2NOXucXw4X8ekNpyrLqdrVsUTG0iq/gf0HVl+AV /btpimJ4h9Fvrk553ZolQSx9MeTyY69+RdWrqi0bHwkeFkOZhv6sZ1T9uxh9 YbuclxhKCQ4edqFs1/LqvfpxMfQNM/eaoOrlyF7XX5tCxVCR6xUuo7wi5Kxy cIIYxogmizhR9TetpCZsoE4Mr+1o1TxH1WevGX6RsSYxfBnkIbMgxYb1YJu8 2CKGpquHzYIptzd9LpXvFUPp4/s8j1D1XXyQa8BmWgyTUsTqDah8uKhkZvZo uTjmCNmWnKHyw+7Q1ZYGbXGM89Qs6RFiA7Pgg2v7GnH0y9Ee3Uj5iZF70DiI I/06rJqm8mjOLjJX01Ecz5bxF9lR+eUT3SCQECmOx9zEz7A52WA/Y9Xs810c lW/JBxhS+SnfHXlA8rc4PvkSWekzSUBPTe00a0Icz8MGn6wJAg5FG6jwcEjg nPk3EKTy119Jye+2tAQuDzzhUUfl980tw+IvTCWw+Htq0dggAW+uRdvT0yQw vkOWk0Hlf1zA86G6uxLYQIt/uryDAEenxVCvPAl8pxowtbKdgD7miXtV5RK4 Z2fJA12qf/hd6TSzs1ECuQbWe6pS/YdIt2byqRkJ1JUv6al9SYCl5ovud7aS WLkw5N5SRfVHKhla446SeDDBOSWmkurnpE+FiO+VxHuO0pNbKv71P1pyuzwl UcHSRry4lICxnli71xGS2PHKbOJYIQHJcQ6NL8olMfOrqGxCJgFDi1+rH0lL YWxA3/uT0QSkT5G83YpS6DO+bOnMZQLshhPt5xlSmH7aYJd/JAGPP1pMGOtK 4cYP+QbuFwi4UVGkW71NCk2zj681OEuAsWdgTmmwFB631a0KPk5A1AeeuHsf pdDPaYvDFQcC9D3fDLn2SWH9vccjP/6j1n8xeZP0Vyncu8y3w9yOgDWaer/P j0rhJsW1txaofrQrxMliP580XvniyLa1IECX/oBjmYE0zjQYu+RvIKDV09H7 xnVpVL/FlS+hQoDyknyzM+YyuFf9nGLBJxZ4OE31yVjJ4NV1vMtzellQXLYp pHS3DF4L+nEqrZsFmw+3P/jmKoPCjdoLlztYcLiRR842QAY/puq67XjLgqJ4 tx/qmTIo8t3MNPQJC0xWSF9780cG/StVz9xMZYHz7rAO5gNZbFZ0ETpqy4KE x5466ypkccs+np2PrFnwRtM+YgdbFme/bzssspMFWzhWagfUy2LVcJfy/W0s 0C5sPVfXK4uN1r236zew4O9SDY0jNDlUX2ool6zOgjvE68AiPznMpmsIJM5U Qz9dUdJIXx77YwdKG+OrQXzljO8XI3nUlsmMqbtRDZv1W19dB3l8PZ+0h4yt hjtmMZeGLOTxPeg23L9cDa6e83O398ljodipEY8z1fCxvOvT36vy6PP1W2bY wWpo2Zb64Nl3ebTRD5lRWlUNT7yVLG3SFdDh4cn+9qdVMLj2i+YHjWX4/KxP kmxVJVSpdQ9q5SvhGckHOzLOVoDPdqWWWn4VjA6NI4RWlsOm6wNub4RU8Omn ituvVctBsuP+725RFUwvsteOUSoHwsNQeFZKBYmW0V1zYuXAE2ljrstQwant LdqZM2WQUhf++LYxNf7SubOKz8ugwfTbfX9PFZz9IGmU4lQG6ibFEeqvVPCm /uZ9BYGlMGF3TJrjjQpqfQgSKT9WCjWeOnkdLSp4quzo+0rq/9g5qeB1TLsK KrWrJBc6lcKNiVy58X4VtFVdt3evSSks3s94QM6pYKf0+uLX3KXQLnOz01GD jnYN9C3FV0rg8mjAmugIOobZcdV8vVIMOUcn3e0v0pFXdWNk3oViqO33T6Ff puOaxJpnh84Uw/z7EzzVV+nIc5IR2OBVDL6EX9tAEh3bLrulm1oWg32Ed4hJ MR3v/nJ492NpMahKHXo62kXHOPA+f3G0CDZdHZh+2EvHQaWRIJPeInDlPagV +ZmOWw0U3L42FUHi7P54pUE6Hv2kcJsntwgEe9zcLcfpeNI++WyoSxGM5TgL ZvMz0H3V0RaT54VArrPb7WjAwA61vBi+SwXQasw85GbEwP6JW62PfQtgaMNY oMcGBurP1o85OxWA5KZrycGbGfi8fU+jtXYBHN3e9CnRioGXJ9Q9+FvyQdpp i2/HYQaOc/TnxUnng3eI/hWnWwwMeCF2VygqD8LPcKXvT2bgq82ZC4a+eZB4 tqX4aCoDW32e39xknwe1Eb6tp+4ysK81q3mYngeyMQUKtx8w8F3fsti0qlx4 lqJ6v7OegR/b4lVmO++BwmPJeucZBi6JevS6kDsHtGK7uvT+MDB48OXxim/Z sMEta4z7LwOT9UyFYxuywZlTX6mQi4mSHCeMKmKzIcVsd8CCCBN/qHO/qZLJ BsXm68w0NSb6CVdJvl+WBVp39hgd12DiNX1L48SFu7DBj25ttpKJwgVbXil1 3wVniZJTv/SYOPLnvwt+t+9CqsObtyYbmMhlsmKSX+ouKPWJnOu1ZeJjCc7p p3MZoFPyIb7sPyauP/DxlcyHDDAJT8u/5MhEjkeFztIlGeCqqtOm68pEvi1s RcHDGZDusVPn3BEmnvEZULjReAdURqO7VM4xUVQtNMCOJx30anePTYQzUXd4 /u/HojTAmwp8Ly8wsXrT2lP/OaSB29r8NX7RTCw+wqItyU6FjJMNUTUJTFy7 7h5NeHUKMDj5jfYXMpFRwiWkxZsEK51VtE4UM/HIk64bj64lgn6lofL5MibG 18hKfpdJhK1HD/PksJgYIvnsY6DSLbB6dmam8iETV1wMg4jUBLBXiv9RTzJx mzxEn5ZLAI+Wp2+/P2diHZHWs4M3Hny1Op/NvWBih+5vrZTgODh5caxKsImJ +y2Tvj//chOijOlp2i1M/JzeraFcegNuxq27bvKeiW16IllutBuQ8sv6vHU7 NZ9Cq1Kix3UozAw96tfDxEqtF1Y/uK5B5Xy8S/gnJi4/dnylftRVeGxfaHNz gNqvuuDRqJkYqC9+Zpr1jYkfwsai3K2j4Y1Al0HFEBPLTb9Or426DO0HxzXr hpno+ifEOC/zEnx6LLCsbYSJ7c0habmxF2BIlkEbHGdiBfNXma5pBIwdN+Ka nWKiV6jCpXPZ5+BPk80U/xyTqp/DbzJFQ4B7ucd3+QUmPnWJTurtOg5CMy9d uheZ2Bv9d32MjQ38H2V+zho= "]]}, Annotation[#, "Charting`Private`Tag#1"]& ]}, {}}, {"WolframDynamicHighlight", <| "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>}], StyleBox[ DynamicBox[(Charting`HighlightActionBox["DynamicHighlight", {}, Slot["HighlightElements"], Slot["LayoutOptions"], Slot["Meta"], Charting`HighlightActionFunction["DynamicHighlight", {{{{}, {}, Annotation[{ Directive[ Opacity[1.], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[2]], Line[CompressedData[" 1:eJwV13c8Vf8fB3AZ2Vx7hnsvoqxKROX9LiVRSL7ID2lSRpRVSqEhlAZCRoTI yOaeW52oKJSSQmZRSSl7RX6nv87j+cfncx7nM96v96HvP2Z7iJODgyNoCQfH v2dT9pnOiMVF0iVLbM6xbSt8CDIT0h9eJIkNejPX/vrCvtBN220+LJJHpg/m uO88CT/Pb7joRS6SOxVUk2mnz0JwtOHTyNxFUnOm11VxVzhw3VjNkX19kRTX 5Jd6f/08XE3U3lhzapHMLpNL+ZR4EeTTNU51H1gkq6+12qX5R4JegdKElMEi eeXg6ONVTdHALpVbtVp5kbSscw2asb0CZixJHyu+RVLrlgmPUN1VcK4TGLz4 8S85IXJSP/nRNbjcN9U5HfqX3D6rM6KvcROSW38JXPL4S4bxpv7+XXYT7r/4 aiRt+5fkxcbAuvVx0FT84Za+2l+y+3fq5V8YDyJhlbv9GhfIITk7uLT8FigH FIVzVCyQb15tzWpIvgV6R3JKYtMWyIj7Hs0Ngomwa1eCaJHfAsn0fSp8+lsi xNEDG4dkFkibXXlqJyKTIVvKZ+7kkgUy1nHS9fzPZKjkP6zJ/2Oe3Gib5CBq fRvaRv+7tPzxPFlhXnq+RTQF5GvXmh48OE/WVXu+iwtLhTv7J4nu4j/k0u+X NXpk7kCJ/fB3r+Q/ZJxC+bcEvAO1Fl9k5yP+kHyeg3V9Hnegf/X7QHmHP2SZ 5Zf9+tV3QJ2rYrXDwhz5io5pK2wzIP+u//032+dIL7lIwicgEyoHxpOefp4h HX7tOz54IQs4rx/r8WyYIf031QtF38sCq40/GJKlMySfjIXsrxdZ8DX+c/7B sBlSfTTCeE4gG6S3vX3EozJDTiytyN8ekw1BeUWftrlMk+EFQ1WZ53Ngnc8R zaa2SbJstvtA165cOC//xdufnCQVzI627/DOhTd1bqWK9ybJqcfpfQmRueCh 7LjeO3CSvGTRfI/1OBcS35jtFJGaJJcsK3PYppkHs6tV/WxsJ8jagefqX6bz gJjuqW5tGiNtZ9zeN5zJh1Vacd2KlWNkqbO2S+7NfMh12855KH2M9Hw9kOmT lw/xL8ssJ/3GyDUGhpsrW/PB93Zkj5TMGCksEJ1guKIA1GA1t8O+UTLwhNUy nbcFoCIsmF764zd5+6BxNJ1WBE0rHJvYG4fI5C71u5zaxaDH3YChQkOk8c+P IgcNiiGue30Fdn4ntzSWSjyCYnC+ppz2PPg7ySl7lmFvWww/J78eay4bJGUV zveoBRWDcE2ARL/mN5IQG725jSwGK4ebTgLSA+T67BDNoe0lkM6b+rakq5P8 y5LSnbQohVBf/3DO052kgswThr9tKTh3WK7ZrdBJqrIVTw3vKQXZ/Lm4iT0f SXLFxmPNHqVw3crR0bCtndzv8Vpn18VSiIiX6H349j1pZHSmaNeTUnhtJtkR e6WZlN+SquKnVwanZ1nrRy4Wkt6hS4X+4yyHdFf1y1KdLfBWcvGtqksFRPXx NM7mfIG6930PA1MrwdjEyWlD5Ai4h5/NFU+pglcrpqxBZQq+Z/crGflVw5bP 5mYX102Bwq9Zmxj/aiCSbm94ZTMFIjfY9O6gasjl26T5v7ApuMSndDcotBrO f43mDPo8BQWNy/FadDVsyKRXFGVNwyRHfoVNdjXky+2UV9Kchdzv9C+SbdVw mS9rYH7VPLyxVLrYsYYFHwwfzd01nwce8590LwMWMNw/0Cz3zkPXlaSO+XUs IJ7zbUyKmQe+kd40WRMW/Az3jl/7bR4G9OSuG5mzwGrBwMwnZQG8jPlu0J1Z IDn28l7v0kUoPKj37ko4C5qHg9Z+GuZAqz0CL8dfssAxr3atxhwHJs5ODZk0 saDvoLDBsaVLsHTLwOyl1ywY6cw0WFBagqabJvok3rFAvOGVoZzNEmSMregX 72KBfQ7TeFfpElzVQOoWDbOgx7XZpCaQEyfZghdcRAk4LC8PfBGceM3dxNJd jIDf7w+CdSwnntj6QuSYBAEcO+eg+x4nBlbUxAbLEMBYr7Zptp0Tj+pZXDyh TI2XCTFdtZ4L/9fyIJ9fl4BfzermGYtc6LpyapC1g4ByyRPNRYLcWJ94+mOI FQGn9pD2D2W4kXB1+77ehgCefodDbbrc+OfmE7fK3QQoTkWGC7txo0aP5ZM4 JwIsFH88PPmEG32YOnHT7gRkezxYZRvGgxt7r3I6hhFwtPBP9d4rPGixqtam J5wAvbFt6J3Egy/fHKnff56AhyF9VpElPKiDe3QPXyKg5aqY1+NPPPjBK3DM /gr1fRUnclZsXopJqYpRfYkEOC9Zp8DFxYsXl58WTCgiQCjcvRRFeJHTyrCg 8QEBjzhvbQ+V48W64o/EYjEBStxTQbO6vBi8p4xxoIyA3qXlrb+defHJpyiG TDUB+4X0rnZV8qK5bC1Nv4aAIzIaSyqP8mHwaM5S0xYC5BMdEscD+HAus7be 7B0BDbKXdFeF8aFi2+y8eSsBK+S/uhTc4sNBEe9n5h8I+KmYRWQ+40MVa4Om tR8J8GWo+Mcq8WOwZ9fA808EBGrLfvNo4Ufh2GwH8jcB/C0XxpN6+JE5qF5w d4SAlMDxxYYhfow7261/cZSAGvK1rDaXAN43TO/fOk59r+0Fi9E1AjgttYv9 YIqAzMCxwpPxAmjgIX5Se4GAtQpuxP0MAeRLs1KbpPyCfFXXWSiAx1zc+dh/ CRjmy+vdWCeAYisaT2ziYMO623vFOKcFcKvQtf51XGx4RTb5RzkKYu+pk9ta +NjgdtA4jH1QED/rypw4w8+GMb7cKz99BfGSV0ebugAbZG0jcqwuC2J9kc1O f0E27B8wahcnBDHSO/nHrDAbZvjurb+tIIQyiT9pxeJsiC6UNG9aLoTt1g+6 TSTYoGQbbrewRgjPRIV9aaRsetvFe+8OIYx6UpvTJ8mGq9qS6cwzQjjddm9s QpoNqrZhnAU9Quj/2abuhTwbMle3KAkPCeHjwYqHaxTYoCzBXO8zKYROLt2a qZTlW5+d0BMSxr/zhIenIhtE7fm+lBsJ44xOwqnJZWyIMdizRHqrMM6lTGrY KbFBQOb+siAbYRT1Sbcqoczdbmlv5C6MIzpiHO7KbJjbE1v/KE4Yk5hUyKuw Idi4r1/pjjCKhwS4i9PZMCm/iuNcvjDmb4/ffoDySGfLus21wmjUYR3AwWDD Vxfp+3W/hdFzXNlLg8mGgybudcv/CGOG4J94H8qflKo/Ry4VwbxvC4ZllLt6 9yhYLhNBUMgbMFRlw9t9qTHNFiJIajZ80lFjg9XmX7l69iJ4eljutQflJgY8 v75PBBVp31ZnUK7r71vYHSyC36yUDwurs2HLs1XyFREi6FGWor+Jck1WuIF0 rAhe4H0YcoLyw0Oqx9qzRXBRn9P/HWVjs4BooxIRfGJqpLZkORuq1OvuJT8U wYmC1dbalEu/ufc5vxNBH5Uo4TDKei+q5x/1iCCX1VRGLuXCXH455SERLFPc 9OA15dwj+bs+cYgit1CMvrQGG9Qt5r03C4limkligSHluyt2Rt2VEcUdBrdT HSin/fhVe0hHFOtqkoduUFZogt46I1Fstc8wK6KcWHDtz/KtohhTVqrwgvJN 79X6Q/8TRbWRpaumKdOsImws3UWRXrPLT0iTOk86rV4Fx0Xxz/qqFSqUBUXV LguHiqJdubHLasqRvwOyfS6L4sv1vXymlJe+qatpjhNFicx72raUI4plevTu iOKEf0LjXsoc1z3mrueLoglH0WdPyqF+LOnxSlHs2DlyPJByT4B57ranonhu G7fWOcomp9qMUppFMfH+OvlIymmhhxtHOkWRnz9241XKC+GTzlsHRXEoiS/h BmXnS+d/JU2IYrBRDjP+33zP+TGIg4ZSRzy+/rOI+dvIjKU03GVt3RP3b/6G xLeNQjQcqHIS/DfeZ4eb/JQ4DYskoryv/Hvf6+UHVORoyA7u4r5E+bXN73wL ZRoaZdq8DaX8t6Vywl+NhmEjAy3+lHX+C92YvpKG4kdu8R+h7Nq29eLLVTSM qTwU8L9/67lHuHnckIaFGjuld1B+1Nkqo2RCQ8dyi5/GlH+6pLiZb6HmG3ea Xk5Zse9A3nELGoLaKUMJyjv2rxxLsaFhpXZWwTy1X6cHxozr7WmokNBqP0C5 4DARMepMw4KYpQYNlLsGw5oUDtCwfEDf4t/+bximufoeo+E28BXzo+x1rD0n OYBaD7rfM2vKKaPpv5+F0LCOaV+gRXl+UidMLpKGqnuL5T9R51EreOql6VUa dqRJZ1RTdp57JO4TR8MzQqbOVymz/+7Iqr1DQ7W4Jl99ykPnJId/5tDQqlOm gZuyPFfXWplCGmbf53H8d19O8XrWe7JomGmdIeb57/7QLg9JttDwR9mDufPU fTx6w2YNtNMw/uHgtBnlZEnZ00d6aNja46nJS3lO9p7w4yEapnst0wyn7juL /lzPnUsM/xdWnrSfqgeDd2NOXucXw4X8ekNpyrLqdrVsUTG0iq/gf0HVl+AV /btpimJ4h9Fvrk553ZolQSx9MeTyY69+RdWrqi0bHwkeFkOZhv6sZ1T9uxh9 YbuclxhKCQ4edqFs1/LqvfpxMfQNM/eaoOrlyF7XX5tCxVCR6xUuo7wi5Kxy cIIYxogmizhR9TetpCZsoE4Mr+1o1TxH1WevGX6RsSYxfBnkIbMgxYb1YJu8 2CKGpquHzYIptzd9LpXvFUPp4/s8j1D1XXyQa8BmWgyTUsTqDah8uKhkZvZo uTjmCNmWnKHyw+7Q1ZYGbXGM89Qs6RFiA7Pgg2v7GnH0y9Ee3Uj5iZF70DiI I/06rJqm8mjOLjJX01Ecz5bxF9lR+eUT3SCQECmOx9zEz7A52WA/Y9Xs810c lW/JBxhS+SnfHXlA8rc4PvkSWekzSUBPTe00a0Icz8MGn6wJAg5FG6jwcEjg nPk3EKTy119Jye+2tAQuDzzhUUfl980tw+IvTCWw+Htq0dggAW+uRdvT0yQw vkOWk0Hlf1zA86G6uxLYQIt/uryDAEenxVCvPAl8pxowtbKdgD7miXtV5RK4 Z2fJA12qf/hd6TSzs1ECuQbWe6pS/YdIt2byqRkJ1JUv6al9SYCl5ovud7aS WLkw5N5SRfVHKhla446SeDDBOSWmkurnpE+FiO+VxHuO0pNbKv71P1pyuzwl UcHSRry4lICxnli71xGS2PHKbOJYIQHJcQ6NL8olMfOrqGxCJgFDi1+rH0lL YWxA3/uT0QSkT5G83YpS6DO+bOnMZQLshhPt5xlSmH7aYJd/JAGPP1pMGOtK 4cYP+QbuFwi4UVGkW71NCk2zj681OEuAsWdgTmmwFB631a0KPk5A1AeeuHsf pdDPaYvDFQcC9D3fDLn2SWH9vccjP/6j1n8xeZP0Vyncu8y3w9yOgDWaer/P j0rhJsW1txaofrQrxMliP580XvniyLa1IECX/oBjmYE0zjQYu+RvIKDV09H7 xnVpVL/FlS+hQoDyknyzM+YyuFf9nGLBJxZ4OE31yVjJ4NV1vMtzellQXLYp pHS3DF4L+nEqrZsFmw+3P/jmKoPCjdoLlztYcLiRR842QAY/puq67XjLgqJ4 tx/qmTIo8t3MNPQJC0xWSF9780cG/StVz9xMZYHz7rAO5gNZbFZ0ETpqy4KE x5466ypkccs+np2PrFnwRtM+YgdbFme/bzssspMFWzhWagfUy2LVcJfy/W0s 0C5sPVfXK4uN1r236zew4O9SDY0jNDlUX2ool6zOgjvE68AiPznMpmsIJM5U Qz9dUdJIXx77YwdKG+OrQXzljO8XI3nUlsmMqbtRDZv1W19dB3l8PZ+0h4yt hjtmMZeGLOTxPeg23L9cDa6e83O398ljodipEY8z1fCxvOvT36vy6PP1W2bY wWpo2Zb64Nl3ebTRD5lRWlUNT7yVLG3SFdDh4cn+9qdVMLj2i+YHjWX4/KxP kmxVJVSpdQ9q5SvhGckHOzLOVoDPdqWWWn4VjA6NI4RWlsOm6wNub4RU8Omn ituvVctBsuP+725RFUwvsteOUSoHwsNQeFZKBYmW0V1zYuXAE2ljrstQwant LdqZM2WQUhf++LYxNf7SubOKz8ugwfTbfX9PFZz9IGmU4lQG6ibFEeqvVPCm /uZ9BYGlMGF3TJrjjQpqfQgSKT9WCjWeOnkdLSp4quzo+0rq/9g5qeB1TLsK KrWrJBc6lcKNiVy58X4VtFVdt3evSSks3s94QM6pYKf0+uLX3KXQLnOz01GD jnYN9C3FV0rg8mjAmugIOobZcdV8vVIMOUcn3e0v0pFXdWNk3oViqO33T6Ff puOaxJpnh84Uw/z7EzzVV+nIc5IR2OBVDL6EX9tAEh3bLrulm1oWg32Ed4hJ MR3v/nJ492NpMahKHXo62kXHOPA+f3G0CDZdHZh+2EvHQaWRIJPeInDlPagV +ZmOWw0U3L42FUHi7P54pUE6Hv2kcJsntwgEe9zcLcfpeNI++WyoSxGM5TgL ZvMz0H3V0RaT54VArrPb7WjAwA61vBi+SwXQasw85GbEwP6JW62PfQtgaMNY oMcGBurP1o85OxWA5KZrycGbGfi8fU+jtXYBHN3e9CnRioGXJ9Q9+FvyQdpp i2/HYQaOc/TnxUnng3eI/hWnWwwMeCF2VygqD8LPcKXvT2bgq82ZC4a+eZB4 tqX4aCoDW32e39xknwe1Eb6tp+4ysK81q3mYngeyMQUKtx8w8F3fsti0qlx4 lqJ6v7OegR/b4lVmO++BwmPJeucZBi6JevS6kDsHtGK7uvT+MDB48OXxim/Z sMEta4z7LwOT9UyFYxuywZlTX6mQi4mSHCeMKmKzIcVsd8CCCBN/qHO/qZLJ BsXm68w0NSb6CVdJvl+WBVp39hgd12DiNX1L48SFu7DBj25ttpKJwgVbXil1 3wVniZJTv/SYOPLnvwt+t+9CqsObtyYbmMhlsmKSX+ouKPWJnOu1ZeJjCc7p p3MZoFPyIb7sPyauP/DxlcyHDDAJT8u/5MhEjkeFztIlGeCqqtOm68pEvi1s RcHDGZDusVPn3BEmnvEZULjReAdURqO7VM4xUVQtNMCOJx30anePTYQzUXd4 /u/HojTAmwp8Ly8wsXrT2lP/OaSB29r8NX7RTCw+wqItyU6FjJMNUTUJTFy7 7h5NeHUKMDj5jfYXMpFRwiWkxZsEK51VtE4UM/HIk64bj64lgn6lofL5MibG 18hKfpdJhK1HD/PksJgYIvnsY6DSLbB6dmam8iETV1wMg4jUBLBXiv9RTzJx mzxEn5ZLAI+Wp2+/P2diHZHWs4M3Hny1Op/NvWBih+5vrZTgODh5caxKsImJ +y2Tvj//chOijOlp2i1M/JzeraFcegNuxq27bvKeiW16IllutBuQ8sv6vHU7 NZ9Cq1Kix3UozAw96tfDxEqtF1Y/uK5B5Xy8S/gnJi4/dnylftRVeGxfaHNz gNqvuuDRqJkYqC9+Zpr1jYkfwsai3K2j4Y1Al0HFEBPLTb9Or426DO0HxzXr hpno+ifEOC/zEnx6LLCsbYSJ7c0habmxF2BIlkEbHGdiBfNXma5pBIwdN+Ka nWKiV6jCpXPZ5+BPk80U/xyTqp/DbzJFQ4B7ucd3+QUmPnWJTurtOg5CMy9d uheZ2Bv9d32MjQ38H2V+zho= "]]}, "Charting`Private`Tag#1"]}}, {}}, <| "HighlightElements" -> <| "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>, "LayoutOptions" -> <| "PanelPlotLayout" -> <||>, "PlotRange" -> {{-3., 15.}, {0., 0.16976527263135505`}}, "Frame" -> {{True, True}, {True, True}}, "AxesOrigin" -> {0, 0}, "ImageSize" -> {118, Rational[236, 3]}, "Axes" -> {True, True}, "LabelStyle" -> {FontFamily -> "Times", GrayLevel[0], FontSize -> 11}, "AspectRatio" -> Rational[2, 3], "DefaultStyle" -> { Directive[ Opacity[1.], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[2]]}, "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& ), "ScalingFunctions" -> {{Identity, Identity}, { Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>, "Meta" -> <| "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> Plot, "GroupHighlight" -> False|>|>]]& )[<| "HighlightElements" -> <| "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>, "LayoutOptions" -> <| "PanelPlotLayout" -> <||>, "PlotRange" -> {{-3., 15.}, {0., 0.16976527263135505`}}, "Frame" -> {{True, True}, {True, True}}, "AxesOrigin" -> {0, 0}, "ImageSize" -> {118, Rational[236, 3]}, "Axes" -> {True, True}, "LabelStyle" -> {FontFamily -> "Times", GrayLevel[0], FontSize -> 11}, "AspectRatio" -> Rational[2, 3], "DefaultStyle" -> { Directive[ Opacity[1.], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[2]]}, "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& ), "ScalingFunctions" -> {{Identity, Identity}, { Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>, "Meta" -> <| "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> Plot, "GroupHighlight" -> False|>|>], ImageSizeCache->{{4.503599627370496*^15, -4.503599627370496*^15}, { 4.503599627370496*^15, -4.503599627370496*^15}}], Selectable->False]}, Annotation[{{{{}, {}, Annotation[{ Directive[ Opacity[1.], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[2]], Line[CompressedData[" 1:eJwV13c8Vf8fB3AZ2Vx7hnsvoqxKROX9LiVRSL7ID2lSRpRVSqEhlAZCRoTI yOaeW52oKJSSQmZRSSl7RX6nv87j+cfncx7nM96v96HvP2Z7iJODgyNoCQfH v2dT9pnOiMVF0iVLbM6xbSt8CDIT0h9eJIkNejPX/vrCvtBN220+LJJHpg/m uO88CT/Pb7joRS6SOxVUk2mnz0JwtOHTyNxFUnOm11VxVzhw3VjNkX19kRTX 5Jd6f/08XE3U3lhzapHMLpNL+ZR4EeTTNU51H1gkq6+12qX5R4JegdKElMEi eeXg6ONVTdHALpVbtVp5kbSscw2asb0CZixJHyu+RVLrlgmPUN1VcK4TGLz4 8S85IXJSP/nRNbjcN9U5HfqX3D6rM6KvcROSW38JXPL4S4bxpv7+XXYT7r/4 aiRt+5fkxcbAuvVx0FT84Za+2l+y+3fq5V8YDyJhlbv9GhfIITk7uLT8FigH FIVzVCyQb15tzWpIvgV6R3JKYtMWyIj7Hs0Ngomwa1eCaJHfAsn0fSp8+lsi xNEDG4dkFkibXXlqJyKTIVvKZ+7kkgUy1nHS9fzPZKjkP6zJ/2Oe3Gib5CBq fRvaRv+7tPzxPFlhXnq+RTQF5GvXmh48OE/WVXu+iwtLhTv7J4nu4j/k0u+X NXpk7kCJ/fB3r+Q/ZJxC+bcEvAO1Fl9k5yP+kHyeg3V9Hnegf/X7QHmHP2SZ 5Zf9+tV3QJ2rYrXDwhz5io5pK2wzIP+u//032+dIL7lIwicgEyoHxpOefp4h HX7tOz54IQs4rx/r8WyYIf031QtF38sCq40/GJKlMySfjIXsrxdZ8DX+c/7B sBlSfTTCeE4gG6S3vX3EozJDTiytyN8ekw1BeUWftrlMk+EFQ1WZ53Ngnc8R zaa2SbJstvtA165cOC//xdufnCQVzI627/DOhTd1bqWK9ybJqcfpfQmRueCh 7LjeO3CSvGTRfI/1OBcS35jtFJGaJJcsK3PYppkHs6tV/WxsJ8jagefqX6bz gJjuqW5tGiNtZ9zeN5zJh1Vacd2KlWNkqbO2S+7NfMh12855KH2M9Hw9kOmT lw/xL8ssJ/3GyDUGhpsrW/PB93Zkj5TMGCksEJ1guKIA1GA1t8O+UTLwhNUy nbcFoCIsmF764zd5+6BxNJ1WBE0rHJvYG4fI5C71u5zaxaDH3YChQkOk8c+P IgcNiiGue30Fdn4ntzSWSjyCYnC+ppz2PPg7ySl7lmFvWww/J78eay4bJGUV zveoBRWDcE2ARL/mN5IQG725jSwGK4ebTgLSA+T67BDNoe0lkM6b+rakq5P8 y5LSnbQohVBf/3DO052kgswThr9tKTh3WK7ZrdBJqrIVTw3vKQXZ/Lm4iT0f SXLFxmPNHqVw3crR0bCtndzv8Vpn18VSiIiX6H349j1pZHSmaNeTUnhtJtkR e6WZlN+SquKnVwanZ1nrRy4Wkt6hS4X+4yyHdFf1y1KdLfBWcvGtqksFRPXx NM7mfIG6930PA1MrwdjEyWlD5Ai4h5/NFU+pglcrpqxBZQq+Z/crGflVw5bP 5mYX102Bwq9Zmxj/aiCSbm94ZTMFIjfY9O6gasjl26T5v7ApuMSndDcotBrO f43mDPo8BQWNy/FadDVsyKRXFGVNwyRHfoVNdjXky+2UV9Kchdzv9C+SbdVw mS9rYH7VPLyxVLrYsYYFHwwfzd01nwce8590LwMWMNw/0Cz3zkPXlaSO+XUs IJ7zbUyKmQe+kd40WRMW/Az3jl/7bR4G9OSuG5mzwGrBwMwnZQG8jPlu0J1Z IDn28l7v0kUoPKj37ko4C5qHg9Z+GuZAqz0CL8dfssAxr3atxhwHJs5ODZk0 saDvoLDBsaVLsHTLwOyl1ywY6cw0WFBagqabJvok3rFAvOGVoZzNEmSMregX 72KBfQ7TeFfpElzVQOoWDbOgx7XZpCaQEyfZghdcRAk4LC8PfBGceM3dxNJd jIDf7w+CdSwnntj6QuSYBAEcO+eg+x4nBlbUxAbLEMBYr7Zptp0Tj+pZXDyh TI2XCTFdtZ4L/9fyIJ9fl4BfzermGYtc6LpyapC1g4ByyRPNRYLcWJ94+mOI FQGn9pD2D2W4kXB1+77ehgCefodDbbrc+OfmE7fK3QQoTkWGC7txo0aP5ZM4 JwIsFH88PPmEG32YOnHT7gRkezxYZRvGgxt7r3I6hhFwtPBP9d4rPGixqtam J5wAvbFt6J3Egy/fHKnff56AhyF9VpElPKiDe3QPXyKg5aqY1+NPPPjBK3DM /gr1fRUnclZsXopJqYpRfYkEOC9Zp8DFxYsXl58WTCgiQCjcvRRFeJHTyrCg 8QEBjzhvbQ+V48W64o/EYjEBStxTQbO6vBi8p4xxoIyA3qXlrb+defHJpyiG TDUB+4X0rnZV8qK5bC1Nv4aAIzIaSyqP8mHwaM5S0xYC5BMdEscD+HAus7be 7B0BDbKXdFeF8aFi2+y8eSsBK+S/uhTc4sNBEe9n5h8I+KmYRWQ+40MVa4Om tR8J8GWo+Mcq8WOwZ9fA808EBGrLfvNo4Ufh2GwH8jcB/C0XxpN6+JE5qF5w d4SAlMDxxYYhfow7261/cZSAGvK1rDaXAN43TO/fOk59r+0Fi9E1AjgttYv9 YIqAzMCxwpPxAmjgIX5Se4GAtQpuxP0MAeRLs1KbpPyCfFXXWSiAx1zc+dh/ CRjmy+vdWCeAYisaT2ziYMO623vFOKcFcKvQtf51XGx4RTb5RzkKYu+pk9ta +NjgdtA4jH1QED/rypw4w8+GMb7cKz99BfGSV0ebugAbZG0jcqwuC2J9kc1O f0E27B8wahcnBDHSO/nHrDAbZvjurb+tIIQyiT9pxeJsiC6UNG9aLoTt1g+6 TSTYoGQbbrewRgjPRIV9aaRsetvFe+8OIYx6UpvTJ8mGq9qS6cwzQjjddm9s QpoNqrZhnAU9Quj/2abuhTwbMle3KAkPCeHjwYqHaxTYoCzBXO8zKYROLt2a qZTlW5+d0BMSxr/zhIenIhtE7fm+lBsJ44xOwqnJZWyIMdizRHqrMM6lTGrY KbFBQOb+siAbYRT1Sbcqoczdbmlv5C6MIzpiHO7KbJjbE1v/KE4Yk5hUyKuw Idi4r1/pjjCKhwS4i9PZMCm/iuNcvjDmb4/ffoDySGfLus21wmjUYR3AwWDD Vxfp+3W/hdFzXNlLg8mGgybudcv/CGOG4J94H8qflKo/Ry4VwbxvC4ZllLt6 9yhYLhNBUMgbMFRlw9t9qTHNFiJIajZ80lFjg9XmX7l69iJ4eljutQflJgY8 v75PBBVp31ZnUK7r71vYHSyC36yUDwurs2HLs1XyFREi6FGWor+Jck1WuIF0 rAhe4H0YcoLyw0Oqx9qzRXBRn9P/HWVjs4BooxIRfGJqpLZkORuq1OvuJT8U wYmC1dbalEu/ufc5vxNBH5Uo4TDKei+q5x/1iCCX1VRGLuXCXH455SERLFPc 9OA15dwj+bs+cYgit1CMvrQGG9Qt5r03C4limkligSHluyt2Rt2VEcUdBrdT HSin/fhVe0hHFOtqkoduUFZogt46I1Fstc8wK6KcWHDtz/KtohhTVqrwgvJN 79X6Q/8TRbWRpaumKdOsImws3UWRXrPLT0iTOk86rV4Fx0Xxz/qqFSqUBUXV LguHiqJdubHLasqRvwOyfS6L4sv1vXymlJe+qatpjhNFicx72raUI4plevTu iOKEf0LjXsoc1z3mrueLoglH0WdPyqF+LOnxSlHs2DlyPJByT4B57ranonhu G7fWOcomp9qMUppFMfH+OvlIymmhhxtHOkWRnz9241XKC+GTzlsHRXEoiS/h BmXnS+d/JU2IYrBRDjP+33zP+TGIg4ZSRzy+/rOI+dvIjKU03GVt3RP3b/6G xLeNQjQcqHIS/DfeZ4eb/JQ4DYskoryv/Hvf6+UHVORoyA7u4r5E+bXN73wL ZRoaZdq8DaX8t6Vywl+NhmEjAy3+lHX+C92YvpKG4kdu8R+h7Nq29eLLVTSM qTwU8L9/67lHuHnckIaFGjuld1B+1Nkqo2RCQ8dyi5/GlH+6pLiZb6HmG3ea Xk5Zse9A3nELGoLaKUMJyjv2rxxLsaFhpXZWwTy1X6cHxozr7WmokNBqP0C5 4DARMepMw4KYpQYNlLsGw5oUDtCwfEDf4t/+bximufoeo+E28BXzo+x1rD0n OYBaD7rfM2vKKaPpv5+F0LCOaV+gRXl+UidMLpKGqnuL5T9R51EreOql6VUa dqRJZ1RTdp57JO4TR8MzQqbOVymz/+7Iqr1DQ7W4Jl99ykPnJId/5tDQqlOm gZuyPFfXWplCGmbf53H8d19O8XrWe7JomGmdIeb57/7QLg9JttDwR9mDufPU fTx6w2YNtNMw/uHgtBnlZEnZ00d6aNja46nJS3lO9p7w4yEapnst0wyn7juL /lzPnUsM/xdWnrSfqgeDd2NOXucXw4X8ekNpyrLqdrVsUTG0iq/gf0HVl+AV /btpimJ4h9Fvrk553ZolQSx9MeTyY69+RdWrqi0bHwkeFkOZhv6sZ1T9uxh9 YbuclxhKCQ4edqFs1/LqvfpxMfQNM/eaoOrlyF7XX5tCxVCR6xUuo7wi5Kxy cIIYxogmizhR9TetpCZsoE4Mr+1o1TxH1WevGX6RsSYxfBnkIbMgxYb1YJu8 2CKGpquHzYIptzd9LpXvFUPp4/s8j1D1XXyQa8BmWgyTUsTqDah8uKhkZvZo uTjmCNmWnKHyw+7Q1ZYGbXGM89Qs6RFiA7Pgg2v7GnH0y9Ee3Uj5iZF70DiI I/06rJqm8mjOLjJX01Ecz5bxF9lR+eUT3SCQECmOx9zEz7A52WA/Y9Xs810c lW/JBxhS+SnfHXlA8rc4PvkSWekzSUBPTe00a0Icz8MGn6wJAg5FG6jwcEjg nPk3EKTy119Jye+2tAQuDzzhUUfl980tw+IvTCWw+Htq0dggAW+uRdvT0yQw vkOWk0Hlf1zA86G6uxLYQIt/uryDAEenxVCvPAl8pxowtbKdgD7miXtV5RK4 Z2fJA12qf/hd6TSzs1ECuQbWe6pS/YdIt2byqRkJ1JUv6al9SYCl5ovud7aS WLkw5N5SRfVHKhla446SeDDBOSWmkurnpE+FiO+VxHuO0pNbKv71P1pyuzwl UcHSRry4lICxnli71xGS2PHKbOJYIQHJcQ6NL8olMfOrqGxCJgFDi1+rH0lL YWxA3/uT0QSkT5G83YpS6DO+bOnMZQLshhPt5xlSmH7aYJd/JAGPP1pMGOtK 4cYP+QbuFwi4UVGkW71NCk2zj681OEuAsWdgTmmwFB631a0KPk5A1AeeuHsf pdDPaYvDFQcC9D3fDLn2SWH9vccjP/6j1n8xeZP0Vyncu8y3w9yOgDWaer/P j0rhJsW1txaofrQrxMliP580XvniyLa1IECX/oBjmYE0zjQYu+RvIKDV09H7 xnVpVL/FlS+hQoDyknyzM+YyuFf9nGLBJxZ4OE31yVjJ4NV1vMtzellQXLYp pHS3DF4L+nEqrZsFmw+3P/jmKoPCjdoLlztYcLiRR842QAY/puq67XjLgqJ4 tx/qmTIo8t3MNPQJC0xWSF9780cG/StVz9xMZYHz7rAO5gNZbFZ0ETpqy4KE x5466ypkccs+np2PrFnwRtM+YgdbFme/bzssspMFWzhWagfUy2LVcJfy/W0s 0C5sPVfXK4uN1r236zew4O9SDY0jNDlUX2ool6zOgjvE68AiPznMpmsIJM5U Qz9dUdJIXx77YwdKG+OrQXzljO8XI3nUlsmMqbtRDZv1W19dB3l8PZ+0h4yt hjtmMZeGLOTxPeg23L9cDa6e83O398ljodipEY8z1fCxvOvT36vy6PP1W2bY wWpo2Zb64Nl3ebTRD5lRWlUNT7yVLG3SFdDh4cn+9qdVMLj2i+YHjWX4/KxP kmxVJVSpdQ9q5SvhGckHOzLOVoDPdqWWWn4VjA6NI4RWlsOm6wNub4RU8Omn ituvVctBsuP+725RFUwvsteOUSoHwsNQeFZKBYmW0V1zYuXAE2ljrstQwant LdqZM2WQUhf++LYxNf7SubOKz8ugwfTbfX9PFZz9IGmU4lQG6ibFEeqvVPCm /uZ9BYGlMGF3TJrjjQpqfQgSKT9WCjWeOnkdLSp4quzo+0rq/9g5qeB1TLsK KrWrJBc6lcKNiVy58X4VtFVdt3evSSks3s94QM6pYKf0+uLX3KXQLnOz01GD jnYN9C3FV0rg8mjAmugIOobZcdV8vVIMOUcn3e0v0pFXdWNk3oViqO33T6Ff puOaxJpnh84Uw/z7EzzVV+nIc5IR2OBVDL6EX9tAEh3bLrulm1oWg32Ed4hJ MR3v/nJ492NpMahKHXo62kXHOPA+f3G0CDZdHZh+2EvHQaWRIJPeInDlPagV +ZmOWw0U3L42FUHi7P54pUE6Hv2kcJsntwgEe9zcLcfpeNI++WyoSxGM5TgL ZvMz0H3V0RaT54VArrPb7WjAwA61vBi+SwXQasw85GbEwP6JW62PfQtgaMNY oMcGBurP1o85OxWA5KZrycGbGfi8fU+jtXYBHN3e9CnRioGXJ9Q9+FvyQdpp i2/HYQaOc/TnxUnng3eI/hWnWwwMeCF2VygqD8LPcKXvT2bgq82ZC4a+eZB4 tqX4aCoDW32e39xknwe1Eb6tp+4ysK81q3mYngeyMQUKtx8w8F3fsti0qlx4 lqJ6v7OegR/b4lVmO++BwmPJeucZBi6JevS6kDsHtGK7uvT+MDB48OXxim/Z sMEta4z7LwOT9UyFYxuywZlTX6mQi4mSHCeMKmKzIcVsd8CCCBN/qHO/qZLJ BsXm68w0NSb6CVdJvl+WBVp39hgd12DiNX1L48SFu7DBj25ttpKJwgVbXil1 3wVniZJTv/SYOPLnvwt+t+9CqsObtyYbmMhlsmKSX+ouKPWJnOu1ZeJjCc7p p3MZoFPyIb7sPyauP/DxlcyHDDAJT8u/5MhEjkeFztIlGeCqqtOm68pEvi1s RcHDGZDusVPn3BEmnvEZULjReAdURqO7VM4xUVQtNMCOJx30anePTYQzUXd4 /u/HojTAmwp8Ly8wsXrT2lP/OaSB29r8NX7RTCw+wqItyU6FjJMNUTUJTFy7 7h5NeHUKMDj5jfYXMpFRwiWkxZsEK51VtE4UM/HIk64bj64lgn6lofL5MibG 18hKfpdJhK1HD/PksJgYIvnsY6DSLbB6dmam8iETV1wMg4jUBLBXiv9RTzJx mzxEn5ZLAI+Wp2+/P2diHZHWs4M3Hny1Op/NvWBih+5vrZTgODh5caxKsImJ +y2Tvj//chOijOlp2i1M/JzeraFcegNuxq27bvKeiW16IllutBuQ8sv6vHU7 NZ9Cq1Kix3UozAw96tfDxEqtF1Y/uK5B5Xy8S/gnJi4/dnylftRVeGxfaHNz gNqvuuDRqJkYqC9+Zpr1jYkfwsai3K2j4Y1Al0HFEBPLTb9Or426DO0HxzXr hpno+ifEOC/zEnx6LLCsbYSJ7c0habmxF2BIlkEbHGdiBfNXma5pBIwdN+Ka nWKiV6jCpXPZ5+BPk80U/xyTqp/DbzJFQ4B7ucd3+QUmPnWJTurtOg5CMy9d uheZ2Bv9d32MjQ38H2V+zho= "]]}, "Charting`Private`Tag#1"]}}, {}}, <| "HighlightElements" -> <| "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>, "LayoutOptions" -> <| "PanelPlotLayout" -> <||>, "PlotRange" -> {{-3., 15.}, {0., 0.16976527263135505`}}, "Frame" -> {{True, True}, {True, True}}, "AxesOrigin" -> {0, 0}, "ImageSize" -> {118, Rational[236, 3]}, "Axes" -> {True, True}, "LabelStyle" -> {FontFamily -> "Times", GrayLevel[0], FontSize -> 11}, "AspectRatio" -> Rational[2, 3], "DefaultStyle" -> { Directive[ Opacity[1.], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[2]]}, "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& ), "ScalingFunctions" -> {{Identity, Identity}, {Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>, "Meta" -> <| "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> Plot, "GroupHighlight" -> False|>|>, "DynamicHighlight"]], AspectRatio->NCache[ Rational[2, 3], 0.6666666666666666], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{True, True}, {True, True}}, FrameLabel->{None, FormBox[ RowBox[{"\[Rho]", "(", "\[Lambda]", ")"}], TraditionalForm]}, FrameStyle->GrayLevel[0], FrameTicks->{{{}, {}}, {{}, {{0, FormBox["0", TraditionalForm]}}}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->{{Automatic, Automatic}, {2, Automatic}}, ImageSize->118, LabelStyle->{FontFamily -> "Times", GrayLevel[0], FontSize -> 11}, Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}}, PlotRange->{{-3., 15.}, {0., 0.16976527263135505`}}, PlotRangeClipping->False, PlotRangePadding->{{0, 0}, {0, 0}}, Prolog->{ ArrowBox[ NCache[{{0, Rational[1, 24]/Pi}, {4, Rational[1, 24]/Pi}}, {{ 0, 0.013262911924324612`}, {4, 0.013262911924324612`}}]], { Dashing[{Small, Small}], LineBox[ NCache[{{4, 0}, {4, Rational[1, 3]/Pi}}, {{4, 0}, { 4, 0.1061032953945969}}]], InsetBox[ FormBox[ StyleBox["\"\[Mu]\"", SingleLetterItalics -> False, Directive[FontFamily -> "Helvetica", GrayLevel[0], FontSize -> 10], StripOnInput -> False], TraditionalForm], NCache[{2, Rational[5, 48]/Pi}, {2, 0.033157279810811534`}]]}, { Arrowheads[{-Automatic, Automatic}], ArrowBox[ NCache[{{10, Rational[1, 24]/Pi}, {4, Rational[1, 24]/Pi}}, {{ 10, 0.013262911924324612`}, {4, 0.013262911924324612`}}]]}, InsetBox[ FormBox[ StyleBox["\"2\[Sigma]\"", SingleLetterItalics -> False, Directive[FontFamily -> "Helvetica", GrayLevel[0], FontSize -> 10], StripOnInput -> False], TraditionalForm], NCache[{7, Rational[5, 48]/Pi}, {7, 0.033157279810811534`}]]}, RotateLabel->False, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{ 3.8952066993691463`*^9, 3.89520674386379*^9, {3.895206800311884*^9, 3.8952068894420347`*^9}, {3.895206959308638*^9, 3.895206992894684*^9}, { 3.8952070620060863`*^9, 3.895207067724165*^9}, {3.895207143255886*^9, 3.895207260626754*^9}, {3.895207406363961*^9, 3.895207444229038*^9}, 3.895207478790277*^9, {3.89520759340065*^9, 3.895207626329248*^9}, { 3.895207672105403*^9, 3.895207766860739*^9}, 3.895207868876601*^9, { 3.89520792560944*^9, 3.895207930957688*^9}, {3.895208673993223*^9, 3.895208731333771*^9}, 3.895208855336532*^9, 3.895208910073511*^9, { 3.924161545406942*^9, 3.924161606347749*^9}, {3.924161639114283*^9, 3.924161707916535*^9}, 3.924161917425612*^9, {3.924163199195035*^9, 3.9241632684587812`*^9}, 3.926760829972809*^9, {3.9267608635048943`*^9, 3.926760947218087*^9}, {3.926760983716619*^9, 3.9267609989132347`*^9}, { 3.926761038325932*^9, 3.926761077719367*^9}, 3.9267611570845547`*^9, { 3.926761202690482*^9, 3.926761262528049*^9}, 3.926761385096426*^9, { 3.926761425364373*^9, 3.92676143349012*^9}, 3.926761485486828*^9, 3.926761551172861*^9, {3.926761617471798*^9, 3.926761626745406*^9}, { 3.926761661177988*^9, 3.926761668201248*^9}, 3.926761738520466*^9, { 3.926761836696477*^9, 3.926761880005011*^9}, {3.926761921727672*^9, 3.926761946295723*^9}}, CellLabel-> "Out[235]=",ExpressionUUID->"d05fb8f0-b7b9-47a5-a984-00b2a18f0f10"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"pS2", "=", RowBox[{"plotSpecWith\[Mu]Arrow", "[", RowBox[{"6", ",", "\"\\"", ",", RowBox[{"Style", "[", RowBox[{ RowBox[{"\[Rho]", "[", "\[Lambda]", "]"}], ",", RowBox[{"Opacity", "[", "0", "]"}]}], "]"}]}], "]"}]}]], "Input", CellChangeTimes->{{3.8952070062646313`*^9, 3.8952070063126*^9}, { 3.895207089642592*^9, 3.8952070914663*^9}, {3.8952079701475897`*^9, 3.8952079709309177`*^9}, {3.895208773410845*^9, 3.895208774210402*^9}, 3.924163254848674*^9, 3.926761180572352*^9, {3.926761451041807*^9, 3.926761459473476*^9}}, CellLabel-> "In[236]:=",ExpressionUUID->"e68d9ce5-814e-4498-aeeb-52ccf1b87537"], Cell[BoxData[ GraphicsBox[ InterpretationBox[{ TagBox[{{{}, {}, TagBox[ {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[2], Opacity[1.], LineBox[CompressedData[" 1:eJwV13k4VN8bAHDylRTZxswYe5ihhYpE4X1RKiWVkkqUFomSLJWibGXLHonI ll22Yu5IpahIJMkuImtlz1Z+9/fXfT7Puc+59z3Le94jb+N44MwSLi4uZ24u rv8/BVL6KJdfyIEAT6lHSb4RLP4ZLhiKsYVPHOaduJ/nof/De5fJNV5QIe2n +PyPG3yMo+v+cgqG82OnT9fe9YBjT4uWTLZFwsutx66JuXrBR6m2H6OesbDl 3c2OqCofMPBdUvNTPhGszu1du9jsB61TUYddbZIhknrDuqPsDkRlZryfUE+D 7xmHnwbfCIBlIvW5o01ZwGnQDbHODIaKN99lHTNywYOe9n6zbAjolc2/m9bJ h730k1aOPqEw4yi01XVlEYxqcgxfCYXDl10SLhpXiuF3OBsP5IZDoYJC7kTX U4j+PPbAaXsEOHzVlL1cUAobF7aJHbaNhC49Kx7Hg+XQtFv2n+iNe1BGP6ej +vwF7PyWZkibvQd7ZkuJ6YiXoLx2ONDIORpUPldMPJ1/BRLSH8ubrGPg++2m Mxq1b0AoVv1soXQsHP71d9eGS9XQ5VW9XdUwHozavH+EKdZAXWvoG72keNB4 x+cz2lwD568Wp/L9iwfhZJGyJ/q1cLTv1eHxoofQlyVKi+GvB11gjJqJJkKi FTNAvK0Bvsw8yz9b/wiUJ49wd+t8hubPgRtz5x5BYcDdazkJn6Fy079dtxST oKp40s7QphHCNxQrtbglwa/lr42dBr+AvbFtXzo1GXRKrAVq/zSDpvARi4Ft KdAqFBvqS+mC8rszqv/OpcHptA98+9y6wGnBcUoxIA1+buG6JdncBZKP8taK ZaYBV5G6VovJN9gTw/9+10AaUDofKF8S6YbNF65v0D79GHQ07PgT7vfA5Uee 0HwgHQK/8dbMPu4D8fmDL+uFMmHuQU5VYmMfbA9alL6vnAl2h8wqti/5AXZW s2Gonwk7qx+xw4//AI3KEWnNy5nAV7w1Q4XSD42uaYbPGzLB946T3xGvAbBy LvnrFZIFN1U7gH1sGPYLxd2tG8+GLXpHj+r4j4JKaqGDi3sejOSuPxufMApu 6b2ZjLt5kCDNd3mheBTCUq6Z5ifmAc/fooCy7lG4t2dqd9abPPjAEWTrbB2D 2GU8eu2CT8Ba+xVN99cYbPfhvrLv4RPw1VD+ontwAv67Z3kq2iIfaldPm4Lc NHgd0FB9alEA23p2Gt3WmobLNnxvZk4UABEbp1O7bxrYayZKNtkVQMYyfZVj XtNw1yOiK+5aAfj+CFpypWcaeD3HVRkPCkAnWf5pXuof2P83xv9HSwFkS5gw ZFRmQXnG+/afg4UQsCy1d2HDAtjcaVkbsKUI6n5e2dT9kwtvMjZytIqL4Vcd c2fSIg8m2LS+fiv0DCy5tSR5ePiQu9yhdOmGEnBbR+8/18CPJ0WGfZqopcDf 4DcR28mPS2Q2nLvAKIV4t4nF6iF+bM24Vs0tUwqvXnykr+NZjvFRdwQVlEpB 4ICf8Zj6cmyUv5GzQ70Ukt3Gc6/dW465RYeRYVoKtS8+uARarMC5NkPBEd9S UDzgtSSnUwDXl1f4XB0k39/YICM4JIA73qt1GY6UgqyYwtaLUwK4Kq4YBX+X AqPxjfN6AUFUWZJNfzBZCkLmy/qKtQUx6/Bj1fjFUpg7Evr2eZQgnt2r52Mg zoZPJx8G1xmvRIk63rVSwAZPJzZ14pkQcllNKyjeZUOn686MHa+F0Clk7770 UDbouX/Vjq8TQj3KCnPlCDb89Z6y3D4ghO4Sm0cVYsj26vufagSEsXCs+RJ3 EhuetzXSZPSEEZMz15oXs4Hzb09qxSNhHHFTLTzfwoahW5SfI4+Fkc4M3ZTV xgYGT/smWq4wjhlS0vo72ODOZ//Wni2MovFFxpY9bNgiHDBEaRDGa+qbX6wd ZgNbvnK9LY8Ifg9KrDi/wIaSbbrPV5wVQajoJKykCbgd5LdLwkEE//Nov2Em S8DBhtovzMsiOCQWY2IkT8CotdUvfU8R/CS1KMVUImD19ZuyV6NFcEoz6ebH tQQkFLzy6q0SQWfuiMKKrWR/MkZGz1miKDzZl7bVguzvTEhD9TpRvDtyXGDi CAEKOU1WzeqiOFzuEJJxjICX2rZXJkAUd8DbH4LWBMwd9M9QsRBFydqH46/O EHAxqHp5tL8oGkJyVd1lAsxn9tZdHBTFsX/USt8gAhgd/qcov0WRXrvr+49g AjpfVfxhT4riCXPTMztCCDgTpCnHyyWGK3Ib7vGEE+AiI+MURxXD9uL0J+ei CYjc9lP0naEYOqR+Xeh7REB9WJC5fIIY/h2VScgrJiDKtXKoKkUM09ceyOl4 SoDF0UVPh0wxXLb+qdKKEgK+KTinlxSL4UHzb0dPsgn4/ezojEmNGF75Ht44 95yAlR0qD9xnxFDfMGxjTxUBu1XedXw+QMFb1qvHfb4SwCWXtHbCgoLzOZpc 0c0EFFPdr4taU1AjPlL7cQsBMv+tldhvT0HPHGm1V20EjHeGHvzoQ8HUVsc1 3V0EPIg6XPOumIKns5Nj3vcTYBq0njFAUHBY/bdz+QAB/3nz2/G9oqBDbpNn wSA5no6cpUa1FAzk3yofMUyAgbGswes+Cu69kPJQ9zcBQ4s/Sp9TxfHU5OxD 3WkCEqdf8HVIiaOOspq7+B9yPn/eN19YJY4eer13hkmXtxpPblETR8Xya1oR swREPM1TK90hjk0mv8bfLxCwxd7tceFVcbScTRztWcKBwCbeqPRWcbzedIFe JsgBDfv6IatvZLtL9V/TlRzoXHygT/0hjrpGvAd7SKurrP/tOyaOfA7uZkuE OdB+/aixzTIqWniLJ6mJckBN/gmXtCYVT3SUBQGVA61Prx1u3ErFRjndQIK0 r/G2vCB9KsaqCM2r0zjQ7NxybG4PFfUb59VX0TngXcVT8vUUFZt2q/GOSHCg 0d7iQkQ4FQu8mjdtkuaAJ5fCm10xVAyMSbeJIa1y7yeD+yEVn9Knl8z8v73c +51jBhW995slFMtwgCWSq2Dygor39Wv1JeU40JB2xf2/Sirya1sIOJG+scXg E6eairaBXcaVpOtPffVc3URF6zgpRTt5Drg/427l+0nFTsXPOxNWcUBx94f1 L8ap2Hutsrif9Meu6DtuM2T/s7L31BQ4oMC/dlMfDw2L9usVEaQ/HDMPq2DQ 0PaS7dlyRQ64jcr1X5OjoRNPr9s8aXm/Yd0NTBoqByksaCqR7Xm3hhM30HD+ s9iZTNKy3NlGHjtp2D37puA6kwPnjk5/o+2l4esk46vZpPOL9K8XmtHwzIjW 6xbSBmebn/Rb0TDG68KPDSwOBL1QMPY+TUOqTkX5MdKNdMdeqfM01LkWL+lL +mwNr8QBVxo25M7b1JN+ori/aMSdhpxVd00mSc94xJvcuUVDQ/HnZVRlcr2s V/cuC6JhwKuVKodJfw7wlDocTsOBpVuZrqSlvr9/NhZNQ71uRkY46bx7J4aZ yTTUfMm3pYr0n1/Zfq/SaahuLW3cSRp3/pG1zKVh/9s/nZOkA5IMiOlCGm7K eTDDr0LO19zdg+GlNPx1kz9GmrTkwZZfa8ppWHl1B6FG+nSuYkDVaxqeDjls g6Rzl15SOPmehtbuOqGmpKetOc/nP9IQS2fwOGlgL7WIbqShl1/IFTvS/qIH xte30vB+9+JGF9Kf7B8G13SR37u719mDNKNygHm2j4Z9gje0/EifktF4xTVM w67HAd5BpHOu3DwWN0rGd+Lq/jDSU/XVU5umyfh5dqVFktZbTQ2rn6fhHskF j3uk7/icXG3PTcf8qfC2/7u+PecNLx8d2UnLy6NIS2jOWD0SoGPx6BmlCNI2 oYazW0TpOOiaIhJCOnsgJPILjY7Jtyu8/UlP6reuuyRNR/ktFVe9SOvGKb1b rkDHx3ZJE1dJ3568ZJOmTMcL+VYTF0nXmZQtgCods+xnrpwiTU/ni2lVp2MQ 4eBlTvokl9kGV206qnuyhXaSzjqSUCMEdHx5pH2VFumJwsEzWdvoqF3YQDBJ 6whs4tpuTMdHebFfxUjXltdouB+iY8tMcOIgOZ9UOq2OcoyOO6wKjRtIWznZ 2D05Qccv0Q/c2aRHFWYf9trT8SJvyjkf0toe27RuOtFRzYZgniXt3RTaIHGF ju5d3nY7SFMCmHym3nQ80yHqwUv6eI9T0uAdOp6OrDPpIdfr463Pt/repWNa IyvlOWmtX2aX2PfpuKEkos2RtKWZV4vCEzr2hz3wriD3S3S5varWUzpOgMK5 UNL1KuY+ezh0bHUaCDlKehvXmnWub8nxNFxMHCb347rcxltVXXQ89mdN3Qy5 f8/RX3xp7aOjyeVzz0tIJ/tkrv49TMc+x9sjLqSpRz0baTPkfPOoCw6R+eDf UmVlO2EJdOCqN39B5g+ty6IeHlQJPGMTb3yJ9OWOhU/hUhIYHtniKUv6R9Gn 64SyBPZE2GZcJfNR3YnrdSv0JVBIk++fOJmvHhEf3fKcJFD+QFfKghSZb5XY NRVXJFBJKD06nDQlPEXuq4cEGmWUvVMk7W97tXoxQAIPZd8Y2i7JASfKKpn9 yRJog8PyzmS+NbjoWjnRIIGRldp7romT+bHFmrGsRQLNSrVUxikceLbN2FGq SwLLtZdvsyO9WlJWYvuwBFp2sTceEOOA6Lt3DtE8DDxSZTy2UoQD3+WlKNoa DCxn8bSqC5Dta2Yu9WkzUDlQzjNuBfk9jcbacGCgm/rD+9ykHxkF3xkyZqC0 6O717/nJ9WK/MBd3koHy7/z7t/OR8RW3d/8LYeClX4rHp7g5sLy8VC87ioFr E02PbiOt/TYq7vADBuqXUz6Ec3HgfsueQ/lpDGy5MCGgvEjWK//K3p0sY+BX gRguA/I8bNjx8MmbQQbWWK+PXEOer0v2XxNw+s3AlNvLak5OEbDh6CE76SkG 5hs4ukZPEhDmIKjgxiWJ2anH5OfHCdgb7hHNokmiFFR9KiDP6/etxz0Ct0ni GesUl0byvH95QWb3vkRJ3NC9s+AnWT9884+1cUuTxLHT5pXtZH3BnUpxj8+W xCT9Qq5qsv4waF2eOVAiiczXTiMJXwioNPqz1KteEo9nvwrf+ImAatn6igJu KZy9/amL6x0BjZ+8toidlsLesPTGzWR9NDmysF/7vBQWDdtaDhcSIL7sqp31 JSn8KhXM87CAjF/v4v3sG1L4wKwvby6PgJaso9OG96SwY2Hp5cRMsl7zUS90 qZLCidB+u5AEAgY29ak0KUsj362qpVx3CEgX7/btUpXGOSEuSU8/As5OtXcN aEjjbfdU8zkfAvqKG+/NozTOnBw0+HmLgB71N9zyR6QxZMf5H2XuBLRvSGmx D5DG93dmhHgukvXdupMB3EPSWN46EKBsRkCJUsfA2mwZ/Pvgs/VrGgEOKdW7 P+bL4Ba/zuwhcQLk5EvzHJ/J4CrDzzuEKQQESkW6FL6SwevIf9FcmABLsV1c Ws0y6KJ51e7jMrKe435KM+SVRc9t7u8dZtlg3B5sdMRaFkU0D948QdbzF3fJ NFTwy2F/2USFQBQb9MN7T9QLyKFL2qBfZDgbKC1ZvzuE5DBb2mgdnbxPEOc2 C86Ky+H0fBlTMpANvP77dqqtkkO5HVDEd4sN8VXe5XFb5NBp42iquz0bqg37 s1zs5XBMsNXsNbKBqZfvw6yVQ7Ev1cdLe0th8qAjlateDosq75/60U3ev+xV M1sa5LDszSZ70a5SsIzN+RjcLIeD+Qoep1tKIWIyQ2Liuxyeo0TcH60thcWs pCcv5uSwcJ+KSMazUmimRbZZKMujxBTvbMjtUggYc1UP8pHHAfLCIyJXCi+0 DppZaK7CHal9I4a6JSBZTnlrObMKgyYWbu6VegarlvBr2+QqoPcP5cHt34ph r2/XvwQnRYyMFNJp3FMEB3J/T113UcSYlDlRW6MiONS0OGJxRRG/j0hGT0ER WCrLtYl6KOLv0bBQXvUisPtwouS2vyJm8+l/HqUXgS+lx/FioiJKhx5PHP1e CERq7zfdWkU8LGK5z9mtEJQqByvalZWQ12BnrGlwAVzdRxzLXqOEt/i6+Gt8 C6C6LXDymqoSjrEMRtGjAC6Nr2HSNJSw9tNjbqmL5P1b9mLAflDCfScC7UJM C2Cf+7hp1SElXJYzm3pcpADc1ebbn3gr4aZ1a0wcwvLhA1Hj6umnhEILJSIs /3yQNYpfaeKvhP/1J+i13cyHN5a6OHRXCbXbfTLVHPNBKPBmimKsEpYsSUu7 Y5IPqb0852OfKGHU7QO9Q8vyoS5W4I93uxKq+wtKH53MA0be2gshXUoYvMLI 2/FbHpyt2PM9tkcJaU9U2pw+5MHCUHBd/oASurrmNeik5oGKjmBG56QSDjZQ HvcfyAOfTsEjWwSZOLy99MKFnFzYrCDEGdNlIn+1C3Vhbw54b1bb8BeZ6KF+ X9pSKwc+7jZNX7aNiSoPgzakyOfAaZfQSFljJhoKQnDfRDaEVwo5mJgzMfG/ BpZGTDYM2wpLZ15kYpuf87Ly5ixIzBG5eSKRiTL0meYz2zOhN3T17OZkJnY4 30lvW5sJq50NnYXSmKg6ktyykZIJz7RdbcuzmPixbMWCT08GfKxqNpV6xsTq 40e/PvbIgH/fEuWaPzDJ/Kz6Myo3HSzFVStM55gY0Ws7wRlNg+QZIx3WXybS wmbHbn1Og4E262f/Fsn/3fZ6mvosDVySw7NyeVnY1PNVsMg9DYLVpiJWiLDQ 5PEZ8XvcacDZVXbqLYuFc5fvvdTiTQWGpzEvHGJh58ugL/+1J4HFUKGlmQUL 9xlFJFUWJUGMuWSx7TEWJq4a5JUNSgKK2ohN2EkW3v+lIhumlQQrv9192X2B hTd8JlTFQh7Bnj3TtOlLLMw0EFXQt3kEQaVWjstdWLhT2Dt9ZNMjWBauJqPu zkKiMM7dvCQRlhh8uu57m4XJ3S77b2ECYJ725/sBLNzkXMGd3fUQbjKSV+cG szAhs9vWw+MhLIxfbvkSwcLvK30muovjYTqFspmVSPbntmXfiHAcaAh7hGxN JuNRiP4Sl/IAnG/09Zmmkf35LZaf0XgAowefRV3NZuHL/ry9vaaxMMRrMf6+ hIU6Y2L3DexjQPnyy12dBAsPmZit8xuOBttO5aTx5yx0NxuTqj0XDb3PZk0l 37BQTrf3V9iRe7BKwSZd7S0LJT61Cd39EAUnQ6v/GVazcDaC72Dw1ijotI3L dahn4cc1cv5KApEg1cjD6/WZha8Vlw70OETAMXSwvNdEjuduH57vb8Ohma67 orydhRufd+4ZswsDql+aTUMXC9XWf2P6WYXCoTFB4kcPC+urU475Nd2Fhved 54QGWZhlzpUX6hUIwpo7XiqMsLD46bzi7mx/ME1+QtP6zUKm/dm5O3m3IWQl 3XHPOAsvvC3Uod3yhQ/ut6pOTLFQMNxwDddKb1jePyDtOsNCy+lav1BHT9hl tt81YJ6FjO7PY3z2V8D/BfvDw38sjI7TEI0UPw/nfb+valkk46u5+hV37of/ AVhmp4Y= "]]}, Annotation[#, "Charting`Private`Tag#1"]& ]}, {}}, {"WolframDynamicHighlight", <| "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>}], StyleBox[ DynamicBox[(Charting`HighlightActionBox["DynamicHighlight", {}, Slot["HighlightElements"], Slot["LayoutOptions"], Slot["Meta"], Charting`HighlightActionFunction["DynamicHighlight", {{{{}, {}, Annotation[{ Directive[ Opacity[1.], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[2]], Line[CompressedData[" 1:eJwV13k4VN8bAHDylRTZxswYe5ihhYpE4X1RKiWVkkqUFomSLJWibGXLHonI ll22Yu5IpahIJMkuImtlz1Z+9/fXfT7Puc+59z3Le94jb+N44MwSLi4uZ24u rv8/BVL6KJdfyIEAT6lHSb4RLP4ZLhiKsYVPHOaduJ/nof/De5fJNV5QIe2n +PyPG3yMo+v+cgqG82OnT9fe9YBjT4uWTLZFwsutx66JuXrBR6m2H6OesbDl 3c2OqCofMPBdUvNTPhGszu1du9jsB61TUYddbZIhknrDuqPsDkRlZryfUE+D 7xmHnwbfCIBlIvW5o01ZwGnQDbHODIaKN99lHTNywYOe9n6zbAjolc2/m9bJ h730k1aOPqEw4yi01XVlEYxqcgxfCYXDl10SLhpXiuF3OBsP5IZDoYJC7kTX U4j+PPbAaXsEOHzVlL1cUAobF7aJHbaNhC49Kx7Hg+XQtFv2n+iNe1BGP6ej +vwF7PyWZkibvQd7ZkuJ6YiXoLx2ONDIORpUPldMPJ1/BRLSH8ubrGPg++2m Mxq1b0AoVv1soXQsHP71d9eGS9XQ5VW9XdUwHozavH+EKdZAXWvoG72keNB4 x+cz2lwD568Wp/L9iwfhZJGyJ/q1cLTv1eHxoofQlyVKi+GvB11gjJqJJkKi FTNAvK0Bvsw8yz9b/wiUJ49wd+t8hubPgRtz5x5BYcDdazkJn6Fy079dtxST oKp40s7QphHCNxQrtbglwa/lr42dBr+AvbFtXzo1GXRKrAVq/zSDpvARi4Ft KdAqFBvqS+mC8rszqv/OpcHptA98+9y6wGnBcUoxIA1+buG6JdncBZKP8taK ZaYBV5G6VovJN9gTw/9+10AaUDofKF8S6YbNF65v0D79GHQ07PgT7vfA5Uee 0HwgHQK/8dbMPu4D8fmDL+uFMmHuQU5VYmMfbA9alL6vnAl2h8wqti/5AXZW s2Gonwk7qx+xw4//AI3KEWnNy5nAV7w1Q4XSD42uaYbPGzLB946T3xGvAbBy LvnrFZIFN1U7gH1sGPYLxd2tG8+GLXpHj+r4j4JKaqGDi3sejOSuPxufMApu 6b2ZjLt5kCDNd3mheBTCUq6Z5ifmAc/fooCy7lG4t2dqd9abPPjAEWTrbB2D 2GU8eu2CT8Ba+xVN99cYbPfhvrLv4RPw1VD+ontwAv67Z3kq2iIfaldPm4Lc NHgd0FB9alEA23p2Gt3WmobLNnxvZk4UABEbp1O7bxrYayZKNtkVQMYyfZVj XtNw1yOiK+5aAfj+CFpypWcaeD3HVRkPCkAnWf5pXuof2P83xv9HSwFkS5gw ZFRmQXnG+/afg4UQsCy1d2HDAtjcaVkbsKUI6n5e2dT9kwtvMjZytIqL4Vcd c2fSIg8m2LS+fiv0DCy5tSR5ePiQu9yhdOmGEnBbR+8/18CPJ0WGfZqopcDf 4DcR28mPS2Q2nLvAKIV4t4nF6iF+bM24Vs0tUwqvXnykr+NZjvFRdwQVlEpB 4ICf8Zj6cmyUv5GzQ70Ukt3Gc6/dW465RYeRYVoKtS8+uARarMC5NkPBEd9S UDzgtSSnUwDXl1f4XB0k39/YICM4JIA73qt1GY6UgqyYwtaLUwK4Kq4YBX+X AqPxjfN6AUFUWZJNfzBZCkLmy/qKtQUx6/Bj1fjFUpg7Evr2eZQgnt2r52Mg zoZPJx8G1xmvRIk63rVSwAZPJzZ14pkQcllNKyjeZUOn686MHa+F0Clk7770 UDbouX/Vjq8TQj3KCnPlCDb89Z6y3D4ghO4Sm0cVYsj26vufagSEsXCs+RJ3 EhuetzXSZPSEEZMz15oXs4Hzb09qxSNhHHFTLTzfwoahW5SfI4+Fkc4M3ZTV xgYGT/smWq4wjhlS0vo72ODOZ//Wni2MovFFxpY9bNgiHDBEaRDGa+qbX6wd ZgNbvnK9LY8Ifg9KrDi/wIaSbbrPV5wVQajoJKykCbgd5LdLwkEE//Nov2Em S8DBhtovzMsiOCQWY2IkT8CotdUvfU8R/CS1KMVUImD19ZuyV6NFcEoz6ebH tQQkFLzy6q0SQWfuiMKKrWR/MkZGz1miKDzZl7bVguzvTEhD9TpRvDtyXGDi CAEKOU1WzeqiOFzuEJJxjICX2rZXJkAUd8DbH4LWBMwd9M9QsRBFydqH46/O EHAxqHp5tL8oGkJyVd1lAsxn9tZdHBTFsX/USt8gAhgd/qcov0WRXrvr+49g AjpfVfxhT4riCXPTMztCCDgTpCnHyyWGK3Ib7vGEE+AiI+MURxXD9uL0J+ei CYjc9lP0naEYOqR+Xeh7REB9WJC5fIIY/h2VScgrJiDKtXKoKkUM09ceyOl4 SoDF0UVPh0wxXLb+qdKKEgK+KTinlxSL4UHzb0dPsgn4/ezojEmNGF75Ht44 95yAlR0qD9xnxFDfMGxjTxUBu1XedXw+QMFb1qvHfb4SwCWXtHbCgoLzOZpc 0c0EFFPdr4taU1AjPlL7cQsBMv+tldhvT0HPHGm1V20EjHeGHvzoQ8HUVsc1 3V0EPIg6XPOumIKns5Nj3vcTYBq0njFAUHBY/bdz+QAB/3nz2/G9oqBDbpNn wSA5no6cpUa1FAzk3yofMUyAgbGswes+Cu69kPJQ9zcBQ4s/Sp9TxfHU5OxD 3WkCEqdf8HVIiaOOspq7+B9yPn/eN19YJY4eer13hkmXtxpPblETR8Xya1oR swREPM1TK90hjk0mv8bfLxCwxd7tceFVcbScTRztWcKBwCbeqPRWcbzedIFe JsgBDfv6IatvZLtL9V/TlRzoXHygT/0hjrpGvAd7SKurrP/tOyaOfA7uZkuE OdB+/aixzTIqWniLJ6mJckBN/gmXtCYVT3SUBQGVA61Prx1u3ErFRjndQIK0 r/G2vCB9KsaqCM2r0zjQ7NxybG4PFfUb59VX0TngXcVT8vUUFZt2q/GOSHCg 0d7iQkQ4FQu8mjdtkuaAJ5fCm10xVAyMSbeJIa1y7yeD+yEVn9Knl8z8v73c +51jBhW995slFMtwgCWSq2Dygor39Wv1JeU40JB2xf2/Sirya1sIOJG+scXg E6eairaBXcaVpOtPffVc3URF6zgpRTt5Drg/427l+0nFTsXPOxNWcUBx94f1 L8ap2Hutsrif9Meu6DtuM2T/s7L31BQ4oMC/dlMfDw2L9usVEaQ/HDMPq2DQ 0PaS7dlyRQ64jcr1X5OjoRNPr9s8aXm/Yd0NTBoqByksaCqR7Xm3hhM30HD+ s9iZTNKy3NlGHjtp2D37puA6kwPnjk5/o+2l4esk46vZpPOL9K8XmtHwzIjW 6xbSBmebn/Rb0TDG68KPDSwOBL1QMPY+TUOqTkX5MdKNdMdeqfM01LkWL+lL +mwNr8QBVxo25M7b1JN+ori/aMSdhpxVd00mSc94xJvcuUVDQ/HnZVRlcr2s V/cuC6JhwKuVKodJfw7wlDocTsOBpVuZrqSlvr9/NhZNQ71uRkY46bx7J4aZ yTTUfMm3pYr0n1/Zfq/SaahuLW3cSRp3/pG1zKVh/9s/nZOkA5IMiOlCGm7K eTDDr0LO19zdg+GlNPx1kz9GmrTkwZZfa8ppWHl1B6FG+nSuYkDVaxqeDjls g6Rzl15SOPmehtbuOqGmpKetOc/nP9IQS2fwOGlgL7WIbqShl1/IFTvS/qIH xte30vB+9+JGF9Kf7B8G13SR37u719mDNKNygHm2j4Z9gje0/EifktF4xTVM w67HAd5BpHOu3DwWN0rGd+Lq/jDSU/XVU5umyfh5dqVFktZbTQ2rn6fhHskF j3uk7/icXG3PTcf8qfC2/7u+PecNLx8d2UnLy6NIS2jOWD0SoGPx6BmlCNI2 oYazW0TpOOiaIhJCOnsgJPILjY7Jtyu8/UlP6reuuyRNR/ktFVe9SOvGKb1b rkDHx3ZJE1dJ3568ZJOmTMcL+VYTF0nXmZQtgCods+xnrpwiTU/ni2lVp2MQ 4eBlTvokl9kGV206qnuyhXaSzjqSUCMEdHx5pH2VFumJwsEzWdvoqF3YQDBJ 6whs4tpuTMdHebFfxUjXltdouB+iY8tMcOIgOZ9UOq2OcoyOO6wKjRtIWznZ 2D05Qccv0Q/c2aRHFWYf9trT8SJvyjkf0toe27RuOtFRzYZgniXt3RTaIHGF ju5d3nY7SFMCmHym3nQ80yHqwUv6eI9T0uAdOp6OrDPpIdfr463Pt/repWNa IyvlOWmtX2aX2PfpuKEkos2RtKWZV4vCEzr2hz3wriD3S3S5varWUzpOgMK5 UNL1KuY+ezh0bHUaCDlKehvXmnWub8nxNFxMHCb347rcxltVXXQ89mdN3Qy5 f8/RX3xp7aOjyeVzz0tIJ/tkrv49TMc+x9sjLqSpRz0baTPkfPOoCw6R+eDf UmVlO2EJdOCqN39B5g+ty6IeHlQJPGMTb3yJ9OWOhU/hUhIYHtniKUv6R9Gn 64SyBPZE2GZcJfNR3YnrdSv0JVBIk++fOJmvHhEf3fKcJFD+QFfKghSZb5XY NRVXJFBJKD06nDQlPEXuq4cEGmWUvVMk7W97tXoxQAIPZd8Y2i7JASfKKpn9 yRJog8PyzmS+NbjoWjnRIIGRldp7romT+bHFmrGsRQLNSrVUxikceLbN2FGq SwLLtZdvsyO9WlJWYvuwBFp2sTceEOOA6Lt3DtE8DDxSZTy2UoQD3+WlKNoa DCxn8bSqC5Dta2Yu9WkzUDlQzjNuBfk9jcbacGCgm/rD+9ykHxkF3xkyZqC0 6O717/nJ9WK/MBd3koHy7/z7t/OR8RW3d/8LYeClX4rHp7g5sLy8VC87ioFr E02PbiOt/TYq7vADBuqXUz6Ec3HgfsueQ/lpDGy5MCGgvEjWK//K3p0sY+BX gRguA/I8bNjx8MmbQQbWWK+PXEOer0v2XxNw+s3AlNvLak5OEbDh6CE76SkG 5hs4ukZPEhDmIKjgxiWJ2anH5OfHCdgb7hHNokmiFFR9KiDP6/etxz0Ct0ni GesUl0byvH95QWb3vkRJ3NC9s+AnWT9884+1cUuTxLHT5pXtZH3BnUpxj8+W xCT9Qq5qsv4waF2eOVAiiczXTiMJXwioNPqz1KteEo9nvwrf+ImAatn6igJu KZy9/amL6x0BjZ+8toidlsLesPTGzWR9NDmysF/7vBQWDdtaDhcSIL7sqp31 JSn8KhXM87CAjF/v4v3sG1L4wKwvby6PgJaso9OG96SwY2Hp5cRMsl7zUS90 qZLCidB+u5AEAgY29ak0KUsj362qpVx3CEgX7/btUpXGOSEuSU8/As5OtXcN aEjjbfdU8zkfAvqKG+/NozTOnBw0+HmLgB71N9zyR6QxZMf5H2XuBLRvSGmx D5DG93dmhHgukvXdupMB3EPSWN46EKBsRkCJUsfA2mwZ/Pvgs/VrGgEOKdW7 P+bL4Ba/zuwhcQLk5EvzHJ/J4CrDzzuEKQQESkW6FL6SwevIf9FcmABLsV1c Ws0y6KJ51e7jMrKe435KM+SVRc9t7u8dZtlg3B5sdMRaFkU0D948QdbzF3fJ NFTwy2F/2USFQBQb9MN7T9QLyKFL2qBfZDgbKC1ZvzuE5DBb2mgdnbxPEOc2 C86Ky+H0fBlTMpANvP77dqqtkkO5HVDEd4sN8VXe5XFb5NBp42iquz0bqg37 s1zs5XBMsNXsNbKBqZfvw6yVQ7Ev1cdLe0th8qAjlateDosq75/60U3ev+xV M1sa5LDszSZ70a5SsIzN+RjcLIeD+Qoep1tKIWIyQ2Liuxyeo0TcH60thcWs pCcv5uSwcJ+KSMazUmimRbZZKMujxBTvbMjtUggYc1UP8pHHAfLCIyJXCi+0 DppZaK7CHal9I4a6JSBZTnlrObMKgyYWbu6VegarlvBr2+QqoPcP5cHt34ph r2/XvwQnRYyMFNJp3FMEB3J/T113UcSYlDlRW6MiONS0OGJxRRG/j0hGT0ER WCrLtYl6KOLv0bBQXvUisPtwouS2vyJm8+l/HqUXgS+lx/FioiJKhx5PHP1e CERq7zfdWkU8LGK5z9mtEJQqByvalZWQ12BnrGlwAVzdRxzLXqOEt/i6+Gt8 C6C6LXDymqoSjrEMRtGjAC6Nr2HSNJSw9tNjbqmL5P1b9mLAflDCfScC7UJM C2Cf+7hp1SElXJYzm3pcpADc1ebbn3gr4aZ1a0wcwvLhA1Hj6umnhEILJSIs /3yQNYpfaeKvhP/1J+i13cyHN5a6OHRXCbXbfTLVHPNBKPBmimKsEpYsSUu7 Y5IPqb0852OfKGHU7QO9Q8vyoS5W4I93uxKq+wtKH53MA0be2gshXUoYvMLI 2/FbHpyt2PM9tkcJaU9U2pw+5MHCUHBd/oASurrmNeik5oGKjmBG56QSDjZQ HvcfyAOfTsEjWwSZOLy99MKFnFzYrCDEGdNlIn+1C3Vhbw54b1bb8BeZ6KF+ X9pSKwc+7jZNX7aNiSoPgzakyOfAaZfQSFljJhoKQnDfRDaEVwo5mJgzMfG/ BpZGTDYM2wpLZ15kYpuf87Ly5ixIzBG5eSKRiTL0meYz2zOhN3T17OZkJnY4 30lvW5sJq50NnYXSmKg6ktyykZIJz7RdbcuzmPixbMWCT08GfKxqNpV6xsTq 40e/PvbIgH/fEuWaPzDJ/Kz6Myo3HSzFVStM55gY0Ws7wRlNg+QZIx3WXybS wmbHbn1Og4E262f/Fsn/3fZ6mvosDVySw7NyeVnY1PNVsMg9DYLVpiJWiLDQ 5PEZ8XvcacDZVXbqLYuFc5fvvdTiTQWGpzEvHGJh58ugL/+1J4HFUKGlmQUL 9xlFJFUWJUGMuWSx7TEWJq4a5JUNSgKK2ohN2EkW3v+lIhumlQQrv9192X2B hTd8JlTFQh7Bnj3TtOlLLMw0EFXQt3kEQaVWjstdWLhT2Dt9ZNMjWBauJqPu zkKiMM7dvCQRlhh8uu57m4XJ3S77b2ECYJ725/sBLNzkXMGd3fUQbjKSV+cG szAhs9vWw+MhLIxfbvkSwcLvK30muovjYTqFspmVSPbntmXfiHAcaAh7hGxN JuNRiP4Sl/IAnG/09Zmmkf35LZaf0XgAowefRV3NZuHL/ry9vaaxMMRrMf6+ hIU6Y2L3DexjQPnyy12dBAsPmZit8xuOBttO5aTx5yx0NxuTqj0XDb3PZk0l 37BQTrf3V9iRe7BKwSZd7S0LJT61Cd39EAUnQ6v/GVazcDaC72Dw1ijotI3L dahn4cc1cv5KApEg1cjD6/WZha8Vlw70OETAMXSwvNdEjuduH57vb8Ohma67 orydhRufd+4ZswsDql+aTUMXC9XWf2P6WYXCoTFB4kcPC+urU475Nd2Fhved 54QGWZhlzpUX6hUIwpo7XiqMsLD46bzi7mx/ME1+QtP6zUKm/dm5O3m3IWQl 3XHPOAsvvC3Uod3yhQ/ut6pOTLFQMNxwDddKb1jePyDtOsNCy+lav1BHT9hl tt81YJ6FjO7PY3z2V8D/BfvDw38sjI7TEI0UPw/nfb+valkk46u5+hV37of/ AVhmp4Y= "]]}, "Charting`Private`Tag#1"]}}, {}}, <| "HighlightElements" -> <| "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>, "LayoutOptions" -> <| "PanelPlotLayout" -> <||>, "PlotRange" -> {{-3., 15.}, {0., 0.16976527263135505`}}, "Frame" -> {{True, True}, {True, True}}, "AxesOrigin" -> {0, 0}, "ImageSize" -> {118, Rational[236, 3]}, "Axes" -> {True, True}, "LabelStyle" -> {FontFamily -> "Times", GrayLevel[0], FontSize -> 11}, "AspectRatio" -> Rational[2, 3], "DefaultStyle" -> { Directive[ Opacity[1.], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[2]]}, "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& ), "ScalingFunctions" -> {{Identity, Identity}, { Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>, "Meta" -> <| "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> Plot, "GroupHighlight" -> False|>|>]]& )[<| "HighlightElements" -> <| "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>, "LayoutOptions" -> <| "PanelPlotLayout" -> <||>, "PlotRange" -> {{-3., 15.}, {0., 0.16976527263135505`}}, "Frame" -> {{True, True}, {True, True}}, "AxesOrigin" -> {0, 0}, "ImageSize" -> {118, Rational[236, 3]}, "Axes" -> {True, True}, "LabelStyle" -> {FontFamily -> "Times", GrayLevel[0], FontSize -> 11}, "AspectRatio" -> Rational[2, 3], "DefaultStyle" -> { Directive[ Opacity[1.], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[2]]}, "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& ), "ScalingFunctions" -> {{Identity, Identity}, { Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>, "Meta" -> <| "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> Plot, "GroupHighlight" -> False|>|>], ImageSizeCache->{{4.503599627370496*^15, -4.503599627370496*^15}, { 4.503599627370496*^15, -4.503599627370496*^15}}], Selectable->False]}, Annotation[{{{{}, {}, Annotation[{ Directive[ Opacity[1.], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[2]], Line[CompressedData[" 1:eJwV13k4VN8bAHDylRTZxswYe5ihhYpE4X1RKiWVkkqUFomSLJWibGXLHonI ll22Yu5IpahIJMkuImtlz1Z+9/fXfT7Puc+59z3Le94jb+N44MwSLi4uZ24u rv8/BVL6KJdfyIEAT6lHSb4RLP4ZLhiKsYVPHOaduJ/nof/De5fJNV5QIe2n +PyPG3yMo+v+cgqG82OnT9fe9YBjT4uWTLZFwsutx66JuXrBR6m2H6OesbDl 3c2OqCofMPBdUvNTPhGszu1du9jsB61TUYddbZIhknrDuqPsDkRlZryfUE+D 7xmHnwbfCIBlIvW5o01ZwGnQDbHODIaKN99lHTNywYOe9n6zbAjolc2/m9bJ h730k1aOPqEw4yi01XVlEYxqcgxfCYXDl10SLhpXiuF3OBsP5IZDoYJC7kTX U4j+PPbAaXsEOHzVlL1cUAobF7aJHbaNhC49Kx7Hg+XQtFv2n+iNe1BGP6ej +vwF7PyWZkibvQd7ZkuJ6YiXoLx2ONDIORpUPldMPJ1/BRLSH8ubrGPg++2m Mxq1b0AoVv1soXQsHP71d9eGS9XQ5VW9XdUwHozavH+EKdZAXWvoG72keNB4 x+cz2lwD568Wp/L9iwfhZJGyJ/q1cLTv1eHxoofQlyVKi+GvB11gjJqJJkKi FTNAvK0Bvsw8yz9b/wiUJ49wd+t8hubPgRtz5x5BYcDdazkJn6Fy079dtxST oKp40s7QphHCNxQrtbglwa/lr42dBr+AvbFtXzo1GXRKrAVq/zSDpvARi4Ft KdAqFBvqS+mC8rszqv/OpcHptA98+9y6wGnBcUoxIA1+buG6JdncBZKP8taK ZaYBV5G6VovJN9gTw/9+10AaUDofKF8S6YbNF65v0D79GHQ07PgT7vfA5Uee 0HwgHQK/8dbMPu4D8fmDL+uFMmHuQU5VYmMfbA9alL6vnAl2h8wqti/5AXZW s2Gonwk7qx+xw4//AI3KEWnNy5nAV7w1Q4XSD42uaYbPGzLB946T3xGvAbBy LvnrFZIFN1U7gH1sGPYLxd2tG8+GLXpHj+r4j4JKaqGDi3sejOSuPxufMApu 6b2ZjLt5kCDNd3mheBTCUq6Z5ifmAc/fooCy7lG4t2dqd9abPPjAEWTrbB2D 2GU8eu2CT8Ba+xVN99cYbPfhvrLv4RPw1VD+ontwAv67Z3kq2iIfaldPm4Lc NHgd0FB9alEA23p2Gt3WmobLNnxvZk4UABEbp1O7bxrYayZKNtkVQMYyfZVj XtNw1yOiK+5aAfj+CFpypWcaeD3HVRkPCkAnWf5pXuof2P83xv9HSwFkS5gw ZFRmQXnG+/afg4UQsCy1d2HDAtjcaVkbsKUI6n5e2dT9kwtvMjZytIqL4Vcd c2fSIg8m2LS+fiv0DCy5tSR5ePiQu9yhdOmGEnBbR+8/18CPJ0WGfZqopcDf 4DcR28mPS2Q2nLvAKIV4t4nF6iF+bM24Vs0tUwqvXnykr+NZjvFRdwQVlEpB 4ICf8Zj6cmyUv5GzQ70Ukt3Gc6/dW465RYeRYVoKtS8+uARarMC5NkPBEd9S UDzgtSSnUwDXl1f4XB0k39/YICM4JIA73qt1GY6UgqyYwtaLUwK4Kq4YBX+X AqPxjfN6AUFUWZJNfzBZCkLmy/qKtQUx6/Bj1fjFUpg7Evr2eZQgnt2r52Mg zoZPJx8G1xmvRIk63rVSwAZPJzZ14pkQcllNKyjeZUOn686MHa+F0Clk7770 UDbouX/Vjq8TQj3KCnPlCDb89Z6y3D4ghO4Sm0cVYsj26vufagSEsXCs+RJ3 EhuetzXSZPSEEZMz15oXs4Hzb09qxSNhHHFTLTzfwoahW5SfI4+Fkc4M3ZTV xgYGT/smWq4wjhlS0vo72ODOZ//Wni2MovFFxpY9bNgiHDBEaRDGa+qbX6wd ZgNbvnK9LY8Ifg9KrDi/wIaSbbrPV5wVQajoJKykCbgd5LdLwkEE//Nov2Em S8DBhtovzMsiOCQWY2IkT8CotdUvfU8R/CS1KMVUImD19ZuyV6NFcEoz6ebH tQQkFLzy6q0SQWfuiMKKrWR/MkZGz1miKDzZl7bVguzvTEhD9TpRvDtyXGDi CAEKOU1WzeqiOFzuEJJxjICX2rZXJkAUd8DbH4LWBMwd9M9QsRBFydqH46/O EHAxqHp5tL8oGkJyVd1lAsxn9tZdHBTFsX/USt8gAhgd/qcov0WRXrvr+49g AjpfVfxhT4riCXPTMztCCDgTpCnHyyWGK3Ib7vGEE+AiI+MURxXD9uL0J+ei CYjc9lP0naEYOqR+Xeh7REB9WJC5fIIY/h2VScgrJiDKtXKoKkUM09ceyOl4 SoDF0UVPh0wxXLb+qdKKEgK+KTinlxSL4UHzb0dPsgn4/ezojEmNGF75Ht44 95yAlR0qD9xnxFDfMGxjTxUBu1XedXw+QMFb1qvHfb4SwCWXtHbCgoLzOZpc 0c0EFFPdr4taU1AjPlL7cQsBMv+tldhvT0HPHGm1V20EjHeGHvzoQ8HUVsc1 3V0EPIg6XPOumIKns5Nj3vcTYBq0njFAUHBY/bdz+QAB/3nz2/G9oqBDbpNn wSA5no6cpUa1FAzk3yofMUyAgbGswes+Cu69kPJQ9zcBQ4s/Sp9TxfHU5OxD 3WkCEqdf8HVIiaOOspq7+B9yPn/eN19YJY4eer13hkmXtxpPblETR8Xya1oR swREPM1TK90hjk0mv8bfLxCwxd7tceFVcbScTRztWcKBwCbeqPRWcbzedIFe JsgBDfv6IatvZLtL9V/TlRzoXHygT/0hjrpGvAd7SKurrP/tOyaOfA7uZkuE OdB+/aixzTIqWniLJ6mJckBN/gmXtCYVT3SUBQGVA61Prx1u3ErFRjndQIK0 r/G2vCB9KsaqCM2r0zjQ7NxybG4PFfUb59VX0TngXcVT8vUUFZt2q/GOSHCg 0d7iQkQ4FQu8mjdtkuaAJ5fCm10xVAyMSbeJIa1y7yeD+yEVn9Knl8z8v73c +51jBhW995slFMtwgCWSq2Dygor39Wv1JeU40JB2xf2/Sirya1sIOJG+scXg E6eairaBXcaVpOtPffVc3URF6zgpRTt5Drg/427l+0nFTsXPOxNWcUBx94f1 L8ap2Hutsrif9Meu6DtuM2T/s7L31BQ4oMC/dlMfDw2L9usVEaQ/HDMPq2DQ 0PaS7dlyRQ64jcr1X5OjoRNPr9s8aXm/Yd0NTBoqByksaCqR7Xm3hhM30HD+ s9iZTNKy3NlGHjtp2D37puA6kwPnjk5/o+2l4esk46vZpPOL9K8XmtHwzIjW 6xbSBmebn/Rb0TDG68KPDSwOBL1QMPY+TUOqTkX5MdKNdMdeqfM01LkWL+lL +mwNr8QBVxo25M7b1JN+ori/aMSdhpxVd00mSc94xJvcuUVDQ/HnZVRlcr2s V/cuC6JhwKuVKodJfw7wlDocTsOBpVuZrqSlvr9/NhZNQ71uRkY46bx7J4aZ yTTUfMm3pYr0n1/Zfq/SaahuLW3cSRp3/pG1zKVh/9s/nZOkA5IMiOlCGm7K eTDDr0LO19zdg+GlNPx1kz9GmrTkwZZfa8ppWHl1B6FG+nSuYkDVaxqeDjls g6Rzl15SOPmehtbuOqGmpKetOc/nP9IQS2fwOGlgL7WIbqShl1/IFTvS/qIH xte30vB+9+JGF9Kf7B8G13SR37u719mDNKNygHm2j4Z9gje0/EifktF4xTVM w67HAd5BpHOu3DwWN0rGd+Lq/jDSU/XVU5umyfh5dqVFktZbTQ2rn6fhHskF j3uk7/icXG3PTcf8qfC2/7u+PecNLx8d2UnLy6NIS2jOWD0SoGPx6BmlCNI2 oYazW0TpOOiaIhJCOnsgJPILjY7Jtyu8/UlP6reuuyRNR/ktFVe9SOvGKb1b rkDHx3ZJE1dJ3568ZJOmTMcL+VYTF0nXmZQtgCods+xnrpwiTU/ni2lVp2MQ 4eBlTvokl9kGV206qnuyhXaSzjqSUCMEdHx5pH2VFumJwsEzWdvoqF3YQDBJ 6whs4tpuTMdHebFfxUjXltdouB+iY8tMcOIgOZ9UOq2OcoyOO6wKjRtIWznZ 2D05Qccv0Q/c2aRHFWYf9trT8SJvyjkf0toe27RuOtFRzYZgniXt3RTaIHGF ju5d3nY7SFMCmHym3nQ80yHqwUv6eI9T0uAdOp6OrDPpIdfr463Pt/repWNa IyvlOWmtX2aX2PfpuKEkos2RtKWZV4vCEzr2hz3wriD3S3S5varWUzpOgMK5 UNL1KuY+ezh0bHUaCDlKehvXmnWub8nxNFxMHCb347rcxltVXXQ89mdN3Qy5 f8/RX3xp7aOjyeVzz0tIJ/tkrv49TMc+x9sjLqSpRz0baTPkfPOoCw6R+eDf UmVlO2EJdOCqN39B5g+ty6IeHlQJPGMTb3yJ9OWOhU/hUhIYHtniKUv6R9Gn 64SyBPZE2GZcJfNR3YnrdSv0JVBIk++fOJmvHhEf3fKcJFD+QFfKghSZb5XY NRVXJFBJKD06nDQlPEXuq4cEGmWUvVMk7W97tXoxQAIPZd8Y2i7JASfKKpn9 yRJog8PyzmS+NbjoWjnRIIGRldp7romT+bHFmrGsRQLNSrVUxikceLbN2FGq SwLLtZdvsyO9WlJWYvuwBFp2sTceEOOA6Lt3DtE8DDxSZTy2UoQD3+WlKNoa DCxn8bSqC5Dta2Yu9WkzUDlQzjNuBfk9jcbacGCgm/rD+9ykHxkF3xkyZqC0 6O717/nJ9WK/MBd3koHy7/z7t/OR8RW3d/8LYeClX4rHp7g5sLy8VC87ioFr E02PbiOt/TYq7vADBuqXUz6Ec3HgfsueQ/lpDGy5MCGgvEjWK//K3p0sY+BX gRguA/I8bNjx8MmbQQbWWK+PXEOer0v2XxNw+s3AlNvLak5OEbDh6CE76SkG 5hs4ukZPEhDmIKjgxiWJ2anH5OfHCdgb7hHNokmiFFR9KiDP6/etxz0Ct0ni GesUl0byvH95QWb3vkRJ3NC9s+AnWT9884+1cUuTxLHT5pXtZH3BnUpxj8+W xCT9Qq5qsv4waF2eOVAiiczXTiMJXwioNPqz1KteEo9nvwrf+ImAatn6igJu KZy9/amL6x0BjZ+8toidlsLesPTGzWR9NDmysF/7vBQWDdtaDhcSIL7sqp31 JSn8KhXM87CAjF/v4v3sG1L4wKwvby6PgJaso9OG96SwY2Hp5cRMsl7zUS90 qZLCidB+u5AEAgY29ak0KUsj362qpVx3CEgX7/btUpXGOSEuSU8/As5OtXcN aEjjbfdU8zkfAvqKG+/NozTOnBw0+HmLgB71N9zyR6QxZMf5H2XuBLRvSGmx D5DG93dmhHgukvXdupMB3EPSWN46EKBsRkCJUsfA2mwZ/Pvgs/VrGgEOKdW7 P+bL4Ba/zuwhcQLk5EvzHJ/J4CrDzzuEKQQESkW6FL6SwevIf9FcmABLsV1c Ws0y6KJ51e7jMrKe435KM+SVRc9t7u8dZtlg3B5sdMRaFkU0D948QdbzF3fJ NFTwy2F/2USFQBQb9MN7T9QLyKFL2qBfZDgbKC1ZvzuE5DBb2mgdnbxPEOc2 C86Ky+H0fBlTMpANvP77dqqtkkO5HVDEd4sN8VXe5XFb5NBp42iquz0bqg37 s1zs5XBMsNXsNbKBqZfvw6yVQ7Ev1cdLe0th8qAjlateDosq75/60U3ev+xV M1sa5LDszSZ70a5SsIzN+RjcLIeD+Qoep1tKIWIyQ2Liuxyeo0TcH60thcWs pCcv5uSwcJ+KSMazUmimRbZZKMujxBTvbMjtUggYc1UP8pHHAfLCIyJXCi+0 DppZaK7CHal9I4a6JSBZTnlrObMKgyYWbu6VegarlvBr2+QqoPcP5cHt34ph r2/XvwQnRYyMFNJp3FMEB3J/T113UcSYlDlRW6MiONS0OGJxRRG/j0hGT0ER WCrLtYl6KOLv0bBQXvUisPtwouS2vyJm8+l/HqUXgS+lx/FioiJKhx5PHP1e CERq7zfdWkU8LGK5z9mtEJQqByvalZWQ12BnrGlwAVzdRxzLXqOEt/i6+Gt8 C6C6LXDymqoSjrEMRtGjAC6Nr2HSNJSw9tNjbqmL5P1b9mLAflDCfScC7UJM C2Cf+7hp1SElXJYzm3pcpADc1ebbn3gr4aZ1a0wcwvLhA1Hj6umnhEILJSIs /3yQNYpfaeKvhP/1J+i13cyHN5a6OHRXCbXbfTLVHPNBKPBmimKsEpYsSUu7 Y5IPqb0852OfKGHU7QO9Q8vyoS5W4I93uxKq+wtKH53MA0be2gshXUoYvMLI 2/FbHpyt2PM9tkcJaU9U2pw+5MHCUHBd/oASurrmNeik5oGKjmBG56QSDjZQ HvcfyAOfTsEjWwSZOLy99MKFnFzYrCDEGdNlIn+1C3Vhbw54b1bb8BeZ6KF+ X9pSKwc+7jZNX7aNiSoPgzakyOfAaZfQSFljJhoKQnDfRDaEVwo5mJgzMfG/ BpZGTDYM2wpLZ15kYpuf87Ly5ixIzBG5eSKRiTL0meYz2zOhN3T17OZkJnY4 30lvW5sJq50NnYXSmKg6ktyykZIJz7RdbcuzmPixbMWCT08GfKxqNpV6xsTq 40e/PvbIgH/fEuWaPzDJ/Kz6Myo3HSzFVStM55gY0Ws7wRlNg+QZIx3WXybS wmbHbn1Og4E262f/Fsn/3fZ6mvosDVySw7NyeVnY1PNVsMg9DYLVpiJWiLDQ 5PEZ8XvcacDZVXbqLYuFc5fvvdTiTQWGpzEvHGJh58ugL/+1J4HFUKGlmQUL 9xlFJFUWJUGMuWSx7TEWJq4a5JUNSgKK2ohN2EkW3v+lIhumlQQrv9192X2B hTd8JlTFQh7Bnj3TtOlLLMw0EFXQt3kEQaVWjstdWLhT2Dt9ZNMjWBauJqPu zkKiMM7dvCQRlhh8uu57m4XJ3S77b2ECYJ725/sBLNzkXMGd3fUQbjKSV+cG szAhs9vWw+MhLIxfbvkSwcLvK30muovjYTqFspmVSPbntmXfiHAcaAh7hGxN JuNRiP4Sl/IAnG/09Zmmkf35LZaf0XgAowefRV3NZuHL/ry9vaaxMMRrMf6+ hIU6Y2L3DexjQPnyy12dBAsPmZit8xuOBttO5aTx5yx0NxuTqj0XDb3PZk0l 37BQTrf3V9iRe7BKwSZd7S0LJT61Cd39EAUnQ6v/GVazcDaC72Dw1ijotI3L dahn4cc1cv5KApEg1cjD6/WZha8Vlw70OETAMXSwvNdEjuduH57vb8Ohma67 orydhRufd+4ZswsDql+aTUMXC9XWf2P6WYXCoTFB4kcPC+urU475Nd2Fhved 54QGWZhlzpUX6hUIwpo7XiqMsLD46bzi7mx/ME1+QtP6zUKm/dm5O3m3IWQl 3XHPOAsvvC3Uod3yhQ/ut6pOTLFQMNxwDddKb1jePyDtOsNCy+lav1BHT9hl tt81YJ6FjO7PY3z2V8D/BfvDw38sjI7TEI0UPw/nfb+valkk46u5+hV37of/ AVhmp4Y= "]]}, "Charting`Private`Tag#1"]}}, {}}, <| "HighlightElements" -> <| "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>, "LayoutOptions" -> <| "PanelPlotLayout" -> <||>, "PlotRange" -> {{-3., 15.}, {0., 0.16976527263135505`}}, "Frame" -> {{True, True}, {True, True}}, "AxesOrigin" -> {0, 0}, "ImageSize" -> {118, Rational[236, 3]}, "Axes" -> {True, True}, "LabelStyle" -> {FontFamily -> "Times", GrayLevel[0], FontSize -> 11}, "AspectRatio" -> Rational[2, 3], "DefaultStyle" -> { Directive[ Opacity[1.], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[2]]}, "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& ), "ScalingFunctions" -> {{Identity, Identity}, {Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>, "Meta" -> <| "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> Plot, "GroupHighlight" -> False|>|>, "DynamicHighlight"]], AspectRatio->NCache[ Rational[2, 3], 0.6666666666666666], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{True, True}, {True, True}}, FrameLabel->{None, FormBox[ StyleBox[ RowBox[{"\[Rho]", "(", "\[Lambda]", ")"}], Opacity[0], StripOnInput -> False], TraditionalForm]}, FrameStyle->GrayLevel[0], FrameTicks->{{{}, {}}, {{}, {{0, FormBox["0", TraditionalForm]}}}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->{{Automatic, Automatic}, {2, Automatic}}, ImageSize->118, LabelStyle->{FontFamily -> "Times", GrayLevel[0], FontSize -> 11}, Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}}, PlotRange->{{-3., 15.}, {0., 0.16976527263135505`}}, PlotRangeClipping->False, PlotRangePadding->{{0, 0}, {0, 0}}, Prolog->{ ArrowBox[ NCache[{{0, Rational[1, 24]/Pi}, {6, Rational[1, 24]/Pi}}, {{ 0, 0.013262911924324612`}, {6, 0.013262911924324612`}}]], { Dashing[{Small, Small}], LineBox[ NCache[{{6, 0}, {6, Rational[1, 3]/Pi}}, {{6, 0}, { 6, 0.1061032953945969}}]], InsetBox[ FormBox[ StyleBox["\"\[Mu]\"", SingleLetterItalics -> False, Directive[FontFamily -> "Helvetica", GrayLevel[0], FontSize -> 10], StripOnInput -> False], TraditionalForm], NCache[{3, Rational[5, 48]/Pi}, {3, 0.033157279810811534`}]]}, { Arrowheads[{-Automatic, Automatic}], ArrowBox[ NCache[{{12, Rational[1, 24]/Pi}, {6, Rational[1, 24]/Pi}}, {{ 12, 0.013262911924324612`}, {6, 0.013262911924324612`}}]]}, InsetBox[ FormBox[ StyleBox["\"2\[Sigma]\"", SingleLetterItalics -> False, Directive[FontFamily -> "Helvetica", GrayLevel[0], FontSize -> 10], StripOnInput -> False], TraditionalForm], NCache[{9, Rational[5, 48]/Pi}, {9, 0.033157279810811534`}]]}, RotateLabel->False, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{ 3.895207006790284*^9, {3.895207070220139*^9, 3.8952070917239933`*^9}, { 3.895207143838638*^9, 3.89520718662168*^9}, {3.8952072225436153`*^9, 3.895207261231798*^9}, {3.895207414307035*^9, 3.895207445020737*^9}, 3.895207479012274*^9, {3.895207593605205*^9, 3.89520762652086*^9}, { 3.895207672440133*^9, 3.89520776704414*^9}, 3.895207869061739*^9, 3.895207971302621*^9, 3.895208774788427*^9, 3.895208856296947*^9, 3.895208911233605*^9, 3.924161607806319*^9, 3.924161708547617*^9, 3.924161888307276*^9, {3.9241632469636397`*^9, 3.924163268743547*^9}, 3.9267609838904743`*^9, {3.9267611808104887`*^9, 3.926761262911172*^9}, { 3.926761436461685*^9, 3.926761485701083*^9}, 3.9267615513295307`*^9, 3.926761627535708*^9, 3.9267616683618813`*^9, 3.926761738675971*^9, { 3.9267618371538763`*^9, 3.9267618801693287`*^9}, 3.9267619465042458`*^9}, CellLabel-> "Out[236]=",ExpressionUUID->"4fdf1572-8b7c-4352-8f24-df96a72089dd"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"ps6", "=", RowBox[{"plotSpecWithIso", "[", RowBox[{"8", ",", "0", ",", "\"\\"", ",", RowBox[{"Style", "[", RowBox[{ RowBox[{"\[Rho]", "[", "\[Lambda]", "]"}], ",", RowBox[{"Opacity", "[", "0", "]"}]}], "]"}]}], "]"}]}]], "Input", CellChangeTimes->{{3.89520778997552*^9, 3.8952077901675262`*^9}, { 3.895207839433116*^9, 3.8952078422645893`*^9}, {3.895208024284871*^9, 3.895208026220129*^9}, {3.895208867468687*^9, 3.8952088688522387`*^9}, { 3.924161720316*^9, 3.9241617206431518`*^9}, 3.924163261168485*^9, 3.926761190108756*^9, {3.926761464570071*^9, 3.9267614648664703`*^9}}, CellLabel-> "In[237]:=",ExpressionUUID->"9df7247c-bae3-4562-95d7-d5d547f8369d"], Cell[BoxData[ GraphicsBox[ InterpretationBox[{ TagBox[{{{}, {}, TagBox[ {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[2], Opacity[1.], LineBox[CompressedData[" 1:eJwV13k4VVsUAPB7iZAkGTLdwdTlIpUklbVIEyVDqTxFJVOGZHiikCkiQ6iI zEJmwj23JEmlDFEiMqSJRJQGlHfeX+f7fd/Ze6999tlr7c085mFxgodCofhR KZT/n5rnPFr5KRT0iX8iTh1XhxfiZw9aL6HgwlUzB5eS0+BfHDlSIknBlcve GrrZ+wPDKNmdqkDBkPrn02WrgqG5L+v3Pg0KdqaJnh7NCwFXr9KwAl0Knvf0 bOx9FQZiS7jL5rdSkEl9HH2pKwLqsh+l7t1LQdbYslv0/Ejg6xwq/3GCgmLW 8YT7ZDQUO3/ZZOxJQX3OzW63U5fAgjrbnH6WgnbfO6b+GYiFG1or3hglUjAy PF3U8mE8GD2mO127QUHT9T6f9jkkwJit+rfPhRQc+n7EP5F6GXTitgkmNlDQ b+1RoWlWIrR/+Xf98BcKHo6QMHfcngwHCxvXs2YpSNf749fcngxD9kt1PPip 6L4vz6Fm/xX42pet84dGxbqcgqh1B6+CWEvrBmkzKjoHBvU825wCVvmKeuaV VHSVtToTkpUGA0fd9a7VU3EhKcIikD8dHOU5eoMtVJzYmmrA55IOfkmmm9xG qLhkq3nXF/UbkBpyZnOUOA+qm/RER+dkwMCRdv37vjw4WWdU66aZBQ4yMiAQ yoObJWFs5EAWTL60h71xPDhtZTU0HpwFlD2z8OYmDx4QqeppfJ4FCpuUDX73 8OBZ+S/qLe7Z4CAVsHXNJl583NNeteNaDky0q+zMWuBFSnd/+YrbeVAt7tVe umQRjmo1Whm9yAP/Q/es7kgtwmnd31r4LQ/4Rg6ceLV6ETa7h86kaeWD3I/I kKV2izD76rdEamE+GMt9vnOmYRHqrcg1lUu4CXlOZWsszvNh3eA/vwYNC8Gl ZK7O9hIf7u1WjXlkUwha0zvQLYUPVURrfC/5FsKdgCHTyAo+/Dqx+v3twkLo jF3uWj/Mh5+2BD0JFSkCym2vfDVDfmyy2Jp5rLMIbKi6sry8i3FOpWax+bZi EA5xrESRxag6XhKgYl0Md3mu7gqUXox7fWJmP7gXA23Rj39/r16MKY6W7arX imGQv/rFpM1ibCzZcYs7WgzHhLVi+2sWY+T3zY+1o0rAWYpFrXERQNNNthOh RCn4aqz86NQpiK3HgguLfctBsDP8W8qAIGZG/rWtCSqHNN9vCy1jgmjwst2o LrIc7t9rW6nBK4S9xjue5aaWg7BFuPHUOiGUpYKmQn05ZPtOl5xJFkLzq1/y 6ngroPXeM++LB5dg7/GcycyoClCyOM9TPCCMUp9NaC4hlZC9tpO2dEwYRVq9 N1pEVQJ9heIm9xlhPLLha8T6+EqQedHkpSW8FLucNdu+pFfCMiuB99Ubl+LL Lz6ZypxKmD0U9+hu0lKsS/V6WDNRCc+Ppse0G4vg7MbPQcFWVRDoyZH8VrMM D29prcmQroZaoy13lzgsR4MSumFm7G2w+mXa7j4qhq4XDj5IaaoBE9XHb7os xDH64uUCRW4tUBhZ6t8OimPLQAz9b30tVEv6B4jZiiM/defUy8Za8vurS5uf FMeSJEbRuZZamB6I29cWKo6Khn1JJb21kJp04OnjanEceb/oRPzPWhhb+FB3 V1ICA7MLzFzW1MHFbr6km68l0O42PaAkvQ60T3aMHRmSwMcTO3kqMutgYCHV QPKDBNpabfKrzKmDdapak2FTEthAP7+urLAO+gOsjY8JSGLGtvD5uNt1sJpZ RpHXkcSu45vPTT6rgxcnD7pdTpDE65K569izdUCn3tp+bqcUJg3ElBCmHHCy /jEkZSqF0mt8K9aac6C8yiCg0lIKna6qDxdYcsDQoafs4xEp3PuB2Rx3kAMO T/mkLXyk0GRypnrHMQ6UJtt9VsmWQoujsal2PhzQV5OM75iTwn6PTEG9VA7Y WJ7vVSxbiZQbmq15Axy4Un9SU/f2SpT6ExrTM8SBDlWr0N3clXjg9PsdgiMc MKKwNXwercRrpa+q7T9yQKPkRXDz4EpEgRwf3q8c+MvPYjmLSuN46TKeYQoB mUSbb6mnNOIabgadScBrZc7Txn+l8bbOqk4xRQLEE3IYr85Jo3dly7JFygRE Ovq1LERJ4402n9IhFgGe4go082xp9AC38BAtAgzdfR5+65RGxS/xv5yAgBGm nPhGbRnMHPZ/9uAfAsTYv0693yiDnsXqQjaHyfe1X7QmgAwKj8zcmD5CxrM9 5sKYsQxGalPbZY4RcOTk/Oz1ozJYarHT/IATGV91//DfWBlclEmuoDcBnTvS y5pGZfAfX77XKdEE8JifEfaclEHeYJHIPzEErLHe7yw/I4MfHi69YhtLQLzr UkVfiizKZ0530hIIME04d2WVlCxWaPzzKuoKAU9eHz530UgW3fwqDMSyCGhw o5mYZcgii9NrOFFNwFBkyjHfPFl8dmJV54YaAqi54v5pt2QxbOji+aBacj6v hQo/1cpi2q18A0GCgIfbf/Kf75DFc/mZpvz3CGihdzRWUOXw7dHcl/mPCXjx /LzeCns5LI2yMA99TcD38XnzjS5yOC4TZJfQR4CEgJ+z7Sk5xI7Iq+n9BFjp u1+7dVYOjbVEA8sHCOgtsv6xNVkOtU4Prm14S8BA6LpK72Y5PBNf4nxhjIBP 69+rdrPkcaZxs1PNLwJuSgyHDWrKY9Vrg7/hvwlwmOkf/KQtj0v20rosZwl4 X/0ieQ7lMTbuz8axOQLermuiMg/JY4t4DoVngYD+NTm9J6PkcSG45fKbRVy4 vjxD2ydOHs+L7mUl8HHBeio1LjBZHt1DeRYM+bnQW355W0KWPK67GHQqazEX uleHVNRw5DG6LNhxlxAXOjSORlHH5FFj/8T9bcu4ELf08Duhr/Kof+HBmTek Tb8cBPEf8pgy3eTtJcqF1mKzGRUeGobdvKedupwLLWw8uluGhoeLbg52ruBC kyp941VjGr45xf31VYoLoYKySZlmNHzvRfvqupILhqOSk4VWNDzwyEL9I+n7 BSJ5d47RMPZujFe3NBfqV/0VfetPw+j4BsiU5UKt8ptP6rdouNvy7fAQjQuu OS0mbeU05GvhPtCjc4HBrCv1qKFhKFVVOZH0RblE78r7NBRT/e0ADC7YrNhF 0e2h4fYzcx/DmVwQTdA53vuGhhd7Fx51kX4ootTsP0LDeWt+FkOBC5pCC9F3 J2hIYe92qiZNod6W2spHR/nepZ9bFLlQHZjt/06IjkcG/n0mrMQF5/m4N+Gi dCzfZ6i5h3TnT5ecx7J0/Dyn4PWEdN4EY7XpWjrGLtPkLVcm18dV5PLkBjq+ 2VD36T1pkbG57/Fb6KilNGUqo8IFv/fdRNdOOo7XJKQHkjbuj9l+yJYcr++U 0fpVXPh7yL9w1p6OJ37t17IlXfXKUTjNhY5VwEq/QFquy7BzwIeOPx+X/u4i 3WGmtT44gI7sIo/Rn6TD2+SvMc/Tce13HWsZFhcmnvw6bB9Dx5gdk/XWpLN3 fGjgu0zH7u9jlX6kDzzsUrx5lY4fLHhYyaSFt96P2JlOx30SerRy0g0NpaOj 2XS0L7+S/IS0j37a7ugCOi45JBc7TFrtTlSZeikdJxe1L/5FOrHW3seDQ8c8 SksgQ5ULO9db9Ijeo6PDwsqza0nPV8KmyiY6GtpmzxqSrtDSuGHZQsekXqdZ c9IOpTLUmXY6+nxyD7AlLaMuYH/lJR0fNNecO0m6vXCmeUMfHdVOGVJ9SYet GlHtHaKjTNYK/iDSunkdMf4f6Pi8mx0TQXpcoX5SdpyOVntjEmNIZ2Xesrg7 RccQQR25BNJWtJTbR37S8XeTqkoSaaG0iJWUP3TU4HGqSCY9JEzcNaMy8DjP 1N3/TTzV8mAuYmDRoyaT/99PuniTMc3PwPfiI9b/9+e+i9bZKMjAJjeTz/+P Z5Dwzq5DmIE9Xzef/D8e8d6iyTfLGGiyVUo1kPRHhmfgZzEGJrf0KHn/37/T hqW/JRjYmBR0xIn0pfI/1/mlGeh5ULDbmrTdrwdq4nIM7PL2ijYhvRYvcph0 BpZMEYF6pPkizXauVmDg7qD+slWke9olX21WZuAF3xe0FaSLpN6cMGYx8F7P jafz5Hqds835foDNwPa9G2rekTa76Rx6QpOBMpopAy2kFSdXi3mtYeBp93tG ZaR/6PzIDNZmoFJ17qcE0mnNIfXX9Rj4RSV51Jy0h8iuPYVbGFj6LnH7atKG Vsv6a5CB4k90h4VIf3p//ffz7QyUPH6w/Q75v3I1jkUO7mLg8vEHComkY31Y Ul92M9DRsLbKkfQ6vtvaApYMvKK7InYJaf49AQ8krBh4/Yvzq9fk/ulJMrBQ PMRATFU6UkA6UKnNQ9+WgXNbbijqk27Z+rHI+yQDW1j+l/aR+zE9umRjiDsD /QJaGiRIn+ryehznycAf11XWvCT3s+RxyoeifxmYld/+2JT00RBp5nAoAz9p eXSqk/lBu2WwbCKCgVWFReODZP7gF8vXn49ioH5N6NYE0sVZa22k4sn59XXk T5D551eDydU9aQyMkxU3TCLz1VMBMZV/Mhi40SEANpK+YdZT7ZTNwKODc379 ZH4zGrLvDC1g4M/YhQx50nEL55YS1QyUqKHcuSjPBRX98lCVVgbuHdGTEZXh wvd9HpKUDgYOtG9pzSTz6/2TmoW9nQy89P7AzGrSNinFbTE9DPTXCsvdRebj y98LpL+NkPFUx591keTCQlFW2b1Z8n89s5Z6TIwLz+7bGab8YeAdZ4H5XjL/ p/bQX56mMFHvUaaLGWkd/huzyvxMfCNHZOuS9cL1aOq2mOVMpCmMBvxYSq6H VGLfQRYT2ZeYd1YJciFf08J9LZuJi3O9P0YIcMFr23KqsCYT/yRNhr0j65WI V5zKvXVM1Kgal7hO1jOjtmhPZWCiIe/bmBleLpSHhS2e3s/EiuL6atu/BERN +ayLDmWiucaVpQLTBOS7zDhaRTBxe+4z141TBDSOeKcxo5golvt0l/NXAuZf evHVxTJxSvzq2aYJAk4Rnq/epTBxyDPovtNnst6HugXolzPJ+2NcgdM7ApQk TjyY6mdinv7ffqOXBBjEvvt5Z5CJne7ri7e9IM9Li+3VI98yUTV6z3ejLgKu /T6WTPvExJYHpyb0nxOwZMDO0eQbE+fqcsMZrQRM59ssyRNUwEPxfVKpTQTc 091neVBHAaPn3549UUmeT/QUT9htVMDzB4fFZCsIGNs87eu0WQF3yWq/bCsj z4cG8al+hgro6v7wjVYJAS67ng1fM1VAA1++nwM3CZC0NjrV66CAz4SowiNp BLgFaF+yvqqAel3zdZHhBISc4804lqqAU8Z9u3nDyHiDOstd0hVQfXcx79kQ 8nuFnnrhn6OAomZ9PY5BBKyMKZa9XkbG27lzpeoZAprSlIr6HingstnSTHNX AmTrxR/Z/FJAt39KnHTNCVCP6+/XmlPA1gNZQ0l7Cdhslzu96K8CKnVFlE3u IcCGR5tWwquII00fzDKNCUjbbunzR0QRD0ytSvmylQC59gTFG8qKmBLz9OcG HQJoQyLBgxaKaCJGS4mSJkCBR3DjsRJFXDdcfVy4jwNsG4a6V7kiVgTQbdt7 OKBds4EeVqWIjb+zTeK7ObDNxYEvn6OIv5e0zSzpJO8PnQ+ejz5UxFbt4KCx xxwoyQ508RxQxDWbXce31nBAd+v368HLlHDj9Ser7OM4YBo2+PeGpxKuDoyL 3LCJAxYlkzMB3kqYdtxNJUuXA/u7F8YP/quEMnadLwV0yPsDi9Endk4JLb+0 OnRqccD5mV1tRKQSvr1WhKYqHAgTf+vhnqGEOp05xp9EOUDkvhva0qqEziON 27Pe1YHyw9HGfpYyusSpP6dE1EF7ivDPkH5lPHnYOD+/qhYyipcH2WWo4LI5 g/T7+TUgE2jMB/tX4cQpG1m94NtAXDoxuE+GhfMDPuk/BKphp01sj7U8C9Uf nCsq56mGbrXa53YMFvZIJzg6zFfB1COBJlcVFtqVhw43TZKnCp7igrC1LNQ6 5me3p7sKrvpOe1Ybs9Bx9ba2yOwq8LYNWiQewEKvYePKqA1VoLkmRbWrj4Wz VdXMJItKqGkjVPIGWHjcbt/qZJNKANd+xX+HWfh29q9lglElWU/oNNmPLGwx uvfUX6cSTsvnix2fJuMNZ3YtlyHbC1bNTQuooms+/2KToQrQf/usVUxHFZ2c O7TvOlXAnkTKaYt4VYwzK7pLdSqHNo7n7qOJqsiTMJvQd6QczIbeqpy6oopB Z6IOlOwvBwuNh32X0lRxNvd+kO7WcrB6FLXtSYEqfgrIuvNZvhyOzIlJ431V XORlyDydUwYex5UbNKZVsfn8YPScfSl8jbqSunlGFaklmeYeZqVwunyxj8kv VexWSX7StqkUvP+Mqjr/VUWlB20sM7FS8LtampgrpIZE37WJA/UlEPx0g6Os ohri37ZaS7ESSFhnLCK4Tw3LKDfEkwtugbBq9fiIlRoalkUIlF++BZE02tP6 Q2r4bE7Ar+rsLQgWnL7gbauG7yy9P5w2uwXugynUIRc1nP2893LrjyLYHT36 vea8Gpr6NOhy9YtAYCSyz75MDe/vUVUO4hRAWM80ByrVsNpvk79yZgFQ2myu ydxWQ9oWgWdFEQXws05rfwdBjvf4ULOZZQF8iO1p29SshvwjGbp/x25Ckx6r UeyNGo4ksNv+XXETgi8/KmgQYuPdkttn+bflgcnYFOvSUjYu3L1zTmVVHkga yhUeEmXjpStHPcQF86B46lThtAQbt88l1Fs9y4UeM5kiJSYbRaCj/R+zXNBa 5nYrcgMbHWMzX4ftyYE5h6vs/XpsZC5OyxBRz4Hm+vu3mFvYeNKOxtovlAM2 7pLFhCEbNx2+8EqsORsiW+8Vj+9ho9qu3h/KetkwHC1WambPRsF5iwz6iiwo HtmsKe/IxoYLj9OKxjPBb5Nj6agzG93d5Pq7HmaCyGduaYgHG/X5Hxv/8M0E PeMTZdX+bBQTDBs0LcgAvuy41efPsVE15nh4zr4M6PjNKdsTzMYlUzx5VEoG OBSKlH8IZ2OycNgsx/IGXBaoK1+ZwMbx6z9d5SfS4LDdW633iWy8mNXwvDEh DVh1whUVV9iY2u8ioqidBvWORyuM09h4Q9R9dND7Oow1C1WevUn27znHvfku BW7T1q/dVcTG9y+yBMLPpkCwr22lRAkbr1e/2nZNLAUkVaorSyvJePvW7eTZ eA0Mww9XDd1lY847L/72k1eA3+GV6FgDGzXMy3jffEyGJ9vN3b89YKPMi4Hz KXbJYCawTZWfvNTFpm19JLYjCcRH6yOWtbJx1zcnl7XVidDzRPfdyg42jt38 ZdYolwi20eoZ7G420pz1Um0HEkDBNX9eu5eN4hGlDFOdBPiwm2Gt38/G8FOX 7Y9fiAd3EXEJ87dsNHA75hCoEAtrJy+dtn7PxszS0wpicTEw07644/gnNipP PI+4PnIR6srPa7h9Jtvz2srulY2CswlzF30nyPhO7zp6YfUFwNM+n4Km2Pg6 rs4gSTIceC0nt0V9J/1Uy2zf/RBoXuecc/knG1Ws5NIzJILhovgIJW2WjQMF a0Tpd86A6YzNkbw/bMx7GC1ewuMJQ4f97McXyPYtbRMrL+2E/wCiOZhr "]]}, Annotation[#, "Charting`Private`Tag#1"]& ]}, {}}, {"WolframDynamicHighlight", <| "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>}], StyleBox[ DynamicBox[(Charting`HighlightActionBox["DynamicHighlight", {}, Slot["HighlightElements"], Slot["LayoutOptions"], Slot["Meta"], Charting`HighlightActionFunction["DynamicHighlight", {{{{}, {}, Annotation[{ Directive[ Opacity[1.], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[2]], Line[CompressedData[" 1:eJwV13k4VVsUAPB7iZAkGTLdwdTlIpUklbVIEyVDqTxFJVOGZHiikCkiQ6iI zEJmwj23JEmlDFEiMqSJRJQGlHfeX+f7fd/Ze6999tlr7c085mFxgodCofhR KZT/n5rnPFr5KRT0iX8iTh1XhxfiZw9aL6HgwlUzB5eS0+BfHDlSIknBlcve GrrZ+wPDKNmdqkDBkPrn02WrgqG5L+v3Pg0KdqaJnh7NCwFXr9KwAl0Knvf0 bOx9FQZiS7jL5rdSkEl9HH2pKwLqsh+l7t1LQdbYslv0/Ejg6xwq/3GCgmLW 8YT7ZDQUO3/ZZOxJQX3OzW63U5fAgjrbnH6WgnbfO6b+GYiFG1or3hglUjAy PF3U8mE8GD2mO127QUHT9T6f9jkkwJit+rfPhRQc+n7EP5F6GXTitgkmNlDQ b+1RoWlWIrR/+Xf98BcKHo6QMHfcngwHCxvXs2YpSNf749fcngxD9kt1PPip 6L4vz6Fm/xX42pet84dGxbqcgqh1B6+CWEvrBmkzKjoHBvU825wCVvmKeuaV VHSVtToTkpUGA0fd9a7VU3EhKcIikD8dHOU5eoMtVJzYmmrA55IOfkmmm9xG qLhkq3nXF/UbkBpyZnOUOA+qm/RER+dkwMCRdv37vjw4WWdU66aZBQ4yMiAQ yoObJWFs5EAWTL60h71xPDhtZTU0HpwFlD2z8OYmDx4QqeppfJ4FCpuUDX73 8OBZ+S/qLe7Z4CAVsHXNJl583NNeteNaDky0q+zMWuBFSnd/+YrbeVAt7tVe umQRjmo1Whm9yAP/Q/es7kgtwmnd31r4LQ/4Rg6ceLV6ETa7h86kaeWD3I/I kKV2izD76rdEamE+GMt9vnOmYRHqrcg1lUu4CXlOZWsszvNh3eA/vwYNC8Gl ZK7O9hIf7u1WjXlkUwha0zvQLYUPVURrfC/5FsKdgCHTyAo+/Dqx+v3twkLo jF3uWj/Mh5+2BD0JFSkCym2vfDVDfmyy2Jp5rLMIbKi6sry8i3FOpWax+bZi EA5xrESRxag6XhKgYl0Md3mu7gqUXox7fWJmP7gXA23Rj39/r16MKY6W7arX imGQv/rFpM1ibCzZcYs7WgzHhLVi+2sWY+T3zY+1o0rAWYpFrXERQNNNthOh RCn4aqz86NQpiK3HgguLfctBsDP8W8qAIGZG/rWtCSqHNN9vCy1jgmjwst2o LrIc7t9rW6nBK4S9xjue5aaWg7BFuPHUOiGUpYKmQn05ZPtOl5xJFkLzq1/y 6ngroPXeM++LB5dg7/GcycyoClCyOM9TPCCMUp9NaC4hlZC9tpO2dEwYRVq9 N1pEVQJ9heIm9xlhPLLha8T6+EqQedHkpSW8FLucNdu+pFfCMiuB99Ubl+LL Lz6ZypxKmD0U9+hu0lKsS/V6WDNRCc+Ppse0G4vg7MbPQcFWVRDoyZH8VrMM D29prcmQroZaoy13lzgsR4MSumFm7G2w+mXa7j4qhq4XDj5IaaoBE9XHb7os xDH64uUCRW4tUBhZ6t8OimPLQAz9b30tVEv6B4jZiiM/defUy8Za8vurS5uf FMeSJEbRuZZamB6I29cWKo6Khn1JJb21kJp04OnjanEceb/oRPzPWhhb+FB3 V1ICA7MLzFzW1MHFbr6km68l0O42PaAkvQ60T3aMHRmSwMcTO3kqMutgYCHV QPKDBNpabfKrzKmDdapak2FTEthAP7+urLAO+gOsjY8JSGLGtvD5uNt1sJpZ RpHXkcSu45vPTT6rgxcnD7pdTpDE65K569izdUCn3tp+bqcUJg3ElBCmHHCy /jEkZSqF0mt8K9aac6C8yiCg0lIKna6qDxdYcsDQoafs4xEp3PuB2Rx3kAMO T/mkLXyk0GRypnrHMQ6UJtt9VsmWQoujsal2PhzQV5OM75iTwn6PTEG9VA7Y WJ7vVSxbiZQbmq15Axy4Un9SU/f2SpT6ExrTM8SBDlWr0N3clXjg9PsdgiMc MKKwNXwercRrpa+q7T9yQKPkRXDz4EpEgRwf3q8c+MvPYjmLSuN46TKeYQoB mUSbb6mnNOIabgadScBrZc7Txn+l8bbOqk4xRQLEE3IYr85Jo3dly7JFygRE Ovq1LERJ4402n9IhFgGe4go082xp9AC38BAtAgzdfR5+65RGxS/xv5yAgBGm nPhGbRnMHPZ/9uAfAsTYv0693yiDnsXqQjaHyfe1X7QmgAwKj8zcmD5CxrM9 5sKYsQxGalPbZY4RcOTk/Oz1ozJYarHT/IATGV91//DfWBlclEmuoDcBnTvS y5pGZfAfX77XKdEE8JifEfaclEHeYJHIPzEErLHe7yw/I4MfHi69YhtLQLzr UkVfiizKZ0530hIIME04d2WVlCxWaPzzKuoKAU9eHz530UgW3fwqDMSyCGhw o5mYZcgii9NrOFFNwFBkyjHfPFl8dmJV54YaAqi54v5pt2QxbOji+aBacj6v hQo/1cpi2q18A0GCgIfbf/Kf75DFc/mZpvz3CGihdzRWUOXw7dHcl/mPCXjx /LzeCns5LI2yMA99TcD38XnzjS5yOC4TZJfQR4CEgJ+z7Sk5xI7Iq+n9BFjp u1+7dVYOjbVEA8sHCOgtsv6xNVkOtU4Prm14S8BA6LpK72Y5PBNf4nxhjIBP 69+rdrPkcaZxs1PNLwJuSgyHDWrKY9Vrg7/hvwlwmOkf/KQtj0v20rosZwl4 X/0ieQ7lMTbuz8axOQLermuiMg/JY4t4DoVngYD+NTm9J6PkcSG45fKbRVy4 vjxD2ydOHs+L7mUl8HHBeio1LjBZHt1DeRYM+bnQW355W0KWPK67GHQqazEX uleHVNRw5DG6LNhxlxAXOjSORlHH5FFj/8T9bcu4ELf08Duhr/Kof+HBmTek Tb8cBPEf8pgy3eTtJcqF1mKzGRUeGobdvKedupwLLWw8uluGhoeLbg52ruBC kyp941VjGr45xf31VYoLoYKySZlmNHzvRfvqupILhqOSk4VWNDzwyEL9I+n7 BSJ5d47RMPZujFe3NBfqV/0VfetPw+j4BsiU5UKt8ptP6rdouNvy7fAQjQuu OS0mbeU05GvhPtCjc4HBrCv1qKFhKFVVOZH0RblE78r7NBRT/e0ADC7YrNhF 0e2h4fYzcx/DmVwQTdA53vuGhhd7Fx51kX4ootTsP0LDeWt+FkOBC5pCC9F3 J2hIYe92qiZNod6W2spHR/nepZ9bFLlQHZjt/06IjkcG/n0mrMQF5/m4N+Gi dCzfZ6i5h3TnT5ecx7J0/Dyn4PWEdN4EY7XpWjrGLtPkLVcm18dV5PLkBjq+ 2VD36T1pkbG57/Fb6KilNGUqo8IFv/fdRNdOOo7XJKQHkjbuj9l+yJYcr++U 0fpVXPh7yL9w1p6OJ37t17IlXfXKUTjNhY5VwEq/QFquy7BzwIeOPx+X/u4i 3WGmtT44gI7sIo/Rn6TD2+SvMc/Tce13HWsZFhcmnvw6bB9Dx5gdk/XWpLN3 fGjgu0zH7u9jlX6kDzzsUrx5lY4fLHhYyaSFt96P2JlOx30SerRy0g0NpaOj 2XS0L7+S/IS0j37a7ugCOi45JBc7TFrtTlSZeikdJxe1L/5FOrHW3seDQ8c8 SksgQ5ULO9db9Ijeo6PDwsqza0nPV8KmyiY6GtpmzxqSrtDSuGHZQsekXqdZ c9IOpTLUmXY6+nxyD7AlLaMuYH/lJR0fNNecO0m6vXCmeUMfHdVOGVJ9SYet GlHtHaKjTNYK/iDSunkdMf4f6Pi8mx0TQXpcoX5SdpyOVntjEmNIZ2Xesrg7 RccQQR25BNJWtJTbR37S8XeTqkoSaaG0iJWUP3TU4HGqSCY9JEzcNaMy8DjP 1N3/TTzV8mAuYmDRoyaT/99PuniTMc3PwPfiI9b/9+e+i9bZKMjAJjeTz/+P Z5Dwzq5DmIE9Xzef/D8e8d6iyTfLGGiyVUo1kPRHhmfgZzEGJrf0KHn/37/T hqW/JRjYmBR0xIn0pfI/1/mlGeh5ULDbmrTdrwdq4nIM7PL2ijYhvRYvcph0 BpZMEYF6pPkizXauVmDg7qD+slWke9olX21WZuAF3xe0FaSLpN6cMGYx8F7P jafz5Hqds835foDNwPa9G2rekTa76Rx6QpOBMpopAy2kFSdXi3mtYeBp93tG ZaR/6PzIDNZmoFJ17qcE0mnNIfXX9Rj4RSV51Jy0h8iuPYVbGFj6LnH7atKG Vsv6a5CB4k90h4VIf3p//ffz7QyUPH6w/Q75v3I1jkUO7mLg8vEHComkY31Y Ul92M9DRsLbKkfQ6vtvaApYMvKK7InYJaf49AQ8krBh4/Yvzq9fk/ulJMrBQ PMRATFU6UkA6UKnNQ9+WgXNbbijqk27Z+rHI+yQDW1j+l/aR+zE9umRjiDsD /QJaGiRIn+ryehznycAf11XWvCT3s+RxyoeifxmYld/+2JT00RBp5nAoAz9p eXSqk/lBu2WwbCKCgVWFReODZP7gF8vXn49ioH5N6NYE0sVZa22k4sn59XXk T5D551eDydU9aQyMkxU3TCLz1VMBMZV/Mhi40SEANpK+YdZT7ZTNwKODc379 ZH4zGrLvDC1g4M/YhQx50nEL55YS1QyUqKHcuSjPBRX98lCVVgbuHdGTEZXh wvd9HpKUDgYOtG9pzSTz6/2TmoW9nQy89P7AzGrSNinFbTE9DPTXCsvdRebj y98LpL+NkPFUx591keTCQlFW2b1Z8n89s5Z6TIwLz+7bGab8YeAdZ4H5XjL/ p/bQX56mMFHvUaaLGWkd/huzyvxMfCNHZOuS9cL1aOq2mOVMpCmMBvxYSq6H VGLfQRYT2ZeYd1YJciFf08J9LZuJi3O9P0YIcMFr23KqsCYT/yRNhr0j65WI V5zKvXVM1Kgal7hO1jOjtmhPZWCiIe/bmBleLpSHhS2e3s/EiuL6atu/BERN +ayLDmWiucaVpQLTBOS7zDhaRTBxe+4z141TBDSOeKcxo5golvt0l/NXAuZf evHVxTJxSvzq2aYJAk4Rnq/epTBxyDPovtNnst6HugXolzPJ+2NcgdM7ApQk TjyY6mdinv7ffqOXBBjEvvt5Z5CJne7ri7e9IM9Li+3VI98yUTV6z3ejLgKu /T6WTPvExJYHpyb0nxOwZMDO0eQbE+fqcsMZrQRM59ssyRNUwEPxfVKpTQTc 091neVBHAaPn3549UUmeT/QUT9htVMDzB4fFZCsIGNs87eu0WQF3yWq/bCsj z4cG8al+hgro6v7wjVYJAS67ng1fM1VAA1++nwM3CZC0NjrV66CAz4SowiNp BLgFaF+yvqqAel3zdZHhBISc4804lqqAU8Z9u3nDyHiDOstd0hVQfXcx79kQ 8nuFnnrhn6OAomZ9PY5BBKyMKZa9XkbG27lzpeoZAprSlIr6HingstnSTHNX AmTrxR/Z/FJAt39KnHTNCVCP6+/XmlPA1gNZQ0l7Cdhslzu96K8CKnVFlE3u IcCGR5tWwquII00fzDKNCUjbbunzR0QRD0ytSvmylQC59gTFG8qKmBLz9OcG HQJoQyLBgxaKaCJGS4mSJkCBR3DjsRJFXDdcfVy4jwNsG4a6V7kiVgTQbdt7 OKBds4EeVqWIjb+zTeK7ObDNxYEvn6OIv5e0zSzpJO8PnQ+ejz5UxFbt4KCx xxwoyQ508RxQxDWbXce31nBAd+v368HLlHDj9Ser7OM4YBo2+PeGpxKuDoyL 3LCJAxYlkzMB3kqYdtxNJUuXA/u7F8YP/quEMnadLwV0yPsDi9Endk4JLb+0 OnRqccD5mV1tRKQSvr1WhKYqHAgTf+vhnqGEOp05xp9EOUDkvhva0qqEziON 27Pe1YHyw9HGfpYyusSpP6dE1EF7ivDPkH5lPHnYOD+/qhYyipcH2WWo4LI5 g/T7+TUgE2jMB/tX4cQpG1m94NtAXDoxuE+GhfMDPuk/BKphp01sj7U8C9Uf nCsq56mGbrXa53YMFvZIJzg6zFfB1COBJlcVFtqVhw43TZKnCp7igrC1LNQ6 5me3p7sKrvpOe1Ybs9Bx9ba2yOwq8LYNWiQewEKvYePKqA1VoLkmRbWrj4Wz VdXMJItKqGkjVPIGWHjcbt/qZJNKANd+xX+HWfh29q9lglElWU/oNNmPLGwx uvfUX6cSTsvnix2fJuMNZ3YtlyHbC1bNTQuooms+/2KToQrQf/usVUxHFZ2c O7TvOlXAnkTKaYt4VYwzK7pLdSqHNo7n7qOJqsiTMJvQd6QczIbeqpy6oopB Z6IOlOwvBwuNh32X0lRxNvd+kO7WcrB6FLXtSYEqfgrIuvNZvhyOzIlJ431V XORlyDydUwYex5UbNKZVsfn8YPScfSl8jbqSunlGFaklmeYeZqVwunyxj8kv VexWSX7StqkUvP+Mqjr/VUWlB20sM7FS8LtampgrpIZE37WJA/UlEPx0g6Os ohri37ZaS7ESSFhnLCK4Tw3LKDfEkwtugbBq9fiIlRoalkUIlF++BZE02tP6 Q2r4bE7Ar+rsLQgWnL7gbauG7yy9P5w2uwXugynUIRc1nP2893LrjyLYHT36 vea8Gpr6NOhy9YtAYCSyz75MDe/vUVUO4hRAWM80ByrVsNpvk79yZgFQ2myu ydxWQ9oWgWdFEQXws05rfwdBjvf4ULOZZQF8iO1p29SshvwjGbp/x25Ckx6r UeyNGo4ksNv+XXETgi8/KmgQYuPdkttn+bflgcnYFOvSUjYu3L1zTmVVHkga yhUeEmXjpStHPcQF86B46lThtAQbt88l1Fs9y4UeM5kiJSYbRaCj/R+zXNBa 5nYrcgMbHWMzX4ftyYE5h6vs/XpsZC5OyxBRz4Hm+vu3mFvYeNKOxtovlAM2 7pLFhCEbNx2+8EqsORsiW+8Vj+9ho9qu3h/KetkwHC1WambPRsF5iwz6iiwo HtmsKe/IxoYLj9OKxjPBb5Nj6agzG93d5Pq7HmaCyGduaYgHG/X5Hxv/8M0E PeMTZdX+bBQTDBs0LcgAvuy41efPsVE15nh4zr4M6PjNKdsTzMYlUzx5VEoG OBSKlH8IZ2OycNgsx/IGXBaoK1+ZwMbx6z9d5SfS4LDdW633iWy8mNXwvDEh DVh1whUVV9iY2u8ioqidBvWORyuM09h4Q9R9dND7Oow1C1WevUn27znHvfku BW7T1q/dVcTG9y+yBMLPpkCwr22lRAkbr1e/2nZNLAUkVaorSyvJePvW7eTZ eA0Mww9XDd1lY847L/72k1eA3+GV6FgDGzXMy3jffEyGJ9vN3b89YKPMi4Hz KXbJYCawTZWfvNTFpm19JLYjCcRH6yOWtbJx1zcnl7XVidDzRPfdyg42jt38 ZdYolwi20eoZ7G420pz1Um0HEkDBNX9eu5eN4hGlDFOdBPiwm2Gt38/G8FOX 7Y9fiAd3EXEJ87dsNHA75hCoEAtrJy+dtn7PxszS0wpicTEw07644/gnNipP PI+4PnIR6srPa7h9Jtvz2srulY2CswlzF30nyPhO7zp6YfUFwNM+n4Km2Pg6 rs4gSTIceC0nt0V9J/1Uy2zf/RBoXuecc/knG1Ws5NIzJILhovgIJW2WjQMF a0Tpd86A6YzNkbw/bMx7GC1ewuMJQ4f97McXyPYtbRMrL+2E/wCiOZhr "]]}, "Charting`Private`Tag#1"]}}, {}}, <| "HighlightElements" -> <| "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>, "LayoutOptions" -> <| "PanelPlotLayout" -> <||>, "PlotRange" -> {{-3., 15.}, {0., 0.16976527263135505`}}, "Frame" -> {{True, True}, {True, True}}, "AxesOrigin" -> {0, 0}, "ImageSize" -> {118, Rational[236, 3]}, "Axes" -> {True, True}, "LabelStyle" -> {FontFamily -> "Times", GrayLevel[0], FontSize -> 11}, "AspectRatio" -> Rational[2, 3], "DefaultStyle" -> { Directive[ Opacity[1.], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[2]]}, "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& ), "ScalingFunctions" -> {{Identity, Identity}, { Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>, "Meta" -> <| "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> Plot, "GroupHighlight" -> False|>|>]]& )[<| "HighlightElements" -> <| "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>, "LayoutOptions" -> <| "PanelPlotLayout" -> <||>, "PlotRange" -> {{-3., 15.}, {0., 0.16976527263135505`}}, "Frame" -> {{True, True}, {True, True}}, "AxesOrigin" -> {0, 0}, "ImageSize" -> {118, Rational[236, 3]}, "Axes" -> {True, True}, "LabelStyle" -> {FontFamily -> "Times", GrayLevel[0], FontSize -> 11}, "AspectRatio" -> Rational[2, 3], "DefaultStyle" -> { Directive[ Opacity[1.], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[2]]}, "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& ), "ScalingFunctions" -> {{Identity, Identity}, { Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>, "Meta" -> <| "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> Plot, "GroupHighlight" -> False|>|>], ImageSizeCache->{{4.503599627370496*^15, -4.503599627370496*^15}, { 4.503599627370496*^15, -4.503599627370496*^15}}], Selectable->False]}, Annotation[{{{{}, {}, Annotation[{ Directive[ Opacity[1.], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[2]], Line[CompressedData[" 1:eJwV13k4VVsUAPB7iZAkGTLdwdTlIpUklbVIEyVDqTxFJVOGZHiikCkiQ6iI zEJmwj23JEmlDFEiMqSJRJQGlHfeX+f7fd/Ze6999tlr7c085mFxgodCofhR KZT/n5rnPFr5KRT0iX8iTh1XhxfiZw9aL6HgwlUzB5eS0+BfHDlSIknBlcve GrrZ+wPDKNmdqkDBkPrn02WrgqG5L+v3Pg0KdqaJnh7NCwFXr9KwAl0Knvf0 bOx9FQZiS7jL5rdSkEl9HH2pKwLqsh+l7t1LQdbYslv0/Ejg6xwq/3GCgmLW 8YT7ZDQUO3/ZZOxJQX3OzW63U5fAgjrbnH6WgnbfO6b+GYiFG1or3hglUjAy PF3U8mE8GD2mO127QUHT9T6f9jkkwJit+rfPhRQc+n7EP5F6GXTitgkmNlDQ b+1RoWlWIrR/+Xf98BcKHo6QMHfcngwHCxvXs2YpSNf749fcngxD9kt1PPip 6L4vz6Fm/xX42pet84dGxbqcgqh1B6+CWEvrBmkzKjoHBvU825wCVvmKeuaV VHSVtToTkpUGA0fd9a7VU3EhKcIikD8dHOU5eoMtVJzYmmrA55IOfkmmm9xG qLhkq3nXF/UbkBpyZnOUOA+qm/RER+dkwMCRdv37vjw4WWdU66aZBQ4yMiAQ yoObJWFs5EAWTL60h71xPDhtZTU0HpwFlD2z8OYmDx4QqeppfJ4FCpuUDX73 8OBZ+S/qLe7Z4CAVsHXNJl583NNeteNaDky0q+zMWuBFSnd/+YrbeVAt7tVe umQRjmo1Whm9yAP/Q/es7kgtwmnd31r4LQ/4Rg6ceLV6ETa7h86kaeWD3I/I kKV2izD76rdEamE+GMt9vnOmYRHqrcg1lUu4CXlOZWsszvNh3eA/vwYNC8Gl ZK7O9hIf7u1WjXlkUwha0zvQLYUPVURrfC/5FsKdgCHTyAo+/Dqx+v3twkLo jF3uWj/Mh5+2BD0JFSkCym2vfDVDfmyy2Jp5rLMIbKi6sry8i3FOpWax+bZi EA5xrESRxag6XhKgYl0Md3mu7gqUXox7fWJmP7gXA23Rj39/r16MKY6W7arX imGQv/rFpM1ibCzZcYs7WgzHhLVi+2sWY+T3zY+1o0rAWYpFrXERQNNNthOh RCn4aqz86NQpiK3HgguLfctBsDP8W8qAIGZG/rWtCSqHNN9vCy1jgmjwst2o LrIc7t9rW6nBK4S9xjue5aaWg7BFuPHUOiGUpYKmQn05ZPtOl5xJFkLzq1/y 6ngroPXeM++LB5dg7/GcycyoClCyOM9TPCCMUp9NaC4hlZC9tpO2dEwYRVq9 N1pEVQJ9heIm9xlhPLLha8T6+EqQedHkpSW8FLucNdu+pFfCMiuB99Ubl+LL Lz6ZypxKmD0U9+hu0lKsS/V6WDNRCc+Ppse0G4vg7MbPQcFWVRDoyZH8VrMM D29prcmQroZaoy13lzgsR4MSumFm7G2w+mXa7j4qhq4XDj5IaaoBE9XHb7os xDH64uUCRW4tUBhZ6t8OimPLQAz9b30tVEv6B4jZiiM/defUy8Za8vurS5uf FMeSJEbRuZZamB6I29cWKo6Khn1JJb21kJp04OnjanEceb/oRPzPWhhb+FB3 V1ICA7MLzFzW1MHFbr6km68l0O42PaAkvQ60T3aMHRmSwMcTO3kqMutgYCHV QPKDBNpabfKrzKmDdapak2FTEthAP7+urLAO+gOsjY8JSGLGtvD5uNt1sJpZ RpHXkcSu45vPTT6rgxcnD7pdTpDE65K569izdUCn3tp+bqcUJg3ElBCmHHCy /jEkZSqF0mt8K9aac6C8yiCg0lIKna6qDxdYcsDQoafs4xEp3PuB2Rx3kAMO T/mkLXyk0GRypnrHMQ6UJtt9VsmWQoujsal2PhzQV5OM75iTwn6PTEG9VA7Y WJ7vVSxbiZQbmq15Axy4Un9SU/f2SpT6ExrTM8SBDlWr0N3clXjg9PsdgiMc MKKwNXwercRrpa+q7T9yQKPkRXDz4EpEgRwf3q8c+MvPYjmLSuN46TKeYQoB mUSbb6mnNOIabgadScBrZc7Txn+l8bbOqk4xRQLEE3IYr85Jo3dly7JFygRE Ovq1LERJ4402n9IhFgGe4go082xp9AC38BAtAgzdfR5+65RGxS/xv5yAgBGm nPhGbRnMHPZ/9uAfAsTYv0693yiDnsXqQjaHyfe1X7QmgAwKj8zcmD5CxrM9 5sKYsQxGalPbZY4RcOTk/Oz1ozJYarHT/IATGV91//DfWBlclEmuoDcBnTvS y5pGZfAfX77XKdEE8JifEfaclEHeYJHIPzEErLHe7yw/I4MfHi69YhtLQLzr UkVfiizKZ0530hIIME04d2WVlCxWaPzzKuoKAU9eHz530UgW3fwqDMSyCGhw o5mYZcgii9NrOFFNwFBkyjHfPFl8dmJV54YaAqi54v5pt2QxbOji+aBacj6v hQo/1cpi2q18A0GCgIfbf/Kf75DFc/mZpvz3CGihdzRWUOXw7dHcl/mPCXjx /LzeCns5LI2yMA99TcD38XnzjS5yOC4TZJfQR4CEgJ+z7Sk5xI7Iq+n9BFjp u1+7dVYOjbVEA8sHCOgtsv6xNVkOtU4Prm14S8BA6LpK72Y5PBNf4nxhjIBP 69+rdrPkcaZxs1PNLwJuSgyHDWrKY9Vrg7/hvwlwmOkf/KQtj0v20rosZwl4 X/0ieQ7lMTbuz8axOQLermuiMg/JY4t4DoVngYD+NTm9J6PkcSG45fKbRVy4 vjxD2ydOHs+L7mUl8HHBeio1LjBZHt1DeRYM+bnQW355W0KWPK67GHQqazEX uleHVNRw5DG6LNhxlxAXOjSORlHH5FFj/8T9bcu4ELf08Duhr/Kof+HBmTek Tb8cBPEf8pgy3eTtJcqF1mKzGRUeGobdvKedupwLLWw8uluGhoeLbg52ruBC kyp941VjGr45xf31VYoLoYKySZlmNHzvRfvqupILhqOSk4VWNDzwyEL9I+n7 BSJ5d47RMPZujFe3NBfqV/0VfetPw+j4BsiU5UKt8ptP6rdouNvy7fAQjQuu OS0mbeU05GvhPtCjc4HBrCv1qKFhKFVVOZH0RblE78r7NBRT/e0ADC7YrNhF 0e2h4fYzcx/DmVwQTdA53vuGhhd7Fx51kX4ootTsP0LDeWt+FkOBC5pCC9F3 J2hIYe92qiZNod6W2spHR/nepZ9bFLlQHZjt/06IjkcG/n0mrMQF5/m4N+Gi dCzfZ6i5h3TnT5ecx7J0/Dyn4PWEdN4EY7XpWjrGLtPkLVcm18dV5PLkBjq+ 2VD36T1pkbG57/Fb6KilNGUqo8IFv/fdRNdOOo7XJKQHkjbuj9l+yJYcr++U 0fpVXPh7yL9w1p6OJ37t17IlXfXKUTjNhY5VwEq/QFquy7BzwIeOPx+X/u4i 3WGmtT44gI7sIo/Rn6TD2+SvMc/Tce13HWsZFhcmnvw6bB9Dx5gdk/XWpLN3 fGjgu0zH7u9jlX6kDzzsUrx5lY4fLHhYyaSFt96P2JlOx30SerRy0g0NpaOj 2XS0L7+S/IS0j37a7ugCOi45JBc7TFrtTlSZeikdJxe1L/5FOrHW3seDQ8c8 SksgQ5ULO9db9Ijeo6PDwsqza0nPV8KmyiY6GtpmzxqSrtDSuGHZQsekXqdZ c9IOpTLUmXY6+nxyD7AlLaMuYH/lJR0fNNecO0m6vXCmeUMfHdVOGVJ9SYet GlHtHaKjTNYK/iDSunkdMf4f6Pi8mx0TQXpcoX5SdpyOVntjEmNIZ2Xesrg7 RccQQR25BNJWtJTbR37S8XeTqkoSaaG0iJWUP3TU4HGqSCY9JEzcNaMy8DjP 1N3/TTzV8mAuYmDRoyaT/99PuniTMc3PwPfiI9b/9+e+i9bZKMjAJjeTz/+P Z5Dwzq5DmIE9Xzef/D8e8d6iyTfLGGiyVUo1kPRHhmfgZzEGJrf0KHn/37/T hqW/JRjYmBR0xIn0pfI/1/mlGeh5ULDbmrTdrwdq4nIM7PL2ijYhvRYvcph0 BpZMEYF6pPkizXauVmDg7qD+slWke9olX21WZuAF3xe0FaSLpN6cMGYx8F7P jafz5Hqds835foDNwPa9G2rekTa76Rx6QpOBMpopAy2kFSdXi3mtYeBp93tG ZaR/6PzIDNZmoFJ17qcE0mnNIfXX9Rj4RSV51Jy0h8iuPYVbGFj6LnH7atKG Vsv6a5CB4k90h4VIf3p//ffz7QyUPH6w/Q75v3I1jkUO7mLg8vEHComkY31Y Ul92M9DRsLbKkfQ6vtvaApYMvKK7InYJaf49AQ8krBh4/Yvzq9fk/ulJMrBQ PMRATFU6UkA6UKnNQ9+WgXNbbijqk27Z+rHI+yQDW1j+l/aR+zE9umRjiDsD /QJaGiRIn+ryehznycAf11XWvCT3s+RxyoeifxmYld/+2JT00RBp5nAoAz9p eXSqk/lBu2WwbCKCgVWFReODZP7gF8vXn49ioH5N6NYE0sVZa22k4sn59XXk T5D551eDydU9aQyMkxU3TCLz1VMBMZV/Mhi40SEANpK+YdZT7ZTNwKODc379 ZH4zGrLvDC1g4M/YhQx50nEL55YS1QyUqKHcuSjPBRX98lCVVgbuHdGTEZXh wvd9HpKUDgYOtG9pzSTz6/2TmoW9nQy89P7AzGrSNinFbTE9DPTXCsvdRebj y98LpL+NkPFUx591keTCQlFW2b1Z8n89s5Z6TIwLz+7bGab8YeAdZ4H5XjL/ p/bQX56mMFHvUaaLGWkd/huzyvxMfCNHZOuS9cL1aOq2mOVMpCmMBvxYSq6H VGLfQRYT2ZeYd1YJciFf08J9LZuJi3O9P0YIcMFr23KqsCYT/yRNhr0j65WI V5zKvXVM1Kgal7hO1jOjtmhPZWCiIe/bmBleLpSHhS2e3s/EiuL6atu/BERN +ayLDmWiucaVpQLTBOS7zDhaRTBxe+4z141TBDSOeKcxo5golvt0l/NXAuZf evHVxTJxSvzq2aYJAk4Rnq/epTBxyDPovtNnst6HugXolzPJ+2NcgdM7ApQk TjyY6mdinv7ffqOXBBjEvvt5Z5CJne7ri7e9IM9Li+3VI98yUTV6z3ejLgKu /T6WTPvExJYHpyb0nxOwZMDO0eQbE+fqcsMZrQRM59ssyRNUwEPxfVKpTQTc 091neVBHAaPn3549UUmeT/QUT9htVMDzB4fFZCsIGNs87eu0WQF3yWq/bCsj z4cG8al+hgro6v7wjVYJAS67ng1fM1VAA1++nwM3CZC0NjrV66CAz4SowiNp BLgFaF+yvqqAel3zdZHhBISc4804lqqAU8Z9u3nDyHiDOstd0hVQfXcx79kQ 8nuFnnrhn6OAomZ9PY5BBKyMKZa9XkbG27lzpeoZAprSlIr6HingstnSTHNX AmTrxR/Z/FJAt39KnHTNCVCP6+/XmlPA1gNZQ0l7Cdhslzu96K8CKnVFlE3u IcCGR5tWwquII00fzDKNCUjbbunzR0QRD0ytSvmylQC59gTFG8qKmBLz9OcG HQJoQyLBgxaKaCJGS4mSJkCBR3DjsRJFXDdcfVy4jwNsG4a6V7kiVgTQbdt7 OKBds4EeVqWIjb+zTeK7ObDNxYEvn6OIv5e0zSzpJO8PnQ+ejz5UxFbt4KCx xxwoyQ508RxQxDWbXce31nBAd+v368HLlHDj9Ser7OM4YBo2+PeGpxKuDoyL 3LCJAxYlkzMB3kqYdtxNJUuXA/u7F8YP/quEMnadLwV0yPsDi9Endk4JLb+0 OnRqccD5mV1tRKQSvr1WhKYqHAgTf+vhnqGEOp05xp9EOUDkvhva0qqEziON 27Pe1YHyw9HGfpYyusSpP6dE1EF7ivDPkH5lPHnYOD+/qhYyipcH2WWo4LI5 g/T7+TUgE2jMB/tX4cQpG1m94NtAXDoxuE+GhfMDPuk/BKphp01sj7U8C9Uf nCsq56mGbrXa53YMFvZIJzg6zFfB1COBJlcVFtqVhw43TZKnCp7igrC1LNQ6 5me3p7sKrvpOe1Ybs9Bx9ba2yOwq8LYNWiQewEKvYePKqA1VoLkmRbWrj4Wz VdXMJItKqGkjVPIGWHjcbt/qZJNKANd+xX+HWfh29q9lglElWU/oNNmPLGwx uvfUX6cSTsvnix2fJuMNZ3YtlyHbC1bNTQuooms+/2KToQrQf/usVUxHFZ2c O7TvOlXAnkTKaYt4VYwzK7pLdSqHNo7n7qOJqsiTMJvQd6QczIbeqpy6oopB Z6IOlOwvBwuNh32X0lRxNvd+kO7WcrB6FLXtSYEqfgrIuvNZvhyOzIlJ431V XORlyDydUwYex5UbNKZVsfn8YPScfSl8jbqSunlGFaklmeYeZqVwunyxj8kv VexWSX7StqkUvP+Mqjr/VUWlB20sM7FS8LtampgrpIZE37WJA/UlEPx0g6Os ohri37ZaS7ESSFhnLCK4Tw3LKDfEkwtugbBq9fiIlRoalkUIlF++BZE02tP6 Q2r4bE7Ar+rsLQgWnL7gbauG7yy9P5w2uwXugynUIRc1nP2893LrjyLYHT36 vea8Gpr6NOhy9YtAYCSyz75MDe/vUVUO4hRAWM80ByrVsNpvk79yZgFQ2myu ydxWQ9oWgWdFEQXws05rfwdBjvf4ULOZZQF8iO1p29SshvwjGbp/x25Ckx6r UeyNGo4ksNv+XXETgi8/KmgQYuPdkttn+bflgcnYFOvSUjYu3L1zTmVVHkga yhUeEmXjpStHPcQF86B46lThtAQbt88l1Fs9y4UeM5kiJSYbRaCj/R+zXNBa 5nYrcgMbHWMzX4ftyYE5h6vs/XpsZC5OyxBRz4Hm+vu3mFvYeNKOxtovlAM2 7pLFhCEbNx2+8EqsORsiW+8Vj+9ho9qu3h/KetkwHC1WambPRsF5iwz6iiwo HtmsKe/IxoYLj9OKxjPBb5Nj6agzG93d5Pq7HmaCyGduaYgHG/X5Hxv/8M0E PeMTZdX+bBQTDBs0LcgAvuy41efPsVE15nh4zr4M6PjNKdsTzMYlUzx5VEoG OBSKlH8IZ2OycNgsx/IGXBaoK1+ZwMbx6z9d5SfS4LDdW633iWy8mNXwvDEh DVh1whUVV9iY2u8ioqidBvWORyuM09h4Q9R9dND7Oow1C1WevUn27znHvfku BW7T1q/dVcTG9y+yBMLPpkCwr22lRAkbr1e/2nZNLAUkVaorSyvJePvW7eTZ eA0Mww9XDd1lY847L/72k1eA3+GV6FgDGzXMy3jffEyGJ9vN3b89YKPMi4Hz KXbJYCawTZWfvNTFpm19JLYjCcRH6yOWtbJx1zcnl7XVidDzRPfdyg42jt38 ZdYolwi20eoZ7G420pz1Um0HEkDBNX9eu5eN4hGlDFOdBPiwm2Gt38/G8FOX 7Y9fiAd3EXEJ87dsNHA75hCoEAtrJy+dtn7PxszS0wpicTEw07644/gnNipP PI+4PnIR6srPa7h9Jtvz2srulY2CswlzF30nyPhO7zp6YfUFwNM+n4Km2Pg6 rs4gSTIceC0nt0V9J/1Uy2zf/RBoXuecc/knG1Ws5NIzJILhovgIJW2WjQMF a0Tpd86A6YzNkbw/bMx7GC1ewuMJQ4f97McXyPYtbRMrL+2E/wCiOZhr "]]}, "Charting`Private`Tag#1"]}}, {}}, <| "HighlightElements" -> <| "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>, "LayoutOptions" -> <| "PanelPlotLayout" -> <||>, "PlotRange" -> {{-3., 15.}, {0., 0.16976527263135505`}}, "Frame" -> {{True, True}, {True, True}}, "AxesOrigin" -> {0, 0}, "ImageSize" -> {118, Rational[236, 3]}, "Axes" -> {True, True}, "LabelStyle" -> {FontFamily -> "Times", GrayLevel[0], FontSize -> 11}, "AspectRatio" -> Rational[2, 3], "DefaultStyle" -> { Directive[ Opacity[1.], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[2]]}, "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& ), "ScalingFunctions" -> {{Identity, Identity}, {Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>, "Meta" -> <| "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> Plot, "GroupHighlight" -> False|>|>, "DynamicHighlight"]], AspectRatio->NCache[ Rational[2, 3], 0.6666666666666666], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Epilog->{{ RGBColor[0.368417, 0.506779, 0.709798], PointSize[0.035], PointBox[{0, 0}]}}, Frame->{{True, True}, {True, True}}, FrameLabel->{None, FormBox[ StyleBox[ RowBox[{"\[Rho]", "(", "\[Lambda]", ")"}], Opacity[0], StripOnInput -> False], TraditionalForm]}, FrameStyle->GrayLevel[0], FrameTicks->{{{}, {}}, {{}, {{0, FormBox["0", TraditionalForm]}}}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->{{Automatic, Automatic}, {2, Automatic}}, ImageSize->118, LabelStyle->{FontFamily -> "Times", GrayLevel[0], FontSize -> 11}, Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}}, PlotRange->{{-3., 15.}, {0., 0.16976527263135505`}}, PlotRangeClipping->False, PlotRangePadding->{{0, 0}, {0, 0}}, Prolog->{ ArrowBox[ NCache[{{0, Rational[1, 24]/Pi}, {8, Rational[1, 24]/Pi}}, {{ 0, 0.013262911924324612`}, {8, 0.013262911924324612`}}]], { Dashing[{Small, Small}], LineBox[ NCache[{{8, 0}, {8, Rational[1, 3]/Pi}}, {{8, 0}, { 8, 0.1061032953945969}}]], InsetBox[ FormBox[ StyleBox["\"\[Mu]\"", SingleLetterItalics -> False, Directive[FontFamily -> "Helvetica", GrayLevel[0], FontSize -> 10], StripOnInput -> False], TraditionalForm], NCache[{4, Rational[5, 48]/Pi}, {4, 0.033157279810811534`}]]}, { Arrowheads[{-Automatic, Automatic}], ArrowBox[ NCache[{{14, Rational[1, 24]/Pi}, {8, Rational[1, 24]/Pi}}, {{ 14, 0.013262911924324612`}, {8, 0.013262911924324612`}}]]}, InsetBox[ FormBox[ StyleBox["\"2\[Sigma]\"", SingleLetterItalics -> False, Directive[FontFamily -> "Helvetica", GrayLevel[0], FontSize -> 10], StripOnInput -> False], TraditionalForm], NCache[{11, Rational[5, 48]/Pi}, {11, 0.033157279810811534`}]]}, RotateLabel->False, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{ 3.895207790740121*^9, {3.895207839744895*^9, 3.895207870243621*^9}, 3.895208026480008*^9, 3.895208869333159*^9, 3.895208913648329*^9, 3.924161611725056*^9, {3.9241617105380588`*^9, 3.924161720851728*^9}, 3.924161760789225*^9, {3.924161828428911*^9, 3.9241618666389933`*^9}, { 3.924163256019329*^9, 3.9241632689619217`*^9}, {3.926761187709559*^9, 3.926761263193915*^9}, {3.9267614370306377`*^9, 3.9267614865111933`*^9}, 3.926761551544959*^9, 3.926761627762596*^9, 3.926761670173362*^9, 3.926761738825984*^9, {3.926761837375955*^9, 3.926761880360046*^9}, 3.926761946675086*^9}, CellLabel-> "Out[237]=",ExpressionUUID->"085d89e1-1412-44e2-9992-5f811f7e8263"] }, Open ]], Cell[BoxData[{ RowBox[{ RowBox[{"Export", "[", RowBox[{ "\"\<~/doc/research/frsb_kac-rice/papers/marginal/figs/spectrum_less.pdf\>\ \"", ",", "pS1"}], "]"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"Export", "[", RowBox[{ "\"\<~/doc/research/frsb_kac-rice/papers/marginal/figs/spectrum_eq.pdf\>\"\ ", ",", "pS2"}], "]"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"Export", "[", RowBox[{ "\"\<~/doc/research/frsb_kac-rice/papers/marginal/figs/spectrum_more.pdf\>\ \"", ",", "ps6"}], "]"}], ";"}]}], "Input", CellChangeTimes->{{3.924161919335609*^9, 3.924161984768268*^9}, { 3.924162080650302*^9, 3.924162081777878*^9}, {3.92676129203915*^9, 3.9267613047263823`*^9}}, CellLabel-> "In[238]:=",ExpressionUUID->"9c8fbe7e-534f-4567-b9e1-d7a5c3ce1086"] }, Open ]], Cell[CellGroupData[{ Cell["Two-sphere", "Section", CellChangeTimes->{{3.9155323567472897`*^9, 3.915532358033332*^9}},ExpressionUUID->"8475cc42-326a-4ebf-b66b-\ 7d80366a5280"], Cell[BoxData[ RowBox[{ RowBox[{"p0RSBrules", "=", RowBox[{"{", "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{ RowBox[{"p0RSBmat", "[", RowBox[{"n_", ",", RowBox[{"{", RowBox[{ "adt_", ",", "a0tu_", ",", "a0tl_", ",", "ad_", ",", "a0_"}], "}"}]}], "]"}], ".", RowBox[{"p0RSBmat", "[", RowBox[{"n_", ",", RowBox[{"{", RowBox[{ "bdt_", ",", "b0tu_", ",", "b0tl_", ",", "bd_", ",", "b0_"}], "}"}]}], "]"}]}], ":>", RowBox[{"p0RSBmat", "[", RowBox[{"n", ",", RowBox[{"{", "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"adt", " ", "bdt"}], "+", RowBox[{ RowBox[{"(", RowBox[{"n", "-", "1"}], ")"}], "a0tu", " ", "b0tl"}]}], ",", "\[IndentingNewLine]", RowBox[{ RowBox[{"a0tu", " ", "bd"}], "+", RowBox[{"adt", " ", "b0tu"}], "+", RowBox[{ RowBox[{"(", RowBox[{"n", "-", "2"}], ")"}], "a0tu", " ", "b0"}]}], ",", "\[IndentingNewLine]", RowBox[{ RowBox[{"a0tl", " ", "bdt"}], "+", RowBox[{"ad", " ", "b0tl"}], "+", RowBox[{ RowBox[{"(", RowBox[{"n", "-", "2"}], ")"}], "b0tl", " ", "a0"}]}], ",", "\[IndentingNewLine]", RowBox[{ RowBox[{"ad", " ", "bd"}], "+", RowBox[{"a0tl", " ", "b0tu"}], "+", RowBox[{ RowBox[{"(", RowBox[{"n", "-", "2"}], ")"}], "a0", " ", "b0"}]}], ",", "\[IndentingNewLine]", RowBox[{ RowBox[{"a0", " ", "bd"}], "+", RowBox[{"ad", " ", "b0"}], "+", RowBox[{"a0tl", " ", "b0tu"}], "+", RowBox[{ RowBox[{"(", RowBox[{"n", "-", "3"}], ")"}], "a0", " ", "b0"}]}]}], "\[IndentingNewLine]", "}"}]}], "]"}]}], ",", "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"p0RSBmat", "[", RowBox[{"n_", ",", RowBox[{"{", RowBox[{ "adt_", ",", "a0tu_", ",", "a0tl_", ",", "ad_", ",", "a0_"}], "}"}]}], "]"}], "+", RowBox[{"p0RSBmat", "[", RowBox[{"n_", ",", RowBox[{"{", RowBox[{ "bdt_", ",", "b0tu_", ",", "b0tl_", ",", "bd_", ",", "b0_"}], "}"}]}], "]"}]}], ":>", RowBox[{"p0RSBmat", "[", RowBox[{"n", ",", RowBox[{"{", "\[IndentingNewLine]", RowBox[{ RowBox[{"adt", "+", "bdt"}], ",", "\[IndentingNewLine]", RowBox[{"a0tu", "+", "b0tu"}], ",", "\[IndentingNewLine]", RowBox[{"a0tl", "+", "b0tl"}], ",", "\[IndentingNewLine]", RowBox[{"ad", "+", "bd"}], ",", "\[IndentingNewLine]", RowBox[{"a0", "+", "b0"}]}], "\[IndentingNewLine]", "}"}]}], "]"}]}], ",", "\[IndentingNewLine]", RowBox[{ RowBox[{"-", RowBox[{"p0RSBmat", "[", RowBox[{"n_", ",", RowBox[{"{", RowBox[{ "adt_", ",", "a0tu_", ",", "a0tl_", ",", "ad_", ",", "a0_"}], "}"}]}], "]"}]}], ":>", RowBox[{"p0RSBmat", "[", RowBox[{"n", ",", RowBox[{"{", RowBox[{ RowBox[{"-", "adt"}], ",", RowBox[{"-", "a0tu"}], ",", RowBox[{"-", "a0tl"}], ",", RowBox[{"-", "ad"}], ",", RowBox[{"-", "a0"}]}], "}"}]}], "]"}]}], ",", "\[IndentingNewLine]", RowBox[{ RowBox[{"logDet", "[", RowBox[{"p0RSBmat", "[", RowBox[{"n_", ",", RowBox[{"{", RowBox[{ "adt_", ",", "a0tu_", ",", "a0tl_", ",", "ad_", ",", "a0_"}], "}"}]}], "]"}], "]"}], ":>", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{"n", "-", "2"}], ")"}], RowBox[{"Log", "[", RowBox[{"ad", "-", "a0"}], "]"}]}], "+", RowBox[{"Log", "[", RowBox[{ RowBox[{"adt", " ", "ad"}], "+", RowBox[{ RowBox[{"(", RowBox[{"n", "-", "2"}], ")"}], "adt", " ", "a0"}], "-", RowBox[{ RowBox[{"(", RowBox[{"n", "-", "1"}], ")"}], "a0tu", " ", "a0tl"}]}], "]"}]}]}], ",", "\[IndentingNewLine]", RowBox[{ SuperscriptBox[ RowBox[{"p0RSBmat", "[", RowBox[{"n_", ",", RowBox[{"{", RowBox[{ "adt_", ",", "a0tu_", ",", "a0tl_", ",", "ad_", ",", "a0_"}], "}"}]}], "]"}], "2"], ":>", RowBox[{"p0RSBmat", "[", RowBox[{"n", ",", RowBox[{"{", RowBox[{ SuperscriptBox["adt", "2"], ",", SuperscriptBox["a0tu", "2"], ",", SuperscriptBox["a0tl", "2"], ",", SuperscriptBox["ad", "2"], ",", SuperscriptBox["a0", "2"]}], "}"}]}], "]"}]}], ",", "\[IndentingNewLine]", RowBox[{ RowBox[{"sumDiag", "[", RowBox[{"p0RSBmat", "[", RowBox[{"n_", ",", RowBox[{"{", RowBox[{ "adt_", ",", "a0tu_", ",", "a0tl_", ",", "ad_", ",", "a0_"}], "}"}]}], "]"}], "]"}], ":>", RowBox[{"adt", "+", RowBox[{ RowBox[{"(", RowBox[{"n", "-", "1"}], ")"}], "ad"}]}]}], ",", "\[IndentingNewLine]", RowBox[{ RowBox[{"sum", "[", RowBox[{"p0RSBmat", "[", RowBox[{"n_", ",", RowBox[{"{", RowBox[{ "adt_", ",", "a0tu_", ",", "a0tl_", ",", "ad_", ",", "a0_"}], "}"}]}], "]"}], "]"}], ":>", RowBox[{"adt", "+", RowBox[{ RowBox[{"(", RowBox[{"n", "-", "1"}], ")"}], RowBox[{"(", RowBox[{"ad", "+", "a0tu", "+", "a0tl"}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{ SuperscriptBox["n", "2"], "-", "1", "-", RowBox[{"3", RowBox[{"(", RowBox[{"n", "-", "1"}], ")"}]}]}], ")"}], "a0"}]}]}]}], "\[IndentingNewLine]", "}"}]}], ";"}]], "Input", CellChangeTimes->{{3.9060154869143467`*^9, 3.9060156486206284`*^9}, { 3.906015706414013*^9, 3.906015879409375*^9}, {3.9060159104259157`*^9, 3.90601616215897*^9}, {3.9060164087157993`*^9, 3.9060164195478573`*^9}, { 3.906016724777636*^9, 3.906016759546612*^9}, {3.906017868966701*^9, 3.906017993144882*^9}}, CellLabel-> "In[196]:=",ExpressionUUID->"830d12ec-ccc1-4fbc-9de0-2282430f4840"], Cell[BoxData[ RowBox[{ RowBox[{"matForm", "[", RowBox[{"p0RSBmat", "[", RowBox[{"n_", ",", RowBox[{"{", RowBox[{"adt_", ",", "a0tu_", ",", "a0tl_", ",", "ad_", ",", "a0_"}], "}"}]}], "]"}], "]"}], ":=", RowBox[{"With", "[", RowBox[{ RowBox[{"{", RowBox[{"a", "=", RowBox[{"Unique", "[", "a", "]"}]}], "}"}], ",", RowBox[{ RowBox[{"Array", "[", RowBox[{"a", ",", RowBox[{"{", RowBox[{"n", ",", "n"}], "}"}]}], "]"}], "/.", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"a", "[", RowBox[{"1", ",", "1"}], "]"}], ":>", "adt"}], ",", RowBox[{ RowBox[{"a", "[", RowBox[{"i_", ",", "i_"}], "]"}], ":>", "ad"}], ",", RowBox[{ RowBox[{"a", "[", RowBox[{"i_", ",", "j_"}], "]"}], ":>", RowBox[{"a0tu", "/;", RowBox[{"(", RowBox[{ RowBox[{"i", "==", "1"}], "&&", RowBox[{"j", "!=", "1"}]}], ")"}]}]}], ",", RowBox[{ RowBox[{"a", "[", RowBox[{"i_", ",", "j_"}], "]"}], ":>", RowBox[{"a0tl", "/;", RowBox[{"(", RowBox[{ RowBox[{"i", "!=", "1"}], "&&", RowBox[{"j", "==", "1"}]}], ")"}]}]}], ",", RowBox[{ RowBox[{"a", "[", RowBox[{"_", ",", "_"}], "]"}], ":>", "a0"}]}], "}"}]}]}], "]"}]}]], "Input", CellChangeTimes->{{3.90601619406374*^9, 3.906016261000745*^9}}, CellLabel-> "In[197]:=",ExpressionUUID->"bcf9e08b-5bc8-4156-8987-ae991b3777be"], Cell[BoxData[{ RowBox[{ RowBox[{"A", "=", RowBox[{"p0RSBmat", "[", RowBox[{"7", ",", RowBox[{"{", RowBox[{"adt", ",", "a0tu", ",", "a0tl", ",", "ad", ",", "a0"}], "}"}]}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"B", "=", RowBox[{"p0RSBmat", "[", RowBox[{"7", ",", RowBox[{"{", RowBox[{"bdt", ",", "b0tu", ",", "b0tl", ",", "bd", ",", "b0"}], "}"}]}], "]"}]}], ";"}]}], "Input", CellChangeTimes->{{3.906016273153998*^9, 3.906016296681038*^9}, { 3.906016335065982*^9, 3.906016335785755*^9}, {3.906016425291695*^9, 3.906016427035625*^9}}, CellLabel-> "In[198]:=",ExpressionUUID->"90676af5-535d-4801-950c-574cc68db098"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"matForm", "[", "A", "]"}], "//", "MatrixForm"}]], "Input", CellChangeTimes->{{3.90601650742142*^9, 3.906016511901194*^9}}, CellLabel-> "In[200]:=",ExpressionUUID->"3e4fb69d-9599-4326-945e-414023395a5f"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"adt", "a0tu", "a0tu", "a0tu", "a0tu", "a0tu", "a0tu"}, {"a0tl", "ad", "a0", "a0", "a0", "a0", "a0"}, {"a0tl", "a0", "ad", "a0", "a0", "a0", "a0"}, {"a0tl", "a0", "a0", "ad", "a0", "a0", "a0"}, {"a0tl", "a0", "a0", "a0", "ad", "a0", "a0"}, {"a0tl", "a0", "a0", "a0", "a0", "ad", "a0"}, {"a0tl", "a0", "a0", "a0", "a0", "a0", "ad"} }, GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[BoxForm`e$]]]], "Output", CellChangeTimes->{3.9060165121210833`*^9, 3.906186585845617*^9, 3.906188367634499*^9, 3.906445737287404*^9, 3.906526380957107*^9, 3.907146520679757*^9, 3.907328401870837*^9, 3.90852775810122*^9, 3.90853517690338*^9, 3.9086033051904783`*^9, 3.908611419200552*^9, 3.908621322305964*^9, 3.908959013422355*^9, 3.909041244953446*^9, 3.915532039997315*^9, 3.915532490361631*^9, 3.9157715661300697`*^9, 3.916379988951159*^9}, CellLabel-> "Out[200]//MatrixForm=",ExpressionUUID->"31ed0430-b8ee-4e74-8482-\ c51b4ee8b6d3"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{ RowBox[{"matForm", "[", "A", "]"}], ".", RowBox[{"matForm", "[", "B", "]"}]}], "-", RowBox[{"matForm", "[", RowBox[{ RowBox[{"A", ".", "B"}], "/.", "p0RSBrules"}], "]"}]}], "//", "MatrixForm"}]], "Input", CellChangeTimes->{{3.90601630021717*^9, 3.9060163020008*^9}, { 3.906016344778521*^9, 3.906016369306422*^9}}, CellLabel-> "In[201]:=",ExpressionUUID->"692c829b-e066-4a5e-bd71-7d2bb33fb03d"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"0", "0", "0", "0", "0", "0", "0"}, {"0", "0", "0", "0", "0", "0", "0"}, {"0", "0", "0", "0", "0", "0", "0"}, {"0", "0", "0", "0", "0", "0", "0"}, {"0", "0", "0", "0", "0", "0", "0"}, {"0", "0", "0", "0", "0", "0", "0"}, {"0", "0", "0", "0", "0", "0", "0"} }, GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[BoxForm`e$]]]], "Output", CellChangeTimes->{{3.906016302200728*^9, 3.9060163698749247`*^9}, { 3.906016412112354*^9, 3.906016427752605*^9}, 3.906186586394137*^9, 3.906188367784443*^9, 3.906445737488733*^9, 3.906526381171613*^9, 3.9071465208390102`*^9, 3.907328401969231*^9, 3.90852775852439*^9, 3.908535176947983*^9, 3.9086033052426033`*^9, 3.908611419390637*^9, 3.908621322502807*^9, 3.9089590134471207`*^9, 3.909041245152533*^9, 3.915532040420734*^9, 3.915532490902354*^9, 3.9157715661819*^9, 3.916379989103819*^9}, CellLabel-> "Out[201]//MatrixForm=",ExpressionUUID->"5c44de21-95e3-40ea-8171-\ bdba9bd0ca88"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{ RowBox[{"logDet", "[", "A", "]"}], "-", RowBox[{"Log", "[", RowBox[{"Det", "[", RowBox[{"matForm", "[", "A", "]"}], "]"}], "]"}]}], "/.", "p0RSBrules"}], "//", RowBox[{ RowBox[{"FullSimplify", "[", RowBox[{"#", ",", RowBox[{"Assumptions", "->", RowBox[{"{", RowBox[{ RowBox[{"ad", ">", "a0"}], ",", RowBox[{"a0", ">", "0"}], ",", RowBox[{"ad", ">", "0"}], ",", RowBox[{"ad", ">", "0"}]}], "}"}]}]}], "]"}], "&"}]}]], "Input", CellChangeTimes->{{3.906016432156065*^9, 3.906016492940791*^9}}, CellLabel-> "In[202]:=",ExpressionUUID->"9dee447a-c909-40cb-8546-4295c33c7ecb"], Cell[BoxData["0"], "Output", CellChangeTimes->{{3.906016435385942*^9, 3.906016493093434*^9}, 3.9061865868641443`*^9, 3.906188367909843*^9, 3.906445737894533*^9, 3.906526381387528*^9, 3.907146521410756*^9, 3.907328402072982*^9, 3.908527759253859*^9, 3.908535176992972*^9, 3.908603305293064*^9, 3.908611419701027*^9, 3.908621322735462*^9, 3.908959013614911*^9, 3.909041245371322*^9, 3.915532041003538*^9, 3.915532491323807*^9, 3.9157715663195257`*^9, 3.916379989663705*^9}, CellLabel-> "Out[202]=",ExpressionUUID->"a4b05569-f206-413a-a53c-79ed31b50a77"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"\[ScriptCapitalS]twin", "=", RowBox[{"With", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Q11", "=", RowBox[{"p0RSBmat", "[", RowBox[{"n", ",", RowBox[{"{", RowBox[{ "q11d1", ",", "q111", ",", "q111", ",", "q11d0", ",", "q110"}], "}"}]}], "]"}]}], ",", RowBox[{"Q22", "=", RowBox[{"p0RSBmat", "[", RowBox[{"n", ",", RowBox[{"{", RowBox[{ "q22d1", ",", "q221", ",", "q221", ",", "q22d0", ",", "q220"}], "}"}]}], "]"}]}], ",", RowBox[{"Q12", "=", RowBox[{"p0RSBmat", "[", RowBox[{"n", ",", RowBox[{"{", RowBox[{ "q12d1", ",", "q121", ",", "q121", ",", "q12d0", ",", "q120"}], "}"}]}], "]"}]}]}], "}"}], ",", "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{ RowBox[{"-", "\[Beta]"}], RowBox[{"(", RowBox[{ RowBox[{"\[Omega]1", " ", RowBox[{"sumDiag", "[", "Q11", "]"}]}], "+", RowBox[{"\[Omega]2", " ", RowBox[{"sumDiag", "[", "Q22", "]"}]}], "+", RowBox[{"2", " ", "\[Epsilon]", " ", RowBox[{"sumDiag", "[", "Q12", "]"}]}]}], ")"}]}], "+", RowBox[{"\[Lambda]", RowBox[{"(", RowBox[{ RowBox[{"\[Omega]1", " ", "q11d1"}], "+", RowBox[{"\[Omega]2", " ", "q22d1"}], "+", RowBox[{"2", " ", "\[Epsilon]", " ", "q12d1"}]}], ")"}]}], "+", RowBox[{ SuperscriptBox["\[Sigma]1", "2"], RowBox[{"(", RowBox[{ RowBox[{ SuperscriptBox["\[Beta]", "2"], RowBox[{"sum", "[", SuperscriptBox["Q11", "2"], "]"}]}], "+", RowBox[{ SuperscriptBox["\[Lambda]", "2"], SuperscriptBox["q11d1", "2"]}], "-", RowBox[{"2", " ", "\[Beta]", " ", "\[Lambda]", RowBox[{"(", RowBox[{ SuperscriptBox["q11d1", "2"], "+", RowBox[{ RowBox[{"(", RowBox[{"n", "-", "1"}], ")"}], SuperscriptBox["q111", "2"]}]}], ")"}]}]}], ")"}]}], "+", RowBox[{ SuperscriptBox["\[Sigma]2", "2"], RowBox[{"(", RowBox[{ RowBox[{ SuperscriptBox["\[Beta]", "2"], RowBox[{"sum", "[", SuperscriptBox["Q22", "2"], "]"}]}], "+", RowBox[{ SuperscriptBox["\[Lambda]", "2"], SuperscriptBox["q22d1", "2"]}], "-", RowBox[{"2", " ", "\[Beta]", " ", "\[Lambda]", RowBox[{"(", RowBox[{ SuperscriptBox["q22d1", "2"], "+", RowBox[{ RowBox[{"(", RowBox[{"n", "-", "1"}], ")"}], SuperscriptBox["q221", "2"]}]}], ")"}]}]}], ")"}]}], "+", RowBox[{ FractionBox["1", "2"], RowBox[{"logDet", "[", RowBox[{ RowBox[{"Q11", ".", "Q22"}], "-", RowBox[{"Q12", ".", "Q12"}]}], "]"}]}]}], "//.", "p0RSBrules"}]}], "\[IndentingNewLine]", "]"}]}], ";"}]], "Input", CellChangeTimes->{{3.905848963495986*^9, 3.905849056640668*^9}, { 3.905849098609572*^9, 3.905849153378747*^9}, {3.905849229244924*^9, 3.905849299413603*^9}, {3.9058497801426687`*^9, 3.905849929641574*^9}, { 3.905850661167429*^9, 3.905850663479553*^9}, {3.9058506988640537`*^9, 3.905850823299843*^9}, {3.906016526231467*^9, 3.906016610960813*^9}, { 3.906016648120619*^9, 3.906016668361017*^9}, {3.906018022634241*^9, 3.906018040601918*^9}, {3.906018074803009*^9, 3.906018131963895*^9}}, CellLabel-> "In[203]:=",ExpressionUUID->"ae225317-c8f2-42eb-a092-5a3d6696fcf1"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"e1", "=", RowBox[{ RowBox[{"FullSimplify", "[", RowBox[{ RowBox[{"Limit", "[", RowBox[{"\[ScriptCapitalS]twin", ",", RowBox[{"n", "->", "0"}]}], "]"}], ",", RowBox[{"Assumptions", "->", RowBox[{"{", RowBox[{ RowBox[{"0", "<", "q11d0", "<", "1"}], ",", RowBox[{"0", "<", "q11d1", "<", "1"}], ",", RowBox[{"0", "<", "q110", "<", "1"}], ",", RowBox[{"0", "<", "q220", "<", "1"}]}], "}"}]}]}], "]"}], "/.", RowBox[{"{", RowBox[{ RowBox[{"q22d0", "->", RowBox[{"1", "-", "q11d0"}]}], ",", RowBox[{"q22d1", "->", RowBox[{"1", "-", "q11d1"}]}]}], "}"}]}]}]], "Input", CellChangeTimes->{{3.905850825091011*^9, 3.905850839218413*^9}, { 3.905851002581938*^9, 3.905851024062209*^9}, {3.905853123574729*^9, 3.905853141726667*^9}, {3.906014604394625*^9, 3.906014632601555*^9}}, CellLabel-> "In[204]:=",ExpressionUUID->"27f3f5fd-a103-416e-9e22-49288939ab46"], Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"2", " ", SuperscriptBox["q110", "2"]}], "-", RowBox[{"2", " ", SuperscriptBox["q111", "2"]}], "-", SuperscriptBox["q11d0", "2"], "+", SuperscriptBox["q11d1", "2"]}], ")"}], " ", SuperscriptBox["\[Beta]", "2"]}], "+", RowBox[{"2", " ", RowBox[{"(", RowBox[{"q111", "-", "q11d1"}], ")"}], " ", RowBox[{"(", RowBox[{"q111", "+", "q11d1"}], ")"}], " ", "\[Beta]", " ", "\[Lambda]"}], "+", RowBox[{ SuperscriptBox["q11d1", "2"], " ", SuperscriptBox["\[Lambda]", "2"]}]}], ")"}], " ", SuperscriptBox["\[Sigma]1", "2"]}], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", RowBox[{"1", "-", "q11d0"}], ")"}], "2"]}], "+", SuperscriptBox[ RowBox[{"(", RowBox[{"1", "-", "q11d1"}], ")"}], "2"], "+", RowBox[{"2", " ", SuperscriptBox["q220", "2"]}], "-", RowBox[{"2", " ", SuperscriptBox["q221", "2"]}]}], ")"}], " ", SuperscriptBox["\[Beta]", "2"]}], "+", RowBox[{"2", " ", RowBox[{"(", RowBox[{"1", "-", "q11d1", "+", "q221"}], ")"}], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "q11d1", "+", "q221"}], ")"}], " ", "\[Beta]", " ", "\[Lambda]"}], "+", RowBox[{ SuperscriptBox[ RowBox[{"(", RowBox[{"1", "-", "q11d1"}], ")"}], "2"], " ", SuperscriptBox["\[Lambda]", "2"]}]}], ")"}], " ", SuperscriptBox["\[Sigma]2", "2"]}], "+", RowBox[{"\[Beta]", " ", RowBox[{"(", RowBox[{ RowBox[{"2", " ", "q12d0", " ", "\[Epsilon]"}], "-", RowBox[{"2", " ", "q12d1", " ", "\[Epsilon]"}], "+", RowBox[{"q11d0", " ", "\[Omega]1"}], "-", RowBox[{"q11d1", " ", "\[Omega]1"}], "+", RowBox[{ RowBox[{"(", RowBox[{"1", "-", "q11d0"}], ")"}], " ", "\[Omega]2"}], "-", RowBox[{ RowBox[{"(", RowBox[{"1", "-", "q11d1"}], ")"}], " ", "\[Omega]2"}]}], ")"}]}], "+", RowBox[{"\[Lambda]", " ", RowBox[{"(", RowBox[{ RowBox[{"2", " ", "q12d1", " ", "\[Epsilon]"}], "+", RowBox[{"q11d1", " ", "\[Omega]1"}], "+", RowBox[{ RowBox[{"(", RowBox[{"1", "-", "q11d1"}], ")"}], " ", "\[Omega]2"}]}], ")"}]}], "+", RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", RowBox[{"Log", "[", RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", RowBox[{"q120", "-", "q12d0"}], ")"}], "2"]}], "+", RowBox[{ RowBox[{"(", RowBox[{"q110", "-", "q11d0"}], ")"}], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "q11d0", "+", "q220"}], ")"}]}]}], "]"}]}], "+", RowBox[{"Log", "[", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{"1", "-", "q11d1"}], ")"}], " ", "q11d1"}], "+", SuperscriptBox["q121", "2"], "-", SuperscriptBox["q12d1", "2"], "-", RowBox[{"q111", " ", "q221"}]}], ")"}], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{"1", "-", "q11d0"}], ")"}], " ", "q11d0"}], "+", RowBox[{"2", " ", SuperscriptBox["q120", "2"]}], "-", SuperscriptBox["q121", "2"], "-", SuperscriptBox["q12d0", "2"], "-", RowBox[{"2", " ", "q110", " ", "q220"}], "+", RowBox[{"q111", " ", "q221"}]}], ")"}]}], "-", RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{"1", "-", "q11d1"}], ")"}], " ", "q11d1"}], "+", SuperscriptBox["q121", "2"], "-", SuperscriptBox["q12d1", "2"], "-", RowBox[{"q111", " ", "q221"}]}], ")"}], " ", RowBox[{"(", RowBox[{ RowBox[{"q110", " ", RowBox[{"(", RowBox[{"1", "-", "q11d0"}], ")"}]}], "+", RowBox[{"3", " ", SuperscriptBox["q120", "2"]}], "-", SuperscriptBox["q121", "2"], "-", RowBox[{"2", " ", "q120", " ", "q12d0"}], "-", RowBox[{"3", " ", "q110", " ", "q220"}], "+", RowBox[{"q11d0", " ", "q220"}], "+", RowBox[{"q111", " ", "q221"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"q111", " ", RowBox[{"(", RowBox[{"1", "-", "q11d1"}], ")"}]}], "+", RowBox[{"2", " ", "q120", " ", "q121"}], "-", RowBox[{"q121", " ", RowBox[{"(", RowBox[{"q12d0", "+", "q12d1"}], ")"}]}], "-", RowBox[{"2", " ", "q110", " ", "q221"}], "+", RowBox[{"q11d0", " ", "q221"}]}], ")"}], " ", RowBox[{"(", RowBox[{ RowBox[{"q111", " ", RowBox[{"(", RowBox[{"1", "-", "q11d0"}], ")"}]}], "+", RowBox[{"2", " ", "q120", " ", "q121"}], "-", RowBox[{"q121", " ", RowBox[{"(", RowBox[{"q12d0", "+", "q12d1"}], ")"}]}], "-", RowBox[{"2", " ", "q111", " ", "q220"}], "+", RowBox[{"q11d1", " ", "q221"}]}], ")"}]}]}], "]"}]}], ")"}]}]}]], "Output", CellChangeTimes->{{3.905850829877305*^9, 3.905850839465863*^9}, { 3.905851005629496*^9, 3.905851024399541*^9}, {3.90585312526083*^9, 3.90585314326528*^9}, 3.9058615885407877`*^9, 3.905912499053171*^9, 3.905931598682398*^9, 3.906014581119566*^9, {3.906014625989239*^9, 3.906014632954865*^9}, 3.906016701530336*^9, 3.906016767211265*^9, 3.906018142729081*^9, 3.906186592965066*^9, 3.906188369691762*^9, 3.906445739624508*^9, 3.906526383503549*^9, 3.907146523319407*^9, 3.9073284035521383`*^9, 3.908527761322122*^9, 3.908535178552448*^9, 3.908603306888613*^9, 3.908611423684043*^9, 3.90862132459629*^9, 3.9089590151457157`*^9, 3.909041247694905*^9, 3.915532043468378*^9, 3.915532493400175*^9, 3.9157715677141747`*^9, 3.9163799917950907`*^9}, CellLabel-> "Out[204]=",ExpressionUUID->"7c116b5c-7bb6-4259-98ab-703694af8842"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"e2", "=", RowBox[{"FullSimplify", "[", RowBox[{ RowBox[{"e1", "/.", RowBox[{"{", RowBox[{ RowBox[{"\[Epsilon]", "->", "0"}], ",", RowBox[{"q120", "->", "0"}], ",", RowBox[{"q121", "->", "0"}], ",", RowBox[{"q12d0", "->", "0"}], ",", RowBox[{"q12d1", "->", "0"}]}], "}"}]}], ",", RowBox[{"Assumptions", "->", RowBox[{"{", RowBox[{ RowBox[{ SuperscriptBox["q111", "2"], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", "q110"}], "+", "q11d0"}], ")"}], " ", "q11d1"}]}], ">", "0"}], "}"}]}]}], "]"}]}]], "Input", CellChangeTimes->{{3.906186860286684*^9, 3.906186879686674*^9}, { 3.906186913895919*^9, 3.906186964896375*^9}}, CellLabel-> "In[205]:=",ExpressionUUID->"ad63e4bc-666e-46ed-8c23-6d418adb2b5d"], Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"2", " ", SuperscriptBox["q110", "2"]}], "-", RowBox[{"2", " ", SuperscriptBox["q111", "2"]}], "-", SuperscriptBox["q11d0", "2"], "+", SuperscriptBox["q11d1", "2"]}], ")"}], " ", SuperscriptBox["\[Beta]", "2"]}], "+", RowBox[{"2", " ", RowBox[{"(", RowBox[{"q111", "-", "q11d1"}], ")"}], " ", RowBox[{"(", RowBox[{"q111", "+", "q11d1"}], ")"}], " ", "\[Beta]", " ", "\[Lambda]"}], "+", RowBox[{ SuperscriptBox["q11d1", "2"], " ", SuperscriptBox["\[Lambda]", "2"]}]}], ")"}], " ", SuperscriptBox["\[Sigma]1", "2"]}], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "2"}], "+", "q11d0"}], ")"}], " ", "q11d0"}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "2"}], "+", "q11d1"}], ")"}], " ", "q11d1"}], "+", RowBox[{"2", " ", RowBox[{"(", RowBox[{"q220", "-", "q221"}], ")"}], " ", RowBox[{"(", RowBox[{"q220", "+", "q221"}], ")"}]}]}], ")"}], " ", SuperscriptBox["\[Beta]", "2"]}], "+", RowBox[{"2", " ", RowBox[{"(", RowBox[{"1", "-", "q11d1", "+", "q221"}], ")"}], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "q11d1", "+", "q221"}], ")"}], " ", "\[Beta]", " ", "\[Lambda]"}], "+", RowBox[{ SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "q11d1"}], ")"}], "2"], " ", SuperscriptBox["\[Lambda]", "2"]}]}], ")"}], " ", SuperscriptBox["\[Sigma]2", "2"]}], "+", RowBox[{ RowBox[{"(", RowBox[{"q11d0", "-", "q11d1"}], ")"}], " ", "\[Beta]", " ", RowBox[{"(", RowBox[{"\[Omega]1", "-", "\[Omega]2"}], ")"}]}], "+", RowBox[{"\[Lambda]", " ", RowBox[{"(", RowBox[{ RowBox[{"q11d1", " ", RowBox[{"(", RowBox[{"\[Omega]1", "-", "\[Omega]2"}], ")"}]}], "+", "\[Omega]2"}], ")"}]}], "+", RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"Log", "[", RowBox[{ SuperscriptBox["q111", "2"], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", "q110"}], "+", "q11d0"}], ")"}], " ", "q11d1"}]}], "]"}], "-", RowBox[{"2", " ", RowBox[{"Log", "[", RowBox[{ RowBox[{"(", RowBox[{"q110", "-", "q11d0"}], ")"}], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "q11d0", "+", "q220"}], ")"}]}], "]"}]}], "+", RowBox[{"Log", "[", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "q11d1"}], ")"}], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "q11d0", "+", RowBox[{"2", " ", "q220"}]}], ")"}]}], "+", SuperscriptBox["q221", "2"]}], "]"}]}], ")"}]}]}]], "Output", CellChangeTimes->{ 3.906186880315091*^9, {3.906186921002465*^9, 3.906186965149336*^9}, 3.906188370518162*^9, 3.906445740478343*^9, 3.9065263844885607`*^9, 3.907146524270124*^9, 3.907328404486239*^9, 3.908527762345582*^9, 3.908535179422303*^9, 3.90860330775679*^9, 3.908613742673404*^9, 3.908621325654201*^9, 3.9089590159595833`*^9, 3.909041248490795*^9, 3.915532082121131*^9, 3.915532494340509*^9, 3.9157715685543637`*^9, 3.916379992916336*^9}, CellLabel-> "Out[205]=",ExpressionUUID->"2f3c957d-28b6-4286-a434-e11d516208bf"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"e3", "=", RowBox[{"FullSimplify", "[", RowBox[{"D", "[", RowBox[{"e2", ",", RowBox[{"{", RowBox[{"{", RowBox[{ "\[Lambda]", ",", "q110", ",", "q111", ",", "q11d0", ",", "q11d1", ",", "q220", ",", "q221"}], "}"}], "}"}]}], "]"}], "]"}]}], ";"}]], "Input", CellChangeTimes->{{3.905853319610465*^9, 3.905853347658437*^9}, { 3.905853411443419*^9, 3.9058535161262627`*^9}, {3.905853841139458*^9, 3.905853844563665*^9}, {3.9058539127007103`*^9, 3.905853914092967*^9}, { 3.9058542703157997`*^9, 3.905854333908738*^9}, {3.905854765669025*^9, 3.9058547679168243`*^9}, {3.905861540945331*^9, 3.90586155147735*^9}, { 3.905931930671042*^9, 3.905931935878457*^9}, {3.906014640147063*^9, 3.906014648273918*^9}, {3.906016798634808*^9, 3.906016810306693*^9}, { 3.9061871443158627`*^9, 3.906187168844187*^9}}, CellLabel-> "In[206]:=",ExpressionUUID->"c88cdbf9-9e5d-49a2-927e-12c0fc1e998e"], Cell[BoxData[ RowBox[{ RowBox[{"rules", "=", RowBox[{"{", RowBox[{ RowBox[{"q110", "->", RowBox[{"q11d", "-", RowBox[{"y11", "/", "\[Beta]"}], "-", RowBox[{"z110", "/", SuperscriptBox["\[Beta]", "2"]}]}]}], ",", RowBox[{"q111", "->", RowBox[{"q11d", "-", RowBox[{"y11", "/", "\[Beta]"}], "-", RowBox[{"z111", "/", SuperscriptBox["\[Beta]", "2"]}]}]}], ",", RowBox[{"q11d0", "->", RowBox[{"q11d", "-", " ", RowBox[{"y11d", "/", "\[Beta]"}], "-", " ", RowBox[{"z11d0", "/", SuperscriptBox["\[Beta]", "2"]}]}]}], ",", RowBox[{"q11d1", "->", RowBox[{"q11d", "-", " ", RowBox[{"y11d", "/", "\[Beta]"}], "-", " ", RowBox[{"z11d1", "/", SuperscriptBox["\[Beta]", "2"]}]}]}], ",", RowBox[{"q220", "->", RowBox[{"q22d", "-", RowBox[{"y22", "/", "\[Beta]"}], "-", RowBox[{"z220", "/", SuperscriptBox["\[Beta]", "2"]}]}]}], ",", RowBox[{"q221", "->", RowBox[{"q22d", "-", RowBox[{"y22", "/", "\[Beta]"}], "-", RowBox[{"z221", "/", SuperscriptBox["\[Beta]", "2"]}]}]}], ",", RowBox[{"q22d", "->", RowBox[{"1", "-", "q11d"}]}]}], "}"}]}], ";"}]], "Input", CellChangeTimes->{{3.905861542929487*^9, 3.905861546187963*^9}, { 3.9058616088771887`*^9, 3.905861619740603*^9}, {3.9058616556854*^9, 3.905861699276464*^9}, {3.905861855312809*^9, 3.905861857476181*^9}, { 3.905912367239668*^9, 3.905912369548286*^9}, {3.905912613884484*^9, 3.905912616896575*^9}, {3.90591332909175*^9, 3.9059133499069*^9}, { 3.905913476003109*^9, 3.905913478780634*^9}, 3.905913510172113*^9, { 3.905913658453998*^9, 3.905913661681223*^9}, {3.905918897671769*^9, 3.905918933808075*^9}, {3.9059194397219048`*^9, 3.905919487154225*^9}, { 3.905919971332117*^9, 3.905919981516094*^9}, {3.905921624987239*^9, 3.905921647467622*^9}, {3.905921807702829*^9, 3.905921811630349*^9}, { 3.905922272815454*^9, 3.9059222846000423`*^9}, {3.905931570960396*^9, 3.905931578736177*^9}, {3.905931954887074*^9, 3.905931975071704*^9}, { 3.906014772838179*^9, 3.90601477479656*^9}, {3.906014805045081*^9, 3.906014807781166*^9}, {3.906014900111161*^9, 3.906014903118968*^9}, { 3.906015113442898*^9, 3.906015153147285*^9}, {3.906016827027356*^9, 3.906016885852555*^9}, 3.906187789048245*^9, {3.906189215794698*^9, 3.906189222514817*^9}, {3.90619067192666*^9, 3.906190680838689*^9}}, CellLabel-> "In[207]:=",ExpressionUUID->"13c828e2-dc96-418a-98b1-bcedb602773f"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"e4", "=", RowBox[{"SeriesCoefficient", "[", RowBox[{ RowBox[{"e3", "//.", "rules"}], ",", RowBox[{"{", RowBox[{"\[Beta]", ",", "\[Infinity]", ",", RowBox[{"-", "2"}]}], "}"}]}], "]"}]}]], "Input", CellChangeTimes->{ 3.906187797968542*^9, {3.906187865137899*^9, 3.906187871433025*^9}}, CellLabel-> "In[208]:=",ExpressionUUID->"5547b70f-6ccc-4c3c-b7a2-430267adff70"], Cell[BoxData[ RowBox[{"{", RowBox[{"0", ",", RowBox[{ RowBox[{"-", FractionBox["q11d", RowBox[{ SuperscriptBox["y11", "2"], "-", RowBox[{"2", " ", "y11", " ", "y11d"}], "+", SuperscriptBox["y11d", "2"], "+", RowBox[{"2", " ", "q11d", " ", "z110"}], "-", RowBox[{"2", " ", "q11d", " ", "z111"}], "-", RowBox[{"q11d", " ", "z11d0"}], "+", RowBox[{"q11d", " ", "z11d1"}]}]]}], "+", RowBox[{"4", " ", "q11d", " ", SuperscriptBox["\[Sigma]1", "2"]}]}], ",", RowBox[{"q11d", " ", RowBox[{"(", RowBox[{ FractionBox["1", RowBox[{ SuperscriptBox["y11", "2"], "-", RowBox[{"2", " ", "y11", " ", "y11d"}], "+", SuperscriptBox["y11d", "2"], "+", RowBox[{"2", " ", "q11d", " ", "z110"}], "-", RowBox[{"2", " ", "q11d", " ", "z111"}], "-", RowBox[{"q11d", " ", "z11d0"}], "+", RowBox[{"q11d", " ", "z11d1"}]}]], "-", RowBox[{"4", " ", SuperscriptBox["\[Sigma]1", "2"]}]}], ")"}]}], ",", RowBox[{ FractionBox["q11d", RowBox[{"2", " ", RowBox[{"(", RowBox[{ SuperscriptBox["y11", "2"], "-", RowBox[{"2", " ", "y11", " ", "y11d"}], "+", SuperscriptBox["y11d", "2"], "+", RowBox[{"2", " ", "q11d", " ", "z110"}], "-", RowBox[{"2", " ", "q11d", " ", "z111"}], "-", RowBox[{"q11d", " ", "z11d0"}], "+", RowBox[{"q11d", " ", "z11d1"}]}], ")"}]}]], "+", FractionBox[ RowBox[{ RowBox[{"-", "1"}], "+", "q11d"}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ SuperscriptBox["y11d", "2"], "+", RowBox[{"2", " ", "y11d", " ", "y22"}], "+", SuperscriptBox["y22", "2"], "+", "z11d0", "-", RowBox[{"q11d", " ", "z11d0"}], "-", "z11d1", "+", RowBox[{"q11d", " ", "z11d1"}], "+", RowBox[{"2", " ", "z220"}], "-", RowBox[{"2", " ", "q11d", " ", "z220"}], "-", RowBox[{"2", " ", "z221"}], "+", RowBox[{"2", " ", "q11d", " ", "z221"}]}], ")"}]}]], "-", RowBox[{"2", " ", "q11d", " ", SuperscriptBox["\[Sigma]1", "2"]}], "-", RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ", SuperscriptBox["\[Sigma]2", "2"]}]}], ",", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", FractionBox["q11d", RowBox[{ SuperscriptBox["y11", "2"], "-", RowBox[{"2", " ", "y11", " ", "y11d"}], "+", SuperscriptBox["y11d", "2"], "+", RowBox[{"2", " ", "q11d", " ", "z110"}], "-", RowBox[{"2", " ", "q11d", " ", "z111"}], "-", RowBox[{"q11d", " ", "z11d0"}], "+", RowBox[{"q11d", " ", "z11d1"}]}]]}], "+", FractionBox[ RowBox[{"1", "-", "q11d"}], RowBox[{ SuperscriptBox["y11d", "2"], "+", RowBox[{"2", " ", "y11d", " ", "y22"}], "+", SuperscriptBox["y22", "2"], "+", "z11d0", "-", RowBox[{"q11d", " ", "z11d0"}], "-", "z11d1", "+", RowBox[{"q11d", " ", "z11d1"}], "+", RowBox[{"2", " ", "z220"}], "-", RowBox[{"2", " ", "q11d", " ", "z220"}], "-", RowBox[{"2", " ", "z221"}], "+", RowBox[{"2", " ", "q11d", " ", "z221"}]}]]}], ")"}]}], "+", RowBox[{"2", " ", "q11d", " ", SuperscriptBox["\[Sigma]1", "2"]}], "+", RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ", SuperscriptBox["\[Sigma]2", "2"]}]}], ",", RowBox[{ FractionBox[ RowBox[{ RowBox[{"-", "1"}], "+", "q11d"}], RowBox[{ SuperscriptBox["y11d", "2"], "+", RowBox[{"2", " ", "y11d", " ", "y22"}], "+", SuperscriptBox["y22", "2"], "+", "z11d0", "-", RowBox[{"q11d", " ", "z11d0"}], "-", "z11d1", "+", RowBox[{"q11d", " ", "z11d1"}], "+", RowBox[{"2", " ", "z220"}], "-", RowBox[{"2", " ", "q11d", " ", "z220"}], "-", RowBox[{"2", " ", "z221"}], "+", RowBox[{"2", " ", "q11d", " ", "z221"}]}]], "-", RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ", SuperscriptBox["\[Sigma]2", "2"]}]}], ",", RowBox[{ RowBox[{"(", RowBox[{"1", "-", "q11d"}], ")"}], " ", RowBox[{"(", RowBox[{ FractionBox["1", RowBox[{ SuperscriptBox["y11d", "2"], "+", RowBox[{"2", " ", "y11d", " ", "y22"}], "+", SuperscriptBox["y22", "2"], "+", "z11d0", "-", RowBox[{"q11d", " ", "z11d0"}], "-", "z11d1", "+", RowBox[{"q11d", " ", "z11d1"}], "+", RowBox[{"2", " ", "z220"}], "-", RowBox[{"2", " ", "q11d", " ", "z220"}], "-", RowBox[{"2", " ", "z221"}], "+", RowBox[{"2", " ", "q11d", " ", "z221"}]}]], "-", RowBox[{"4", " ", SuperscriptBox["\[Sigma]2", "2"]}]}], ")"}]}]}], "}"}]], "Output", CellChangeTimes->{ 3.906187758262377*^9, 3.906187802390731*^9, {3.906187867026927*^9, 3.9061878721263776`*^9}, 3.906188383111711*^9, 3.906189229151506*^9, 3.90619068735071*^9, 3.906445753142694*^9, 3.906526396982582*^9, 3.907146536871374*^9, 3.907328416692205*^9, 3.908527776739359*^9, 3.908535193733109*^9, 3.908603321580958*^9, 3.908613759558733*^9, 3.908621342371894*^9, 3.908959029760838*^9, 3.909041262667035*^9, 3.915532095652994*^9, 3.915532506920657*^9, 3.915771581205089*^9, 3.916380012398842*^9}, CellLabel-> "Out[208]=",ExpressionUUID->"36211747-6213-49d3-af64-0c1c0cf9c4be"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"e5", "=", RowBox[{ RowBox[{"SeriesCoefficient", "[", RowBox[{ RowBox[{"e3", "//.", "rules"}], ",", RowBox[{"{", RowBox[{"\[Beta]", ",", "\[Infinity]", ",", RowBox[{"-", "1"}]}], "}"}]}], "]"}], "//", "Simplify"}]}]], "Input", CellChangeTimes->{{3.906187873026173*^9, 3.906187899186184*^9}}, CellLabel-> "In[209]:=",ExpressionUUID->"87393889-0e58-4140-85b8-c09bdfb83fa6"], Cell[BoxData[ RowBox[{"{", RowBox[{"0", ",", RowBox[{ FractionBox["1", RowBox[{"y11", "-", "y11d"}]], "+", FractionBox[ RowBox[{ RowBox[{"(", RowBox[{"y11", "-", "y11d"}], ")"}], " ", RowBox[{"(", RowBox[{ RowBox[{"y11", " ", "y11d"}], "-", SuperscriptBox["y11d", "2"], "+", RowBox[{"2", " ", "q11d", " ", RowBox[{"(", RowBox[{"z111", "-", "z11d1"}], ")"}]}]}], ")"}]}], SuperscriptBox[ RowBox[{"(", RowBox[{ SuperscriptBox["y11", "2"], "-", RowBox[{"2", " ", "y11", " ", "y11d"}], "+", SuperscriptBox["y11d", "2"], "+", RowBox[{"q11d", " ", RowBox[{"(", RowBox[{ RowBox[{"2", " ", "z110"}], "-", RowBox[{"2", " ", "z111"}], "-", "z11d0", "+", "z11d1"}], ")"}]}]}], ")"}], "2"]], "-", RowBox[{"4", " ", "y11", " ", SuperscriptBox["\[Sigma]1", "2"]}]}], ",", RowBox[{ RowBox[{"-", FractionBox["y11", RowBox[{ SuperscriptBox["y11", "2"], "-", RowBox[{"2", " ", "y11", " ", "y11d"}], "+", SuperscriptBox["y11d", "2"], "+", RowBox[{"q11d", " ", RowBox[{"(", RowBox[{ RowBox[{"2", " ", "z110"}], "-", RowBox[{"2", " ", "z111"}], "-", "z11d0", "+", "z11d1"}], ")"}]}]}]]}], "-", FractionBox[ RowBox[{"q11d", " ", RowBox[{"(", RowBox[{ RowBox[{"2", " ", "y11", " ", RowBox[{"(", RowBox[{"z111", "-", "z11d1"}], ")"}]}], "+", RowBox[{"y11d", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", "z110"}], "+", "z11d0", "+", "z11d1"}], ")"}]}]}], ")"}]}], SuperscriptBox[ RowBox[{"(", RowBox[{ SuperscriptBox["y11", "2"], "-", RowBox[{"2", " ", "y11", " ", "y11d"}], "+", SuperscriptBox["y11d", "2"], "+", RowBox[{"q11d", " ", RowBox[{"(", RowBox[{ RowBox[{"2", " ", "z110"}], "-", RowBox[{"2", " ", "z111"}], "-", "z11d0", "+", "z11d1"}], ")"}]}]}], ")"}], "2"]], "+", RowBox[{"4", " ", "y11", " ", SuperscriptBox["\[Sigma]1", "2"]}], "+", RowBox[{"4", " ", "q11d", " ", "\[Lambda]", " ", SuperscriptBox["\[Sigma]1", "2"]}]}], ",", RowBox[{ FractionBox["1", RowBox[{ RowBox[{"-", "y11"}], "+", "y11d"}]], "+", FractionBox["1", RowBox[{"y11d", "+", "y22"}]], "-", FractionBox[ RowBox[{ RowBox[{"(", RowBox[{"y11", "-", "y11d"}], ")"}], " ", RowBox[{"(", RowBox[{ RowBox[{"y11", " ", "y11d"}], "-", SuperscriptBox["y11d", "2"], "+", RowBox[{"2", " ", "q11d", " ", RowBox[{"(", RowBox[{"z111", "-", "z11d1"}], ")"}]}]}], ")"}]}], RowBox[{"2", " ", SuperscriptBox[ RowBox[{"(", RowBox[{ SuperscriptBox["y11", "2"], "-", RowBox[{"2", " ", "y11", " ", "y11d"}], "+", SuperscriptBox["y11d", "2"], "+", RowBox[{"q11d", " ", RowBox[{"(", RowBox[{ RowBox[{"2", " ", "z110"}], "-", RowBox[{"2", " ", "z111"}], "-", "z11d0", "+", "z11d1"}], ")"}]}]}], ")"}], "2"]}]], "-", FractionBox[ RowBox[{ RowBox[{"(", RowBox[{"y11d", "+", "y22"}], ")"}], " ", RowBox[{"(", RowBox[{ SuperscriptBox["y11d", "2"], "+", RowBox[{"y11d", " ", "y22"}], "+", RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ", RowBox[{"(", RowBox[{"z11d1", "+", "z221"}], ")"}]}]}], ")"}]}], RowBox[{"2", " ", SuperscriptBox[ RowBox[{"(", RowBox[{ SuperscriptBox["y11d", "2"], "+", RowBox[{"2", " ", "y11d", " ", "y22"}], "+", SuperscriptBox["y22", "2"], "-", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ", RowBox[{"(", RowBox[{"z11d0", "-", "z11d1", "+", RowBox[{"2", " ", "z220"}], "-", RowBox[{"2", " ", "z221"}]}], ")"}]}]}], ")"}], "2"]}]], "+", RowBox[{"2", " ", "y11d", " ", SuperscriptBox["\[Sigma]1", "2"]}], "+", RowBox[{"2", " ", "y11d", " ", SuperscriptBox["\[Sigma]2", "2"]}], "+", "\[Omega]1", "-", "\[Omega]2"}], ",", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{ FractionBox[ RowBox[{ RowBox[{"(", RowBox[{"y11", "-", "y11d"}], ")"}], " ", RowBox[{"(", RowBox[{ RowBox[{"2", " ", SuperscriptBox["y11", "2"]}], "-", RowBox[{"3", " ", "y11", " ", "y11d"}], "+", SuperscriptBox["y11d", "2"], "+", RowBox[{"4", " ", "q11d", " ", "z110"}], "-", RowBox[{"2", " ", "q11d", " ", "z111"}], "-", RowBox[{"2", " ", "q11d", " ", "z11d0"}]}], ")"}]}], SuperscriptBox[ RowBox[{"(", RowBox[{ SuperscriptBox["y11", "2"], "-", RowBox[{"2", " ", "y11", " ", "y11d"}], "+", SuperscriptBox["y11d", "2"], "+", RowBox[{"q11d", " ", RowBox[{"(", RowBox[{ RowBox[{"2", " ", "z110"}], "-", RowBox[{"2", " ", "z111"}], "-", "z11d0", "+", "z11d1"}], ")"}]}]}], ")"}], "2"]], "-", FractionBox[ RowBox[{"y11d", "+", RowBox[{"2", " ", "y22"}]}], RowBox[{ SuperscriptBox["y11d", "2"], "+", RowBox[{"2", " ", "y11d", " ", "y22"}], "+", SuperscriptBox["y22", "2"], "-", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ", RowBox[{"(", RowBox[{"z11d0", "-", "z11d1", "+", RowBox[{"2", " ", "z220"}], "-", RowBox[{"2", " ", "z221"}]}], ")"}]}]}]], "+", FractionBox[ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ", RowBox[{"(", RowBox[{ RowBox[{"y11d", " ", RowBox[{"(", RowBox[{"z11d0", "+", "z11d1", "+", RowBox[{"2", " ", "z220"}]}], ")"}]}], "+", RowBox[{"2", " ", "y22", " ", RowBox[{"(", RowBox[{"z11d1", "+", "z221"}], ")"}]}]}], ")"}]}], SuperscriptBox[ RowBox[{"(", RowBox[{ SuperscriptBox["y11d", "2"], "+", RowBox[{"2", " ", "y11d", " ", "y22"}], "+", SuperscriptBox["y22", "2"], "-", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ", RowBox[{"(", RowBox[{"z11d0", "-", "z11d1", "+", RowBox[{"2", " ", "z220"}], "-", RowBox[{"2", " ", "z221"}]}], ")"}]}]}], ")"}], "2"]]}], ")"}]}], "-", RowBox[{"2", " ", RowBox[{"(", RowBox[{"y11d", "+", RowBox[{"2", " ", "q11d", " ", "\[Lambda]"}]}], ")"}], " ", SuperscriptBox["\[Sigma]1", "2"]}], "-", RowBox[{"2", " ", RowBox[{"(", RowBox[{"y11d", "+", RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ", "\[Lambda]"}]}], ")"}], " ", SuperscriptBox["\[Sigma]2", "2"]}], "-", "\[Omega]1", "+", "\[Omega]2"}], ",", RowBox[{ FractionBox["1", RowBox[{"y11d", "+", "y22"}]], "-", FractionBox[ RowBox[{ RowBox[{"(", RowBox[{"y11d", "+", "y22"}], ")"}], " ", RowBox[{"(", RowBox[{ SuperscriptBox["y11d", "2"], "+", RowBox[{"y11d", " ", "y22"}], "+", RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ", RowBox[{"(", RowBox[{"z11d1", "+", "z221"}], ")"}]}]}], ")"}]}], SuperscriptBox[ RowBox[{"(", RowBox[{ SuperscriptBox["y11d", "2"], "+", RowBox[{"2", " ", "y11d", " ", "y22"}], "+", SuperscriptBox["y22", "2"], "-", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ", RowBox[{"(", RowBox[{"z11d0", "-", "z11d1", "+", RowBox[{"2", " ", "z220"}], "-", RowBox[{"2", " ", "z221"}]}], ")"}]}]}], ")"}], "2"]], "-", RowBox[{"4", " ", "y22", " ", SuperscriptBox["\[Sigma]2", "2"]}]}], ",", RowBox[{ RowBox[{ RowBox[{"-", "y22"}], " ", RowBox[{"(", RowBox[{ FractionBox["1", RowBox[{ SuperscriptBox["y11d", "2"], "+", RowBox[{"2", " ", "y11d", " ", "y22"}], "+", SuperscriptBox["y22", "2"], "-", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ", RowBox[{"(", RowBox[{"z11d0", "-", "z11d1", "+", RowBox[{"2", " ", "z220"}], "-", RowBox[{"2", " ", "z221"}]}], ")"}]}]}]], "-", RowBox[{"4", " ", SuperscriptBox["\[Sigma]2", "2"]}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"1", "-", "q11d"}], ")"}], " ", RowBox[{"(", RowBox[{ RowBox[{"-", FractionBox[ RowBox[{ RowBox[{"y11d", " ", RowBox[{"(", RowBox[{"z11d0", "+", "z11d1", "+", RowBox[{"2", " ", "z220"}]}], ")"}]}], "+", RowBox[{"2", " ", "y22", " ", RowBox[{"(", RowBox[{"z11d1", "+", "z221"}], ")"}]}]}], SuperscriptBox[ RowBox[{"(", RowBox[{ SuperscriptBox["y11d", "2"], "+", RowBox[{"2", " ", "y11d", " ", "y22"}], "+", SuperscriptBox["y22", "2"], "-", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ", RowBox[{"(", RowBox[{"z11d0", "-", "z11d1", "+", RowBox[{"2", " ", "z220"}], "-", RowBox[{"2", " ", "z221"}]}], ")"}]}]}], ")"}], "2"]]}], "+", RowBox[{"4", " ", "\[Lambda]", " ", SuperscriptBox["\[Sigma]2", "2"]}]}], ")"}]}]}]}], "}"}]], "Output", CellChangeTimes->{{3.9061878924875402`*^9, 3.906187907449717*^9}, 3.906188395619846*^9, 3.9061892307700033`*^9, 3.906190699743403*^9, 3.906445765588705*^9, 3.906526409231572*^9, 3.907146549327018*^9, 3.9073284290518627`*^9, 3.9085278141653852`*^9, 3.908535231005335*^9, 3.908603358180184*^9, 3.908613796140329*^9, 3.9086213853239603`*^9, 3.908959065638323*^9, 3.909041299813568*^9, 3.915532108906477*^9, 3.915532519605406*^9, 3.9157715941794653`*^9, 3.91638002605516*^9}, CellLabel-> "Out[209]=",ExpressionUUID->"45c1ecc4-6c35-4af1-a8c6-4c6db7168bb2"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"e6", "=", RowBox[{ RowBox[{"SeriesCoefficient", "[", RowBox[{ RowBox[{ RowBox[{"e3", "[", RowBox[{"[", "1", "]"}], "]"}], "//.", "rules"}], ",", RowBox[{"{", RowBox[{"\[Beta]", ",", "\[Infinity]", ",", "0"}], "}"}]}], "]"}], "//", "Simplify"}]}]], "Input", CellChangeTimes->{{3.906187902458308*^9, 3.906187917954363*^9}}, CellLabel-> "In[210]:=",ExpressionUUID->"4d2d8f62-3f6d-45b3-9a63-780219e0e7e8"], Cell[BoxData[ RowBox[{ RowBox[{"2", " ", "q11d", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", "y11"}], "+", RowBox[{"2", " ", "y11d"}], "+", RowBox[{"q11d", " ", "\[Lambda]"}]}], ")"}], " ", SuperscriptBox["\[Sigma]1", "2"]}], "+", RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ", RowBox[{"(", RowBox[{ RowBox[{"2", " ", RowBox[{"(", RowBox[{"y11d", "+", "y22"}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ", "\[Lambda]"}]}], ")"}], " ", SuperscriptBox["\[Sigma]2", "2"]}], "+", RowBox[{"q11d", " ", RowBox[{"(", RowBox[{"\[Omega]1", "-", "\[Omega]2"}], ")"}]}], "+", "\[Omega]2"}]], "Output", CellChangeTimes->{3.906187918228827*^9, 3.906188395740288*^9, 3.906189231662617*^9, 3.906190699863659*^9, 3.906445765679088*^9, 3.9065264093386173`*^9, 3.907146549432131*^9, 3.907328429169303*^9, 3.908527814198004*^9, 3.908535231041009*^9, 3.908603358210541*^9, 3.90861379620579*^9, 3.90862138535625*^9, 3.909041299849929*^9, 3.915532115920799*^9, 3.9155325197505903`*^9, 3.9157715942701187`*^9, 3.9163800261257687`*^9}, CellLabel-> "Out[210]=",ExpressionUUID->"76297447-9a1b-4498-9d3f-c2078f821920"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"s6", "=", RowBox[{"Simplify", "[", RowBox[{"Solve", "[", RowBox[{ RowBox[{"0", "==", RowBox[{"Join", "[", RowBox[{"e4", ",", "e5", ",", RowBox[{"{", "e6", "}"}]}], "]"}]}], ",", RowBox[{"{", RowBox[{ "\[Lambda]", ",", "y11", ",", "y11d", ",", "y22", ",", "q11d", ",", "z110", ",", "z111", ",", "z11d0", ",", "z11d1", ",", "z220", ",", "z221"}], "}"}]}], "]"}], "]"}]}], ";"}]], "Input", CellChangeTimes->{{3.906187633925405*^9, 3.9061876626932497`*^9}, { 3.906187731847047*^9, 3.906187753167115*^9}, {3.90618781156046*^9, 3.906187831432788*^9}, {3.906187923675535*^9, 3.906187969649603*^9}, { 3.906188000516306*^9, 3.9061880008675756`*^9}, {3.906188709249345*^9, 3.906188738449854*^9}, {3.906190696079129*^9, 3.9061906986149282`*^9}}, CellLabel-> "In[211]:=",ExpressionUUID->"83eebe5d-3503-4b31-b14f-639ea14a0248"], Cell[BoxData[ TemplateBox[{ "Solve", "svars", "\"Equations may not give solutions for all \\\"solve\\\" variables.\"", 2, 211, 11, 23804047810745838865, "Local"}, "MessageTemplate"]], "Message", "MSG", CellChangeTimes->{3.906188768978856*^9, 3.906189233017943*^9, 3.906190730289953*^9, 3.906445795758022*^9, 3.906455280766007*^9, 3.9065264390893784`*^9, 3.9071465797681427`*^9, 3.907328458968724*^9, 3.908527846938418*^9, 3.90853526395877*^9, 3.908603390307139*^9, 3.908613828558267*^9, 3.908615455337167*^9, 3.90862142384585*^9, 3.908959097492876*^9, 3.909041332451538*^9, 3.915532146769128*^9, 3.915532550417849*^9, 3.915771624173337*^9, 3.916380057276285*^9}, CellLabel-> "During evaluation of \ In[211]:=",ExpressionUUID->"8caaea4c-f1d2-4f89-97f5-7e5b71ca8e2a"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"testparams", "=", RowBox[{"{", RowBox[{ RowBox[{"\[Sigma]1", "->", "1"}], ",", RowBox[{"\[Sigma]2", "->", "1"}], ",", RowBox[{"\[Omega]1", "->", RowBox[{"3", "+", RowBox[{"1", "/", "10"}]}]}], ",", RowBox[{"\[Omega]2", "->", RowBox[{"200005", "/", "100000"}]}], ",", RowBox[{"\[Epsilon]", "->", RowBox[{"1", "/", "100"}]}]}], "}"}]}], ";"}]], "Input", CellChangeTimes->{{3.907245948262267*^9, 3.907245950646895*^9}, { 3.908611448200711*^9, 3.908611448896093*^9}, {3.908614445394108*^9, 3.908614446153916*^9}, {3.908615875779113*^9, 3.908615877987123*^9}, { 3.908616482086334*^9, 3.908616482206256*^9}, 3.908616534687642*^9, { 3.908616963967916*^9, 3.908616965983852*^9}, 3.908617191179674*^9, 3.908962534254868*^9, 3.908963027542485*^9, {3.908963083415245*^9, 3.908963089503387*^9}, 3.9089631790945587`*^9, {3.908963292075355*^9, 3.908963292187259*^9}, {3.916386845349831*^9, 3.916386846349766*^9}}, CellLabel-> "In[229]:=",ExpressionUUID->"4c448220-e031-41d2-9096-b9e341dcd981"], Cell[BoxData[ RowBox[{ RowBox[{"rules2", "=", RowBox[{"{", RowBox[{ RowBox[{"q110", "->", RowBox[{"q11d", "-", RowBox[{"y110", "/", "\[Beta]"}], "-", RowBox[{"z110", "/", SuperscriptBox["\[Beta]", "2"]}]}]}], ",", RowBox[{"q111", "->", RowBox[{"q11d", "-", RowBox[{"y111", "/", "\[Beta]"}], "-", RowBox[{"z111", "/", SuperscriptBox["\[Beta]", "2"]}]}]}], ",", RowBox[{"q11d0", "->", RowBox[{"q11d", "-", " ", RowBox[{"y11d0", "/", "\[Beta]"}], "-", RowBox[{"z11d0", "/", SuperscriptBox["\[Beta]", "2"]}]}]}], ",", RowBox[{"q11d1", "->", RowBox[{"q11d", "-", RowBox[{"y11d1", "/", "\[Beta]"}], "-", RowBox[{"z11d1", "/", SuperscriptBox["\[Beta]", "2"]}]}]}], ",", RowBox[{"q220", "->", RowBox[{"q22d", "-", RowBox[{"y220", "/", "\[Beta]"}], "-", RowBox[{"z220", "/", SuperscriptBox["\[Beta]", "2"]}]}]}], ",", RowBox[{"q221", "->", RowBox[{"q22d", "-", RowBox[{"y221", "/", "\[Beta]"}], "-", RowBox[{"z221", "/", SuperscriptBox["\[Beta]", "2"]}]}]}], ",", RowBox[{"q12d1", "->", RowBox[{"q12", "-", RowBox[{"y12d1", "/", "\[Beta]"}], "-", RowBox[{"z12d1", "/", SuperscriptBox["\[Beta]", "2"]}]}]}], ",", RowBox[{"q12d0", "->", RowBox[{"q12", "-", RowBox[{"y12d0", "/", "\[Beta]"}], "-", RowBox[{"z12d0", "/", SuperscriptBox["\[Beta]", "2"]}]}]}], ",", RowBox[{"q121", "->", RowBox[{"q12", "-", RowBox[{"y121", "/", "\[Beta]"}], "-", RowBox[{"z121", "/", SuperscriptBox["\[Beta]", "2"]}]}]}], ",", RowBox[{"q120", "->", RowBox[{"q12", "-", RowBox[{"y120", "/", "\[Beta]"}], "-", RowBox[{"z120", "/", SuperscriptBox["\[Beta]", "2"]}]}]}], ",", RowBox[{"q22d", "->", RowBox[{"1", "-", "q11d"}]}], ",", RowBox[{"\[Lambda]", "->", RowBox[{"\[Lambda]0", "-", RowBox[{"\[Lambda]1", "/", "\[Beta]"}], "-", RowBox[{"\[Lambda]2", "/", SuperscriptBox["\[Beta]", "2"]}]}]}]}], "}"}]}], ";"}]], "Input", CellChangeTimes->{{3.905861542929487*^9, 3.905861546187963*^9}, { 3.9058616088771887`*^9, 3.905861619740603*^9}, {3.9058616556854*^9, 3.905861699276464*^9}, {3.905861855312809*^9, 3.905861857476181*^9}, { 3.905912367239668*^9, 3.905912369548286*^9}, {3.905912613884484*^9, 3.905912616896575*^9}, {3.90591332909175*^9, 3.9059133499069*^9}, { 3.905913476003109*^9, 3.905913478780634*^9}, 3.905913510172113*^9, { 3.905913658453998*^9, 3.905913661681223*^9}, {3.905918897671769*^9, 3.905918933808075*^9}, {3.9059194397219048`*^9, 3.905919487154225*^9}, { 3.905919971332117*^9, 3.905919981516094*^9}, {3.905921624987239*^9, 3.905921647467622*^9}, {3.905921807702829*^9, 3.905921811630349*^9}, { 3.905922272815454*^9, 3.9059222846000423`*^9}, {3.905931570960396*^9, 3.905931578736177*^9}, {3.905931954887074*^9, 3.905931975071704*^9}, { 3.906014772838179*^9, 3.90601477479656*^9}, {3.906014805045081*^9, 3.906014807781166*^9}, {3.906014900111161*^9, 3.906014903118968*^9}, { 3.906015113442898*^9, 3.906015153147285*^9}, {3.906016827027356*^9, 3.906016885852555*^9}, 3.906190615589766*^9, {3.906192507465321*^9, 3.9061925793946037`*^9}, {3.906195398887929*^9, 3.906195399407722*^9}, { 3.906195767951429*^9, 3.9061957720793056`*^9}, {3.906195840496765*^9, 3.906195919154381*^9}, {3.906213868718033*^9, 3.906213885938034*^9}, { 3.906449467308639*^9, 3.906449467504347*^9}, {3.906458374848988*^9, 3.90645838768067*^9}, 3.907244382872212*^9, 3.908959048467206*^9}, CellLabel-> "In[230]:=",ExpressionUUID->"63ea8c17-6059-4955-9b14-1b9deb692962"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"stest2", "=", RowBox[{"Solve", "[", RowBox[{ RowBox[{"0", "==", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"2", " ", "y120"}], "-", RowBox[{"2", " ", "y121"}], "-", "y12d0", "+", "y12d1"}], ",", RowBox[{ RowBox[{"2", " ", "y110"}], "-", RowBox[{"2", " ", "y111"}], "-", "y11d0", "+", "y11d1"}], ",", RowBox[{"y11d0", "-", "y11d1", "+", RowBox[{"2", " ", "y220"}], "-", RowBox[{"2", " ", "y221"}]}]}], "}"}]}], ",", RowBox[{"{", RowBox[{"y110", ",", "y120", ",", "y220"}], "}"}]}], "]"}]}]], "Input", CellChangeTimes->{{3.906209108534292*^9, 3.906209142918777*^9}, { 3.906209281514675*^9, 3.906209401810359*^9}, {3.906209557442634*^9, 3.90620956311773*^9}, {3.906210598464419*^9, 3.906210622697938*^9}, { 3.90621490877896*^9, 3.906214961058323*^9}, {3.906215011570169*^9, 3.906215011869331*^9}, {3.90621511367527*^9, 3.906215113937558*^9}, { 3.906449850271374*^9, 3.906449864831753*^9}, {3.906452288389834*^9, 3.906452349678601*^9}, {3.906452536307121*^9, 3.906452536562147*^9}, { 3.90724443620947*^9, 3.907244488412445*^9}}, CellLabel-> "In[231]:=",ExpressionUUID->"7fe546c9-0af1-4973-85bb-971e16ca3307"], Cell[BoxData[ RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"y110", "\[Rule]", RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"2", " ", "y111"}], "+", "y11d0", "-", "y11d1"}], ")"}]}]}], ",", RowBox[{"y120", "\[Rule]", RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"2", " ", "y121"}], "+", "y12d0", "-", "y12d1"}], ")"}]}]}], ",", RowBox[{"y220", "\[Rule]", RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "y11d0"}], "+", "y11d1", "+", RowBox[{"2", " ", "y221"}]}], ")"}]}]}]}], "}"}], "}"}]], "Output", CellChangeTimes->{{3.906209114847683*^9, 3.906209134528015*^9}, { 3.9062092861324043`*^9, 3.906209307644665*^9}, {3.906209348694558*^9, 3.906209402069257*^9}, 3.906209567919038*^9, {3.906210599059472*^9, 3.906210623077407*^9}, {3.906214910275611*^9, 3.906214961402548*^9}, 3.906215012221205*^9, 3.906215114141577*^9, 3.906449865837833*^9, { 3.906452290224807*^9, 3.906452324323553*^9}, 3.9064523548160133`*^9, 3.906452536825111*^9, 3.906452992821587*^9, 3.906535913473673*^9, { 3.907244450027872*^9, 3.9072444889943857`*^9}, 3.907329066028408*^9, 3.908528771220576*^9, 3.908535928499719*^9, 3.908604043703294*^9, 3.908611456149561*^9, 3.9086144305920887`*^9, 3.908621428030292*^9, 3.9089591306410522`*^9, 3.909041335868808*^9, 3.915532186836844*^9, 3.915532553880711*^9, 3.915771627638197*^9, 3.916380060899454*^9, 3.916386848539817*^9}, CellLabel-> "Out[231]=",ExpressionUUID->"fafa3e14-532d-4f8f-a8ed-c5504aa4836f"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"e9", "=", RowBox[{"Simplify", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"e1", "/.", RowBox[{ RowBox[{ RowBox[{ RowBox[{"-", "2"}], RowBox[{"Log", "[", "x_", "]"}]}], "+", RowBox[{"Log", "[", "y_", "]"}]}], ":>", RowBox[{"Log", "[", RowBox[{"y", " ", SuperscriptBox["x", RowBox[{"-", "2"}]]}], "]"}]}]}], "//.", "rules2"}], "/.", RowBox[{"stest2", "[", RowBox[{"[", "1", "]"}], "]"}]}], ",", RowBox[{"TimeConstraint", "->", "600"}]}], "]"}]}], ";"}]], "Input", CellChangeTimes->{{3.906460267036875*^9, 3.906460376670369*^9}, { 3.906460777446906*^9, 3.906460792814526*^9}, {3.90724455188748*^9, 3.907244564134206*^9}, {3.908530577362788*^9, 3.908530577674566*^9}, 3.908533636339531*^9}, CellLabel-> "In[232]:=",ExpressionUUID->"84934d64-fc27-4a55-a1de-6f9f09494033"], Cell[BoxData[ RowBox[{ RowBox[{"e10", "=", RowBox[{"Simplify", "[", RowBox[{"Limit", "[", RowBox[{"e9", ",", RowBox[{"\[Beta]", "->", "\[Infinity]"}]}], "]"}], "]"}]}], ";"}]], "Input", CellChangeTimes->{{3.908529782124156*^9, 3.908529796140355*^9}}, CellLabel-> "In[233]:=",ExpressionUUID->"83f76904-20b3-4c92-8479-9704a86e9bc3"], Cell[BoxData[ RowBox[{ RowBox[{"e11", "=", RowBox[{"Simplify", "[", RowBox[{"D", "[", RowBox[{"e10", ",", RowBox[{"{", RowBox[{"{", RowBox[{ "q11d", ",", "q12", ",", "y111", ",", "y221", ",", "y12d1", ",", "y11d0", ",", "y11d1", ",", "y121", ",", "y12d0", ",", "z110", ",", "z111", ",", "z11d0", ",", "z11d1", ",", "z220", ",", "z221", ",", "z120", ",", "z121", ",", "z12d0", ",", "z12d1", ",", "\[Lambda]0"}], "}"}], "}"}]}], "]"}], "]"}]}], ";"}]], "Input", CellChangeTimes->{{3.908534070987885*^9, 3.908534106731855*^9}, { 3.908534493867115*^9, 3.908534503451172*^9}, {3.908534639469946*^9, 3.908534652366032*^9}, {3.908534769136189*^9, 3.908534784840426*^9}, { 3.908534838729506*^9, 3.908534842369544*^9}}, CellLabel-> "In[234]:=",ExpressionUUID->"82f4b3f0-5071-4e29-8e26-febf3110e5e0"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{"iniTest", "=", RowBox[{"Thread", "[", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ "q11d", ",", "q12", ",", "y111", ",", "y221", ",", "y12d1", ",", "y11d0", ",", "y11d1", ",", "y121", ",", "y12d0", ",", "z110", ",", "z111", ",", "z11d0", ",", "z11d1", ",", "z220", ",", "z221", ",", "z120", ",", "z121", ",", "z12d0", ",", "z12d1", ",", "\[Lambda]0"}], "}"}], ",", "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{ RowBox[{ RowBox[{ RowBox[{"{", RowBox[{ "q11d", ",", "q12", ",", "y111", ",", "y221", ",", "y12d1", ",", "y11d0", ",", "y11d1", ",", "y121", ",", "y12d0", ",", "z110", ",", "z111", ",", "z11d0", ",", "z11d1", ",", "z220", ",", "z221", ",", "z120", ",", "z121", ",", "z12d0", ",", "z12d1", ",", "\[Lambda]0"}], "}"}], "/.", RowBox[{"{", "\[IndentingNewLine]", RowBox[{ RowBox[{"\[Lambda]0", "->", " ", "\[Lambda]"}], ",", RowBox[{"y110", "->", "y11"}], ",", RowBox[{"y111", "->", "y11"}], ",", RowBox[{"y220", "->", "y22"}], ",", RowBox[{"y221", "->", "y22"}], ",", RowBox[{"y11d0", "->", "y11d"}], ",", RowBox[{"y11d1", "->", "y11d"}]}], "\[IndentingNewLine]", "}"}]}], "/.", RowBox[{"s6", "[", RowBox[{"[", "3", "]"}], "]"}]}], "/.", RowBox[{"{", RowBox[{ RowBox[{"z111", "->", "0"}], ",", RowBox[{"z110", "->", "0"}], ",", RowBox[{"z11d0", "->", "0"}], ",", RowBox[{"z220", "->", "0"}], ",", RowBox[{"z221", "->", "0"}], ",", RowBox[{"z11d1", "->", "0"}], ",", RowBox[{"q12", "->", "0"}], ",", RowBox[{"y12d1", "->", "0"}], ",", RowBox[{"y121", "->", "0"}], ",", RowBox[{"y12d0", "->", "0"}], ",", RowBox[{"z120", "->", "0"}], ",", RowBox[{"z121", "->", "0"}], ",", RowBox[{"z12d0", "->", "0"}], ",", RowBox[{"z12d1", "->", "0"}]}], "}"}]}], "/.", RowBox[{"Append", "[", RowBox[{ RowBox[{"Most", "[", "testparams", "]"}], ",", RowBox[{"\[Epsilon]", "->", SuperscriptBox["10", RowBox[{"-", "2"}]]}]}], "]"}]}], "/.", " ", RowBox[{"0", ":>", RowBox[{ RowBox[{"RandomReal", "[", "]"}], SuperscriptBox["10", RowBox[{"-", "5"}]]}]}]}]}], "\[IndentingNewLine]", "}"}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{"newsol", "=", RowBox[{"FindRoot", "[", RowBox[{ RowBox[{"e11", "/.", RowBox[{"Append", "[", RowBox[{ RowBox[{"Most", "[", "testparams", "]"}], ",", RowBox[{"\[Epsilon]", "->", SuperscriptBox["10", RowBox[{"-", "2"}]]}]}], "]"}]}], ",", "iniTest", ",", RowBox[{"WorkingPrecision", "->", "20"}], ",", RowBox[{"MaxIterations", "->", "1000"}]}], "]"}]}]}], "Input", CellChangeTimes->CompressedData[" 1:eJxTTMoPSmViYGAQA2IQLdE9S/2D3FtH5vuy2iDa/tFuQxC9p1/FCETPEk1y ANElVcaOIFqlcf0/Ufm3jkcyp/0H0aFtxzXFgbTYUh5dEP1IWO4WiHbJ2nYP RGtxijJJAGmpRWfZQXRSG1vBfiD9I9YeTFtYn1I/AKTl2M+A6RkRci4g+tlC BTAt9O3pNRCdUv3zNoh+tE7zI4hWLM8G041iFT9A9KTblWA6pYiP7yCQFrAV BNMpeqFyIPpDhb0uiP4S89oRRLfMfuAMok9IVkWDaIWz68C0gbx+Coh+7qKd BqJlptqVguiZffMqQHT/pUm1IHrDSp86EP2u7nALiK5mmdUGojfn3esH0Tqe XDNANACqiaYp "], CellLabel-> "In[235]:=",ExpressionUUID->"acfb6249-e04b-4f94-810b-05af73aac0bc"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{ "q11d", "\[Rule]", "0.00001555391729866629797472775730626373`20."}], ",", RowBox[{"q12", "\[Rule]", RowBox[{"-", "0.00367071456291392575312445824850019499`20."}]}], ",", RowBox[{ "y111", "\[Rule]", "0.00033858409845575102083505966686412731`20."}], ",", RowBox[{ "y221", "\[Rule]", "0.68070455758563213693748528088857631738`20."}], ",", RowBox[{ "y12d1", "\[Rule]", "0.00061358582971333318235353772778447249`20."}], ",", RowBox[{"y11d0", "\[Rule]", RowBox[{"-", "0.18253314460417188528814576298805655592`20."}]}], ",", RowBox[{"y11d1", "\[Rule]", RowBox[{"-", "0.1825331441926777986672902898135362193`20."}]}], ",", RowBox[{"y121", "\[Rule]", RowBox[{"-", "0.00120835267088457118172131643072694046`20."}]}], ",", RowBox[{ "y12d0", "\[Rule]", "0.00061363474324793547409750971155517618`20."}], ",", RowBox[{"z110", "\[Rule]", RowBox[{"-", "0.00013380799505638768781232499297312236`20."}]}], ",", RowBox[{"z111", "\[Rule]", RowBox[{"-", "0.0001079112344361901100475709114334677`20."}]}], ",", RowBox[{"z11d0", "\[Rule]", RowBox[{"-", "0.00053775194785584789698397549918490971`20."}]}], ",", RowBox[{ "z11d1", "\[Rule]", "0.0001840728825727838669466807086649851`20."}], ",", RowBox[{ "z220", "\[Rule]", "0.00038063878056963354381408981552681325`20."}], ",", RowBox[{"z221", "\[Rule]", RowBox[{"-", "0.00089290936566054849698320650119853781`20."}]}], ",", RowBox[{"z120", "\[Rule]", "2.24370583430332780906403890946873`20.*^-6"}], ",", RowBox[{"z121", "\[Rule]", "6.81538156918646112795382580040737`20.*^-6"}], ",", RowBox[{"z12d0", "\[Rule]", "7.83396611914168097812443541938521`20.*^-6"}], ",", RowBox[{ "z12d1", "\[Rule]", "0.00001032656907739480873012483108652759`20."}], ",", RowBox[{"\[Lambda]0", "\[Rule]", RowBox[{"-", "0.00366394260012867290278422551661714775`20."}]}]}], "}"}]], "Output", CellChangeTimes->{ 3.908534617165332*^9, 3.908534760405347*^9, 3.9085347944529567`*^9, 3.9085362696996202`*^9, 3.908604381422617*^9, 3.908612093101529*^9, 3.908614449703895*^9, {3.908614481344686*^9, 3.908614504811044*^9}, { 3.908616210963707*^9, 3.908616254842885*^9}, {3.908616312237392*^9, 3.9086163170447197`*^9}, 3.908616970303256*^9, 3.908621789726719*^9, { 3.90862195734993*^9, 3.908621968286858*^9}, 3.908959467170705*^9, { 3.908960499329819*^9, 3.908960526670731*^9}, {3.908960574847391*^9, 3.9089606038254843`*^9}, {3.908960782913903*^9, 3.908960813745655*^9}, { 3.908961757784819*^9, 3.908961770114484*^9}, 3.90896180984956*^9, { 3.908961981727275*^9, 3.908962027694907*^9}, {3.908962188993072*^9, 3.908962209399077*^9}, {3.908962244124213*^9, 3.908962284221075*^9}, 3.908962342678248*^9, {3.9089624171398773`*^9, 3.908962455324469*^9}, { 3.9089625398547907`*^9, 3.9089626737739773`*^9}, {3.908962847416065*^9, 3.908962888610635*^9}, {3.908962952419513*^9, 3.90896296095532*^9}, { 3.9089630322598047`*^9, 3.908963121645569*^9}, {3.9089631813370247`*^9, 3.908963207296228*^9}, {3.908963248759201*^9, 3.90896338669203*^9}, { 3.908963452507598*^9, 3.908963523634545*^9}, {3.909041670516673*^9, 3.909041694543151*^9}, 3.909042006145735*^9, {3.915532160299971*^9, 3.915532168934849*^9}, 3.9155327735576057`*^9, 3.915771847507398*^9, 3.916380285011002*^9, 3.916387076462816*^9}, CellLabel-> "Out[236]=",ExpressionUUID->"22fa23af-56ac-41f0-bad7-75e203e68dfd"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"e12", "=", RowBox[{"FoldList", "[", RowBox[{ RowBox[{"Function", "[", RowBox[{ RowBox[{"{", RowBox[{"sol", ",", "\[Omega]22"}], "}"}], ",", RowBox[{"Join", "[", RowBox[{ RowBox[{"Append", "[", RowBox[{ RowBox[{"Delete", "[", RowBox[{"testparams", ",", RowBox[{"{", "4", "}"}]}], "]"}], ",", RowBox[{"\[Omega]2", "->", "\[Omega]22"}]}], "]"}], ",", RowBox[{"FindRoot", "[", RowBox[{ RowBox[{"e11", "/.", RowBox[{"Append", "[", RowBox[{ RowBox[{"Delete", "[", RowBox[{"testparams", ",", RowBox[{"{", "4", "}"}]}], "]"}], ",", RowBox[{"\[Omega]2", "->", "\[Omega]22"}]}], "]"}]}], ",", RowBox[{ RowBox[{"Drop", "[", RowBox[{"sol", ",", "5"}], "]"}], "/.", RowBox[{"Rule", "->", "List"}]}], ",", RowBox[{"WorkingPrecision", "->", "20"}]}], "]"}]}], "]"}]}], "]"}], ",", RowBox[{"Join", "[", RowBox[{ RowBox[{"Append", "[", RowBox[{ RowBox[{"Most", "[", "testparams", "]"}], ",", RowBox[{"\[Epsilon]", "->", SuperscriptBox["10", RowBox[{"-", "2"}]]}]}], "]"}], ",", "newsol"}], "]"}], ",", RowBox[{"Range", "[", RowBox[{ RowBox[{"200005", "/", "100000"}], ",", RowBox[{"200003", "/", "100000"}], ",", RowBox[{"-", SuperscriptBox["10", RowBox[{"-", "6"}]]}]}], "]"}]}], "]"}]}], ";"}]], "Input", CellChangeTimes->{{3.908612319761338*^9, 3.908612417546509*^9}, { 3.9086124874051113`*^9, 3.90861254511722*^9}, {3.908612745906377*^9, 3.908612793106409*^9}, {3.908612832420323*^9, 3.908612861411959*^9}, { 3.908613309205525*^9, 3.908613364644801*^9}, {3.90861342802299*^9, 3.908613519839675*^9}, 3.9086135669615602`*^9, {3.90861449347665*^9, 3.908614589381097*^9}, {3.908614669654983*^9, 3.908614697639248*^9}, { 3.9086147913854*^9, 3.908614791473036*^9}, {3.908614898533624*^9, 3.908614898571179*^9}, {3.908616326011752*^9, 3.908616327083562*^9}, { 3.908616469198354*^9, 3.908616512344514*^9}, {3.908616543200011*^9, 3.9086165541439466`*^9}, {3.908616606713204*^9, 3.908616607505047*^9}, { 3.908616705004503*^9, 3.908616705122736*^9}, {3.9086168341272717`*^9, 3.908616895070513*^9}, {3.908617028003454*^9, 3.908617065841843*^9}, { 3.908964574277124*^9, 3.908964612668378*^9}, {3.908965377762587*^9, 3.90896537784248*^9}, {3.909042427724539*^9, 3.90904242782031*^9}, { 3.909042471277335*^9, 3.909042532246409*^9}}, CellLabel-> "In[237]:=",ExpressionUUID->"2a2f7dd9-b465-4d3a-81cf-abf195bcfc21"], Cell[BoxData[ TemplateBox[{ "FindRoot", "lstol", "\"The line search decreased the step size to within tolerance specified \ by AccuracyGoal and PrecisionGoal but was unable to find a sufficient \ decrease in the merit function. You may need more than \ \\!\\(\\*RowBox[{\\\"20.`\\\"}]\\) digits of working precision to meet these \ tolerances.\"", 2, 237, 25, 23804047810745838865, "Local"}, "MessageTemplate"]], "Message", "MSG", CellChangeTimes->{3.909042535149797*^9, 3.9155328751204443`*^9, 3.915771850129451*^9, 3.916380287761401*^9, 3.916387078856232*^9}, CellLabel-> "During evaluation of \ In[237]:=",ExpressionUUID->"fd049e2d-b962-42ba-8dca-46fc9644cce9"], Cell[BoxData[ TemplateBox[{ "FindRoot", "cvmit", "\"Failed to converge to the requested accuracy or precision within \\!\\(\ \\*RowBox[{\\\"100\\\"}]\\) iterations.\"", 2, 237, 26, 23804047810745838865, "Local"}, "MessageTemplate"]], "Message", "MSG", CellChangeTimes->{3.909042535149797*^9, 3.9155328751204443`*^9, 3.915771850129451*^9, 3.916380287761401*^9, 3.916387082656042*^9}, CellLabel-> "During evaluation of \ In[237]:=",ExpressionUUID->"5cb44bf7-173f-499b-851b-adf000d36880"], Cell[BoxData[ TemplateBox[{ "FindRoot", "cvmit", "\"Failed to converge to the requested accuracy or precision within \\!\\(\ \\*RowBox[{\\\"100\\\"}]\\) iterations.\"", 2, 237, 27, 23804047810745838865, "Local"}, "MessageTemplate"]], "Message", "MSG", CellChangeTimes->{3.909042535149797*^9, 3.9155328751204443`*^9, 3.915771850129451*^9, 3.916380287761401*^9, 3.916387084945113*^9}, CellLabel-> "During evaluation of \ In[237]:=",ExpressionUUID->"3413d04c-3008-4bee-a8ec-f365f773087f"], Cell[BoxData[ TemplateBox[{ "FindRoot", "cvmit", "\"Failed to converge to the requested accuracy or precision within \\!\\(\ \\*RowBox[{\\\"100\\\"}]\\) iterations.\"", 2, 237, 28, 23804047810745838865, "Local"}, "MessageTemplate"]], "Message", "MSG", CellChangeTimes->{3.909042535149797*^9, 3.9155328751204443`*^9, 3.915771850129451*^9, 3.916380287761401*^9, 3.916387087774027*^9}, CellLabel-> "During evaluation of \ In[237]:=",ExpressionUUID->"982a2288-fc78-4c1e-8b15-7a87bdc87b9b"], Cell[BoxData[ TemplateBox[{ "General", "stop", "\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"FindRoot\\\", \ \\\"::\\\", \\\"cvmit\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ during this calculation.\"", 2, 237, 29, 23804047810745838865, "Local"}, "MessageTemplate"]], "Message", "MSG", CellChangeTimes->{3.909042535149797*^9, 3.9155328751204443`*^9, 3.915771850129451*^9, 3.916380287761401*^9, 3.916387087780196*^9}, CellLabel-> "During evaluation of \ In[237]:=",ExpressionUUID->"a6869e09-be0b-47fc-9d8f-a7b647e3ebf2"], Cell[BoxData[ TemplateBox[{ "FindRoot", "lstol", "\"The line search decreased the step size to within tolerance specified \ by AccuracyGoal and PrecisionGoal but was unable to find a sufficient \ decrease in the merit function. You may need more than \ \\!\\(\\*RowBox[{\\\"20.`\\\"}]\\) digits of working precision to meet these \ tolerances.\"", 2, 237, 30, 23804047810745838865, "Local"}, "MessageTemplate"]], "Message", "MSG", CellChangeTimes->{3.909042535149797*^9, 3.9155328751204443`*^9, 3.915771850129451*^9, 3.916380287761401*^9, 3.916387088426792*^9}, CellLabel-> "During evaluation of \ In[237]:=",ExpressionUUID->"3e572292-7317-4d82-b804-f7ec1744c5da"], Cell[BoxData[ TemplateBox[{ "FindRoot", "lstol", "\"The line search decreased the step size to within tolerance specified \ by AccuracyGoal and PrecisionGoal but was unable to find a sufficient \ decrease in the merit function. You may need more than \ \\!\\(\\*RowBox[{\\\"20.`\\\"}]\\) digits of working precision to meet these \ tolerances.\"", 2, 237, 31, 23804047810745838865, "Local"}, "MessageTemplate"]], "Message", "MSG", CellChangeTimes->{3.909042535149797*^9, 3.9155328751204443`*^9, 3.915771850129451*^9, 3.916380287761401*^9, 3.916387088708995*^9}, CellLabel-> "During evaluation of \ In[237]:=",ExpressionUUID->"d651ce85-ec36-45c7-9151-74cc477901a5"], Cell[BoxData[ TemplateBox[{ "General", "stop", "\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"FindRoot\\\", \ \\\"::\\\", \\\"lstol\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ during this calculation.\"", 2, 237, 32, 23804047810745838865, "Local"}, "MessageTemplate"]], "Message", "MSG", CellChangeTimes->{3.909042535149797*^9, 3.9155328751204443`*^9, 3.915771850129451*^9, 3.916380287761401*^9, 3.916387088719208*^9}, CellLabel-> "During evaluation of \ In[237]:=",ExpressionUUID->"9996e476-8dd5-4dff-abe4-3dc38d2bcc7b"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{"testzero", "=", RowBox[{"SelectFirst", "[", RowBox[{"e12", ",", RowBox[{ RowBox[{ RowBox[{ RowBox[{"Abs", "[", "\[Lambda]0", "]"}], "<", SuperscriptBox["10", RowBox[{"-", "2"}]]}], "/.", "#"}], "&"}]}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{"solzero", "=", RowBox[{"Join", "[", RowBox[{ RowBox[{"{", RowBox[{"\[Lambda]0", "->", "0"}], "}"}], ",", RowBox[{"Delete", "[", RowBox[{ RowBox[{"Take", "[", RowBox[{"testzero", ",", "5"}], "]"}], ",", RowBox[{"{", "4", "}"}]}], "]"}], ",", RowBox[{"FindRoot", "[", RowBox[{ RowBox[{ RowBox[{"e11", "/.", RowBox[{"Delete", "[", RowBox[{ RowBox[{"Take", "[", RowBox[{"testzero", ",", "5"}], "]"}], ",", RowBox[{"{", "4", "}"}]}], "]"}]}], "/.", RowBox[{"\[Lambda]0", "->", "0"}]}], ",", RowBox[{ RowBox[{"Prepend", "[", RowBox[{ RowBox[{"Delete", "[", RowBox[{ RowBox[{"Drop", "[", RowBox[{"testzero", ",", "5"}], "]"}], ",", RowBox[{"{", RowBox[{"-", "1"}], "}"}]}], "]"}], ",", RowBox[{"\[Omega]2", "->", RowBox[{"(", RowBox[{"\[Omega]2", "/.", "testzero"}], ")"}]}]}], "]"}], "/.", RowBox[{"Rule", "->", "List"}]}], ",", RowBox[{"WorkingPrecision", "->", "30"}]}], "]"}]}], "]"}]}]}], "Input",\ CellChangeTimes->{{3.908622224176259*^9, 3.908622421996703*^9}, { 3.908961708782144*^9, 3.908961740141968*^9}, {3.908965836484462*^9, 3.908965836578917*^9}, {3.909042567863147*^9, 3.909042711337614*^9}, { 3.909042759667089*^9, 3.90904277613109*^9}, {3.909042894757884*^9, 3.909042904805442*^9}}, CellLabel-> "In[238]:=",ExpressionUUID->"f6acd6ad-220b-4828-a7d3-5558b5c91e4c"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"\[Lambda]0", "\[Rule]", "0"}], ",", RowBox[{"\[Sigma]1", "\[Rule]", "1"}], ",", RowBox[{"\[Sigma]2", "\[Rule]", "1"}], ",", RowBox[{"\[Omega]1", "\[Rule]", FractionBox["31", "10"]}], ",", RowBox[{"\[Epsilon]", "\[Rule]", FractionBox["1", "100"]}], ",", RowBox[{ "\[Omega]2", "\[Rule]", "2.0000365730137153135952404255176887426970060493906141151625`30."}], ",", RowBox[{ "q11d", "\[Rule]", "0.0000154411885960749806570359963625850074975963718398794377`30."}], ",", RowBox[{"q12", "\[Rule]", RowBox[{ "-", "0.0036572655523585039857887359364182652063520921841108989632`30."}]}\ ], ",", RowBox[{ "y111", "\[Rule]", "0.0003386123105505361182865069029509473242041492787494270806`30."}], ",", RowBox[{ "y221", "\[Rule]", "0.6825331441410422329153783475535059155865609176335310367929`30."}], ",", RowBox[{ "y12d1", "\[Rule]", "0.0006136347432479354740975097115551761817180859196653769117`30."}], ",", RowBox[{"y11d0", "\[Rule]", RowBox[{ "-", "0.1825331441926777986672902898135362192987769629226134978264`30."}]}\ ], ",", RowBox[{"y11d1", "\[Rule]", RowBox[{ "-", "0.182533144192677798667290289813536219298839569091796875`30."}]}], ",", RowBox[{"y121", "\[Rule]", RowBox[{ "-", "0.0012150159423288969292331708269371724992158204698129572583`30."}]}\ ], ",", RowBox[{ "y12d0", "\[Rule]", "0.0006136347432479354740975097115551761817187070846557617188`30."}], ",", RowBox[{"z110", "\[Rule]", RowBox[{ "-", "0.0013814593806663721508448672281588187617783672559652109653`30."}]}\ ], ",", RowBox[{"z111", "\[Rule]", RowBox[{ "-", "0.0001079112344361901100475709114334676996804773807525634766`30."}]}\ ], ",", RowBox[{"z11d0", "\[Rule]", RowBox[{ "-", "0.0023630234098875802146479119247857170198026030953386613244`30."}]}\ ], ",", RowBox[{ "z11d1", "\[Rule]", "0.0001840728825727838669466807086649851044057868421077728271`30."}], ",", RowBox[{ "z220", "\[Rule]", "0.0003806387805696335438140898155268132541095837950706481934`30."}], ",", RowBox[{"z221", "\[Rule]", RowBox[{ "-", "0.000892909365660548496983206501198537807795219123363494873`30."}]}]\ , ",", RowBox[{ "z120", "\[Rule]", "5.5690800900598972519536279668361800090279321547008477`30.*^-6"}], ",", RowBox[{ "z121", "\[Rule]", "6.81538156918646112795382580040737252602411899715662`30.*^-6"}], ",", RowBox[{ "z12d0", "\[Rule]", "7.8339661191416809781244354193852075241011334583163261`30.*^-6"}], ",", RowBox[{ "z12d1", "\[Rule]", "0.0000103265690773948087301248310865275925607420504093170166`30."}]}], "}"}]], "Output", CellChangeTimes->{{3.908622258019921*^9, 3.908622282010366*^9}, { 3.908622358176366*^9, 3.908622423275463*^9}, 3.908960404757339*^9, 3.9089619597735023`*^9, 3.90896216556334*^9, 3.908965839807811*^9, 3.909041910725379*^9, 3.909041952412874*^9, 3.909042132178347*^9, { 3.9090426426640863`*^9, 3.909042703605441*^9}, 3.909042794897882*^9, 3.909042920676709*^9, {3.915532883718834*^9, 3.9155328867105827`*^9}, 3.915771852468653*^9, 3.916380290705749*^9, 3.916387091153274*^9}, CellLabel-> "Out[239]=",ExpressionUUID->"9b8635de-045e-4f3a-b8b3-4a1dc739d03e"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"solzeros", "=", RowBox[{"FoldList", "[", RowBox[{ RowBox[{"Function", "[", RowBox[{ RowBox[{"{", RowBox[{"sol", ",", "\[Epsilon]\[Epsilon]"}], "}"}], ",", RowBox[{"Join", "[", RowBox[{ RowBox[{"Append", "[", RowBox[{ RowBox[{"Take", "[", RowBox[{"sol", ",", "4"}], "]"}], ",", RowBox[{"\[Epsilon]", "->", "\[Epsilon]\[Epsilon]"}]}], "]"}], ",", RowBox[{"FindRoot", "[", RowBox[{ RowBox[{"e11", "/.", RowBox[{"Append", "[", RowBox[{ RowBox[{"Take", "[", RowBox[{"sol", ",", "4"}], "]"}], ",", RowBox[{"\[Epsilon]", "->", "\[Epsilon]\[Epsilon]"}]}], "]"}]}], ",", RowBox[{ RowBox[{"Drop", "[", RowBox[{"sol", ",", "5"}], "]"}], "/.", RowBox[{"Rule", "->", "List"}]}], ",", RowBox[{"WorkingPrecision", "->", "20"}], ",", RowBox[{"MaxIterations", "->", "500"}]}], "]"}]}], "]"}]}], "]"}], ",", "solzero", ",", RowBox[{"Range", "[", RowBox[{ RowBox[{"1", "/", "100"}], ",", "1.6", ",", SuperscriptBox["10", RowBox[{"-", "3"}]]}], "]"}]}], "]"}]}], ";"}]], "Input", CellChangeTimes->{{3.909043333070065*^9, 3.909043451649344*^9}, { 3.9090464238882*^9, 3.909046424128012*^9}, {3.909046458976687*^9, 3.909046460128731*^9}}, CellLabel-> "In[240]:=",ExpressionUUID->"b04acde6-1c4d-4632-b34e-b05a8c3158f7"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"ListPlot", "[", RowBox[{ RowBox[{"{", RowBox[{"\[Epsilon]", ",", "\[Omega]2"}], "}"}], "/.", "solzeros"}], "]"}]], "Input", CellChangeTimes->{{3.909043941257431*^9, 3.909043955169023*^9}}, CellLabel-> "In[241]:=",ExpressionUUID->"bb7ea87c-a295-4530-bdcd-103371a64b77"], Cell[BoxData[ GraphicsBox[{{}, InterpretationBox[{ TagBox[ TagBox[ {RGBColor[0.368417, 0.506779, 0.709798], PointSize[ 0.0055000000000000005`], AbsoluteThickness[2], PointBox[CompressedData[" 1:eJxd13dcje//B/DOPtkj2UlDQqhEiFf2SPbI3luyZ7ZCoZCslJWMyKasShRF e++9xxmdc7L63fq8r+8fv/7xeD/Sfe77uq/r9XydniucZq7ma2lpWYu1tP79 u1/n8YT8fcfxof/Hfu21tGz//xwyqQW/7wlXpA6+ZNmRm38e3PBux4WTWF7p 49OVm4e+iNr1wc8Nxw7GrdXn5r3lvcylgafxvpfFRWNufqPnUjnjzVnU6YUb 9eXm3/dlCfYrPDH37mFdc272idB/sm3dOZzU2rxhCDcPz5125tLm83De6aY/ kpszG5o+EMdnpFiP+9/9eWF68YznU7i564BsI/GRi6h2+eMx+3/3643Pp9N/ LOLmBauarogb80qcVv/v/i/j9kSj7Zu5+eqVph/M+HIhbff/nucqTg+3unGE m9N/qGcV+l/D+Y7a39z/93w+4P1oPdebmzsL57Yye3YdySmTxt783/P6Yu3j 116B3Ozw3wWxNXn+hDf/e/4baB4/cFEEN08ZcmrUsuIbeNhnRGLc/9bjJky2 HArM5uaqGf+ueBMvLDWlFf9bn1sob37PRcPN7ptKf92X3ULwBQ8XMY+t123s 2xBUqsPNfU/oco9wG/mW0kBDHlu/OxBevppgwc3RN8e9Uvy5g/lj1i4czWPr 6Y83JZvHz+Tmf6vVSXgXC4Y8u7CCx9b3LtJqzMds5+Zmqbe3jGgWgP7RNbOP 89h6ByDkbHnURW5+8O9x29zDCC1DvwAeW/97SKu4lhrMzZP/XU73PtrqzdkW w2Pv4z7iHac55XJz03J3e4AVz9x/yHns/TzAzqhmnmK+lu2/1YszeIju574/ 78Jn7+sh4mVJQwdws+kij/D63oHYnNTTYCyfvb9AWJm83DSfm79yV+sy4BGi szw6O/HZ+3yEkVXPertw87pz1c6weoy/03tcvcZn7/cxipqlOD7jZu7muEcO Qn+9tNtf+ex9B+HYhV42+dw8m9s83CtFze7wwQ189v6foCQr8EJbgZbtHW71 Um8/wbi0kpl9BGw/PMHM41t3jOFm5Z+kPeW9niKk0V6zSMD2x1N4OR7I2cXN Y5s2wFOsqNcyOSdg++UpWn9Kj3/IzdzL+/dAqBFr534RsP3zDOH1HlMLuPm/ 23uGF1FO+n8FbD89w+L392d3EWrZWjb9PEdoB1QOFrL99RxTOpkXzeLmY6Hf uB30HLmtj2CrkO235/hkN/DPWW5O5N4+tyZ42sO2+yMh238vEFf41C+amw2b LvgCL5SuxyuEbD++wKrnodHaIi3b7U0v4CXmuCzbaSpi+/MlNiWtPTKJmz/V 9+be8EtotU6rXS9i+/UVUgOehbpxc7v/bhBmug2KhyK2f18hMDnw1Hdubrq7 qFfYsSb2SK2I7efX6Gi/IqutWMv22fXagC92r3Gt3dorg8Rsf7/G/rG5b+Zx M7/pgV/j3o6YYfvFbL+/gevQgT38uHnmfxsGCrMWaz6J2f5/A8iWty7j5lv/ HjfpDQabWHZtKWHnIRid9xw5ZcHN8n+XcwjGLc+pCxwk7HwEQ2Tgc+YgN4/+ t/0zg1GTv9HQX8LOSwhOuH3sGsPNTdt3SQi2ZFzepZCw8xOCKK8Gy65SLdv8 ff9eSAh6HymcNUbKztNb3NvokLKRm82bNvhbZBkteOslZefrLVKOVPA/cPOR i2O4LfMWJouaPyqVsvP2DnnnPgS31dayjTdoesHwFIlNbbTZ+XuHyb6FP9dw c89/6V/9DjcmzB9wXpudx/e4K1v35T03b/13PLa8h9JTJ7Rcm53P9/DXW9JN t5mWbdi/t6t4j7mXJ2SObsbO6wf010r87cTNbf47kEhcxD9yvRk7vx+wOzh1 bTQ3Ny1fwwfEGc952tCMneeP6PbKeXHv5lq2Tbfn/BEGx6Zvmtecne+PsHyQ kO3KzVpNP6HobS969qo5O++hWHO+oqyEm+99seNOdCiy7xw/2rEFO/+haP4i +eBEbp7OnUZuj6JBkZu9twXLg1Dgur/fQ27W/NMnIhT86t4R2S1YPoRCY7TJ rk1LLdsbXf4diDCsc99qNaYly4swmGwcfnQXN09sesFh8GsfY/6gJcuPMMSk GY/N4ea6gH83GAab9nbB7VqxPAlDe/2R5yZw8+V/d/ctDNrLeTHOrVi+hMHR 5tL6Z9z8b3NNahEOo+78DWWtWN6EI3Db2O96rbVs/6VJgn04uj5ddmFOa5Y/ 4dCfMf/daW7+t1u4LQNx3MCJEa1ZHoXjaVD54N/c3PS4ceG4s8v15KA2LJ/C 8TtIe4QjNzddrt0n7KrcOftuG5ZXn7D5/fcfudzcFEezPiHvQ/vAzm1Zfn3C mjOTq2Zx83/14RNGRe/wONuW5dknTOtx8eJXbm6Kg9RP0LV6/FfYjuXbJ3x4 F/7NlpsPNQVOBHQ3Jjc4t2N5F4HzDWXuwdxs0nSAIjC9l9YRVTuWfxHQedE9 3bK9lm1sU72IgP2GsV5b27M8jED7DrufBXHz7n/HITsC/VzeWNa0Z/kYAYln 805mOlq2Pf5tZ73P+Nx6+9JNOiwvP8O8UKYdyM2R/7bfss/4Wu3WsUqH5edn hHQcdbJfBy1bp6aA/IxC+46LHDuwPP3Mne82Fx5zc8emA/8Z6fcHmNV1YPn6 BcWhu/tY6GrZNt2e0RcEfql026HL8vYLvD6enfqam9c0/XzBxxcrd/7UZfn7 BYIXjo0jOmrZ/itPXMJCFRtUdaQjy+MvKOphNuILN/9Lxz3lX5D5sayuWSeW z5G4FVcsmc7NS5ouGImw3SZHL3ZieR2Jw7lPlmZys7gpoCJROtjlRs/OLL8j 8elpwNh13Pzvbeg85q53suuUoM4szyORoil8peLmpnZXG4m9Y4UuI7uwfI/C hmeHXrly899/x808CjPPzreL7cLyPgq3e18c06mrlu3df9t5WxQupVj5Le/K 8j8K1vKRSx5y89T/HhjzM54fru/KPIiCr/yS2Lablq3q3+uoj8K+2zW1bt2Y D18xYMFbmxRu9v33uEO+IuEkr7pnd+bFV9jfjdDazM3jmxbwKxb1l+4J6c78 +IpzN2NnSvS0bGuaePiKuS5652brMU++onqlxuIWN3v/i/dfX7E1Zpl1nR7z 5RsyZi68ObKHlm1TPI/4hp8elY5nejBvvuFIzw6+WdzcFK8Hv+HP/UzzfvrM n2/Iixtt6szN/8XfN+wZPfV4jD7z6Bt+BfHGdO+pZdsUL/xoHIpdtnpzT+ZT NISLnCo/cnPT8R0TjU0dzJPbGjCvouESet9gFTc3HQ+XaEhMshNfGTC/onGu Y2yZtqGW7X/bLxovVh9bvtiQeRaNyvI/I55yc/K/1yuNwc0jow+KjJhvMRjU eo7BAm4+0BSAMZDtHdonyIh5F4OujxUXhcZatsZNGzAGFT4nVi8wZv7FwN2m 4fITbv4e0/QDo5NTBkp6MQ9jkHLIpe8Sbt7ZFKjfEdz7ntvLXszH7yg+/ca+ pYmWbfemDf0dW96G7Fhtwrz8jk1Rzxrfc/Pnpq9X31EXc6dGtzfz8zt0Sr1G beFmx6aA/g750BOar72Zp9/xqPpQeyNTLdumuNL5AccBx84fNGW+/sAK84s7 07m5KQ7m/kBUn5B3g/owb3+gdJ5qrSc3//f16wfa/bTfXdWH+fsDj+Z9rpjY V8u2xX8HDv3eLQv378s8/gGdPUZ/+f20bJu2S5dYaOXr+C7rx3yOxfUZg299 4Oam17EoFi9MzzTrbsa8jkXPH91T93Pzf1/PYpFzr0qSacb8jkVj778+w/pr 2TZdLjcWr8Pnel/tzzyPg0PtT8XP/uy8x2GWWe3LhQOY73Hc9xnrrHcD2PmP Q3xd+hq9gcz7OFSfTp9zeCDLgzhcWjv8fsFA5n8ceJ2Fy8eZs3yIg8tI6wP3 zFkfiEPgvqw/zS1YXsTBbGd9gZMF6wdxqM040S/JguVHHJotuZxhbcn6Qhy+ v+xbfd2S5Ukcgn3HrxIMYv0hDm4Z1Vg/iOVLHCwG9jocO4j1iXjkbVQaDbZi eRMPraWL+1+3Yv0iHsPyVvsIB7P8icf+6HZOmwazvhGPat76u0mDWR7FQ7DB cfSIIax/xGN7rdGYu0NYPsXD5pjXvdbWrI/EI6Br2La91iyv4jHxRdDNQmvW T7j7mbraaupQll/x4NeWmAUPZX0lHrG3hrobDWN5Fo8R+1bYew5j/SUeu93X 7Pg9jOUbdz35ZK31w1mfScDzHzqy5OEs7xLwZcLX8WNsWL9JQMxJR95TG5Z/ Cdz+EffsMYL1nQRk9L3qf2YEy8MEVDX28/g9gvWfBEgPR2RvHMnyMQFB8tXn MkeyPpSA77d1H9iB5WUCXhVlmrwD60cJGNDibTMzW5afCVi/K3imry3rSwmQ uGQ1th7F8jQB+n6m7Y6OYv0pATC/e0o5iuVrItY+mrdm7WjWpxLRwX3MvYzR LG8TYTvBadrUMaxfJWLJqryF4WNY/iZi1Qaf74PHsr6ViG8l9+48HMvyOBHu m5rn649j/SsRpl5fj3qPY/mciMe/yk61GM/6WCIejXdSHR3P8joRk/RWRDWM Z/0sERbmkY1bJrD8TsQ9yzs+ZRNYX0vEkdy/vssmsjxPhIkyS5w+kfW3RFwb PDZpxiSW70nYt3WYJHoS63NJ+LXjs9/YySzvk6DSrbz+YTLrd0nIt3jKG2rH 8j+J60fdo5/bsb6XBJ8Vg3/2n8I8SMKFSTyPB1NY/0vCj+nHT/WyZz4koeWW z+W37FkfTMLbO9+CekxlXnCfL7uS6TOV9cMkeC4b6thlGvMjCa0aH6+6PI31 xSQE5WuF605nniRhk4GVy8XprD8m4XfejMc6M5gvyUgavXiE1wzWJ5Nhun2x hc5M5k0yNLccznjNZP0yGTztOVM7zGL+JCM232Gn9yzWN5PxxmkDv9Ns5lEy cn961F+ZzfpnMqzjY6d2m8N8Sobb+IGt/OawPpqMbS9eWxrMZV4lY+W+TR/9 57J+mozAP7Ofms5jfiVjz/3d2o/nsb6ajPiajEgLB+ZZMu6Odal67cD6awq+ mBzYPWI+8y0FlV2+rvs0n/XZFLy66xQ6aQHzjpvn7z4Yt4D12xSsjyq5NW8h 8y8FI85EmOUuZH03Bd4TO/ZYu4h5mILvN4p31S5i/TcFQ0YPttqzmPmYAoPc 1gt4S1gfTkH2gL3FbkuYlyl4I9+TqrOU9eMUSKo6DPRbyvxMgXHJ3FrTZawv p2DX09EdXi5jnqZgk1HeTdvlrD+nwrXr4Isxy5mvqZi3167WYQXr06lw6WXy pHgF8zYVP9rGpW5byfp1KrQH2q/RWsX8TYWZs//Cs6tY307FVHXu626rmcep uHNPsP/hata/U+F+vaP/sDXM51S4lRsM/raG9fFUTL/br/+CtczrVLxVDD9T sZb181Rkq+fN2r+O+Z0Kdc6Jwy3Ws77O3X9mgo7veuZ5Gob2sm0zcAPzPA3C vynbwjcwz9Oge8/XZs5G5nka8p18Hcs2Ms/ToBeQLXLexDxPQ4z/SlEbR+Z5 GoZ8G7LpjiPzPA0/9ywfNnQz8zwNjd3KnH5sZp6n4aRJYotVTszzNPRr06ft TyfmeRqyZiudPbcwz9NQsXfodJOtzPM0iJvx3D9sZZ6nYZz3TLO525jnaTB4 ZTWkZhvzPB1HJc/uuW5nnqcjuH/skR47mOfpcEvxCn+zg3mejr5Pmm2cuZN5 ng677db7q3Yyz9PROsdY4bqLeZ6O7i8zEnruZp6n4+qnJV3e72aep6NfZvBX hz3M83QIkxR5yj3M83RknNZZdm4v8zwdygrDCf33Mc/T0SfD1Dt6H/M8HUVT +tuv3888T0cvm6GbJM7M83S4B8xU+DszzzNgf/FowdgDzPMMTGgXP7ToAPM8 Axrz8Q3HDjLPM3CyVYW+0SHmeQa+RkU8iTjEPM/AiJM591YfZp5noON+aEuO MM8zgJTa+HtHmOcZcEhW8+2OMs8z8CFkqU/1UeZ5BjxjB/h6HmOeZ+DJyi3S QceZ5xn4/N00M/U48zwDozau0nV2YZ5nYNWN3iH6rszzTIxKO/jlsyvzPBPv jzsN33iCeZ6JK3qCzm1PMs8zsdl49NLXJ5nnmXjdw6rVklPM80wkXS0yFrkx zzMh7Tv/bqAb8zwTxzde85jtzjzPxJq/z/N/uzPPM/Hu9EMf/9PM80yc+eIW OvUM8zwTqSsW2GvOMM8z4d3DcMyts8zzTESGVd+c4sE8z8T6Dp/Wqz2Y55lw rX549ZYn8zwLlkZPB009xzzPwsWrmUN+nmOeZ6HIetCdu+eZ51nYUvNp76wL zPMs+D+98EbLi3mehZaHA5c99mKeZ2H2ko7bFl1knmdhmkN2VTNv5nkWfh+W xAd7M8+zcEruq7f+EvM8C/N+BCZ3usw8z8Ivm2GqqMvM8yyM3zz98N4rzPMs TLqi2d7nKvM8C3N+D4/PvMo8z4Ig2/DymWvM82xYnQyOgg/zPBvdZ4pXyn2Y 59mAd/u1/teZ59nY+boiycGXeZ4NVY+LgS38mOfZmDuqW02oH/M8G+5ep67s vME8z4bySsnjPjeZ59lYmG7TP+8m8zwbDfkXO3rfYp5nY//kXxum3GaeZ0P0 dFdvwR3meTaGvG07PeQO8zwbFrop+Vv9mefZuL7re7bpXeZ5Du5c5o0tuMs8 z4HA1lnnWgDzPAdS6wnTZt9jnufgwqxNypb3mec5MHCsF0TdZ57nIG5N1YGj D5jnOZjfZ+GKEQ+Z5zkwum/3VPOQeZ4DZEVueBHIPM/Bpoj0s1seMc9zoL/B vbvZY+Z5Dk5ml+hWPGae58BzsGpfQBDzPAeFXp8mrX7CPM+Busf8Y4ZPmec5 XNiEmRQ8ZZ7novcR0ZCbz5jnuRj0feDTZc+Z57moMLf31n/BPM9F7p9VJXkv mOe58Dxx9ObNl8zzXCw0exK54hXzPBfuczQORq+Z57lYsnn1nJLXzPNc8Gp4 7++9YZ7nwndmmsfGYOZ5LhYbKL73D2Ge52Jt5aLd8hDmeS6qx+iffvWWeZ6L /t8mtNj/jnmei91GOWq8Z57nYQCvZqroAzvveUjUPdo2+gPzPQ9CI3+c+8jO fx5ca5enzwtl3udh3MRPOXphLA/ysESUNK0kjPmfhx5iv36Pw1k+5KG1xYCd uz6xPpAH5R4PU0SwvOA+P+HbJOln1g/y8BtVyfGfWX7kQfr17/drX1hfyEPR wZYWayJZnuQhYZ8h3zyK9Yc8bMmxG/k7iuVLHt4nniuJ/Mr6RB70zmj9uvCN 5U0elo+7vX9ZNOsXeYiCyzqzGJY/eZBEPQ37GcP6Rh6mWQw6EfWd5VEepmZ2 DPb+wfpHHob3XjdvdSzLpzwkuw5cMSiO9ZE8bHR0ThfEs7zKQ/6Cee8T41k/ ycOrlJiWdxJYfuVBe2vZtx2JrK/kwTf8pXJcEsuzPBRusnXvmMz6Sx7Unb3O liezfMvDI+d3f9+msD6TD+/pnzPPprK8y0fj/BDjFWms3+RDa01AllU6y798 7J18WatZBus7+ehecvlcTgbLw3zs0H/p8TyT9Z98FJVrfp7MYvmYj5fDtyQu yWZ9KB8dOpl0tspheZmPnm6mMc1zWT/KR7n/saqCXJaf+dh+ctS+kDzWl/IR Oc9p5/l8lqf5qBvdOWdDAetP+eAftXsxppDlaz4M57bTdCtifSofp7X33VcV sbzNh1ft2ai4Ytav8vFs1eI5D0tY/ubD5Ydsmmsp61v5SL/m8GZ5GcvjfDwa 63t2RDnrX/kYNjk2oXMFy+d8aAZrjqsqWB/Lx21fY//ESpbX+Rijt8ryaRXr Z/mwXBQ6wKOa5Xc+jKQTrjrWsL7GPU+mcPuUWpbn+fC/JA7pW8f6Wz6Oa893 ai5j+V6AVmLtC5Uy1ucKINxkaBwjZ3lfgHuGL40fKVi/K0CwXrTXWSXL/wK4 OGzbtqWe9b0CFCe//jBTxTwowGT/e3ut1Kz/FSA0Z8btThrmQwE0t0OH/9aw PliAifr8MXkNzAvu804aBkf8ZP2wANrdLHzv/2J+FOCJwXD52d+sLxagqsbu 5Y4/zJMCfMraWrrgL+uPBWgxM+TkqEbmSwG2fbC40luLR32yAEevlXVqw+OR NwUI2FQu0XDzf/2yADYfR6/J4/PInwK49eEP+irgUd8sQNI0q63PhDzyqADz M8q7+4h41D8LsPyQ2TBXMY98KgD+tvyyRcKjPloAB/0rYQulPPKqAP2Cs/pN 0OZRPy3A4rslEstmPPKrAC9iI2b2aM6jvlqA3iYuLVu04JFnBSi7Z2XdwM3/ 9ddCLF1YlFDSkke+FWLYNL/spFY86rOF2OG3w+FTax55VwiHrdvGPGvDo35b CDflXd+bbXnkXyHartTfcK4dj/ou9/951f5H2vPIQ+76el1nbtPhUf8tRLP2 wZtXduCRj4W4OCb512xdHvXhQvTXO9gwviOPvCzEy67ha4d24lE/LsTVj0Hj +3XmkZ+FqLg0x7tHFx715ULMHhE+t31XHnnKXW+W8KSkG4/6cyGOnejT5zc3 /+drIdpfGDNC1p1HfboQi4cuCSvR45G3hQiceOpVVg8e9etCdLia2C1Rn0f+ FuJE2ynKrz151LcL8eM6b0SYAY88LoSPtUD9xpBH/bsQ50qWGjw14pHPhRj9 utfH+8Y86uOFGPV5zfdbvXjkdSF6DR5g72PCo35eCK9hHiO9e/PI70KMb+V9 09OUR329EG00M3e59+GR50WompT8zrUvjzwvAn95v51H+/HI8yI89F/rd9CM R54X4ZC79/D9/XnkeREWnouatGcAjzwvwtpRLb/tHMgjz4ugb77j3XZzHnle hOW8lj23WfDI8yKsX1Kq3mLJI8+LUNzYbtSWQTzyvAjqe36/nax45HkRbHtf 77NlMI88L0LJvK7RW4bwyPMi+HXvk7PVmkeeF+HlhvSV24fyyPMi6NgMXbRz GI88L8K0q/Mjdw/nkedFeHBlsv8+Gx55XoSeC7qpDozgkedF2CrJDT4ykkee c79Pv1XnAh55XoTT7fZcdbPlkedFKOU7vfYYxSPPizBFdHnCxdE88rwIoYcF dtfG8MjzIowsCwu7OZZHnhchLKTw4b1xPPK8CJOO7dV+Mp5HnnPPn3Yh4/UE HnlehPAlY3qETuSR50UwjbicGjWJR54XwTPijiBhMo88L8ZNkz23M+145Hkx xoYZvi6ewiPPi3Fn65uRdfY88rwYI4wnDPs1lUeeF6MoKe++eDqPPC/GDxfv M+1m8MjzYlybtLdYbyaPPC/G0pFXn/adxSPPi/HwbDO59WweeV4M762Zd8fP 4ZHnxfjWRy9u9lweeV6ME82KHFfO45HnxXjqOPLwNgceeV6M9PcjJUfn88jz YozbquKfX8Ajz4vxq9nu7bcW8shz7vpdEhyeL+KR58VcPnR+HrGYR54Xo1O3 JUdTlvDI82LsdXz2pWwpjzwvxnelyeFfy3jkeTGWH4173GoFjzzn7lfxfqbB Sh55XowbFvxNg1fxyPNi9BwS9HPyah55zq23KPXv0jU88rwYVUHue3au5ZHn xZDPzl3rvo5HnhejTr8o5uZ6HnlejHX2gQFvNvDI82KY95ysid3II89LcLgu 9kPpJh55XgJ5t+m/Gh155HkJLnXIftTJiUeel+D33FMp5lt45HkJrDau3Wm3 lUeel6C8/JTb6m088rwEC/cIdA9v55HnJdjxtaTjtR088rwEsdfHe77aySPP SxDxyepQwi4eeV4Cp46RRTW7eeR5CcKOtgxrvpdHnpfg2J+uOqb7eOR5Cdaf EeWM388jz0ugOz5bb7UzjzwvQZ9Jr1KOHeCR5yWY8uW26PZB5nkJrH+9eRh+ iHnO3Y+l9teCw8zzEtR9DVgsOMo8L0Gt8b31RseY59x6fOhePe4487wEzh27 la11YZ6XIDni1QI3V+Z5CZ6v5Y17dIJ5XgJZUOuAuJPM8xIULaw/rDzFPC/B CusvCZ3cmecl+KHv7TPiNPO8BL0b9+SsOMM8L0GbmKOXT55lnpci42zkt8ce zPNSeC1euDPZk3leCt3FMy//Psc8L0WzsFBLowvM81L8jA6ZMMWLeV6KBbGz k3ZcZJ6Xwrvv7fTr3szzUuhND5kXeYl5Xgqnt4+nyi4zz0th8MvrQ9erzPNS qB8eCRh/jXleioK9p7S3+TDPS6GjH1Z0/TrzvBTN148Y+s2XeV4Kv/7tJWo/ 5nkppAvmTTW6yTwvhbxQr/XMW8zzUrgkHZx0+DbzvBRbx5z+8/gO87wUjfMW 9c3xZ56XouMkYWLLAOZ5KWYtvqIccY95zn1e5UDPzfeZ56WY7ZDn7/eAeV4K 067vreIfMs9LsSQ4C4JHzPNSvIqaHWH1mHnO3W/NsE/rgpjnpcjOv2Pj84R5 Xoq5a+8NjHvKPC/F8jkL/YTPmedlGHg+8eTQF8zzMgzWMane/JJ5XoYBBRtj 7rxinnP/v/2bXpmvmedlePaj5++2wczzMtye8nHKpBDmeRm2Jt/tdOQt87wM ncJrlga/Y55z13N+ZCB/zzwvQ8OBhmV9PzLPy7BxZnmX1aHM8zKMu3hhul8Y 87wMOopW/Ixw5nkZJptuG9AhgnnO/X9xUtr0z8zzMixbb/f39BfmeRm0xtT6 fY1knpfhrlfKe/FX5nkZlFs6OYz9xjwvw5df0ZuPRjPPyzBsg5QfFsM8L8MH fnFbrR/M8zIYdN/ri1jmeRnuGGQFHIpjnpeh8Yxx/9B45nkZ9lZuMuclMs/L oEj7+nR0EvOcWx/R7KDjyczzMnyzNOwTmcI8L8MWq2kGzdKY52X4Wlt7yT6d eV4G7/nd3c9lMM/LcXZ/7a/kTOZ5OTZsOVjRJZt5Xg75qoK5y3KY5+Voe9ly 1N1c5nk5iha43a/KY56X41ObRg/LAuZ5ORwGPFDuK2Sel+PhyDup4UXM83KY p4uGNi9hnpcj62Fpp9mlzPNy9N21Yvf1MuZ5OWyaecwuLWeelyNliusT80rm eTkOWS13d65inpfj5A/r4shq5nk59Kx6fWhfyzwvx8Iro3WX1THPyzF7ZEB1 oIx5Xo5++xzH/pQzz8vR89XjLhOVzPNy3Nh8fIt3PfO8HDMtpeOLVczzcvQP mHVtkIZ5zt3P4cNbjjcwz8vR69S9z0k/meflmOxbfNX4N/O8HFFPZtTt+sM8 L0eHz+IvUX+Z59z6KvS6ddXik+fl2Lv2hdyRxyfPyzFoef6kMD6fPK+A2aDQ nh2EfPK8Ag0TNu5bL+KT5xUY0unPrA9iPnleAd9Bno/bS/nkeQVajYLbem0+ eV6BW/VGpR+b8cnzCoTpLfqs24JPnlfA4nqj0eaWfPK8AqZr+oi/tOKT5xVY eky9Tq8NnzyvQNf2R+13t+WT5xWwn1j8PK4dnzyvwLUNNj59dPjkeQW2p9wS u3Tgk+cV0PtjqcjV5ZPnFUhc1XzF8E588rwCkffGzrrUmU+eV2DU3l9fFF34 5HkFAq/ZvZ/ejU+eV+BBxfTBj7vzyfMKGM41sWjRg0+eV2BJYcWTDfp88pxb n0evn33tySfPK7C28P4QU0M+eV4B85hsnDLik+cVyAh3ii435pPnFXCzds6Y bMInzysw6EUPx8DefPKcu7+EXcda9eGT5xUIGe/bfWtfPnlegd7pz4Yn9eOT 55XIWRefPaQ/nzyvRE2FrtBnAJ88r0TghhuPtcz55HklPmi7Z6+24JPnlRik pfSMtuST55W45KOJMrfik+eV4I195XJ5MJ88r8SAbZMjG4fwyfNKXAxOOLN2 KJ88r8TWT5vSY4fxyfNKFEwb/MDahk+eV+Knlb3WrRF88rwSSStjM5uDT55X 4k5Ohs0uWz55zv0+/Ixh/ig+eV6J1mPFnlPG8MnzSix6tOLom7F88rwS5svD fhqN55PnlTiZbttwbgKfPK+ELKDxQONEPnleiUc7u51ynMwnz7n1EbzqkmXH J88r8bdPpYWdPZ8859YrKyM+ZCqfPK+Eqf4ddZ/pfPKc+/uOa+5cm8Enzysh +I20FrP45HklJunNuHBwNp88r8SwsjfJdXP45Hkl6jK9/VbO45PnlRB7NZOl OPDJ8yq8/GT5bfICPnlehcLBFn0/LuST51VAgrHOoMV88rwKsy/0d7m/hE+e V8HXc9PBHsv45HkV7jQ0Nl5czifPq9Cqo3azliv55HkV3ky+53N8FZ88r0JM 67+vf6/mk+dVSP3ZZ9HOtXzyvApFwdNO1azjk+dVcNM5g3Ub+OQ5d/0qwaGC jXzyvArbhidPWOzIJ8+r4NHR4GraZj55XoX+Qc13zd7CJ8+r0MXueWbcVj55 XoVRU4dF22/nk+dV+GgVPjZ6B588r4LgyqaJk3bxyfMqZJouTInczSfPq+D1 Iqhm/F4+eV6F1vqnz33ZxyfPq5Dm2O7jeGc+eV4F25BVuyMP8MnzKuyw8Q+Z eIhPnlfh0njVyW+H+eR5FdLH7SuYcpRPnlfhbPisyNhjfPK8ClOW+Q+Z5cIn z6vQmH3OMtWVT55XQUvX5u3Ck3zyvBqD/375kXeKT55Xw+TenM1r3PnkeTV0 RzW/WnWaT55Xo1O75jO3n+WT59WwOLzH+6cHnzyvxpYWu9cePccnz6vxd1af z80u8Mnzaoxu8yroghefPK+GRnekSXdvPnlejQkLSvoGXOKT59UoKEt4b36F T55Xo3ONSfa7q3zyvBq/n2q7TfThk+fc51/xiUi6zifPqzGpl+jMcj8+eV6N deq1hTU3+OR5NRKiyiOdb/HJ82rEbg8a1vwOnzyvRmNN9vCr/nzyvBp7pl6N Ng3gk+fVKPykXRF8j0+eV+OC74xLkx/wyfNq3LK7lJj5kE+eV6PlXC0/x0d8 8rwaP9Y8a2h8zCfPq6Eem1h4/gmfPOfuL/nk4l7P+OR5NVTdGtaEPOeT59zz 2EzWmvaSeV6N5ztumRa9Yp5XQ2rcu3DvG+Z5DRyieWZtQpjnNdgsnCsJeMs8 r0Hb03bbRr5nntegywjtzSkfmOc18G776ufmUOZ5DXIM9naShjPPa/Dm/t7I m5+Y5zXY+jdHYvOZeV6Dn5fj0lO+MM9rIGm7a8S2KOZ5DfrqqS1afWOe10Bx aX/Ig2jmeQ2a7eqbNOE787wG0+L6Hy7+wTyvgSrn0YdjcczzGtz9GedhkMA8 r+E8ClWEJTLPa/BkiX/F8mTmeQ1u/grYwU9lntdAe5rs3O005nkNTs95MHpc BvO8Bup+v11LM5nnNVis02apWzbzvAaDNrWONstlntdg9yvD6Pg85nkNQr13 Ld1VwDyvgWOC+cmuRcxzbj2nHxoXVsw859a7y6lLa0uZ5zUYsmjvwVblzPMa LFix7+fLCuZ5LWyuv2q+pIp5Xgt7P4dn4hrmeS2udnevCaplnteiunZP6HwZ 87wWlW3sewsVzPNaDPa16BWkZJ7X4kza7JAFKuZ5LSoMc4vEGuZ5Lfwlf/yf NzDPa3Gxf8afZb+Y57UwW3urqtUf5nktbt4+su39X+Z5LXg/b3ts0hKQ57VY ecdqbDe+gDyvxS+tlZ4xAgF5XotR5x12HBAJyPNatGscXddfIiDPaxHfbpow Xyogz2vh8v7+kwvNBOR5Lfg6h+vHtxCQ57UQTm9M+NlSQJ7XYk7c7ElBrQXk ObdenR47rGorIM+5z0u05nVpLyDPa3Hku8GYOB0BeV6LU7+v6J3QFZDntbDY F3NhZCcBeV6Lxa5lt1SdBeR5LUpdu00J6iogz2vxQ3LJY113AXleixlvXR0N egjI8zro7utSkqUvoPNeh0ljjjRcMhCQ73WIsKkImGUkoPNfB7Pnx2WtewnI +zrodTmcEmMioDyow4QWLea5mQrI/zqct3PYPrGvgPKhDuPCvPpKzATUB+pg clB26Et/AeVFHfxDfLe4DhRQP6iDKiXmz3gLAeVHHUYsDDSRDhJQX6jDY7Vj zVcrAeVJHV4dHz3z9BAB9Yc6dBMsnDVtqIDypQ6GPmWydsMF1Cfq8OZmt/6p NgLKmzqcPttb6jNSQP2iDqPEIw8vtxVQ/tTBLfmst8loAfWNOsyRT7GrGSOg PKpD5f4Hvi/HCah/1KHL23TPAxMElE91mGfQ0mD8JAH1kTqU2O+e2dpOQHlV By2hnUH6FAH1E+75B709d3uqgPKrDgt+/byxebqA+kodDHxGTB82U0B5VodE 11d+4tkC6i91uDnnikfiHAHlWx2ufu+sf3OegPpMHb7nbJzhNF9AeVeHjXc+ GY5cKKB+UwfFqjmXWi4WUP7VweH8nMDsJQLqO3Xo9U2z4vEyAeVhHe4nb397 aIWA+k8dOj349XLGKgHlI/d+1n2eabRGQH2oDo1LxOfVawWUl3WIFiu3R68X UD+qwx5xhMZvo4Dysw7tzAP1dzoKqC/VYbdrQeVkJwHlaR1cLa8v6LlVQP2J 2y/n2zlqtgkoX+tQYbrXMG6HgPpUHeyDJAfv7RJQ3tbhs7De+cgeAfWrOmwb tkd/4T4B5W8dVp+NWmflLKC+VYfwTd3ntjkooDzm3r/T47LKQwLqX9x6LHuu H3VEQPnM7ZfBq/7eOSagPsY9v27DkaMuAsrrOlyZ9+DhshMC6md16O78ZD9O CSi/6xAyZKxcz11Afa0ODZt8WzeeFlCec59vpknMPSug/lYHu3duCPMUUL7L 8PSUx8zb5wXU52R4PsS2pauXgPJehnaXU5zWewuo38lQEnh6n/1lAeW/DGH3 fMwsrgqo78mQX2N7qqOPgDyQYVb7F2f+XBdQ/5OhZ+bA4UV+AvJBhr028nPR NwXUB2VIX2J5/vltAXkhw/BrA2x8/AXUD2UY5mzg6RIgID9kGPVhwlmn+wLq i9zzTMscvOChgDyRoe2Mzm7jHgmoP8pg2WHkSfMgAfkiw4qeruZ6TwXUJ2Vw M+vv2vy5gLyRYZXRdteGFwLqlzLcNDxvUfZKQP7IoOsc5Zb6RkB9k3v+p7M8 IkME5JEMPs5bbd+8E1D/lOFw5FLf+x8E5JMMl54uun8tVEB9lPv7M3eXnw1n XslwvHB/5JEIAfVTGWSOXTN3fmF+ydCxe4TPhigB9VUZTnZ42WLZN+aZDHee mPWdGyOg/irDN2dHzZQfzDcZnEe82DE2TkB9VoZzlaNu2CQw72RY8HLufqsk AfVbGRL+WogHpDD/ZIha3nGUaZqA+q4M0sdj+xllMA9lOF3+K7JHloD6rww3 ph/U6ZbDfOT219yW7TrnCagPy7DsdkWobgHzUobsTg49OxQJqB/LkPP9kqVO CfNThqo2Ver2ZQLqyzKUrr20WaeCeSqDlWfWpQ5VAurPMtQe/Lu9Yw3zVQZt Lsy71AmoT8tw9FrxuO5y5q0Mp6LNbXoqBdSvZQj6sq7EWMX8laH1tR9j+2oE 1Ldl2OcRMM/8J/NYhluG1j2sfwuof8swrs3na/jLfJZh0YQL3ydoCamPywBl 6YvpfCF5LUPafunMBUIh9XMZvjoP818lFpLfMlyL/fTYSSqkvi5DkWvF5v3N hOS5HHtrlcUnWgjJcznOe5rqXGwlJM/l+Nk3tuFWGyF5LsfQD/0uPW0nJM/l eHvwVFWojpA8l0OQ1+9nnK6QPJcj2mNJaH4nIXnO/f3uNVB0EZLncgjfnt4t 6i4kz+W4/rbz+k49hOS5HEs7zNXp11NInsvx8obbXltDIXkux4RtWlfmGAvJ czmXH1rbN5oIyXM58tclS46aCslzObKLI+dd6Sskz+WYOd9g5VMzIXkuxwnJ gD7fBgjJczl+b7V+VGguJM/l8Jp3quqPpZA8lyP4xaayToOF5Lkcbp/Mbg6y FpLncoh+d+w4Y5iQPJejj87uyZtthOS5HP20Lg0/PVJInnPrL/9U8cBWSJ7L sWbRZIdvo4XkuRzzq3cdrxgrJM/lqLng7dR8gpA8l+PmAVVns0lC8lyONh2L jk2zE5Lncui3ePRom72QPJej90S/S97ThOS5HB1V0tFvZwjJczl8Dls/ypsl JM/lmHzeOV08V0iey/G5g1GkmYOQPOfW2+rgrjkLhOS5HPGLM0oPLBKS53KM GXqya8ASIXkux7kXqW3jlwnJczlyf3eK/rVCSJ7LMfqwzwST1ULyXI7y6mcn Zq0VkudyYPAj98PrheS5HC3ds2Y93igkz+UIWHo+L8tRSJ7LIV2vb9Fii5A8 l6PhetpEm21C8lwO6yEtjR13CMlz7n0HtYn03SUkz+XoEmE1IH6PkDyXY8CO 2MXC/ULyXI5XPPNZ1geE5Lkcg2WPWjseEpLncqi1r164dURInsthMHdSbtox IXkuR5VBG0VrVyF5LsdDrTGxE04KyXM5GsMH7zjsJiTP5ag7bFsQfFpInsvR 4uLLzsqzQvJcjlPXK7sMOCckzxVY7WxdsuGCkDxX4Og8+f6Ai0LyXIGIy05Z RZeE5LmC+8otlhpeFZLnCnSd3LpxuY+QPFegW2Fu2E1fIXmuwJxBcdMLbgjJ cwX2/RkSaHhbSJ4roBjtlLTaX0ieK1Bv/+PrvQAhea7AtcBHp6vuC8lzBbQt 1nQ3DxSS5wo4q6Y773osJM8V2Dgv8v67J0LyXAFftcFdwXMhea7AuI/vt9q9 FJLnCrTPkrXwei0kz7n7Deu8JztYSJ4rIO3t+dzknZA8V0DW6snHbR+E5LkC z0KSfD6ECslzBfJfzrdr/klIniugF3812uGzkDxXwNBQ2T0gUkieK5AtDR+t +iokzxU4aLx82PgYIXmuwJkV/UWXfgjJcwV+17reLosTkucKWI+N6jA8UUie KzCs2/RFZ5OF5LkC3vuddxekCslz7nqBD9cOyRCS5wp0sbUxO5MlJM8VELU6 E1WYIyTPFSgf9Gfo8Hwhea7A+C5VRy4UCslzBTw2BN+oKhaS5wpYdP7sPb5M SJ4rcHuZ06qbFULyXIH14Z2a/akSkucKGEsMTs6vFZLn3PsaWZXzSiYkz7n9 9zGtVQelkDxX4F3vSZ12qITkuQKFS/x+JWqE5LkCKWdHBA/6JSTPFdjTz3WG 9x8hec69P3lmhKZRSJ4r8KroZvtFfBF5roC73fCRoUIRec6dhzfNxxlLROS5 Ao2C3b3dtUXkuQIv7PPLZM1F5LkCd34/dp3fSkSeK9Dj41h+eBsRea5AmJtk Ud/2IvKcWw+fRV4XO4jIcwVG7rn/UKuTiDxXwK981q1NXUTkuQJGgvA96d1E 5LkCF/QWDJjQQ0SeK5CedfTLy54i8lyJRuPbI42NROS5EkamBpcv9hKR50ps WLQ2UWwqIs+VkDtn1O3pKyLPlYg8W1hXaSYiz5VIyapIXDpQRJ4rkaFxuJpk ISLPlbB/6z12spWIPFdi3piWiaFDROS5EiEq4/HWw0TkuRIfjkz2fWIjIs+V 0EstyjSFiDxXonbA0sbbo0TkuRLuzY20e4wVkedK7B7g23B1vIg8V8IuwDq+ 4yQRea6Ed8QSz4t2IvJciTA95yE6U0XkuRL1539/uTBdRJ4r8XPMFOjMEpHn SnS8mnrj4hwRea7k8qp5VUcHEXmuxDbz2T2vLRCR50qcu95jVI/FIvJcidHC TLs7S0XkuRLjTJSj+qwQkedK8FumGz5dJSLPlViqpZFZrxWR50pc8vwYGLZe RJ4r0eqc72y7TSLyXAnjzsKK5M0i8lyJZseXOi7fKiLPlTi9RT+3eruIPFei OPQV9u8Skefc76+e99DeKyLPldBaYxR7eb+IPFfi/I+sv70PishzJQaE9+sR clhEnithstVl4JRjIvJcCZW9g2Wui4g8V0LQsmPv7SdF5LkSG+9Ytpa6i8hz Jd7Z6ZdfPyMiz7l5/7RXgzxF5LkS+jWWu2POi8hzJaZet+23+qKIPFeia0RZ 8t9LIvJciYPZfjuuXBWR59x+vJMutbouIs+VULZrdiHeT0SeK2G60r+90y0R ea6Eb0t995b+IvJciddfaxoCA0TkuRKDz7gus38gIs+VqHRf9LEmUESeK7Fy SInuuSARea6Ex8grawc9E5HnSmw9U/k07YWIPFcifMos1YHXIvJciSv5462M QkTkuRKtq22cot+JyHMlcu0C72z/KCLPlWiu2yKlW7iIPK/HXt9EQWSEiDyv x5lt+/pvixSR5/WInr9nrt43EXlej41zxjlHx4jI83rI/ebf2BsrIs/r8TXQ 7FPvBBF5Xo8Ek2HFaUki8rweaqVa7JYqIs/r8W5AXm+bDBF5Xo/vfTbZ1WaJ yHPufpw6ON3OFZHn9bj+fo6XQ4GIPK/HumYBb1sVi8jzevgfPlb8uVREntej 6NDqdgcrROR5PaQ+kaOHVIvI83rE+RjtltWKyPN6TD+gDgqUi8jzemzf+LZ6 Xb2IPK/HtsjKgb00IvK8HtMMhfuKforIc+7vRx/+evuPiDyvh2OnrB6rtMTk Obc+Xy8cMBaIyfN6GD4wLCwVicnzeoyykc54KBWT5/VYaf4h0qm5mDyvx/11 4ROsWonJ83ocrTkX/6uNmDyvR6vf91d/ai8mz+txQnVCeFpXTJ7X4+bm+4/n dBaT5/Wo7XF6lX43MXlej5F1j3pV6YnJ83poak7Xv+kpJs/rsXt2QLyrkZg8 r8fqI/vfzjERk+f1aPP3xHPjPmLyvB6he+1CVP3E5Dm3/t/GxkUNEJPn9ehc Ia+/ZiEmz+vR+mdS3y1WYvK8HrYjN2wbZy0mz+vhqmfxretwMXlej+PGgZaK EWLynNuPjfOCom3F5Hk9cva/HOE/Rkye16PuxNjcQ+PF5Dm3nhYuXgsniclz bv/cVy+2niImz+sRb93NRneamDyvx8NJ2wfUzxCT5/XYs+KAdfJsMXnOnSfj t/NezROT5/UwmP7ozOUFYvK8HpNDkjL2LxaT5/VYNOcZli0Tk+fc8/SNfDdu pZg8r0fWEq+Z/daIyfN6XO59jaezXkye18M0bdG33xvF5Hk91icseFSyWUye qxDiqfswfquYPFfB7EbbiPc7xOS5Cj43vmse7BaT5yrEjYmZdGWfmDxXwXuK x+uTB8TkuQo5Zy6P3ntYTJ6rEF++vnLDMTF5rkL5dJdni13F5LkK4rBNl2ec EpPnKhwce+v6+NNi8lwFc1lAuI2HmDxXwau0UTLovJg8VyFiRr/N/S6KyXMV Tq8Iqje+LCbPVdg6u7mf/jUxec4977rwDd18xeS5CttL5s7vfFNMnquwo7Pd xo53xOS5Cqtm9LypGyAmz1V4nbfwl+4DMXmuQmDXA/s6PRKT5ypMnyfp0fWJ mDznrl/mXK73XEyeq3DXYFmG4Ssxec493zxLuWmwmDxXoXnSHnPzd2LyXIXv Bc8uD/0oJs9VuB+5sveYcDF5roJDaMt8+89i8lyFlgLLT/OjxOS5Civfz4ld Ey0mz1WY2F4j2vlDTJ6rUNPdZ+3xeDF5rsKTik9KryQxea6C1j7Zo7upYvJc hUkf7l4IzhCT5ypkXV1993u2mDxX4UdBUElBnpg8V6FgnmROQ6GYPFdh9f1q WZtSMXmugu72ovemFWLyXIXG4Y7BY6rF5LkKC3dqFy+pE5PnKjjuHTZqv0JM nquw1O3Ij8sqMXmuQo/4pWdeN4jJcxUGL5p7MPW3mDxXwV+v5KamUUyeqxBc 46HpIpCQ5yqUHk86OlIsIc+5/b9v0KiV2hLyXIWukwYOOtVCQp6rMHnixEVP WkvIcxVOPPodnNZOQp6rcMTtuz1fV0Keq8CPGdbJrLOEPFfhs3VE5/ndJOS5 CuO3lM907SEhz7n9Xm4a8cJAQp5zny8Xbi4ylpDnKuwNbJjewVRCnnP30/qE 44R+EvJcBWVh34h9AyTkuRp7Pq+ZE2QhIc/VsOnxqmexlYQ8VyOj72XTbkMl 5LkaFQo3x9k2EvJcjYQpLWrOQEKeq+GeeuVh1GgJea7GjsYnd4XjJeS5Gh0b fuSOmiQhz9X4Fbpl3uEpEvJcjTVd2rcKnSYhz9WwPGsh5M2SkOdqnF9vN2zM XAl5rkb2u/QnrvMl5LkaCxfMXxe9SEKeq9E+edzytssk5LkaHoe6+DislJDn agRtmNn55hoJea7G1lXr0ivWS8hzNT6qUrKsHCXkuRrD1nQyOrpFQp6rIX16 Nyh2u4Q8V+PWmV+H9HZLyHM1fNd7Xty8T0Keq+GyLqfu4wEJea7GlRVLzrc7 IiHP1XhQeHLfmuMS8lyNUtOU+29PSMhzNe4bfdBv5y4hz9Ww2/4md/1ZCXmu xs+VNqXh5yTkOfd58tAh3S9KyHM1rCPfxe+5LCHP1Xhodfdl8jUJec7dz3BF oaWfhDxX4+2hzosv3JKQ52pcnX62p9JfQp6r4Xj7i/nc+xLyXA15uyFngwMl 5LkaE3JmDdF7IiHP1fhW6ml2/LmEPFdD/Xz51spXEvJcjTHrhgpmh0jIczX4 39wK37+XkOdqjB8R1c40TEKeq/Hp08pzFyMk5LkaL3/9WCqIkpDnanzR239w W7SEPFdDqZVeXfBDQp6rcaj1/MezEyTkObefp20MjUyWkOdqbFlyyMgmXUKe q1HgKMx8miUhz9UIHLe+qHeehDzn9seobqNuFkrIczXSprrLupRKyHM1AmoM VRcrJOS5Gt7ms6a1q5GQ52oseOPyx0MmIc/V2PzMhNe6XkKeq9E6+84CD42E PFdjxNF1zdr+lpDnanzYnd3Gq1FCnmvQU2/z5k4CKXmuQdTS44a+Yil5rkFt 0KmBxs2k5LkGIdqlFx+1lJLnGoysFc4e0lZKnmtwZZ3dxnAdKXmuwR++QdbU TlLyXIPo2Nq7WV2l5LkGd1d2jdnYQ0qea3A+udmU3wZS8lyDFh8MTc72kpLn GpgNjl7cs4+UPOfuN2V13UszKXmuwYXX83LtzKXkuQZTNgv7Fg6Skuca5LWM TdxvLSXPNbhu3CWjg42UPNdgSeiEkU8hJc81eL8yWGvqGCl5rsGk1nE9q8ZL yXMNPg6vuuk+WUqea2Cb4Xik31Qpea6B16wXoT9mSMlzDdad0Fu2bY6UPNfA I7rZso7zpeS5BvaVKaHvF0nJcw18euUdXb1MSp5rsN/82N1Wq6TkObf+lt36 Ba+VkucaZH4W66zeKCXPNRhff31JOycpea7Bl5E2LcK2SclzDaZ7Du++dZeU PNegYkL9OYN9UvJcA7Fl+IbkA1LyXIOqMz8DTh2RkucaGAhUk+AiJc81SHnQ fIbqpJQ818Cu2fn3j09LyXPu+drneqzzlJLnGgQYTowy9JKS5xpcEhqszbsk Jc81mFoRusn3mpQ812DT9j3pi/2k5LkGR+9de6R3W0qea3D5l3N53l0pea7B qwmbz9x5ICXPNXCMC72y/rGUPNdg46jPrQY+k5LnGkgfR1epX0rJcw1yPQ0H hQVLyXMNVkd3LXZ/LyXPNTjlz9dyCJOS59zzfTd2Mf4sJc812DI3YYcySkqe a9A6ZHZsRIyUPNdgZorGyztOSp5roFuj/WV9kpQ81+DGvYQVI9Ok5Dm3Hm2v b9TJkpLnGky79CyvMldKnmuwqOWi8IhCKXmuwZ77+W38SqXkeQOChO4x+yql 5HkD0rr41c+rlZLnDVg2edXpwQoped4Andn653TVUvK8ARULuJT4KSXPG5BR 6Fmc8VdKnjfgYfJ3q498bfK8AXF72tXfEWuT5w2w3X3T8HQzbfK8AXOy3oXt aKVNnjcgUOdu7JJ22uR5A1rVXLefrKtNnjdg+qWi4UO6aJPnDRh3I/iqsZ42 ec59fsPCDR0MtMnzBujWaz8U99ImzxtQM5a3uMFUmzxvwOLfBw9Xm2mT5w2Y 5fGxQ6G5NnneAOeEv90yrLTJ8waM+bXbO2GoNnnOrZ/f6qMxI7TJ8wYMfs3L jxylTZ43oM8Vl2cR47TJ8was+WuqDp+kTZ434JSWSVC4vTZ53oChXV5kfJqh TZ43YJCJdN+XOdrkeQMcV80/822+NnneAMMt2Tpxi7XJ8wYIJn9tk7pcmzxv wIRZM47krtYmzxuQM/X+mvL12uR5A84uF4YpHbXJ8wbot7voydumTZ434Nyk M8mtd2mT5w2wnqXn2WOfNnneAF72ntCBB7Vt/w9HjB69 "]]}, Annotation[#, "Charting`Private`Tag#1"]& ], {"WolframDynamicHighlight", <| "Label" -> {"XYLabel"}, "Ball" -> {"IndicatedBall"}|>}], StyleBox[ DynamicBox[(Charting`HighlightActionBox["DynamicHighlight", {}, Slot["HighlightElements"], Slot["LayoutOptions"], Slot["Meta"], Charting`HighlightActionFunction["DynamicHighlight", {{ Annotation[{ Directive[ PointSize[0.0055000000000000005`], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[2]], Point[CompressedData[" 1:eJxd13dcje//B/DOPtkj2UlDQqhEiFf2SPbI3luyZ7ZCoZCslJWMyKasShRF e++9xxmdc7L63fq8r+8fv/7xeD/Sfe77uq/r9XydniucZq7ma2lpWYu1tP79 u1/n8YT8fcfxof/Hfu21tGz//xwyqQW/7wlXpA6+ZNmRm38e3PBux4WTWF7p 49OVm4e+iNr1wc8Nxw7GrdXn5r3lvcylgafxvpfFRWNufqPnUjnjzVnU6YUb 9eXm3/dlCfYrPDH37mFdc272idB/sm3dOZzU2rxhCDcPz5125tLm83De6aY/ kpszG5o+EMdnpFiP+9/9eWF68YznU7i564BsI/GRi6h2+eMx+3/3643Pp9N/ LOLmBauarogb80qcVv/v/i/j9kSj7Zu5+eqVph/M+HIhbff/nucqTg+3unGE m9N/qGcV+l/D+Y7a39z/93w+4P1oPdebmzsL57Yye3YdySmTxt783/P6Yu3j 116B3Ozw3wWxNXn+hDf/e/4baB4/cFEEN08ZcmrUsuIbeNhnRGLc/9bjJky2 HArM5uaqGf+ueBMvLDWlFf9bn1sob37PRcPN7ptKf92X3ULwBQ8XMY+t123s 2xBUqsPNfU/oco9wG/mW0kBDHlu/OxBevppgwc3RN8e9Uvy5g/lj1i4czWPr 6Y83JZvHz+Tmf6vVSXgXC4Y8u7CCx9b3LtJqzMds5+Zmqbe3jGgWgP7RNbOP 89h6ByDkbHnURW5+8O9x29zDCC1DvwAeW/97SKu4lhrMzZP/XU73PtrqzdkW w2Pv4z7iHac55XJz03J3e4AVz9x/yHns/TzAzqhmnmK+lu2/1YszeIju574/ 78Jn7+sh4mVJQwdws+kij/D63oHYnNTTYCyfvb9AWJm83DSfm79yV+sy4BGi szw6O/HZ+3yEkVXPertw87pz1c6weoy/03tcvcZn7/cxipqlOD7jZu7muEcO Qn+9tNtf+ex9B+HYhV42+dw8m9s83CtFze7wwQ189v6foCQr8EJbgZbtHW71 Um8/wbi0kpl9BGw/PMHM41t3jOFm5Z+kPeW9niKk0V6zSMD2x1N4OR7I2cXN Y5s2wFOsqNcyOSdg++UpWn9Kj3/IzdzL+/dAqBFr534RsP3zDOH1HlMLuPm/ 23uGF1FO+n8FbD89w+L392d3EWrZWjb9PEdoB1QOFrL99RxTOpkXzeLmY6Hf uB30HLmtj2CrkO235/hkN/DPWW5O5N4+tyZ42sO2+yMh238vEFf41C+amw2b LvgCL5SuxyuEbD++wKrnodHaIi3b7U0v4CXmuCzbaSpi+/MlNiWtPTKJmz/V 9+be8EtotU6rXS9i+/UVUgOehbpxc7v/bhBmug2KhyK2f18hMDnw1Hdubrq7 qFfYsSb2SK2I7efX6Gi/IqutWMv22fXagC92r3Gt3dorg8Rsf7/G/rG5b+Zx M7/pgV/j3o6YYfvFbL+/gevQgT38uHnmfxsGCrMWaz6J2f5/A8iWty7j5lv/ HjfpDQabWHZtKWHnIRid9xw5ZcHN8n+XcwjGLc+pCxwk7HwEQ2Tgc+YgN4/+ t/0zg1GTv9HQX8LOSwhOuH3sGsPNTdt3SQi2ZFzepZCw8xOCKK8Gy65SLdv8 ff9eSAh6HymcNUbKztNb3NvokLKRm82bNvhbZBkteOslZefrLVKOVPA/cPOR i2O4LfMWJouaPyqVsvP2DnnnPgS31dayjTdoesHwFIlNbbTZ+XuHyb6FP9dw c89/6V/9DjcmzB9wXpudx/e4K1v35T03b/13PLa8h9JTJ7Rcm53P9/DXW9JN t5mWbdi/t6t4j7mXJ2SObsbO6wf010r87cTNbf47kEhcxD9yvRk7vx+wOzh1 bTQ3Ny1fwwfEGc952tCMneeP6PbKeXHv5lq2Tbfn/BEGx6Zvmtecne+PsHyQ kO3KzVpNP6HobS969qo5O++hWHO+oqyEm+99seNOdCiy7xw/2rEFO/+haP4i +eBEbp7OnUZuj6JBkZu9twXLg1Dgur/fQ27W/NMnIhT86t4R2S1YPoRCY7TJ rk1LLdsbXf4diDCsc99qNaYly4swmGwcfnQXN09sesFh8GsfY/6gJcuPMMSk GY/N4ea6gH83GAab9nbB7VqxPAlDe/2R5yZw8+V/d/ctDNrLeTHOrVi+hMHR 5tL6Z9z8b3NNahEOo+78DWWtWN6EI3Db2O96rbVs/6VJgn04uj5ddmFOa5Y/ 4dCfMf/daW7+t1u4LQNx3MCJEa1ZHoXjaVD54N/c3PS4ceG4s8v15KA2LJ/C 8TtIe4QjNzddrt0n7KrcOftuG5ZXn7D5/fcfudzcFEezPiHvQ/vAzm1Zfn3C mjOTq2Zx83/14RNGRe/wONuW5dknTOtx8eJXbm6Kg9RP0LV6/FfYjuXbJ3x4 F/7NlpsPNQVOBHQ3Jjc4t2N5F4HzDWXuwdxs0nSAIjC9l9YRVTuWfxHQedE9 3bK9lm1sU72IgP2GsV5b27M8jED7DrufBXHz7n/HITsC/VzeWNa0Z/kYAYln 805mOlq2Pf5tZ73P+Nx6+9JNOiwvP8O8UKYdyM2R/7bfss/4Wu3WsUqH5edn hHQcdbJfBy1bp6aA/IxC+46LHDuwPP3Mne82Fx5zc8emA/8Z6fcHmNV1YPn6 BcWhu/tY6GrZNt2e0RcEfql026HL8vYLvD6enfqam9c0/XzBxxcrd/7UZfn7 BYIXjo0jOmrZ/itPXMJCFRtUdaQjy+MvKOphNuILN/9Lxz3lX5D5sayuWSeW z5G4FVcsmc7NS5ouGImw3SZHL3ZieR2Jw7lPlmZys7gpoCJROtjlRs/OLL8j 8elpwNh13Pzvbeg85q53suuUoM4szyORoil8peLmpnZXG4m9Y4UuI7uwfI/C hmeHXrly899/x808CjPPzreL7cLyPgq3e18c06mrlu3df9t5WxQupVj5Le/K 8j8K1vKRSx5y89T/HhjzM54fru/KPIiCr/yS2Lablq3q3+uoj8K+2zW1bt2Y D18xYMFbmxRu9v33uEO+IuEkr7pnd+bFV9jfjdDazM3jmxbwKxb1l+4J6c78 +IpzN2NnSvS0bGuaePiKuS5652brMU++onqlxuIWN3v/i/dfX7E1Zpl1nR7z 5RsyZi68ObKHlm1TPI/4hp8elY5nejBvvuFIzw6+WdzcFK8Hv+HP/UzzfvrM n2/Iixtt6szN/8XfN+wZPfV4jD7z6Bt+BfHGdO+pZdsUL/xoHIpdtnpzT+ZT NISLnCo/cnPT8R0TjU0dzJPbGjCvouESet9gFTc3HQ+XaEhMshNfGTC/onGu Y2yZtqGW7X/bLxovVh9bvtiQeRaNyvI/I55yc/K/1yuNwc0jow+KjJhvMRjU eo7BAm4+0BSAMZDtHdonyIh5F4OujxUXhcZatsZNGzAGFT4nVi8wZv7FwN2m 4fITbv4e0/QDo5NTBkp6MQ9jkHLIpe8Sbt7ZFKjfEdz7ntvLXszH7yg+/ca+ pYmWbfemDf0dW96G7Fhtwrz8jk1Rzxrfc/Pnpq9X31EXc6dGtzfz8zt0Sr1G beFmx6aA/g750BOar72Zp9/xqPpQeyNTLdumuNL5AccBx84fNGW+/sAK84s7 07m5KQ7m/kBUn5B3g/owb3+gdJ5qrSc3//f16wfa/bTfXdWH+fsDj+Z9rpjY V8u2xX8HDv3eLQv378s8/gGdPUZ/+f20bJu2S5dYaOXr+C7rx3yOxfUZg299 4Oam17EoFi9MzzTrbsa8jkXPH91T93Pzf1/PYpFzr0qSacb8jkVj778+w/pr 2TZdLjcWr8Pnel/tzzyPg0PtT8XP/uy8x2GWWe3LhQOY73Hc9xnrrHcD2PmP Q3xd+hq9gcz7OFSfTp9zeCDLgzhcWjv8fsFA5n8ceJ2Fy8eZs3yIg8tI6wP3 zFkfiEPgvqw/zS1YXsTBbGd9gZMF6wdxqM040S/JguVHHJotuZxhbcn6Qhy+ v+xbfd2S5Ukcgn3HrxIMYv0hDm4Z1Vg/iOVLHCwG9jocO4j1iXjkbVQaDbZi eRMPraWL+1+3Yv0iHsPyVvsIB7P8icf+6HZOmwazvhGPat76u0mDWR7FQ7DB cfSIIax/xGN7rdGYu0NYPsXD5pjXvdbWrI/EI6Br2La91iyv4jHxRdDNQmvW T7j7mbraaupQll/x4NeWmAUPZX0lHrG3hrobDWN5Fo8R+1bYew5j/SUeu93X 7Pg9jOUbdz35ZK31w1mfScDzHzqy5OEs7xLwZcLX8WNsWL9JQMxJR95TG5Z/ Cdz+EffsMYL1nQRk9L3qf2YEy8MEVDX28/g9gvWfBEgPR2RvHMnyMQFB8tXn MkeyPpSA77d1H9iB5WUCXhVlmrwD60cJGNDibTMzW5afCVi/K3imry3rSwmQ uGQ1th7F8jQB+n6m7Y6OYv0pATC/e0o5iuVrItY+mrdm7WjWpxLRwX3MvYzR LG8TYTvBadrUMaxfJWLJqryF4WNY/iZi1Qaf74PHsr6ViG8l9+48HMvyOBHu m5rn649j/SsRpl5fj3qPY/mciMe/yk61GM/6WCIejXdSHR3P8joRk/RWRDWM Z/0sERbmkY1bJrD8TsQ9yzs+ZRNYX0vEkdy/vssmsjxPhIkyS5w+kfW3RFwb PDZpxiSW70nYt3WYJHoS63NJ+LXjs9/YySzvk6DSrbz+YTLrd0nIt3jKG2rH 8j+J60fdo5/bsb6XBJ8Vg3/2n8I8SMKFSTyPB1NY/0vCj+nHT/WyZz4koeWW z+W37FkfTMLbO9+CekxlXnCfL7uS6TOV9cMkeC4b6thlGvMjCa0aH6+6PI31 xSQE5WuF605nniRhk4GVy8XprD8m4XfejMc6M5gvyUgavXiE1wzWJ5Nhun2x hc5M5k0yNLccznjNZP0yGTztOVM7zGL+JCM232Gn9yzWN5PxxmkDv9Ns5lEy cn961F+ZzfpnMqzjY6d2m8N8Sobb+IGt/OawPpqMbS9eWxrMZV4lY+W+TR/9 57J+mozAP7Ofms5jfiVjz/3d2o/nsb6ajPiajEgLB+ZZMu6Odal67cD6awq+ mBzYPWI+8y0FlV2+rvs0n/XZFLy66xQ6aQHzjpvn7z4Yt4D12xSsjyq5NW8h 8y8FI85EmOUuZH03Bd4TO/ZYu4h5mILvN4p31S5i/TcFQ0YPttqzmPmYAoPc 1gt4S1gfTkH2gL3FbkuYlyl4I9+TqrOU9eMUSKo6DPRbyvxMgXHJ3FrTZawv p2DX09EdXi5jnqZgk1HeTdvlrD+nwrXr4Isxy5mvqZi3167WYQXr06lw6WXy pHgF8zYVP9rGpW5byfp1KrQH2q/RWsX8TYWZs//Cs6tY307FVHXu626rmcep uHNPsP/hata/U+F+vaP/sDXM51S4lRsM/raG9fFUTL/br/+CtczrVLxVDD9T sZb181Rkq+fN2r+O+Z0Kdc6Jwy3Ws77O3X9mgo7veuZ5Gob2sm0zcAPzPA3C vynbwjcwz9Oge8/XZs5G5nka8p18Hcs2Ms/ToBeQLXLexDxPQ4z/SlEbR+Z5 GoZ8G7LpjiPzPA0/9ywfNnQz8zwNjd3KnH5sZp6n4aRJYotVTszzNPRr06ft TyfmeRqyZiudPbcwz9NQsXfodJOtzPM0iJvx3D9sZZ6nYZz3TLO525jnaTB4 ZTWkZhvzPB1HJc/uuW5nnqcjuH/skR47mOfpcEvxCn+zg3mejr5Pmm2cuZN5 ng677db7q3Yyz9PROsdY4bqLeZ6O7i8zEnruZp6n4+qnJV3e72aep6NfZvBX hz3M83QIkxR5yj3M83RknNZZdm4v8zwdygrDCf33Mc/T0SfD1Dt6H/M8HUVT +tuv3888T0cvm6GbJM7M83S4B8xU+DszzzNgf/FowdgDzPMMTGgXP7ToAPM8 Axrz8Q3HDjLPM3CyVYW+0SHmeQa+RkU8iTjEPM/AiJM591YfZp5noON+aEuO MM8zgJTa+HtHmOcZcEhW8+2OMs8z8CFkqU/1UeZ5BjxjB/h6HmOeZ+DJyi3S QceZ5xn4/N00M/U48zwDozau0nV2YZ5nYNWN3iH6rszzTIxKO/jlsyvzPBPv jzsN33iCeZ6JK3qCzm1PMs8zsdl49NLXJ5nnmXjdw6rVklPM80wkXS0yFrkx zzMh7Tv/bqAb8zwTxzde85jtzjzPxJq/z/N/uzPPM/Hu9EMf/9PM80yc+eIW OvUM8zwTqSsW2GvOMM8z4d3DcMyts8zzTESGVd+c4sE8z8T6Dp/Wqz2Y55lw rX549ZYn8zwLlkZPB009xzzPwsWrmUN+nmOeZ6HIetCdu+eZ51nYUvNp76wL zPMs+D+98EbLi3mehZaHA5c99mKeZ2H2ko7bFl1knmdhmkN2VTNv5nkWfh+W xAd7M8+zcEruq7f+EvM8C/N+BCZ3usw8z8Ivm2GqqMvM8yyM3zz98N4rzPMs TLqi2d7nKvM8C3N+D4/PvMo8z4Ig2/DymWvM82xYnQyOgg/zPBvdZ4pXyn2Y 59mAd/u1/teZ59nY+boiycGXeZ4NVY+LgS38mOfZmDuqW02oH/M8G+5ep67s vME8z4bySsnjPjeZ59lYmG7TP+8m8zwbDfkXO3rfYp5nY//kXxum3GaeZ0P0 dFdvwR3meTaGvG07PeQO8zwbFrop+Vv9mefZuL7re7bpXeZ5Du5c5o0tuMs8 z4HA1lnnWgDzPAdS6wnTZt9jnufgwqxNypb3mec5MHCsF0TdZ57nIG5N1YGj D5jnOZjfZ+GKEQ+Z5zkwum/3VPOQeZ4DZEVueBHIPM/Bpoj0s1seMc9zoL/B vbvZY+Z5Dk5ml+hWPGae58BzsGpfQBDzPAeFXp8mrX7CPM+Busf8Y4ZPmec5 XNiEmRQ8ZZ7novcR0ZCbz5jnuRj0feDTZc+Z57moMLf31n/BPM9F7p9VJXkv mOe58Dxx9ObNl8zzXCw0exK54hXzPBfuczQORq+Z57lYsnn1nJLXzPNc8Gp4 7++9YZ7nwndmmsfGYOZ5LhYbKL73D2Ge52Jt5aLd8hDmeS6qx+iffvWWeZ6L /t8mtNj/jnmei91GOWq8Z57nYQCvZqroAzvveUjUPdo2+gPzPQ9CI3+c+8jO fx5ca5enzwtl3udh3MRPOXphLA/ysESUNK0kjPmfhx5iv36Pw1k+5KG1xYCd uz6xPpAH5R4PU0SwvOA+P+HbJOln1g/y8BtVyfGfWX7kQfr17/drX1hfyEPR wZYWayJZnuQhYZ8h3zyK9Yc8bMmxG/k7iuVLHt4nniuJ/Mr6RB70zmj9uvCN 5U0elo+7vX9ZNOsXeYiCyzqzGJY/eZBEPQ37GcP6Rh6mWQw6EfWd5VEepmZ2 DPb+wfpHHob3XjdvdSzLpzwkuw5cMSiO9ZE8bHR0ThfEs7zKQ/6Cee8T41k/ ycOrlJiWdxJYfuVBe2vZtx2JrK/kwTf8pXJcEsuzPBRusnXvmMz6Sx7Unb3O liezfMvDI+d3f9+msD6TD+/pnzPPprK8y0fj/BDjFWms3+RDa01AllU6y798 7J18WatZBus7+ehecvlcTgbLw3zs0H/p8TyT9Z98FJVrfp7MYvmYj5fDtyQu yWZ9KB8dOpl0tspheZmPnm6mMc1zWT/KR7n/saqCXJaf+dh+ctS+kDzWl/IR Oc9p5/l8lqf5qBvdOWdDAetP+eAftXsxppDlaz4M57bTdCtifSofp7X33VcV sbzNh1ft2ai4Ytav8vFs1eI5D0tY/ubD5Ydsmmsp61v5SL/m8GZ5GcvjfDwa 63t2RDnrX/kYNjk2oXMFy+d8aAZrjqsqWB/Lx21fY//ESpbX+Rijt8ryaRXr Z/mwXBQ6wKOa5Xc+jKQTrjrWsL7GPU+mcPuUWpbn+fC/JA7pW8f6Wz6Oa893 ai5j+V6AVmLtC5Uy1ucKINxkaBwjZ3lfgHuGL40fKVi/K0CwXrTXWSXL/wK4 OGzbtqWe9b0CFCe//jBTxTwowGT/e3ut1Kz/FSA0Z8btThrmQwE0t0OH/9aw PliAifr8MXkNzAvu804aBkf8ZP2wANrdLHzv/2J+FOCJwXD52d+sLxagqsbu 5Y4/zJMCfMraWrrgL+uPBWgxM+TkqEbmSwG2fbC40luLR32yAEevlXVqw+OR NwUI2FQu0XDzf/2yADYfR6/J4/PInwK49eEP+irgUd8sQNI0q63PhDzyqADz M8q7+4h41D8LsPyQ2TBXMY98KgD+tvyyRcKjPloAB/0rYQulPPKqAP2Cs/pN 0OZRPy3A4rslEstmPPKrAC9iI2b2aM6jvlqA3iYuLVu04JFnBSi7Z2XdwM3/ 9ddCLF1YlFDSkke+FWLYNL/spFY86rOF2OG3w+FTax55VwiHrdvGPGvDo35b CDflXd+bbXnkXyHartTfcK4dj/ou9/951f5H2vPIQ+76el1nbtPhUf8tRLP2 wZtXduCRj4W4OCb512xdHvXhQvTXO9gwviOPvCzEy67ha4d24lE/LsTVj0Hj +3XmkZ+FqLg0x7tHFx715ULMHhE+t31XHnnKXW+W8KSkG4/6cyGOnejT5zc3 /+drIdpfGDNC1p1HfboQi4cuCSvR45G3hQiceOpVVg8e9etCdLia2C1Rn0f+ FuJE2ynKrz151LcL8eM6b0SYAY88LoSPtUD9xpBH/bsQ50qWGjw14pHPhRj9 utfH+8Y86uOFGPV5zfdbvXjkdSF6DR5g72PCo35eCK9hHiO9e/PI70KMb+V9 09OUR329EG00M3e59+GR50WompT8zrUvjzwvAn95v51H+/HI8yI89F/rd9CM R54X4ZC79/D9/XnkeREWnouatGcAjzwvwtpRLb/tHMgjz4ugb77j3XZzHnle hOW8lj23WfDI8yKsX1Kq3mLJI8+LUNzYbtSWQTzyvAjqe36/nax45HkRbHtf 77NlMI88L0LJvK7RW4bwyPMi+HXvk7PVmkeeF+HlhvSV24fyyPMi6NgMXbRz GI88L8K0q/Mjdw/nkedFeHBlsv8+Gx55XoSeC7qpDozgkedF2CrJDT4ykkee c79Pv1XnAh55XoTT7fZcdbPlkedFKOU7vfYYxSPPizBFdHnCxdE88rwIoYcF dtfG8MjzIowsCwu7OZZHnhchLKTw4b1xPPK8CJOO7dV+Mp5HnnPPn3Yh4/UE HnlehPAlY3qETuSR50UwjbicGjWJR54XwTPijiBhMo88L8ZNkz23M+145Hkx xoYZvi6ewiPPi3Fn65uRdfY88rwYI4wnDPs1lUeeF6MoKe++eDqPPC/GDxfv M+1m8MjzYlybtLdYbyaPPC/G0pFXn/adxSPPi/HwbDO59WweeV4M762Zd8fP 4ZHnxfjWRy9u9lweeV6ME82KHFfO45HnxXjqOPLwNgceeV6M9PcjJUfn88jz YozbquKfX8Ajz4vxq9nu7bcW8shz7vpdEhyeL+KR58VcPnR+HrGYR54Xo1O3 JUdTlvDI82LsdXz2pWwpjzwvxnelyeFfy3jkeTGWH4173GoFjzzn7lfxfqbB Sh55XowbFvxNg1fxyPNi9BwS9HPyah55zq23KPXv0jU88rwYVUHue3au5ZHn xZDPzl3rvo5HnhejTr8o5uZ6HnlejHX2gQFvNvDI82KY95ysid3II89LcLgu 9kPpJh55XgJ5t+m/Gh155HkJLnXIftTJiUeel+D33FMp5lt45HkJrDau3Wm3 lUeel6C8/JTb6m088rwEC/cIdA9v55HnJdjxtaTjtR088rwEsdfHe77aySPP SxDxyepQwi4eeV4Cp46RRTW7eeR5CcKOtgxrvpdHnpfg2J+uOqb7eOR5Cdaf EeWM388jz0ugOz5bb7UzjzwvQZ9Jr1KOHeCR5yWY8uW26PZB5nkJrH+9eRh+ iHnO3Y+l9teCw8zzEtR9DVgsOMo8L0Gt8b31RseY59x6fOhePe4487wEzh27 la11YZ6XIDni1QI3V+Z5CZ6v5Y17dIJ5XgJZUOuAuJPM8xIULaw/rDzFPC/B CusvCZ3cmecl+KHv7TPiNPO8BL0b9+SsOMM8L0GbmKOXT55lnpci42zkt8ce zPNSeC1euDPZk3leCt3FMy//Psc8L0WzsFBLowvM81L8jA6ZMMWLeV6KBbGz k3ZcZJ6Xwrvv7fTr3szzUuhND5kXeYl5Xgqnt4+nyi4zz0th8MvrQ9erzPNS qB8eCRh/jXleioK9p7S3+TDPS6GjH1Z0/TrzvBTN148Y+s2XeV4Kv/7tJWo/ 5nkppAvmTTW6yTwvhbxQr/XMW8zzUrgkHZx0+DbzvBRbx5z+8/gO87wUjfMW 9c3xZ56XouMkYWLLAOZ5KWYtvqIccY95zn1e5UDPzfeZ56WY7ZDn7/eAeV4K 067vreIfMs9LsSQ4C4JHzPNSvIqaHWH1mHnO3W/NsE/rgpjnpcjOv2Pj84R5 Xoq5a+8NjHvKPC/F8jkL/YTPmedlGHg+8eTQF8zzMgzWMane/JJ5XoYBBRtj 7rxinnP/v/2bXpmvmedlePaj5++2wczzMtye8nHKpBDmeRm2Jt/tdOQt87wM ncJrlga/Y55z13N+ZCB/zzwvQ8OBhmV9PzLPy7BxZnmX1aHM8zKMu3hhul8Y 87wMOopW/Ixw5nkZJptuG9AhgnnO/X9xUtr0z8zzMixbb/f39BfmeRm0xtT6 fY1knpfhrlfKe/FX5nkZlFs6OYz9xjwvw5df0ZuPRjPPyzBsg5QfFsM8L8MH fnFbrR/M8zIYdN/ri1jmeRnuGGQFHIpjnpeh8Yxx/9B45nkZ9lZuMuclMs/L oEj7+nR0EvOcWx/R7KDjyczzMnyzNOwTmcI8L8MWq2kGzdKY52X4Wlt7yT6d eV4G7/nd3c9lMM/LcXZ/7a/kTOZ5OTZsOVjRJZt5Xg75qoK5y3KY5+Voe9ly 1N1c5nk5iha43a/KY56X41ObRg/LAuZ5ORwGPFDuK2Sel+PhyDup4UXM83KY p4uGNi9hnpcj62Fpp9mlzPNy9N21Yvf1MuZ5OWyaecwuLWeelyNliusT80rm eTkOWS13d65inpfj5A/r4shq5nk59Kx6fWhfyzwvx8Iro3WX1THPyzF7ZEB1 oIx5Xo5++xzH/pQzz8vR89XjLhOVzPNy3Nh8fIt3PfO8HDMtpeOLVczzcvQP mHVtkIZ5zt3P4cNbjjcwz8vR69S9z0k/meflmOxbfNX4N/O8HFFPZtTt+sM8 L0eHz+IvUX+Z59z6KvS6ddXik+fl2Lv2hdyRxyfPyzFoef6kMD6fPK+A2aDQ nh2EfPK8Ag0TNu5bL+KT5xUY0unPrA9iPnleAd9Bno/bS/nkeQVajYLbem0+ eV6BW/VGpR+b8cnzCoTpLfqs24JPnlfA4nqj0eaWfPK8AqZr+oi/tOKT5xVY eky9Tq8NnzyvQNf2R+13t+WT5xWwn1j8PK4dnzyvwLUNNj59dPjkeQW2p9wS u3Tgk+cV0PtjqcjV5ZPnFUhc1XzF8E588rwCkffGzrrUmU+eV2DU3l9fFF34 5HkFAq/ZvZ/ejU+eV+BBxfTBj7vzyfMKGM41sWjRg0+eV2BJYcWTDfp88pxb n0evn33tySfPK7C28P4QU0M+eV4B85hsnDLik+cVyAh3ii435pPnFXCzds6Y bMInzysw6EUPx8DefPKcu7+EXcda9eGT5xUIGe/bfWtfPnlegd7pz4Yn9eOT 55XIWRefPaQ/nzyvRE2FrtBnAJ88r0TghhuPtcz55HklPmi7Z6+24JPnlRik pfSMtuST55W45KOJMrfik+eV4I195XJ5MJ88r8SAbZMjG4fwyfNKXAxOOLN2 KJ88r8TWT5vSY4fxyfNKFEwb/MDahk+eV+Knlb3WrRF88rwSSStjM5uDT55X 4k5Ohs0uWz55zv0+/Ixh/ig+eV6J1mPFnlPG8MnzSix6tOLom7F88rwS5svD fhqN55PnlTiZbttwbgKfPK+ELKDxQONEPnleiUc7u51ynMwnz7n1EbzqkmXH J88r8bdPpYWdPZ8859YrKyM+ZCqfPK+Eqf4ddZ/pfPKc+/uOa+5cm8Enzysh +I20FrP45HklJunNuHBwNp88r8SwsjfJdXP45Hkl6jK9/VbO45PnlRB7NZOl OPDJ8yq8/GT5bfICPnlehcLBFn0/LuST51VAgrHOoMV88rwKsy/0d7m/hE+e V8HXc9PBHsv45HkV7jQ0Nl5czifPq9Cqo3azliv55HkV3ky+53N8FZ88r0JM 67+vf6/mk+dVSP3ZZ9HOtXzyvApFwdNO1azjk+dVcNM5g3Ub+OQ5d/0qwaGC jXzyvArbhidPWOzIJ8+r4NHR4GraZj55XoX+Qc13zd7CJ8+r0MXueWbcVj55 XoVRU4dF22/nk+dV+GgVPjZ6B588r4LgyqaJk3bxyfMqZJouTInczSfPq+D1 Iqhm/F4+eV6F1vqnz33ZxyfPq5Dm2O7jeGc+eV4F25BVuyMP8MnzKuyw8Q+Z eIhPnlfh0njVyW+H+eR5FdLH7SuYcpRPnlfhbPisyNhjfPK8ClOW+Q+Z5cIn z6vQmH3OMtWVT55XQUvX5u3Ck3zyvBqD/375kXeKT55Xw+TenM1r3PnkeTV0 RzW/WnWaT55Xo1O75jO3n+WT59WwOLzH+6cHnzyvxpYWu9cePccnz6vxd1af z80u8Mnzaoxu8yroghefPK+GRnekSXdvPnlejQkLSvoGXOKT59UoKEt4b36F T55Xo3ONSfa7q3zyvBq/n2q7TfThk+fc51/xiUi6zifPqzGpl+jMcj8+eV6N deq1hTU3+OR5NRKiyiOdb/HJ82rEbg8a1vwOnzyvRmNN9vCr/nzyvBp7pl6N Ng3gk+fVKPykXRF8j0+eV+OC74xLkx/wyfNq3LK7lJj5kE+eV6PlXC0/x0d8 8rwaP9Y8a2h8zCfPq6Eem1h4/gmfPOfuL/nk4l7P+OR5NVTdGtaEPOeT59zz 2EzWmvaSeV6N5ztumRa9Yp5XQ2rcu3DvG+Z5DRyieWZtQpjnNdgsnCsJeMs8 r0Hb03bbRr5nntegywjtzSkfmOc18G776ufmUOZ5DXIM9naShjPPa/Dm/t7I m5+Y5zXY+jdHYvOZeV6Dn5fj0lO+MM9rIGm7a8S2KOZ5DfrqqS1afWOe10Bx aX/Ig2jmeQ2a7eqbNOE787wG0+L6Hy7+wTyvgSrn0YdjcczzGtz9GedhkMA8 r+E8ClWEJTLPa/BkiX/F8mTmeQ1u/grYwU9lntdAe5rs3O005nkNTs95MHpc BvO8Bup+v11LM5nnNVis02apWzbzvAaDNrWONstlntdg9yvD6Pg85nkNQr13 Ld1VwDyvgWOC+cmuRcxzbj2nHxoXVsw859a7y6lLa0uZ5zUYsmjvwVblzPMa LFix7+fLCuZ5LWyuv2q+pIp5Xgt7P4dn4hrmeS2udnevCaplnteiunZP6HwZ 87wWlW3sewsVzPNaDPa16BWkZJ7X4kza7JAFKuZ5LSoMc4vEGuZ5Lfwlf/yf NzDPa3Gxf8afZb+Y57UwW3urqtUf5nktbt4+su39X+Z5LXg/b3ts0hKQ57VY ecdqbDe+gDyvxS+tlZ4xAgF5XotR5x12HBAJyPNatGscXddfIiDPaxHfbpow Xyogz2vh8v7+kwvNBOR5Lfg6h+vHtxCQ57UQTm9M+NlSQJ7XYk7c7ElBrQXk ObdenR47rGorIM+5z0u05nVpLyDPa3Hku8GYOB0BeV6LU7+v6J3QFZDntbDY F3NhZCcBeV6Lxa5lt1SdBeR5LUpdu00J6iogz2vxQ3LJY113AXleixlvXR0N egjI8zro7utSkqUvoPNeh0ljjjRcMhCQ73WIsKkImGUkoPNfB7Pnx2WtewnI +zrodTmcEmMioDyow4QWLea5mQrI/zqct3PYPrGvgPKhDuPCvPpKzATUB+pg clB26Et/AeVFHfxDfLe4DhRQP6iDKiXmz3gLAeVHHUYsDDSRDhJQX6jDY7Vj zVcrAeVJHV4dHz3z9BAB9Yc6dBMsnDVtqIDypQ6GPmWydsMF1Cfq8OZmt/6p NgLKmzqcPttb6jNSQP2iDqPEIw8vtxVQ/tTBLfmst8loAfWNOsyRT7GrGSOg PKpD5f4Hvi/HCah/1KHL23TPAxMElE91mGfQ0mD8JAH1kTqU2O+e2dpOQHlV By2hnUH6FAH1E+75B709d3uqgPKrDgt+/byxebqA+kodDHxGTB82U0B5VodE 11d+4tkC6i91uDnnikfiHAHlWx2ufu+sf3OegPpMHb7nbJzhNF9AeVeHjXc+ GY5cKKB+UwfFqjmXWi4WUP7VweH8nMDsJQLqO3Xo9U2z4vEyAeVhHe4nb397 aIWA+k8dOj349XLGKgHlI/d+1n2eabRGQH2oDo1LxOfVawWUl3WIFiu3R68X UD+qwx5xhMZvo4Dysw7tzAP1dzoKqC/VYbdrQeVkJwHlaR1cLa8v6LlVQP2J 2y/n2zlqtgkoX+tQYbrXMG6HgPpUHeyDJAfv7RJQ3tbhs7De+cgeAfWrOmwb tkd/4T4B5W8dVp+NWmflLKC+VYfwTd3ntjkooDzm3r/T47LKQwLqX9x6LHuu H3VEQPnM7ZfBq/7eOSagPsY9v27DkaMuAsrrOlyZ9+DhshMC6md16O78ZD9O CSi/6xAyZKxcz11Afa0ODZt8WzeeFlCec59vpknMPSug/lYHu3duCPMUUL7L 8PSUx8zb5wXU52R4PsS2pauXgPJehnaXU5zWewuo38lQEnh6n/1lAeW/DGH3 fMwsrgqo78mQX2N7qqOPgDyQYVb7F2f+XBdQ/5OhZ+bA4UV+AvJBhr028nPR NwXUB2VIX2J5/vltAXkhw/BrA2x8/AXUD2UY5mzg6RIgID9kGPVhwlmn+wLq i9zzTMscvOChgDyRoe2Mzm7jHgmoP8pg2WHkSfMgAfkiw4qeruZ6TwXUJ2Vw M+vv2vy5gLyRYZXRdteGFwLqlzLcNDxvUfZKQP7IoOsc5Zb6RkB9k3v+p7M8 IkME5JEMPs5bbd+8E1D/lOFw5FLf+x8E5JMMl54uun8tVEB9lPv7M3eXnw1n XslwvHB/5JEIAfVTGWSOXTN3fmF+ydCxe4TPhigB9VUZTnZ42WLZN+aZDHee mPWdGyOg/irDN2dHzZQfzDcZnEe82DE2TkB9VoZzlaNu2CQw72RY8HLufqsk AfVbGRL+WogHpDD/ZIha3nGUaZqA+q4M0sdj+xllMA9lOF3+K7JHloD6rww3 ph/U6ZbDfOT219yW7TrnCagPy7DsdkWobgHzUobsTg49OxQJqB/LkPP9kqVO CfNThqo2Ver2ZQLqyzKUrr20WaeCeSqDlWfWpQ5VAurPMtQe/Lu9Yw3zVQZt Lsy71AmoT8tw9FrxuO5y5q0Mp6LNbXoqBdSvZQj6sq7EWMX8laH1tR9j+2oE 1Ldl2OcRMM/8J/NYhluG1j2sfwuof8swrs3na/jLfJZh0YQL3ydoCamPywBl 6YvpfCF5LUPafunMBUIh9XMZvjoP818lFpLfMlyL/fTYSSqkvi5DkWvF5v3N hOS5HHtrlcUnWgjJcznOe5rqXGwlJM/l+Nk3tuFWGyF5LsfQD/0uPW0nJM/l eHvwVFWojpA8l0OQ1+9nnK6QPJcj2mNJaH4nIXnO/f3uNVB0EZLncgjfnt4t 6i4kz+W4/rbz+k49hOS5HEs7zNXp11NInsvx8obbXltDIXkux4RtWlfmGAvJ czmXH1rbN5oIyXM58tclS46aCslzObKLI+dd6Sskz+WYOd9g5VMzIXkuxwnJ gD7fBgjJczl+b7V+VGguJM/l8Jp3quqPpZA8lyP4xaayToOF5Lkcbp/Mbg6y FpLncoh+d+w4Y5iQPJejj87uyZtthOS5HP20Lg0/PVJInnPrL/9U8cBWSJ7L sWbRZIdvo4XkuRzzq3cdrxgrJM/lqLng7dR8gpA8l+PmAVVns0lC8lyONh2L jk2zE5Lncui3ePRom72QPJej90S/S97ThOS5HB1V0tFvZwjJczl8Dls/ypsl JM/lmHzeOV08V0iey/G5g1GkmYOQPOfW2+rgrjkLhOS5HPGLM0oPLBKS53KM GXqya8ASIXkux7kXqW3jlwnJczlyf3eK/rVCSJ7LMfqwzwST1ULyXI7y6mcn Zq0VkudyYPAj98PrheS5HC3ds2Y93igkz+UIWHo+L8tRSJ7LIV2vb9Fii5A8 l6PhetpEm21C8lwO6yEtjR13CMlz7n0HtYn03SUkz+XoEmE1IH6PkDyXY8CO 2MXC/ULyXI5XPPNZ1geE5Lkcg2WPWjseEpLncqi1r164dURInsthMHdSbtox IXkuR5VBG0VrVyF5LsdDrTGxE04KyXM5GsMH7zjsJiTP5ag7bFsQfFpInsvR 4uLLzsqzQvJcjlPXK7sMOCckzxVY7WxdsuGCkDxX4Og8+f6Ai0LyXIGIy05Z RZeE5LmC+8otlhpeFZLnCnSd3LpxuY+QPFegW2Fu2E1fIXmuwJxBcdMLbgjJ cwX2/RkSaHhbSJ4roBjtlLTaX0ieK1Bv/+PrvQAhea7AtcBHp6vuC8lzBbQt 1nQ3DxSS5wo4q6Y773osJM8V2Dgv8v67J0LyXAFftcFdwXMhea7AuI/vt9q9 FJLnCrTPkrXwei0kz7n7Deu8JztYSJ4rIO3t+dzknZA8V0DW6snHbR+E5LkC z0KSfD6ECslzBfJfzrdr/klIniugF3812uGzkDxXwNBQ2T0gUkieK5AtDR+t +iokzxU4aLx82PgYIXmuwJkV/UWXfgjJcwV+17reLosTkucKWI+N6jA8UUie KzCs2/RFZ5OF5LkC3vuddxekCslz7nqBD9cOyRCS5wp0sbUxO5MlJM8VELU6 E1WYIyTPFSgf9Gfo8Hwhea7A+C5VRy4UCslzBTw2BN+oKhaS5wpYdP7sPb5M SJ4rcHuZ06qbFULyXIH14Z2a/akSkucKGEsMTs6vFZLn3PsaWZXzSiYkz7n9 9zGtVQelkDxX4F3vSZ12qITkuQKFS/x+JWqE5LkCKWdHBA/6JSTPFdjTz3WG 9x8hec69P3lmhKZRSJ4r8KroZvtFfBF5roC73fCRoUIRec6dhzfNxxlLROS5 Ao2C3b3dtUXkuQIv7PPLZM1F5LkCd34/dp3fSkSeK9Dj41h+eBsRea5AmJtk Ud/2IvKcWw+fRV4XO4jIcwVG7rn/UKuTiDxXwK981q1NXUTkuQJGgvA96d1E 5LkCF/QWDJjQQ0SeK5CedfTLy54i8lyJRuPbI42NROS5EkamBpcv9hKR50ps WLQ2UWwqIs+VkDtn1O3pKyLPlYg8W1hXaSYiz5VIyapIXDpQRJ4rkaFxuJpk ISLPlbB/6z12spWIPFdi3piWiaFDROS5EiEq4/HWw0TkuRIfjkz2fWIjIs+V 0EstyjSFiDxXonbA0sbbo0TkuRLuzY20e4wVkedK7B7g23B1vIg8V8IuwDq+ 4yQRea6Ed8QSz4t2IvJciTA95yE6U0XkuRL1539/uTBdRJ4r8XPMFOjMEpHn SnS8mnrj4hwRea7k8qp5VUcHEXmuxDbz2T2vLRCR50qcu95jVI/FIvJcidHC TLs7S0XkuRLjTJSj+qwQkedK8FumGz5dJSLPlViqpZFZrxWR50pc8vwYGLZe RJ4r0eqc72y7TSLyXAnjzsKK5M0i8lyJZseXOi7fKiLPlTi9RT+3eruIPFei OPQV9u8Skefc76+e99DeKyLPldBaYxR7eb+IPFfi/I+sv70PishzJQaE9+sR clhEnithstVl4JRjIvJcCZW9g2Wui4g8V0LQsmPv7SdF5LkSG+9Ytpa6i8hz Jd7Z6ZdfPyMiz7l5/7RXgzxF5LkS+jWWu2POi8hzJaZet+23+qKIPFeia0RZ 8t9LIvJciYPZfjuuXBWR59x+vJMutbouIs+VULZrdiHeT0SeK2G60r+90y0R ea6Eb0t995b+IvJciddfaxoCA0TkuRKDz7gus38gIs+VqHRf9LEmUESeK7Fy SInuuSARea6Ex8grawc9E5HnSmw9U/k07YWIPFcifMos1YHXIvJciSv5462M QkTkuRKtq22cot+JyHMlcu0C72z/KCLPlWiu2yKlW7iIPK/HXt9EQWSEiDyv x5lt+/pvixSR5/WInr9nrt43EXlej41zxjlHx4jI83rI/ebf2BsrIs/r8TXQ 7FPvBBF5Xo8Ek2HFaUki8rweaqVa7JYqIs/r8W5AXm+bDBF5Xo/vfTbZ1WaJ yHPufpw6ON3OFZHn9bj+fo6XQ4GIPK/HumYBb1sVi8jzevgfPlb8uVREntej 6NDqdgcrROR5PaQ+kaOHVIvI83rE+RjtltWKyPN6TD+gDgqUi8jzemzf+LZ6 Xb2IPK/HtsjKgb00IvK8HtMMhfuKforIc+7vRx/+evuPiDyvh2OnrB6rtMTk Obc+Xy8cMBaIyfN6GD4wLCwVicnzeoyykc54KBWT5/VYaf4h0qm5mDyvx/11 4ROsWonJ83ocrTkX/6uNmDyvR6vf91d/ai8mz+txQnVCeFpXTJ7X4+bm+4/n dBaT5/Wo7XF6lX43MXlej5F1j3pV6YnJ83poak7Xv+kpJs/rsXt2QLyrkZg8 r8fqI/vfzjERk+f1aPP3xHPjPmLyvB6he+1CVP3E5Dm3/t/GxkUNEJPn9ehc Ia+/ZiEmz+vR+mdS3y1WYvK8HrYjN2wbZy0mz+vhqmfxretwMXlej+PGgZaK EWLynNuPjfOCom3F5Hk9cva/HOE/Rkye16PuxNjcQ+PF5Dm3nhYuXgsniclz bv/cVy+2niImz+sRb93NRneamDyvx8NJ2wfUzxCT5/XYs+KAdfJsMXnOnSfj t/NezROT5/UwmP7ozOUFYvK8HpNDkjL2LxaT5/VYNOcZli0Tk+fc8/SNfDdu pZg8r0fWEq+Z/daIyfN6XO59jaezXkye18M0bdG33xvF5Hk91icseFSyWUye qxDiqfswfquYPFfB7EbbiPc7xOS5Cj43vmse7BaT5yrEjYmZdGWfmDxXwXuK x+uTB8TkuQo5Zy6P3ntYTJ6rEF++vnLDMTF5rkL5dJdni13F5LkK4rBNl2ec EpPnKhwce+v6+NNi8lwFc1lAuI2HmDxXwau0UTLovJg8VyFiRr/N/S6KyXMV Tq8Iqje+LCbPVdg6u7mf/jUxec4977rwDd18xeS5CttL5s7vfFNMnquwo7Pd xo53xOS5Cqtm9LypGyAmz1V4nbfwl+4DMXmuQmDXA/s6PRKT5ypMnyfp0fWJ mDznrl/mXK73XEyeq3DXYFmG4Ssxec493zxLuWmwmDxXoXnSHnPzd2LyXIXv Bc8uD/0oJs9VuB+5sveYcDF5roJDaMt8+89i8lyFlgLLT/OjxOS5Civfz4ld Ey0mz1WY2F4j2vlDTJ6rUNPdZ+3xeDF5rsKTik9KryQxea6C1j7Zo7upYvJc hUkf7l4IzhCT5ypkXV1993u2mDxX4UdBUElBnpg8V6FgnmROQ6GYPFdh9f1q WZtSMXmugu72ovemFWLyXIXG4Y7BY6rF5LkKC3dqFy+pE5PnKjjuHTZqv0JM nquw1O3Ij8sqMXmuQo/4pWdeN4jJcxUGL5p7MPW3mDxXwV+v5KamUUyeqxBc 46HpIpCQ5yqUHk86OlIsIc+5/b9v0KiV2hLyXIWukwYOOtVCQp6rMHnixEVP WkvIcxVOPPodnNZOQp6rcMTtuz1fV0Keq8CPGdbJrLOEPFfhs3VE5/ndJOS5 CuO3lM907SEhz7n9Xm4a8cJAQp5zny8Xbi4ylpDnKuwNbJjewVRCnnP30/qE 44R+EvJcBWVh34h9AyTkuRp7Pq+ZE2QhIc/VsOnxqmexlYQ8VyOj72XTbkMl 5LkaFQo3x9k2EvJcjYQpLWrOQEKeq+GeeuVh1GgJea7GjsYnd4XjJeS5Gh0b fuSOmiQhz9X4Fbpl3uEpEvJcjTVd2rcKnSYhz9WwPGsh5M2SkOdqnF9vN2zM XAl5rkb2u/QnrvMl5LkaCxfMXxe9SEKeq9E+edzytssk5LkaHoe6+DislJDn agRtmNn55hoJea7G1lXr0ivWS8hzNT6qUrKsHCXkuRrD1nQyOrpFQp6rIX16 Nyh2u4Q8V+PWmV+H9HZLyHM1fNd7Xty8T0Keq+GyLqfu4wEJea7GlRVLzrc7 IiHP1XhQeHLfmuMS8lyNUtOU+29PSMhzNe4bfdBv5y4hz9Ww2/4md/1ZCXmu xs+VNqXh5yTkOfd58tAh3S9KyHM1rCPfxe+5LCHP1Xhodfdl8jUJec7dz3BF oaWfhDxX4+2hzosv3JKQ52pcnX62p9JfQp6r4Xj7i/nc+xLyXA15uyFngwMl 5LkaE3JmDdF7IiHP1fhW6ml2/LmEPFdD/Xz51spXEvJcjTHrhgpmh0jIczX4 39wK37+XkOdqjB8R1c40TEKeq/Hp08pzFyMk5LkaL3/9WCqIkpDnanzR239w W7SEPFdDqZVeXfBDQp6rcaj1/MezEyTkObefp20MjUyWkOdqbFlyyMgmXUKe q1HgKMx8miUhz9UIHLe+qHeehDzn9seobqNuFkrIczXSprrLupRKyHM1AmoM VRcrJOS5Gt7ms6a1q5GQ52oseOPyx0MmIc/V2PzMhNe6XkKeq9E6+84CD42E PFdjxNF1zdr+lpDnanzYnd3Gq1FCnmvQU2/z5k4CKXmuQdTS44a+Yil5rkFt 0KmBxs2k5LkGIdqlFx+1lJLnGoysFc4e0lZKnmtwZZ3dxnAdKXmuwR++QdbU TlLyXIPo2Nq7WV2l5LkGd1d2jdnYQ0qea3A+udmU3wZS8lyDFh8MTc72kpLn GpgNjl7cs4+UPOfuN2V13UszKXmuwYXX83LtzKXkuQZTNgv7Fg6Skuca5LWM TdxvLSXPNbhu3CWjg42UPNdgSeiEkU8hJc81eL8yWGvqGCl5rsGk1nE9q8ZL yXMNPg6vuuk+WUqea2Cb4Xik31Qpea6B16wXoT9mSMlzDdad0Fu2bY6UPNfA I7rZso7zpeS5BvaVKaHvF0nJcw18euUdXb1MSp5rsN/82N1Wq6TkObf+lt36 Ba+VkucaZH4W66zeKCXPNRhff31JOycpea7Bl5E2LcK2SclzDaZ7Du++dZeU PNegYkL9OYN9UvJcA7Fl+IbkA1LyXIOqMz8DTh2RkucaGAhUk+AiJc81SHnQ fIbqpJQ818Cu2fn3j09LyXPu+drneqzzlJLnGgQYTowy9JKS5xpcEhqszbsk Jc81mFoRusn3mpQ812DT9j3pi/2k5LkGR+9de6R3W0qea3D5l3N53l0pea7B qwmbz9x5ICXPNXCMC72y/rGUPNdg46jPrQY+k5LnGkgfR1epX0rJcw1yPQ0H hQVLyXMNVkd3LXZ/LyXPNTjlz9dyCJOS59zzfTd2Mf4sJc812DI3YYcySkqe a9A6ZHZsRIyUPNdgZorGyztOSp5roFuj/WV9kpQ81+DGvYQVI9Ok5Dm3Hm2v b9TJkpLnGky79CyvMldKnmuwqOWi8IhCKXmuwZ77+W38SqXkeQOChO4x+yql 5HkD0rr41c+rlZLnDVg2edXpwQoped4Andn653TVUvK8ARULuJT4KSXPG5BR 6Fmc8VdKnjfgYfJ3q498bfK8AXF72tXfEWuT5w2w3X3T8HQzbfK8AXOy3oXt aKVNnjcgUOdu7JJ22uR5A1rVXLefrKtNnjdg+qWi4UO6aJPnDRh3I/iqsZ42 ec59fsPCDR0MtMnzBujWaz8U99ImzxtQM5a3uMFUmzxvwOLfBw9Xm2mT5w2Y 5fGxQ6G5NnneAOeEv90yrLTJ8waM+bXbO2GoNnnOrZ/f6qMxI7TJ8wYMfs3L jxylTZ43oM8Vl2cR47TJ8was+WuqDp+kTZ434JSWSVC4vTZ53oChXV5kfJqh TZ43YJCJdN+XOdrkeQMcV80/822+NnneAMMt2Tpxi7XJ8wYIJn9tk7pcmzxv wIRZM47krtYmzxuQM/X+mvL12uR5A84uF4YpHbXJ8wbot7voydumTZ434Nyk M8mtd2mT5w2wnqXn2WOfNnneAF72ntCBB7Vt/w9HjB69 "]]}, "Charting`Private`Tag#1"]}}, <| "HighlightElements" -> <| "Label" -> {"XYLabel"}, "Ball" -> {"IndicatedBall"}|>, "LayoutOptions" -> <| "PanelPlotLayout" -> <||>, "PlotRange" -> {{0, 1.6}, {1.934115470166513, 3.1866164242634345`}}, "Frame" -> {{True, True}, {True, True}}, "AxesOrigin" -> {0, 1.934115470166513}, "ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True}, "LabelStyle" -> {FontFamily -> "Times", GrayLevel[0], FontSize -> 12}, "AspectRatio" -> GoldenRatio^(-1), "DefaultStyle" -> { Directive[ PointSize[0.0055000000000000005`], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[2]]}, "HighlightLabelingFunctions" -> <| "CoordinatesToolOptions" -> Identity, "ScalingFunctions" -> {{Identity, Identity}, { Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>, "Meta" -> <| "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> ListPlot, "GroupHighlight" -> False|>|>]]& )[<| "HighlightElements" -> <| "Label" -> {"XYLabel"}, "Ball" -> {"IndicatedBall"}|>, "LayoutOptions" -> <| "PanelPlotLayout" -> <||>, "PlotRange" -> {{0, 1.6}, {1.934115470166513, 3.1866164242634345`}}, "Frame" -> {{True, True}, {True, True}}, "AxesOrigin" -> {0, 1.934115470166513}, "ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True}, "LabelStyle" -> {FontFamily -> "Times", GrayLevel[0], FontSize -> 12}, "AspectRatio" -> GoldenRatio^(-1), "DefaultStyle" -> { Directive[ PointSize[0.0055000000000000005`], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[2]]}, "HighlightLabelingFunctions" -> <| "CoordinatesToolOptions" -> Identity, "ScalingFunctions" -> {{Identity, Identity}, { Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>, "Meta" -> <| "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> ListPlot, "GroupHighlight" -> False|>|>], ImageSizeCache->{{4.503599627370496*^15, -4.503599627370496*^15}, { 4.503599627370496*^15, -4.503599627370496*^15}}], Selectable->False]}, Annotation[{{ Annotation[{ Directive[ PointSize[0.0055000000000000005`], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[2]], Point[CompressedData[" 1:eJxd13dcje//B/DOPtkj2UlDQqhEiFf2SPbI3luyZ7ZCoZCslJWMyKasShRF e++9xxmdc7L63fq8r+8fv/7xeD/Sfe77uq/r9XydniucZq7ma2lpWYu1tP79 u1/n8YT8fcfxof/Hfu21tGz//xwyqQW/7wlXpA6+ZNmRm38e3PBux4WTWF7p 49OVm4e+iNr1wc8Nxw7GrdXn5r3lvcylgafxvpfFRWNufqPnUjnjzVnU6YUb 9eXm3/dlCfYrPDH37mFdc272idB/sm3dOZzU2rxhCDcPz5125tLm83De6aY/ kpszG5o+EMdnpFiP+9/9eWF68YznU7i564BsI/GRi6h2+eMx+3/3643Pp9N/ LOLmBauarogb80qcVv/v/i/j9kSj7Zu5+eqVph/M+HIhbff/nucqTg+3unGE m9N/qGcV+l/D+Y7a39z/93w+4P1oPdebmzsL57Yye3YdySmTxt783/P6Yu3j 116B3Ozw3wWxNXn+hDf/e/4baB4/cFEEN08ZcmrUsuIbeNhnRGLc/9bjJky2 HArM5uaqGf+ueBMvLDWlFf9bn1sob37PRcPN7ptKf92X3ULwBQ8XMY+t123s 2xBUqsPNfU/oco9wG/mW0kBDHlu/OxBevppgwc3RN8e9Uvy5g/lj1i4czWPr 6Y83JZvHz+Tmf6vVSXgXC4Y8u7CCx9b3LtJqzMds5+Zmqbe3jGgWgP7RNbOP 89h6ByDkbHnURW5+8O9x29zDCC1DvwAeW/97SKu4lhrMzZP/XU73PtrqzdkW w2Pv4z7iHac55XJz03J3e4AVz9x/yHns/TzAzqhmnmK+lu2/1YszeIju574/ 78Jn7+sh4mVJQwdws+kij/D63oHYnNTTYCyfvb9AWJm83DSfm79yV+sy4BGi szw6O/HZ+3yEkVXPertw87pz1c6weoy/03tcvcZn7/cxipqlOD7jZu7muEcO Qn+9tNtf+ex9B+HYhV42+dw8m9s83CtFze7wwQ189v6foCQr8EJbgZbtHW71 Um8/wbi0kpl9BGw/PMHM41t3jOFm5Z+kPeW9niKk0V6zSMD2x1N4OR7I2cXN Y5s2wFOsqNcyOSdg++UpWn9Kj3/IzdzL+/dAqBFr534RsP3zDOH1HlMLuPm/ 23uGF1FO+n8FbD89w+L392d3EWrZWjb9PEdoB1QOFrL99RxTOpkXzeLmY6Hf uB30HLmtj2CrkO235/hkN/DPWW5O5N4+tyZ42sO2+yMh238vEFf41C+amw2b LvgCL5SuxyuEbD++wKrnodHaIi3b7U0v4CXmuCzbaSpi+/MlNiWtPTKJmz/V 9+be8EtotU6rXS9i+/UVUgOehbpxc7v/bhBmug2KhyK2f18hMDnw1Hdubrq7 qFfYsSb2SK2I7efX6Gi/IqutWMv22fXagC92r3Gt3dorg8Rsf7/G/rG5b+Zx M7/pgV/j3o6YYfvFbL+/gevQgT38uHnmfxsGCrMWaz6J2f5/A8iWty7j5lv/ HjfpDQabWHZtKWHnIRid9xw5ZcHN8n+XcwjGLc+pCxwk7HwEQ2Tgc+YgN4/+ t/0zg1GTv9HQX8LOSwhOuH3sGsPNTdt3SQi2ZFzepZCw8xOCKK8Gy65SLdv8 ff9eSAh6HymcNUbKztNb3NvokLKRm82bNvhbZBkteOslZefrLVKOVPA/cPOR i2O4LfMWJouaPyqVsvP2DnnnPgS31dayjTdoesHwFIlNbbTZ+XuHyb6FP9dw c89/6V/9DjcmzB9wXpudx/e4K1v35T03b/13PLa8h9JTJ7Rcm53P9/DXW9JN t5mWbdi/t6t4j7mXJ2SObsbO6wf010r87cTNbf47kEhcxD9yvRk7vx+wOzh1 bTQ3Ny1fwwfEGc952tCMneeP6PbKeXHv5lq2Tbfn/BEGx6Zvmtecne+PsHyQ kO3KzVpNP6HobS969qo5O++hWHO+oqyEm+99seNOdCiy7xw/2rEFO/+haP4i +eBEbp7OnUZuj6JBkZu9twXLg1Dgur/fQ27W/NMnIhT86t4R2S1YPoRCY7TJ rk1LLdsbXf4diDCsc99qNaYly4swmGwcfnQXN09sesFh8GsfY/6gJcuPMMSk GY/N4ea6gH83GAab9nbB7VqxPAlDe/2R5yZw8+V/d/ctDNrLeTHOrVi+hMHR 5tL6Z9z8b3NNahEOo+78DWWtWN6EI3Db2O96rbVs/6VJgn04uj5ddmFOa5Y/ 4dCfMf/daW7+t1u4LQNx3MCJEa1ZHoXjaVD54N/c3PS4ceG4s8v15KA2LJ/C 8TtIe4QjNzddrt0n7KrcOftuG5ZXn7D5/fcfudzcFEezPiHvQ/vAzm1Zfn3C mjOTq2Zx83/14RNGRe/wONuW5dknTOtx8eJXbm6Kg9RP0LV6/FfYjuXbJ3x4 F/7NlpsPNQVOBHQ3Jjc4t2N5F4HzDWXuwdxs0nSAIjC9l9YRVTuWfxHQedE9 3bK9lm1sU72IgP2GsV5b27M8jED7DrufBXHz7n/HITsC/VzeWNa0Z/kYAYln 805mOlq2Pf5tZ73P+Nx6+9JNOiwvP8O8UKYdyM2R/7bfss/4Wu3WsUqH5edn hHQcdbJfBy1bp6aA/IxC+46LHDuwPP3Mne82Fx5zc8emA/8Z6fcHmNV1YPn6 BcWhu/tY6GrZNt2e0RcEfql026HL8vYLvD6enfqam9c0/XzBxxcrd/7UZfn7 BYIXjo0jOmrZ/itPXMJCFRtUdaQjy+MvKOphNuILN/9Lxz3lX5D5sayuWSeW z5G4FVcsmc7NS5ouGImw3SZHL3ZieR2Jw7lPlmZys7gpoCJROtjlRs/OLL8j 8elpwNh13Pzvbeg85q53suuUoM4szyORoil8peLmpnZXG4m9Y4UuI7uwfI/C hmeHXrly899/x808CjPPzreL7cLyPgq3e18c06mrlu3df9t5WxQupVj5Le/K 8j8K1vKRSx5y89T/HhjzM54fru/KPIiCr/yS2Lablq3q3+uoj8K+2zW1bt2Y D18xYMFbmxRu9v33uEO+IuEkr7pnd+bFV9jfjdDazM3jmxbwKxb1l+4J6c78 +IpzN2NnSvS0bGuaePiKuS5652brMU++onqlxuIWN3v/i/dfX7E1Zpl1nR7z 5RsyZi68ObKHlm1TPI/4hp8elY5nejBvvuFIzw6+WdzcFK8Hv+HP/UzzfvrM n2/Iixtt6szN/8XfN+wZPfV4jD7z6Bt+BfHGdO+pZdsUL/xoHIpdtnpzT+ZT NISLnCo/cnPT8R0TjU0dzJPbGjCvouESet9gFTc3HQ+XaEhMshNfGTC/onGu Y2yZtqGW7X/bLxovVh9bvtiQeRaNyvI/I55yc/K/1yuNwc0jow+KjJhvMRjU eo7BAm4+0BSAMZDtHdonyIh5F4OujxUXhcZatsZNGzAGFT4nVi8wZv7FwN2m 4fITbv4e0/QDo5NTBkp6MQ9jkHLIpe8Sbt7ZFKjfEdz7ntvLXszH7yg+/ca+ pYmWbfemDf0dW96G7Fhtwrz8jk1Rzxrfc/Pnpq9X31EXc6dGtzfz8zt0Sr1G beFmx6aA/g750BOar72Zp9/xqPpQeyNTLdumuNL5AccBx84fNGW+/sAK84s7 07m5KQ7m/kBUn5B3g/owb3+gdJ5qrSc3//f16wfa/bTfXdWH+fsDj+Z9rpjY V8u2xX8HDv3eLQv378s8/gGdPUZ/+f20bJu2S5dYaOXr+C7rx3yOxfUZg299 4Oam17EoFi9MzzTrbsa8jkXPH91T93Pzf1/PYpFzr0qSacb8jkVj778+w/pr 2TZdLjcWr8Pnel/tzzyPg0PtT8XP/uy8x2GWWe3LhQOY73Hc9xnrrHcD2PmP Q3xd+hq9gcz7OFSfTp9zeCDLgzhcWjv8fsFA5n8ceJ2Fy8eZs3yIg8tI6wP3 zFkfiEPgvqw/zS1YXsTBbGd9gZMF6wdxqM040S/JguVHHJotuZxhbcn6Qhy+ v+xbfd2S5Ukcgn3HrxIMYv0hDm4Z1Vg/iOVLHCwG9jocO4j1iXjkbVQaDbZi eRMPraWL+1+3Yv0iHsPyVvsIB7P8icf+6HZOmwazvhGPat76u0mDWR7FQ7DB cfSIIax/xGN7rdGYu0NYPsXD5pjXvdbWrI/EI6Br2La91iyv4jHxRdDNQmvW T7j7mbraaupQll/x4NeWmAUPZX0lHrG3hrobDWN5Fo8R+1bYew5j/SUeu93X 7Pg9jOUbdz35ZK31w1mfScDzHzqy5OEs7xLwZcLX8WNsWL9JQMxJR95TG5Z/ Cdz+EffsMYL1nQRk9L3qf2YEy8MEVDX28/g9gvWfBEgPR2RvHMnyMQFB8tXn MkeyPpSA77d1H9iB5WUCXhVlmrwD60cJGNDibTMzW5afCVi/K3imry3rSwmQ uGQ1th7F8jQB+n6m7Y6OYv0pATC/e0o5iuVrItY+mrdm7WjWpxLRwX3MvYzR LG8TYTvBadrUMaxfJWLJqryF4WNY/iZi1Qaf74PHsr6ViG8l9+48HMvyOBHu m5rn649j/SsRpl5fj3qPY/mciMe/yk61GM/6WCIejXdSHR3P8joRk/RWRDWM Z/0sERbmkY1bJrD8TsQ9yzs+ZRNYX0vEkdy/vssmsjxPhIkyS5w+kfW3RFwb PDZpxiSW70nYt3WYJHoS63NJ+LXjs9/YySzvk6DSrbz+YTLrd0nIt3jKG2rH 8j+J60fdo5/bsb6XBJ8Vg3/2n8I8SMKFSTyPB1NY/0vCj+nHT/WyZz4koeWW z+W37FkfTMLbO9+CekxlXnCfL7uS6TOV9cMkeC4b6thlGvMjCa0aH6+6PI31 xSQE5WuF605nniRhk4GVy8XprD8m4XfejMc6M5gvyUgavXiE1wzWJ5Nhun2x hc5M5k0yNLccznjNZP0yGTztOVM7zGL+JCM232Gn9yzWN5PxxmkDv9Ns5lEy cn961F+ZzfpnMqzjY6d2m8N8Sobb+IGt/OawPpqMbS9eWxrMZV4lY+W+TR/9 57J+mozAP7Ofms5jfiVjz/3d2o/nsb6ajPiajEgLB+ZZMu6Odal67cD6awq+ mBzYPWI+8y0FlV2+rvs0n/XZFLy66xQ6aQHzjpvn7z4Yt4D12xSsjyq5NW8h 8y8FI85EmOUuZH03Bd4TO/ZYu4h5mILvN4p31S5i/TcFQ0YPttqzmPmYAoPc 1gt4S1gfTkH2gL3FbkuYlyl4I9+TqrOU9eMUSKo6DPRbyvxMgXHJ3FrTZawv p2DX09EdXi5jnqZgk1HeTdvlrD+nwrXr4Isxy5mvqZi3167WYQXr06lw6WXy pHgF8zYVP9rGpW5byfp1KrQH2q/RWsX8TYWZs//Cs6tY307FVHXu626rmcep uHNPsP/hata/U+F+vaP/sDXM51S4lRsM/raG9fFUTL/br/+CtczrVLxVDD9T sZb181Rkq+fN2r+O+Z0Kdc6Jwy3Ws77O3X9mgo7veuZ5Gob2sm0zcAPzPA3C vynbwjcwz9Oge8/XZs5G5nka8p18Hcs2Ms/ToBeQLXLexDxPQ4z/SlEbR+Z5 GoZ8G7LpjiPzPA0/9ywfNnQz8zwNjd3KnH5sZp6n4aRJYotVTszzNPRr06ft TyfmeRqyZiudPbcwz9NQsXfodJOtzPM0iJvx3D9sZZ6nYZz3TLO525jnaTB4 ZTWkZhvzPB1HJc/uuW5nnqcjuH/skR47mOfpcEvxCn+zg3mejr5Pmm2cuZN5 ng677db7q3Yyz9PROsdY4bqLeZ6O7i8zEnruZp6n4+qnJV3e72aep6NfZvBX hz3M83QIkxR5yj3M83RknNZZdm4v8zwdygrDCf33Mc/T0SfD1Dt6H/M8HUVT +tuv3888T0cvm6GbJM7M83S4B8xU+DszzzNgf/FowdgDzPMMTGgXP7ToAPM8 Axrz8Q3HDjLPM3CyVYW+0SHmeQa+RkU8iTjEPM/AiJM591YfZp5noON+aEuO MM8zgJTa+HtHmOcZcEhW8+2OMs8z8CFkqU/1UeZ5BjxjB/h6HmOeZ+DJyi3S QceZ5xn4/N00M/U48zwDozau0nV2YZ5nYNWN3iH6rszzTIxKO/jlsyvzPBPv jzsN33iCeZ6JK3qCzm1PMs8zsdl49NLXJ5nnmXjdw6rVklPM80wkXS0yFrkx zzMh7Tv/bqAb8zwTxzde85jtzjzPxJq/z/N/uzPPM/Hu9EMf/9PM80yc+eIW OvUM8zwTqSsW2GvOMM8z4d3DcMyts8zzTESGVd+c4sE8z8T6Dp/Wqz2Y55lw rX549ZYn8zwLlkZPB009xzzPwsWrmUN+nmOeZ6HIetCdu+eZ51nYUvNp76wL zPMs+D+98EbLi3mehZaHA5c99mKeZ2H2ko7bFl1knmdhmkN2VTNv5nkWfh+W xAd7M8+zcEruq7f+EvM8C/N+BCZ3usw8z8Ivm2GqqMvM8yyM3zz98N4rzPMs TLqi2d7nKvM8C3N+D4/PvMo8z4Ig2/DymWvM82xYnQyOgg/zPBvdZ4pXyn2Y 59mAd/u1/teZ59nY+boiycGXeZ4NVY+LgS38mOfZmDuqW02oH/M8G+5ep67s vME8z4bySsnjPjeZ59lYmG7TP+8m8zwbDfkXO3rfYp5nY//kXxum3GaeZ0P0 dFdvwR3meTaGvG07PeQO8zwbFrop+Vv9mefZuL7re7bpXeZ5Du5c5o0tuMs8 z4HA1lnnWgDzPAdS6wnTZt9jnufgwqxNypb3mec5MHCsF0TdZ57nIG5N1YGj D5jnOZjfZ+GKEQ+Z5zkwum/3VPOQeZ4DZEVueBHIPM/Bpoj0s1seMc9zoL/B vbvZY+Z5Dk5ml+hWPGae58BzsGpfQBDzPAeFXp8mrX7CPM+Busf8Y4ZPmec5 XNiEmRQ8ZZ7novcR0ZCbz5jnuRj0feDTZc+Z57moMLf31n/BPM9F7p9VJXkv mOe58Dxx9ObNl8zzXCw0exK54hXzPBfuczQORq+Z57lYsnn1nJLXzPNc8Gp4 7++9YZ7nwndmmsfGYOZ5LhYbKL73D2Ge52Jt5aLd8hDmeS6qx+iffvWWeZ6L /t8mtNj/jnmei91GOWq8Z57nYQCvZqroAzvveUjUPdo2+gPzPQ9CI3+c+8jO fx5ca5enzwtl3udh3MRPOXphLA/ysESUNK0kjPmfhx5iv36Pw1k+5KG1xYCd uz6xPpAH5R4PU0SwvOA+P+HbJOln1g/y8BtVyfGfWX7kQfr17/drX1hfyEPR wZYWayJZnuQhYZ8h3zyK9Yc8bMmxG/k7iuVLHt4nniuJ/Mr6RB70zmj9uvCN 5U0elo+7vX9ZNOsXeYiCyzqzGJY/eZBEPQ37GcP6Rh6mWQw6EfWd5VEepmZ2 DPb+wfpHHob3XjdvdSzLpzwkuw5cMSiO9ZE8bHR0ThfEs7zKQ/6Cee8T41k/ ycOrlJiWdxJYfuVBe2vZtx2JrK/kwTf8pXJcEsuzPBRusnXvmMz6Sx7Unb3O liezfMvDI+d3f9+msD6TD+/pnzPPprK8y0fj/BDjFWms3+RDa01AllU6y798 7J18WatZBus7+ehecvlcTgbLw3zs0H/p8TyT9Z98FJVrfp7MYvmYj5fDtyQu yWZ9KB8dOpl0tspheZmPnm6mMc1zWT/KR7n/saqCXJaf+dh+ctS+kDzWl/IR Oc9p5/l8lqf5qBvdOWdDAetP+eAftXsxppDlaz4M57bTdCtifSofp7X33VcV sbzNh1ft2ai4Ytav8vFs1eI5D0tY/ubD5Ydsmmsp61v5SL/m8GZ5GcvjfDwa 63t2RDnrX/kYNjk2oXMFy+d8aAZrjqsqWB/Lx21fY//ESpbX+Rijt8ryaRXr Z/mwXBQ6wKOa5Xc+jKQTrjrWsL7GPU+mcPuUWpbn+fC/JA7pW8f6Wz6Oa893 ai5j+V6AVmLtC5Uy1ucKINxkaBwjZ3lfgHuGL40fKVi/K0CwXrTXWSXL/wK4 OGzbtqWe9b0CFCe//jBTxTwowGT/e3ut1Kz/FSA0Z8btThrmQwE0t0OH/9aw PliAifr8MXkNzAvu804aBkf8ZP2wANrdLHzv/2J+FOCJwXD52d+sLxagqsbu 5Y4/zJMCfMraWrrgL+uPBWgxM+TkqEbmSwG2fbC40luLR32yAEevlXVqw+OR NwUI2FQu0XDzf/2yADYfR6/J4/PInwK49eEP+irgUd8sQNI0q63PhDzyqADz M8q7+4h41D8LsPyQ2TBXMY98KgD+tvyyRcKjPloAB/0rYQulPPKqAP2Cs/pN 0OZRPy3A4rslEstmPPKrAC9iI2b2aM6jvlqA3iYuLVu04JFnBSi7Z2XdwM3/ 9ddCLF1YlFDSkke+FWLYNL/spFY86rOF2OG3w+FTax55VwiHrdvGPGvDo35b CDflXd+bbXnkXyHartTfcK4dj/ou9/951f5H2vPIQ+76el1nbtPhUf8tRLP2 wZtXduCRj4W4OCb512xdHvXhQvTXO9gwviOPvCzEy67ha4d24lE/LsTVj0Hj +3XmkZ+FqLg0x7tHFx715ULMHhE+t31XHnnKXW+W8KSkG4/6cyGOnejT5zc3 /+drIdpfGDNC1p1HfboQi4cuCSvR45G3hQiceOpVVg8e9etCdLia2C1Rn0f+ FuJE2ynKrz151LcL8eM6b0SYAY88LoSPtUD9xpBH/bsQ50qWGjw14pHPhRj9 utfH+8Y86uOFGPV5zfdbvXjkdSF6DR5g72PCo35eCK9hHiO9e/PI70KMb+V9 09OUR329EG00M3e59+GR50WompT8zrUvjzwvAn95v51H+/HI8yI89F/rd9CM R54X4ZC79/D9/XnkeREWnouatGcAjzwvwtpRLb/tHMgjz4ugb77j3XZzHnle hOW8lj23WfDI8yKsX1Kq3mLJI8+LUNzYbtSWQTzyvAjqe36/nax45HkRbHtf 77NlMI88L0LJvK7RW4bwyPMi+HXvk7PVmkeeF+HlhvSV24fyyPMi6NgMXbRz GI88L8K0q/Mjdw/nkedFeHBlsv8+Gx55XoSeC7qpDozgkedF2CrJDT4ykkee c79Pv1XnAh55XoTT7fZcdbPlkedFKOU7vfYYxSPPizBFdHnCxdE88rwIoYcF dtfG8MjzIowsCwu7OZZHnhchLKTw4b1xPPK8CJOO7dV+Mp5HnnPPn3Yh4/UE HnlehPAlY3qETuSR50UwjbicGjWJR54XwTPijiBhMo88L8ZNkz23M+145Hkx xoYZvi6ewiPPi3Fn65uRdfY88rwYI4wnDPs1lUeeF6MoKe++eDqPPC/GDxfv M+1m8MjzYlybtLdYbyaPPC/G0pFXn/adxSPPi/HwbDO59WweeV4M762Zd8fP 4ZHnxfjWRy9u9lweeV6ME82KHFfO45HnxXjqOPLwNgceeV6M9PcjJUfn88jz YozbquKfX8Ajz4vxq9nu7bcW8shz7vpdEhyeL+KR58VcPnR+HrGYR54Xo1O3 JUdTlvDI82LsdXz2pWwpjzwvxnelyeFfy3jkeTGWH4173GoFjzzn7lfxfqbB Sh55XowbFvxNg1fxyPNi9BwS9HPyah55zq23KPXv0jU88rwYVUHue3au5ZHn xZDPzl3rvo5HnhejTr8o5uZ6HnlejHX2gQFvNvDI82KY95ysid3II89LcLgu 9kPpJh55XgJ5t+m/Gh155HkJLnXIftTJiUeel+D33FMp5lt45HkJrDau3Wm3 lUeel6C8/JTb6m088rwEC/cIdA9v55HnJdjxtaTjtR088rwEsdfHe77aySPP SxDxyepQwi4eeV4Cp46RRTW7eeR5CcKOtgxrvpdHnpfg2J+uOqb7eOR5Cdaf EeWM388jz0ugOz5bb7UzjzwvQZ9Jr1KOHeCR5yWY8uW26PZB5nkJrH+9eRh+ iHnO3Y+l9teCw8zzEtR9DVgsOMo8L0Gt8b31RseY59x6fOhePe4487wEzh27 la11YZ6XIDni1QI3V+Z5CZ6v5Y17dIJ5XgJZUOuAuJPM8xIULaw/rDzFPC/B CusvCZ3cmecl+KHv7TPiNPO8BL0b9+SsOMM8L0GbmKOXT55lnpci42zkt8ce zPNSeC1euDPZk3leCt3FMy//Psc8L0WzsFBLowvM81L8jA6ZMMWLeV6KBbGz k3ZcZJ6Xwrvv7fTr3szzUuhND5kXeYl5Xgqnt4+nyi4zz0th8MvrQ9erzPNS qB8eCRh/jXleioK9p7S3+TDPS6GjH1Z0/TrzvBTN148Y+s2XeV4Kv/7tJWo/ 5nkppAvmTTW6yTwvhbxQr/XMW8zzUrgkHZx0+DbzvBRbx5z+8/gO87wUjfMW 9c3xZ56XouMkYWLLAOZ5KWYtvqIccY95zn1e5UDPzfeZ56WY7ZDn7/eAeV4K 067vreIfMs9LsSQ4C4JHzPNSvIqaHWH1mHnO3W/NsE/rgpjnpcjOv2Pj84R5 Xoq5a+8NjHvKPC/F8jkL/YTPmedlGHg+8eTQF8zzMgzWMane/JJ5XoYBBRtj 7rxinnP/v/2bXpmvmedlePaj5++2wczzMtye8nHKpBDmeRm2Jt/tdOQt87wM ncJrlga/Y55z13N+ZCB/zzwvQ8OBhmV9PzLPy7BxZnmX1aHM8zKMu3hhul8Y 87wMOopW/Ixw5nkZJptuG9AhgnnO/X9xUtr0z8zzMixbb/f39BfmeRm0xtT6 fY1knpfhrlfKe/FX5nkZlFs6OYz9xjwvw5df0ZuPRjPPyzBsg5QfFsM8L8MH fnFbrR/M8zIYdN/ri1jmeRnuGGQFHIpjnpeh8Yxx/9B45nkZ9lZuMuclMs/L oEj7+nR0EvOcWx/R7KDjyczzMnyzNOwTmcI8L8MWq2kGzdKY52X4Wlt7yT6d eV4G7/nd3c9lMM/LcXZ/7a/kTOZ5OTZsOVjRJZt5Xg75qoK5y3KY5+Voe9ly 1N1c5nk5iha43a/KY56X41ObRg/LAuZ5ORwGPFDuK2Sel+PhyDup4UXM83KY p4uGNi9hnpcj62Fpp9mlzPNy9N21Yvf1MuZ5OWyaecwuLWeelyNliusT80rm eTkOWS13d65inpfj5A/r4shq5nk59Kx6fWhfyzwvx8Iro3WX1THPyzF7ZEB1 oIx5Xo5++xzH/pQzz8vR89XjLhOVzPNy3Nh8fIt3PfO8HDMtpeOLVczzcvQP mHVtkIZ5zt3P4cNbjjcwz8vR69S9z0k/meflmOxbfNX4N/O8HFFPZtTt+sM8 L0eHz+IvUX+Z59z6KvS6ddXik+fl2Lv2hdyRxyfPyzFoef6kMD6fPK+A2aDQ nh2EfPK8Ag0TNu5bL+KT5xUY0unPrA9iPnleAd9Bno/bS/nkeQVajYLbem0+ eV6BW/VGpR+b8cnzCoTpLfqs24JPnlfA4nqj0eaWfPK8AqZr+oi/tOKT5xVY eky9Tq8NnzyvQNf2R+13t+WT5xWwn1j8PK4dnzyvwLUNNj59dPjkeQW2p9wS u3Tgk+cV0PtjqcjV5ZPnFUhc1XzF8E588rwCkffGzrrUmU+eV2DU3l9fFF34 5HkFAq/ZvZ/ejU+eV+BBxfTBj7vzyfMKGM41sWjRg0+eV2BJYcWTDfp88pxb n0evn33tySfPK7C28P4QU0M+eV4B85hsnDLik+cVyAh3ii435pPnFXCzds6Y bMInzysw6EUPx8DefPKcu7+EXcda9eGT5xUIGe/bfWtfPnlegd7pz4Yn9eOT 55XIWRefPaQ/nzyvRE2FrtBnAJ88r0TghhuPtcz55HklPmi7Z6+24JPnlRik pfSMtuST55W45KOJMrfik+eV4I195XJ5MJ88r8SAbZMjG4fwyfNKXAxOOLN2 KJ88r8TWT5vSY4fxyfNKFEwb/MDahk+eV+Knlb3WrRF88rwSSStjM5uDT55X 4k5Ohs0uWz55zv0+/Ixh/ig+eV6J1mPFnlPG8MnzSix6tOLom7F88rwS5svD fhqN55PnlTiZbttwbgKfPK+ELKDxQONEPnleiUc7u51ynMwnz7n1EbzqkmXH J88r8bdPpYWdPZ8859YrKyM+ZCqfPK+Eqf4ddZ/pfPKc+/uOa+5cm8Enzysh +I20FrP45HklJunNuHBwNp88r8SwsjfJdXP45Hkl6jK9/VbO45PnlRB7NZOl OPDJ8yq8/GT5bfICPnlehcLBFn0/LuST51VAgrHOoMV88rwKsy/0d7m/hE+e V8HXc9PBHsv45HkV7jQ0Nl5czifPq9Cqo3azliv55HkV3ky+53N8FZ88r0JM 67+vf6/mk+dVSP3ZZ9HOtXzyvApFwdNO1azjk+dVcNM5g3Ub+OQ5d/0qwaGC jXzyvArbhidPWOzIJ8+r4NHR4GraZj55XoX+Qc13zd7CJ8+r0MXueWbcVj55 XoVRU4dF22/nk+dV+GgVPjZ6B588r4LgyqaJk3bxyfMqZJouTInczSfPq+D1 Iqhm/F4+eV6F1vqnz33ZxyfPq5Dm2O7jeGc+eV4F25BVuyMP8MnzKuyw8Q+Z eIhPnlfh0njVyW+H+eR5FdLH7SuYcpRPnlfhbPisyNhjfPK8ClOW+Q+Z5cIn z6vQmH3OMtWVT55XQUvX5u3Ck3zyvBqD/375kXeKT55Xw+TenM1r3PnkeTV0 RzW/WnWaT55Xo1O75jO3n+WT59WwOLzH+6cHnzyvxpYWu9cePccnz6vxd1af z80u8Mnzaoxu8yroghefPK+GRnekSXdvPnlejQkLSvoGXOKT59UoKEt4b36F T55Xo3ONSfa7q3zyvBq/n2q7TfThk+fc51/xiUi6zifPqzGpl+jMcj8+eV6N deq1hTU3+OR5NRKiyiOdb/HJ82rEbg8a1vwOnzyvRmNN9vCr/nzyvBp7pl6N Ng3gk+fVKPykXRF8j0+eV+OC74xLkx/wyfNq3LK7lJj5kE+eV6PlXC0/x0d8 8rwaP9Y8a2h8zCfPq6Eem1h4/gmfPOfuL/nk4l7P+OR5NVTdGtaEPOeT59zz 2EzWmvaSeV6N5ztumRa9Yp5XQ2rcu3DvG+Z5DRyieWZtQpjnNdgsnCsJeMs8 r0Hb03bbRr5nntegywjtzSkfmOc18G776ufmUOZ5DXIM9naShjPPa/Dm/t7I m5+Y5zXY+jdHYvOZeV6Dn5fj0lO+MM9rIGm7a8S2KOZ5DfrqqS1afWOe10Bx aX/Ig2jmeQ2a7eqbNOE787wG0+L6Hy7+wTyvgSrn0YdjcczzGtz9GedhkMA8 r+E8ClWEJTLPa/BkiX/F8mTmeQ1u/grYwU9lntdAe5rs3O005nkNTs95MHpc BvO8Bup+v11LM5nnNVis02apWzbzvAaDNrWONstlntdg9yvD6Pg85nkNQr13 Ld1VwDyvgWOC+cmuRcxzbj2nHxoXVsw859a7y6lLa0uZ5zUYsmjvwVblzPMa LFix7+fLCuZ5LWyuv2q+pIp5Xgt7P4dn4hrmeS2udnevCaplnteiunZP6HwZ 87wWlW3sewsVzPNaDPa16BWkZJ7X4kza7JAFKuZ5LSoMc4vEGuZ5Lfwlf/yf NzDPa3Gxf8afZb+Y57UwW3urqtUf5nktbt4+su39X+Z5LXg/b3ts0hKQ57VY ecdqbDe+gDyvxS+tlZ4xAgF5XotR5x12HBAJyPNatGscXddfIiDPaxHfbpow Xyogz2vh8v7+kwvNBOR5Lfg6h+vHtxCQ57UQTm9M+NlSQJ7XYk7c7ElBrQXk ObdenR47rGorIM+5z0u05nVpLyDPa3Hku8GYOB0BeV6LU7+v6J3QFZDntbDY F3NhZCcBeV6Lxa5lt1SdBeR5LUpdu00J6iogz2vxQ3LJY113AXleixlvXR0N egjI8zro7utSkqUvoPNeh0ljjjRcMhCQ73WIsKkImGUkoPNfB7Pnx2WtewnI +zrodTmcEmMioDyow4QWLea5mQrI/zqct3PYPrGvgPKhDuPCvPpKzATUB+pg clB26Et/AeVFHfxDfLe4DhRQP6iDKiXmz3gLAeVHHUYsDDSRDhJQX6jDY7Vj zVcrAeVJHV4dHz3z9BAB9Yc6dBMsnDVtqIDypQ6GPmWydsMF1Cfq8OZmt/6p NgLKmzqcPttb6jNSQP2iDqPEIw8vtxVQ/tTBLfmst8loAfWNOsyRT7GrGSOg PKpD5f4Hvi/HCah/1KHL23TPAxMElE91mGfQ0mD8JAH1kTqU2O+e2dpOQHlV By2hnUH6FAH1E+75B709d3uqgPKrDgt+/byxebqA+kodDHxGTB82U0B5VodE 11d+4tkC6i91uDnnikfiHAHlWx2ufu+sf3OegPpMHb7nbJzhNF9AeVeHjXc+ GY5cKKB+UwfFqjmXWi4WUP7VweH8nMDsJQLqO3Xo9U2z4vEyAeVhHe4nb397 aIWA+k8dOj349XLGKgHlI/d+1n2eabRGQH2oDo1LxOfVawWUl3WIFiu3R68X UD+qwx5xhMZvo4Dysw7tzAP1dzoKqC/VYbdrQeVkJwHlaR1cLa8v6LlVQP2J 2y/n2zlqtgkoX+tQYbrXMG6HgPpUHeyDJAfv7RJQ3tbhs7De+cgeAfWrOmwb tkd/4T4B5W8dVp+NWmflLKC+VYfwTd3ntjkooDzm3r/T47LKQwLqX9x6LHuu H3VEQPnM7ZfBq/7eOSagPsY9v27DkaMuAsrrOlyZ9+DhshMC6md16O78ZD9O CSi/6xAyZKxcz11Afa0ODZt8WzeeFlCec59vpknMPSug/lYHu3duCPMUUL7L 8PSUx8zb5wXU52R4PsS2pauXgPJehnaXU5zWewuo38lQEnh6n/1lAeW/DGH3 fMwsrgqo78mQX2N7qqOPgDyQYVb7F2f+XBdQ/5OhZ+bA4UV+AvJBhr028nPR NwXUB2VIX2J5/vltAXkhw/BrA2x8/AXUD2UY5mzg6RIgID9kGPVhwlmn+wLq i9zzTMscvOChgDyRoe2Mzm7jHgmoP8pg2WHkSfMgAfkiw4qeruZ6TwXUJ2Vw M+vv2vy5gLyRYZXRdteGFwLqlzLcNDxvUfZKQP7IoOsc5Zb6RkB9k3v+p7M8 IkME5JEMPs5bbd+8E1D/lOFw5FLf+x8E5JMMl54uun8tVEB9lPv7M3eXnw1n XslwvHB/5JEIAfVTGWSOXTN3fmF+ydCxe4TPhigB9VUZTnZ42WLZN+aZDHee mPWdGyOg/irDN2dHzZQfzDcZnEe82DE2TkB9VoZzlaNu2CQw72RY8HLufqsk AfVbGRL+WogHpDD/ZIha3nGUaZqA+q4M0sdj+xllMA9lOF3+K7JHloD6rww3 ph/U6ZbDfOT219yW7TrnCagPy7DsdkWobgHzUobsTg49OxQJqB/LkPP9kqVO CfNThqo2Ver2ZQLqyzKUrr20WaeCeSqDlWfWpQ5VAurPMtQe/Lu9Yw3zVQZt Lsy71AmoT8tw9FrxuO5y5q0Mp6LNbXoqBdSvZQj6sq7EWMX8laH1tR9j+2oE 1Ldl2OcRMM/8J/NYhluG1j2sfwuof8swrs3na/jLfJZh0YQL3ydoCamPywBl 6YvpfCF5LUPafunMBUIh9XMZvjoP818lFpLfMlyL/fTYSSqkvi5DkWvF5v3N hOS5HHtrlcUnWgjJcznOe5rqXGwlJM/l+Nk3tuFWGyF5LsfQD/0uPW0nJM/l eHvwVFWojpA8l0OQ1+9nnK6QPJcj2mNJaH4nIXnO/f3uNVB0EZLncgjfnt4t 6i4kz+W4/rbz+k49hOS5HEs7zNXp11NInsvx8obbXltDIXkux4RtWlfmGAvJ czmXH1rbN5oIyXM58tclS46aCslzObKLI+dd6Sskz+WYOd9g5VMzIXkuxwnJ gD7fBgjJczl+b7V+VGguJM/l8Jp3quqPpZA8lyP4xaayToOF5Lkcbp/Mbg6y FpLncoh+d+w4Y5iQPJejj87uyZtthOS5HP20Lg0/PVJInnPrL/9U8cBWSJ7L sWbRZIdvo4XkuRzzq3cdrxgrJM/lqLng7dR8gpA8l+PmAVVns0lC8lyONh2L jk2zE5Lncui3ePRom72QPJej90S/S97ThOS5HB1V0tFvZwjJczl8Dls/ypsl JM/lmHzeOV08V0iey/G5g1GkmYOQPOfW2+rgrjkLhOS5HPGLM0oPLBKS53KM GXqya8ASIXkux7kXqW3jlwnJczlyf3eK/rVCSJ7LMfqwzwST1ULyXI7y6mcn Zq0VkudyYPAj98PrheS5HC3ds2Y93igkz+UIWHo+L8tRSJ7LIV2vb9Fii5A8 l6PhetpEm21C8lwO6yEtjR13CMlz7n0HtYn03SUkz+XoEmE1IH6PkDyXY8CO 2MXC/ULyXI5XPPNZ1geE5Lkcg2WPWjseEpLncqi1r164dURInsthMHdSbtox IXkuR5VBG0VrVyF5LsdDrTGxE04KyXM5GsMH7zjsJiTP5ag7bFsQfFpInsvR 4uLLzsqzQvJcjlPXK7sMOCckzxVY7WxdsuGCkDxX4Og8+f6Ai0LyXIGIy05Z RZeE5LmC+8otlhpeFZLnCnSd3LpxuY+QPFegW2Fu2E1fIXmuwJxBcdMLbgjJ cwX2/RkSaHhbSJ4roBjtlLTaX0ieK1Bv/+PrvQAhea7AtcBHp6vuC8lzBbQt 1nQ3DxSS5wo4q6Y773osJM8V2Dgv8v67J0LyXAFftcFdwXMhea7AuI/vt9q9 FJLnCrTPkrXwei0kz7n7Deu8JztYSJ4rIO3t+dzknZA8V0DW6snHbR+E5LkC z0KSfD6ECslzBfJfzrdr/klIniugF3812uGzkDxXwNBQ2T0gUkieK5AtDR+t +iokzxU4aLx82PgYIXmuwJkV/UWXfgjJcwV+17reLosTkucKWI+N6jA8UUie KzCs2/RFZ5OF5LkC3vuddxekCslz7nqBD9cOyRCS5wp0sbUxO5MlJM8VELU6 E1WYIyTPFSgf9Gfo8Hwhea7A+C5VRy4UCslzBTw2BN+oKhaS5wpYdP7sPb5M SJ4rcHuZ06qbFULyXIH14Z2a/akSkucKGEsMTs6vFZLn3PsaWZXzSiYkz7n9 9zGtVQelkDxX4F3vSZ12qITkuQKFS/x+JWqE5LkCKWdHBA/6JSTPFdjTz3WG 9x8hec69P3lmhKZRSJ4r8KroZvtFfBF5roC73fCRoUIRec6dhzfNxxlLROS5 Ao2C3b3dtUXkuQIv7PPLZM1F5LkCd34/dp3fSkSeK9Dj41h+eBsRea5AmJtk Ud/2IvKcWw+fRV4XO4jIcwVG7rn/UKuTiDxXwK981q1NXUTkuQJGgvA96d1E 5LkCF/QWDJjQQ0SeK5CedfTLy54i8lyJRuPbI42NROS5EkamBpcv9hKR50ps WLQ2UWwqIs+VkDtn1O3pKyLPlYg8W1hXaSYiz5VIyapIXDpQRJ4rkaFxuJpk ISLPlbB/6z12spWIPFdi3piWiaFDROS5EiEq4/HWw0TkuRIfjkz2fWIjIs+V 0EstyjSFiDxXonbA0sbbo0TkuRLuzY20e4wVkedK7B7g23B1vIg8V8IuwDq+ 4yQRea6Ed8QSz4t2IvJciTA95yE6U0XkuRL1539/uTBdRJ4r8XPMFOjMEpHn SnS8mnrj4hwRea7k8qp5VUcHEXmuxDbz2T2vLRCR50qcu95jVI/FIvJcidHC TLs7S0XkuRLjTJSj+qwQkedK8FumGz5dJSLPlViqpZFZrxWR50pc8vwYGLZe RJ4r0eqc72y7TSLyXAnjzsKK5M0i8lyJZseXOi7fKiLPlTi9RT+3eruIPFei OPQV9u8Skefc76+e99DeKyLPldBaYxR7eb+IPFfi/I+sv70PishzJQaE9+sR clhEnithstVl4JRjIvJcCZW9g2Wui4g8V0LQsmPv7SdF5LkSG+9Ytpa6i8hz Jd7Z6ZdfPyMiz7l5/7RXgzxF5LkS+jWWu2POi8hzJaZet+23+qKIPFeia0RZ 8t9LIvJciYPZfjuuXBWR59x+vJMutbouIs+VULZrdiHeT0SeK2G60r+90y0R ea6Eb0t995b+IvJciddfaxoCA0TkuRKDz7gus38gIs+VqHRf9LEmUESeK7Fy SInuuSARea6Ex8grawc9E5HnSmw9U/k07YWIPFcifMos1YHXIvJciSv5462M QkTkuRKtq22cot+JyHMlcu0C72z/KCLPlWiu2yKlW7iIPK/HXt9EQWSEiDyv x5lt+/pvixSR5/WInr9nrt43EXlej41zxjlHx4jI83rI/ebf2BsrIs/r8TXQ 7FPvBBF5Xo8Ek2HFaUki8rweaqVa7JYqIs/r8W5AXm+bDBF5Xo/vfTbZ1WaJ yHPufpw6ON3OFZHn9bj+fo6XQ4GIPK/HumYBb1sVi8jzevgfPlb8uVREntej 6NDqdgcrROR5PaQ+kaOHVIvI83rE+RjtltWKyPN6TD+gDgqUi8jzemzf+LZ6 Xb2IPK/HtsjKgb00IvK8HtMMhfuKforIc+7vRx/+evuPiDyvh2OnrB6rtMTk Obc+Xy8cMBaIyfN6GD4wLCwVicnzeoyykc54KBWT5/VYaf4h0qm5mDyvx/11 4ROsWonJ83ocrTkX/6uNmDyvR6vf91d/ai8mz+txQnVCeFpXTJ7X4+bm+4/n dBaT5/Wo7XF6lX43MXlej5F1j3pV6YnJ83poak7Xv+kpJs/rsXt2QLyrkZg8 r8fqI/vfzjERk+f1aPP3xHPjPmLyvB6he+1CVP3E5Dm3/t/GxkUNEJPn9ehc Ia+/ZiEmz+vR+mdS3y1WYvK8HrYjN2wbZy0mz+vhqmfxretwMXlej+PGgZaK EWLynNuPjfOCom3F5Hk9cva/HOE/Rkye16PuxNjcQ+PF5Dm3nhYuXgsniclz bv/cVy+2niImz+sRb93NRneamDyvx8NJ2wfUzxCT5/XYs+KAdfJsMXnOnSfj t/NezROT5/UwmP7ozOUFYvK8HpNDkjL2LxaT5/VYNOcZli0Tk+fc8/SNfDdu pZg8r0fWEq+Z/daIyfN6XO59jaezXkye18M0bdG33xvF5Hk91icseFSyWUye qxDiqfswfquYPFfB7EbbiPc7xOS5Cj43vmse7BaT5yrEjYmZdGWfmDxXwXuK x+uTB8TkuQo5Zy6P3ntYTJ6rEF++vnLDMTF5rkL5dJdni13F5LkK4rBNl2ec EpPnKhwce+v6+NNi8lwFc1lAuI2HmDxXwau0UTLovJg8VyFiRr/N/S6KyXMV Tq8Iqje+LCbPVdg6u7mf/jUxec4977rwDd18xeS5CttL5s7vfFNMnquwo7Pd xo53xOS5Cqtm9LypGyAmz1V4nbfwl+4DMXmuQmDXA/s6PRKT5ypMnyfp0fWJ mDznrl/mXK73XEyeq3DXYFmG4Ssxec493zxLuWmwmDxXoXnSHnPzd2LyXIXv Bc8uD/0oJs9VuB+5sveYcDF5roJDaMt8+89i8lyFlgLLT/OjxOS5Civfz4ld Ey0mz1WY2F4j2vlDTJ6rUNPdZ+3xeDF5rsKTik9KryQxea6C1j7Zo7upYvJc hUkf7l4IzhCT5ypkXV1993u2mDxX4UdBUElBnpg8V6FgnmROQ6GYPFdh9f1q WZtSMXmugu72ovemFWLyXIXG4Y7BY6rF5LkKC3dqFy+pE5PnKjjuHTZqv0JM nquw1O3Ij8sqMXmuQo/4pWdeN4jJcxUGL5p7MPW3mDxXwV+v5KamUUyeqxBc 46HpIpCQ5yqUHk86OlIsIc+5/b9v0KiV2hLyXIWukwYOOtVCQp6rMHnixEVP WkvIcxVOPPodnNZOQp6rcMTtuz1fV0Keq8CPGdbJrLOEPFfhs3VE5/ndJOS5 CuO3lM907SEhz7n9Xm4a8cJAQp5zny8Xbi4ylpDnKuwNbJjewVRCnnP30/qE 44R+EvJcBWVh34h9AyTkuRp7Pq+ZE2QhIc/VsOnxqmexlYQ8VyOj72XTbkMl 5LkaFQo3x9k2EvJcjYQpLWrOQEKeq+GeeuVh1GgJea7GjsYnd4XjJeS5Gh0b fuSOmiQhz9X4Fbpl3uEpEvJcjTVd2rcKnSYhz9WwPGsh5M2SkOdqnF9vN2zM XAl5rkb2u/QnrvMl5LkaCxfMXxe9SEKeq9E+edzytssk5LkaHoe6+DislJDn agRtmNn55hoJea7G1lXr0ivWS8hzNT6qUrKsHCXkuRrD1nQyOrpFQp6rIX16 Nyh2u4Q8V+PWmV+H9HZLyHM1fNd7Xty8T0Keq+GyLqfu4wEJea7GlRVLzrc7 IiHP1XhQeHLfmuMS8lyNUtOU+29PSMhzNe4bfdBv5y4hz9Ww2/4md/1ZCXmu xs+VNqXh5yTkOfd58tAh3S9KyHM1rCPfxe+5LCHP1Xhodfdl8jUJec7dz3BF oaWfhDxX4+2hzosv3JKQ52pcnX62p9JfQp6r4Xj7i/nc+xLyXA15uyFngwMl 5LkaE3JmDdF7IiHP1fhW6ml2/LmEPFdD/Xz51spXEvJcjTHrhgpmh0jIczX4 39wK37+XkOdqjB8R1c40TEKeq/Hp08pzFyMk5LkaL3/9WCqIkpDnanzR239w W7SEPFdDqZVeXfBDQp6rcaj1/MezEyTkObefp20MjUyWkOdqbFlyyMgmXUKe q1HgKMx8miUhz9UIHLe+qHeehDzn9seobqNuFkrIczXSprrLupRKyHM1AmoM VRcrJOS5Gt7ms6a1q5GQ52oseOPyx0MmIc/V2PzMhNe6XkKeq9E6+84CD42E PFdjxNF1zdr+lpDnanzYnd3Gq1FCnmvQU2/z5k4CKXmuQdTS44a+Yil5rkFt 0KmBxs2k5LkGIdqlFx+1lJLnGoysFc4e0lZKnmtwZZ3dxnAdKXmuwR++QdbU TlLyXIPo2Nq7WV2l5LkGd1d2jdnYQ0qea3A+udmU3wZS8lyDFh8MTc72kpLn GpgNjl7cs4+UPOfuN2V13UszKXmuwYXX83LtzKXkuQZTNgv7Fg6Skuca5LWM TdxvLSXPNbhu3CWjg42UPNdgSeiEkU8hJc81eL8yWGvqGCl5rsGk1nE9q8ZL yXMNPg6vuuk+WUqea2Cb4Xik31Qpea6B16wXoT9mSMlzDdad0Fu2bY6UPNfA I7rZso7zpeS5BvaVKaHvF0nJcw18euUdXb1MSp5rsN/82N1Wq6TkObf+lt36 Ba+VkucaZH4W66zeKCXPNRhff31JOycpea7Bl5E2LcK2SclzDaZ7Du++dZeU PNegYkL9OYN9UvJcA7Fl+IbkA1LyXIOqMz8DTh2RkucaGAhUk+AiJc81SHnQ fIbqpJQ818Cu2fn3j09LyXPu+drneqzzlJLnGgQYTowy9JKS5xpcEhqszbsk Jc81mFoRusn3mpQ812DT9j3pi/2k5LkGR+9de6R3W0qea3D5l3N53l0pea7B qwmbz9x5ICXPNXCMC72y/rGUPNdg46jPrQY+k5LnGkgfR1epX0rJcw1yPQ0H hQVLyXMNVkd3LXZ/LyXPNTjlz9dyCJOS59zzfTd2Mf4sJc812DI3YYcySkqe a9A6ZHZsRIyUPNdgZorGyztOSp5roFuj/WV9kpQ81+DGvYQVI9Ok5Dm3Hm2v b9TJkpLnGky79CyvMldKnmuwqOWi8IhCKXmuwZ77+W38SqXkeQOChO4x+yql 5HkD0rr41c+rlZLnDVg2edXpwQoped4Andn653TVUvK8ARULuJT4KSXPG5BR 6Fmc8VdKnjfgYfJ3q498bfK8AXF72tXfEWuT5w2w3X3T8HQzbfK8AXOy3oXt aKVNnjcgUOdu7JJ22uR5A1rVXLefrKtNnjdg+qWi4UO6aJPnDRh3I/iqsZ42 ec59fsPCDR0MtMnzBujWaz8U99ImzxtQM5a3uMFUmzxvwOLfBw9Xm2mT5w2Y 5fGxQ6G5NnneAOeEv90yrLTJ8waM+bXbO2GoNnnOrZ/f6qMxI7TJ8wYMfs3L jxylTZ43oM8Vl2cR47TJ8was+WuqDp+kTZ434JSWSVC4vTZ53oChXV5kfJqh TZ43YJCJdN+XOdrkeQMcV80/822+NnneAMMt2Tpxi7XJ8wYIJn9tk7pcmzxv wIRZM47krtYmzxuQM/X+mvL12uR5A84uF4YpHbXJ8wbot7voydumTZ434Nyk M8mtd2mT5w2wnqXn2WOfNnneAF72ntCBB7Vt/w9HjB69 "]]}, "Charting`Private`Tag#1"]}}, <| "HighlightElements" -> <| "Label" -> {"XYLabel"}, "Ball" -> {"IndicatedBall"}|>, "LayoutOptions" -> <| "PanelPlotLayout" -> <||>, "PlotRange" -> {{0, 1.6}, {1.934115470166513, 3.1866164242634345`}}, "Frame" -> {{True, True}, {True, True}}, "AxesOrigin" -> {0, 1.934115470166513}, "ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True}, "LabelStyle" -> {FontFamily -> "Times", GrayLevel[0], FontSize -> 12}, "AspectRatio" -> GoldenRatio^(-1), "DefaultStyle" -> { Directive[ PointSize[0.0055000000000000005`], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[2]]}, "HighlightLabelingFunctions" -> <| "CoordinatesToolOptions" -> Identity, "ScalingFunctions" -> {{Identity, Identity}, { Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>, "Meta" -> <| "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> ListPlot, "GroupHighlight" -> False|>|>, "DynamicHighlight"]], {{}, {}}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 1.934115470166513}, DisplayFunction->Identity, Frame->{{True, True}, {True, True}}, FrameLabel->{{None, None}, {None, None}}, FrameStyle->GrayLevel[0], FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], LabelStyle->{FontFamily -> "Times", GrayLevel[0], FontSize -> 12}, Method->{ "AxisPadding" -> Scaled[0.02], "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "DefaultPlotStyle" -> { Directive[ RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[2]], Directive[ RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[2]], Directive[ RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[2]], Directive[ RGBColor[0.922526, 0.385626, 0.209179], AbsoluteThickness[2]], Directive[ RGBColor[0.528488, 0.470624, 0.701351], AbsoluteThickness[2]], Directive[ RGBColor[0.772079, 0.431554, 0.102387], AbsoluteThickness[2]], Directive[ RGBColor[0.363898, 0.618501, 0.782349], AbsoluteThickness[2]], Directive[ RGBColor[1, 0.75, 0], AbsoluteThickness[2]], Directive[ RGBColor[0.647624, 0.37816, 0.614037], AbsoluteThickness[2]], Directive[ RGBColor[0.571589, 0.586483, 0.], AbsoluteThickness[2]], Directive[ RGBColor[0.915, 0.3325, 0.2125], AbsoluteThickness[2]], Directive[ RGBColor[0.40082222609352647`, 0.5220066643438841, 0.85], AbsoluteThickness[2]], Directive[ RGBColor[0.9728288904374106, 0.621644452187053, 0.07336199581899142], AbsoluteThickness[2]], Directive[ RGBColor[0.736782672705901, 0.358, 0.5030266573755369], AbsoluteThickness[2]], Directive[ RGBColor[0.28026441037696703`, 0.715, 0.4292089322474965], AbsoluteThickness[2]]}, "DomainPadding" -> Scaled[0.02], "PointSizeFunction" -> "SmallPointSize", "RangePadding" -> Scaled[0.05], "OptimizePlotMarkers" -> True, "IncludeHighlighting" -> "CurrentPoint", "HighlightStyle" -> Automatic, "OptimizePlotMarkers" -> True, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& )}}, PlotRange->{{0, 1.6}, {1.934115470166513, 3.1866164242634345`}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{3.909043955430275*^9, 3.909046701012884*^9, 3.915533054748672*^9, 3.915772001814284*^9, 3.916380445982705*^9, 3.9163872507924776`*^9}, CellLabel-> "Out[241]=",ExpressionUUID->"471fcd6b-1223-49d9-962f-85e668fab430"] }, Open ]], Cell[BoxData[ GraphicsBox[{{}, {RGBColor[0.368417, 0.506779, 0.709798], PointSize[0.0055000000000000005`], AbsoluteThickness[1.6], PointBox[CompressedData[" 1:eJxd12VYVN3bBXDO9CCCgmIrJgZ2oKIuRMEERVHswG5Fxe5W7G7FDmxRQhFB UBqkQ7prkhnEeI889/5/ePnidV+DZ845e+/1W7R1WzNpkcDAwGCgxMDg37/b Gj0blbN1P358fSlpZGBg+/9nvzFGgm6HDqK38QSbpvz8c+fygA1nD2O5mUdS S34e9Oarx8ebR1GvsWVKW37eUtKpt+ypJzJd3Gwt+fl96wNlzu9PoKRZZ5Pu /PzrkTLe0e0UdrzYPLIvP18LsXjhvvQ0rJa7ZA/iZ5usCccvrj6DiOv+ubb8 nF5T94VY/+DZuNH/u79z2F/cvcVEfm7RM7ODZM953Aob5Dztf/d7Ac9exFfM 4+cZC+uuiLRGNYpl/7v/Szi33HvGen6+crnuB2e7K7ru+N/zXEHcj6D5h/g5 NVo3Oe/eVZwStf97+n/Pdw1TuzYSXufnZqKpxt1fXUdV9vlVD//3vDew+uPD YW/4edp/F0S3OY4en/73/LcQOm9/oyh+Hm99ZPi8glvotNKpWdr/3sdtbOr2 dH8RP5c7/7vibfSacGOq9n/vxwv1j3c8KeQMbI+tLKp9pPSC2S27HqYce193 cHJ0dd+2/NztkDn/CHfQZPzwW7049v7u4vDGDutt+Tnitr2P+vdd1D9/6+lE jr3Pe2i022f8fH7+97aaiu5jZsMlk9059n7vo6jz60/7+Nkw+c7aoYYPIHt6 9dx5jr3vB5hxoG3MA35+/O9xGzxE8F37tX4ce/8P4fFXtjmKn8f+u5z5IyhO rizM5th6PMLfKev8Nfxc97pbPobv1KY6mYCtz2Psu+Z2uRU//3t7se2ewNTa 2auPgK3XEyyxKWg4mp+7zDr5Wdv5KeKD2xTPFrD1ewplFddxAz9/46/WvKc3 3uR7fj0qYOvpjRmRQfG3+Xnp6Yrt6P8M7km3R/gK2Po+Q6Z1jxZx/MzfHP/I zxHZden0EgFb7+cIrpz4hxMa2Lrwm4dfUlz+WiJvIWTr/wIegn7b+/HzXf7t Jd95gdSyXlOchGw/vMDp1JxzS/lZ8zthc0mnlwjtONpmn5Dtj5dQ9Fw0+gY/ j6zbAC+RO2twgK+Q7ZeX+Gz+7UIiP/OL9++BUD/KNEUpZPvnFa5omu42FhnY /nd7r3Bemnmim4jtp1c4cGCeaAw/9637eY3R6rvZi0Vsf71Gs/Qn7Q/w875P 4fwOeo1jkR5Rd0Rsv73G8VnSH5/5+Tu/+vw7wfKOc6fkitj+e4Nvobv6CsQG tu3rLvgGzwuWb24nZvvxDXZateswgp/X1y3AW+jHPhiwUMz251vYVNc+P8DP wdrO/Aq/xbfitqceiNl+9cHe3ObJ3/jZ9L8bxIOHxfvLxWz/+iBTfPyyicTA tu7uvvqgW7i8cV8J28/vUBs+TzeVn19dr3oQOu4dWuSdtd0mYfv7HT6p7ipu 8rOg7oHfYV/WeekXCdvv77Ho3NIDpfw86b8Ng0iuzfIGUrb/3+NIK/+3A/jZ 69/jJrxHQu6wpbOl7Dz4wnnS0z37+Vn173LTfGHkLhY8lbLz4YudjuNLvvOz 3b/tn+4LT+1e619Sdl78cGT3k/IOMgPbuu07xw/9Db/KnGTs/Pgh8HXasU38 nLP134L4IfROwcbbMnae/DFdUhYawc+96za4P2qNKnZWy9j58seNyorrbeUG tnvOj+C3jD8eFVW1d5Sz8xaAmkHaBlv4Oa5d3QIj08pg0T05O38BaFXfzCKe n9v+S/+KAFRb9bL7K2fn8QNa50+PsDI0sF3373is/YAvJ8/4zzBk5/MDzp3J MD3Cz0H/Vlf9Ac9cBse9M2Tn9SPejHhWXcjPDf47kAiJH7zPvB47vx+xaWuu hwM/172+mo8off8gzqMeO8+BeNvw+NkH/Fx3e9sDoa1/PiClHjvfgRg15PN4 QyMDnqh/P58Q2avJyCFG7Lx/QpcDF7xW8/PD0HH8if6Eoyl2S28bsfP/Cbdi Wp9P4OeJ/Gnk9yi8GnXvIqvP8uATJruu7TCEn/X/9An5hD/jyw6urc/y4RM2 v7g18R4/32r+70AEoaPd2T1p9VleBEET9qVZA2MD29F1CxwEt/o2zRyMWX4E YUeedtd2flY8+HeDQci3qHF8bczyJAhfbo/aV8rPl/7dXTj/+aj8Nu1MWL4E 4fLPuPYz+Pnf5hpj9Bmx981OnjFhefMZRng6P4Kf/6VJvONnLPO/cVXUgOXP Z1xvVjlkGD//2y38loF21nX7zQ1YHn3GrBPP377i57rHjf2MmQGWxysasHz6 jCa1ssjODQ1s6y5nGoypC6e6L2zI8ioYO5uY7b7Fz3VxNDkYFwbZaTMasvwK hqO2MK6ZqYHtf/UhGMqtInNXU5ZnwdhicCPoHD/XxUFyMPYH+STEm7J8C8b0 v84TGpoZ2O6qC5wQFBus7z3RjOVdCGJMW207yc+WdQcoBK6HJlvFmLH8C8Em n2b2Jo0MbGPq6kUIUn+7f5nQiOVhCBI+uXmf4udN/45DZgjWLy3/FdeI5SP/ /xeYvTFrbGDb5t92bv0FLp3S46c0Znn5BQO6jZp+iZ/D/m2/eV/AqWaMSm/M 8vMLJhk0v97a3MB2TV1AfsH+nEMz3MxZnn7B004Pd93n5yZ1B/4LbizeaVRm zvI1FIqhxlyvJga2dbfXIRTVTjNnb2zC8jYU34Yva+vPz4vrfkIxKsTGkWvK 8jcUDY8mZY/i53/liU9YnB0/NONEU5bHoeAi1iOJn/+l4+aSUEwP32HYuhnL 5zAsajx36GJ+nlN3wTAEbm+R8qwZy+swRCf5pOn4WVIXUGGI+tvPfnhzlt9h CEu93OQYP/9bjUbPwnB9fIlzYnOW52GQOFhq2rQwsK1rd1VhOOPr+md5C5bv X/Hg1s61Pvz8599x6/0VR37eHCtoyfL+K98fAj2d+Pn+v+3s/hXmbXMHXG3J 8v8rbsjrjSnmZ6f/Hhivrg0L7t+KefAVNdW77+3j5+p/y6H9itrBSVVxrZgP 39DttJ2XRWsD2xv/Htf6G/IswwPWtGZefMPyvusQyM8OdS/wG1QVNl1N2jA/ vuHqxR475vJzZR0P37DJw3HgizbMk284knRtJmdhYHvhX7zXfsNXeduiSRbM l3C0W/oj7S4/18Xz0HBsnZA6QGfBvAnHi/bmtWPaGtjWxevOcFxzumx5vS3z JxxNbJcEKPj5v/gLR/Wq/b4j2zGPwtHQRdv6Mj/XxYsgAsM3fCyvaMd8isDS qfntRrQ3sK07viMisPzwiqBL7ZlXERh4Y9rXSn6uOx4HIhDZ+4W1fQfmVwR6 5HmYXOPn/7ZfBNynvZyg7sA8i0DQ0IX6sR0NbBP/La8sEi725+R3OjLfIrHV 0mFfLT/vqAvASFz22rnIpRPzLhK9t9m98ObnjnUbMBJp2y4skFoy/yIxfuOu XfP5OSqy7gdzhglEAZbMw0jI3rRXmnc2sN1YF6hRWOhb7ODemfkYhbfWU8XR /NyqbkNHYX7rdVZduzAvo/DbbVjAQX7+UvfnVRQcuOA3eV2Yn1HoWis0H97V wHZVXUBH4cs0SfaNrszTKCztHGP6m5/r4qpRNC7sXPBsZjfmazTqe3x95cfP dXEwNRqBPYUWza2Yt9H4Ed+0egs///fnVzSSPY37p1kxf6Mx/XRJxuDuBrZG /x04uDR/XnG1O/M4Gr+XLFzym5/rtkvzGER/Mh47twfzOQYn1r0+H8TPdcsx Kwbjo1zHdujJvI7Bku7c0kP8/N+fZzE4rnxTWdqT+R2DwF2bfzj1MrCtu1xW DCaNdLZ+3Yt5HgvNy5E1TXqz8x6LJ8OnddjRm/kei3T30+9ze7PzHwv7CO3b 0X2Y97Gol3y05fM+LA9i8abz1PLGfZn/seg6fXbHHX1ZPsTis/R+WH5f1gdi MSSt//fx/Vhe8J9vNx39th/rB7FQ3x7eqXV/lh/8/Qi+rTrUn/WFWPyd86y1 sj/Lk1hM364bOHMA6w+xmGv5OODLAJYvseD6Rj7qZc36RBxebV5gcM2a5U0c 3FI2fpIOZP0iDscGykvXD2T5E4cuB9vvyB7I+kYcQt6Eb3EcxPIoDus+irL9 BrH+EYf4O8nPOw9m+RSHVivHlFwYzPpIHJp3nOcptmF5FYdueW0vb7Bh/SQO Y4LOmeTbsPyKQ72cj1WTh7C+Eof7y+8PChnC8iwOWk/nin5DWX+Jg/uOUMP7 Q1m+xWHE5npnmgxjfSYe1p867TsyjOVdPCJutP5RO4z1m3h0XVjjtRos/+LR b8mHuBywvhOPneJ1y6fYsjyMx9Q7zVd9s2X9Jx6hTz6lDh3O8jEe508te/Fq OOtD8Rgf3kJpacfyMh6DUjKvXrdj/Sge62x9XpiNYPkZj/iTT3oeHcH6UjwM Z4Q05UayPI3H2UHSlZtHsv4Ujw8xW7soRrJ8/Y7nIR2dl9qzPvUdi8OM87Lt Wd5+x8fjQ7KmO7B+9R1rE97af3dg+fsdLebuMXccxfrWd0B/zzlsFMvj7xi9 rqtu+GjWv77D06ux9MNols/fMXHF6j0Dx7A+9h3hL20WvxnD8vo7Oi/Y/7bX WNbPvuPE+glrvMey/Oa//8eds13Hsb72HZV3D7d7OI7l+Xd0iRO17DSe9bfv qHJvs/vueJbvCVh7O8upvSPrcwko3Dr+sJcjy/sEXOywyqqdE+t3CcgJH23j 5cTyPwF9bhe+aTeB9b0ENMp1vHxnAvMgAVYxB4o7TGT9LwG2L8973Z/IfEiA dcr+sM7OrA8moM3VGa5PnJkXCeg9rfWkHpNYP0xA/Ibkdy8nMT8ScGH28cP9 J7O+mIAxB0eF+E5mniSgdFn9FcNcWH9MwLujhduDXZgviejqnlYzegrrk4kw eKnIiZ7CvEnE4Kxe/adMZf0yER2ueanTpzJ/EuF6wrHVAlfWNxPht2DQq1JX 5lEijsSteuU+jfXPREw/p2pVO435lAjztTGafdNZH02ESS8j6/ozmFeJUN9/ kX9hBuuniUh5FvLbYibzKxFDu0zc+2Qm66uJaPB3hvuAWcyzRHhbVEQFzWL9 NQmlB4zPO85mviWhQY+wsNTZrM8mobhNm8WL5zDvkhCwrPVa9RzWb5MwrW1U we65zL8kmCzsG2Y8j/XdJARPnd7o+jzmYRIKOo6K6jaf9d8keIjFKr/5zMck mPW+unesG+vDSVCVNdyV5sa85O9n97qi5QtYP07CGrvP/rULmJ9JeHDU6Jfn QtaXkzDTf9rD1ouYp0mQDHv+6cUi1p+Tkbyvqf2IxczXZLwUX++ftJj16WQM GGl/ZtkS5m0yQsOazfy9hPXrZBywaH/q9FLmbzLmFC7r3WkZ69vJkPpWD/Nf xjxOhtw2/v3E5ax/J+NDV/HNwuXM52RM73VJuX0F6+PJKDM598JsJfM6GYtO cRmPV7J+noxru0vW261ifidjwjuXzWmrWF9PRjez8SXuq5nnKYjZmhJabw3z PAWxGYKG99Ywz1Pg3zMhbNha5nkK2rpPKUtZyzxPwenHJ7etX8c8T8G9omOb jd2Z5ykQ2k7OfeTOPE/B3PjK9/brmecpOPBlya+c9czzFEwfHfZ05wbmeQoy TpuHt9jIPE9Bv5w5Lr4bmecpeLrj0ThXD+Y5f78+f59rPZjnKZDnL99zbhPz PAXuizSBfTczz1NR7869Fd83M89T0bn+4f3rtzDPUzG35T3DRluZ56k44Sz5 82Yr8zwVWf3fzpm6jXmeiogZ/lb6bczzVLSf0W7ple3M81Q0TFI3GLqDeZ6K 1lsGWWbvYJ6nYmD1r8f7djLPU/FWNvqa5S7meSpcN3SojdjFPE/FFPG1sLW7 meepmHXqPWe+h3meivOqfY/89zDPU/G4oSxw/l7meRqi0p3sZPuY52nwHeXW 9/k+5nka/FzGn5m6n3mehpeGTeb+2c88T0PTrZGX7x9gnqfBMMDDbsJB5nka 7FVtpusPMs/T0GdUfObtQ8zzNBRUXIwdd5h5noZu7bb1rj7MPE/D/s4HDW4f YZ6noa9T8NDxR5nnaRhSMqREd5R5nobl034L7h5jnqdhhtDk2ERP5nk6Ns3Y vue3J/M8HbLkCYWPjzPP09Gr9qzvtBPM83TonCfXSk4yz9Mxds2lJ29PMs/5 /69YFb7wFPM8HX+3/HBtdJp5no6f/prJIaeZ5+n4uMr/44YzzPN0NJ049FLH s8zzdKRZHchOOss8T0dR0vWLh88xz9Nh3fXMh8Hnmef879dbNaniPPM8HYLl g6beusA8T4dwiODb5IvM8wzM2Rv/WHqJeZ6BEIe3tf6XmOcZaHXtrf/ay8zz DHje+FHa8QrzPAMe622OpF9hnmfg8JjkC6evMs8zEDDtg9noa8zzDMzN1f/9 c415noGmvc/P9LnOPM9A+aXrnVbfYJ5nwH5Tq/mdbjLPM6DvY1Ev6ybzPAPj h7zscOkW8zwDv40yvJ1vM88zMLLz0/v1vJjnGfjRvLtJqBfzPBMNty0v2n2H eZ6Jl8Vreg65yzzPhGX9MUW6u8zzTGy5ypm8ucc8z4TjxHv3195nnmdCqcSz 7g+Y55lwm5jZsewB8zwTE+yP1H/0kHmeiQ5vJixa8oh5ngmjo0O6d3rMPM/E zw8zFxU8Zp5n4sVE3/r3njDPMxE4fn6nRU+Z55m4HDr3eUdv5nkmjmV8eljo zTz/gSifU6YPnzHPf2D/ofTyZc+Z5z8QdtTb2uoF8/wHnkjM1JUvmOc/4DCu aZtXL5nnP/Dm1Tf/ja+Y5z/Q9nbfb4NeM89/IHa/26g/r5nnP9A6yW1A8Bvm +Q8cazL8wuG3zPMf+JwoX+Lkwzz/gesPvj1s9I55/gM9exyfmf6Oec7fb6P5 u7zeM89/4FeDSY2W+zLPf+Bp7srmffyY51kwdvl4+qcf8zwLzwZN3hrszzzP wnb3gQmeAczzLEQVbb059QPzPAtLjltmWHxknmfh0PxxR8s+Ms+zkL9S/cgn kHmeBf/PVjZ7PzHPs5C0WzTMKYh5noVTMYdeNf/MPM/Cj5zgS0WfmedZcNV+ UbwJZp5nYdCkq357Q5jnWdg4zrl64hfmeRZeDtPeaRPKPM/GpHPngitD2XnP xr7AIVM+hjHfszFsWO20E1/Z+c+G8+XM6DnfmPfZWLJQ6dMznOVBNkyGjWzI RTD/s/ElJi8zPoLlQzZ0UZkt70WyPpANYz2iN0WxvMjGlqZNVWOjWT/Ihrdo w+HWMSw/stH/+vzTqhjWF7LxNqrSKCyW5Uk21J5daq/Gsf6QjeyMNrPWxbN8 ycbV8Kyeo76zPsE/7+pNHq0SWN5ko2+5pqcmgfWLbJx1XzwrIpHlTzYybdJq vZJY38iG1/E5xtuSWR5lI+U9d25yCusf2fjRLN7TKpXlUzYONP2hF6exPpKN Zp37pWSlsbzKxrKw3K5+6ayfZCN2t15xLoPlVzYGl+7rujaT9ZVs9Ll3Nnnc D5Zn2cibM0BvmcX6Sza6xm71FGWzfMvGuQ9rzuVksz6Tg7W69g0Cc1je5SB2 +v2/13JZv8nBxUjxgm15LP9ysHOE8+AZ+azv5KDNx4sHBhWwPMzB71HFI5sV sv6Tg6N65801hSwfc2CtzmuTVsT6UA42LvG28S9meZmDT6c+RFwrYf0oB099 2sfuLGX5mYNiq6rR88tYX8qB4+SeA0aWszzNQc559UXLCtafcpC3ctzqepUs X3OQNMvBt6qS9akcHKxWb06oYnmbg8bJC7x9Faxf5YB7eG/qTSXL3xz0avNt wwEV61s50P3JlK5UszzOQUdzjclkDetfOahn2+L4YC3L5xwcWrhgV7tq1sdy YLQ5o9BQx/I6B97bLgSrdayf5aDDjtuNM/Usv3OQdaF+ZmgN62s5kCpKm738 yfKcf98BYyKv1rL+loNOQwdrDv5i+Z4L98DI0+6/WZ/LRfH1hvfm/GF5n4tK NOsx7i/rd7nIbqaxGmjAUf7nooX3q9sdOY76Xi6khxd5mgk48iAXbRxaVXBC jvpfLv6cLA1W8PN/PuRiSYsfDbJFHPXBXEx8IkuIEXPkRS5KTLbV/yThqB/m 4lknhw8vpBz5kYtlaVvzbss46ou5GN6+6+6zco48yUWQZNHZA4Yc9Uf+eheH tNpcjyNfctFTF9RqhRFHfTIXpydJzs+pz5E3ubhR0HzfJGOO+mUudtY0KHYw 4cifXPzOrwm2acBR38zFVaMi894NOfIoFydzS7I7mXLUP3ORXGjWrpUZRz7x 9/vAI82sEUd9NBebAtsb1mvMkVe5kKdavRSYc9RPc7H5yZ2Yn/z8n1+5sP11 eZG6CUd9NReFN9quL2/KkWe54DaO1xc046i/5sF+tZU2qzlHvuXh5OHvy9Ja cNRn86CMmTw1sSVH3uUhYE6gX2wrjvptHo7O7nwxsjVH/uXBSXi77Gsbjvpu Hmaet3n/xYIjD/PgvsTw9+e2HPXfPP7vhTZ+n9px5GMeui44UfWxPUd9OA/J 25de/9CBIy/zEOjzKTigI0f9OA/rvR+5BXTiyM88DDIasDXAkqO+nIfGxzcb fujMkad5SNXvM/vYhaP+nAcryxXnA7ty5GseLv+xPRXUjaM+nYdrG5qKQqw4 8jYPj4+LlKHdOerXebCb3dQ1vAdH/uZBJ14yILonR307D9t9hSfje3HkcR5e vefmJ/fmqH/z8+QNTzP6cORzHjJKVq/L7ctRH89DXonoRXE/jrzOQ1LcmKVV /Tnq53no19P5SvUAjvzm1+tGD4c/1hz19TwcjtKukAziyPN8SDb51TMZzJHn +TBfcqpjUxuOPM+HyZZjvm2HcOR5PoSXAsO6DeXI83x8/Wg7ccAwjjznr6dv N3k4OPI8H2PmbI0db8uR5/mQtpz5ddpwjjzPx5sVqYMX2XHkOX+9i/LO7iM4 8jwfST//ntw1kiPP83Hyb6z7cXuOPM9HqsXp2KsOHHnO/36Jy6PHozjyPB9q ba/fvqM58jwfNYpBkd/GcOR5Pppd3G+eNpYjz/NR/aZjRuk4jjzPh69ln1a/ xnPkeT5aZH5Mre/Ekef58Pie3dBiAkee5yO2mfeXPhM58jwfpTEDtfbOHHme j4mdLt+aPokjz/OxZE5e2KrJHHmej83hViv2unDkeT6Co44evTiFI8/z+f5t 2sl7Kkee56P99rShwa4cec6vzwhdXOo0jjzPR3TKzlzFdI48z8fS6oNrZDM5 8rwAfxd13GIxiyPPC2AhXPt34GyOPC9AkN92waQ5HHlegEnH5u9dMZcjzwsQ sb/frgPzOPK8AIFf69XcnM+R5wVYfPR3lZ8bR54X4JmxxcKkBRx5XgDHp0em qBZy5HkBoiImhhgv5sjzAtwoOvai2xKOPC9AB0/n5mOWcuR5AcJc33NLlnHk eQFEtUmLDyznyPMCbBsYMubuCo485583/8Lj4JUceV6Ah0WLjuSt4sjzAuQM Gl0oXMOR5wXYXOQS1GEtR54X4IXxneYO6zjyvAATsseolrhz5Dn/+c15o4+u 58jzAiR4/WnpvYEjzwuwdpLN2tiNHHlegD9dethpPDjyvABx7yrPNN3Mkef8 elw/5zZ0C0eeF6DlCeuXbls58px/HueqnYe3ceQ5/3nw94hn2znyvADK6F8X E3dw5HkhBnjszfu1kyPPC6GO3P6sw26OPC/EsZ/CmvF7OPK8EAmDegVv3Ms8 L0S71Gb1b+5jnhdi9uDUpK/7meeFaPD9oIX6APO8ENusbEpbHWKeF+JBnnG/ MYeZ54XweNT8z4YjzPNCvLbbNPr2UeZ5ITofHmoWfYx5Xoiniw/OqfVknhdi cNbyrl1OMM8L8Vsi2uR6knleiKXSFSMPnmKeF8Khte+Zt6eZ54UIvy51KzjD POfvr3zNq8bnmOeFaHOw3n6H88zzQjT+qU7adIF5zr+PCrsnjy4yz/n/39SU y7jEPC9EzthtKcZXmOeFqF18qbfdVeZ5ISwW7TPyuMY8L+T7xdRlj68zzwvh 49xtdNYN5nkh+l5p+ajRLeY5f73NIz3H3maeF2LBxA/K3V7M8yIMuHQ79d0d 5nkRwjPrjay6yzwvgmmIeW/L+8zzIrwWZt6a+4B5XoRmK7acvfSQeV6Ewz8k 8vhHzPMi9J92izN6wjwvwpTieTscnjLPi2D9dsH2Pd7M8yJMrg3+E/CMeV4E t/rXRTXPmedF2OBieKL/S+Z5EbiJllfdXzHPi2BwwcTqxWvmeRF+xf+wrXzD PC9C1/AXqVY+zPMibJ9yu3rFO+Z5Ed4virz45D3zvAjHBU4fynyZ50V4MNZu iZU/87wI39Z/Ob8qgHlehMxw9ejnH5jnRTB+U7Jb+ZF5XoSMx8FD+31inheh n92NXZuCmOdF2NfhgoP/Z+Z5EaLNvp75G8w857+vZOLCkV+Y50Uov+jofySU eV6EY5bpF2PCmOf8577mPxt/Y54XY9bhVrmzwpnnxRibbzTxbgTzvBjTrQUj yyOZ58XYJmzxsV8087wYkrwNH3fEMM+LEXW4u31YLPO8GAM+uU1qGM88L8ak VX0KZ35nnhfzf0/7GTxIYJ4XI6xfMy9VIvO8GGvOrgwflsw8L8ZZRfyWYynM 82IYeC9/kZLKPC9GgN2k1Z3SmefFsLB/+HpDBvO8GIp5x3YHZzLPi7F+VvNE 0yzmeTE8m2x46ZbNPC9G4rF3jV/nMM+L8TpSKBDlMc+LsUG62WNKPvO8GAv3 9V3/oIB5XozS21P0NYXM82Jc//Fb7FjMPC/Ggphx126VMM+Lsb/DXH9NKfO8 GOEPXReMKWeeF+PC8CnnblQwz4vxp3KTk6aSeV6MvIis02MVzPNi1Df2nnNb yTwvxiiJwVu9inlegk0WNecmapjnJfDLe//noZZ5XoLtqrkqTsc8L8FFQ5O1 M/XM8xKsFBdtelvDPC/Br2SZYYNa5nkJJGfPd1rxi3legvYLnkWF/maelyDj 1Ia/7f4yz0sQuVsesMtAQJ6XwPf1CWEmJyDPS/A8tGPSYKGAPC9Bq/WKvpdF AvK8BMoTDVrpxQLyvARvjR6edpUKyPMSPKhNOf1OJiDPS5B56EurpoYC8rwE s36e7L+lnoA8L0F/3xmpaUYC8rwE90eNlg81FpDnJejtsO3LTRMBeV6CD+7m xsKGAvK8BD4Ph+QtNhWQ5yVol9PAPsJMQJ6XIKyPT99ejQXkeQlGxk94ft5c QJ7z1zfl3tc2EZDnJbBZUOHo1kxAnvO/7zJw3bfmAvK8BHvOiNv1bikgz0tw oWTzvMutBOR5KXxH+FgJ2gjI81JEPco5uMJCQJ6XYs+INmsS2wrI81Kscz1b gPYC8rwUI8e5lT7uICDP+f9/58UO804C8rwUncR3bu61FJDnpUjoM2diVWcB eV6KfBPpqVldBeR5Kerf/DwnvJuAPC9FjMAnYGB3AXleijM7JI8f9BCQ56X4 ti61U5NeAvK8FCZuLn0P9RaQ56UYr7wWo+sjIM9LEZubUru0n4A8L8WW5j3e p/UXkOf8/V37LHK0FpDnpRh4MiAncKCAPC+F0tpuQt/BAvK8FK5/tjg+sBGQ 56WoXX40o8VQAXleig+WV36dGiYgz0uh/xvjLbEVkOeluJk9SbF9uIA8L8W8 lDEhajsBeV6KsCYZXVaMFJDnpZiv7NU2z15AnpciM3XN45mjBOR5Kfos/fQl YbSAPC9F4JSx653GCsjzMqzb2f/113EC8rwMBdmPDoxwFJDnZTh2I6b0o5OA PC9DRG107uCJAvK8DF3mxa565ywgz8uwZOqvY/0mC8jzMjz13Db0lYuAPC/D owSPvb2mCsjzMvi1bzLzuauAPC+D0dkDYT2mC8jzMnyZWxb2bIaAPC9Dp7J1 s3rOEpDnZXjpZ3fgxWwBeV4Gp82H7PrMFZDnZVivWnbuzTwBeV6GUS0bbbN2 E5DnZfha/0W13wIBeV4GrXCpFIsE5HkZ78Fi7+DFAvK8DB2fJhaPXiogz8uw 4Uy2b/QyAXleBpfClxZTVgjI8zL8ubmhVcZKAXlehlOZk18sWC0gz8swIG9r atkaAXlehsktGl/esE5AnpfhoblT1W93AXlehu2ezhmHNgjI8zJ8njFunqmH gDwvg/3BJduubxKQ52WIHhzfvcsWAXleDseId5vebhWQ5+UQvBo53W67gDwv x4NT9+JjdgjI83Jc7iXNn71LQJ6X4+/eC8fLdwvI83Lobu2O2bZXQJ6X42OE 6lG9/QLyvBzpK5u3unZAQJ6Xw8G8Y5fuhwTkOX/9vbbRHw8LyPNy9Dl/xcj5 qIA8L8eiGfPz844JyPNy3JUGT9l0XECel+NhbcW8eicF5Hk5vD42kNw6JSDP yzFfMMO+/xkBeV6O3V761hFnBeR5OU7fbXF2/nkBeV6O8QNVt/UXBOR5Od6/ ezLu1CUBeV6OaQ82nep8RUCel2O6z4G1QVcF5Hk5Aj+Ky2dcF5Dn5Tj1xVKo vSEgz8shrG3hc/KWgDwvxzM/U3E3LwF5Xo7Xx4YoQu8IyPNylFmEb1pwT0Ce l6PF9PKrBg8E5Dk/I2HWjYcC8rwccsPXfkMeC8jzcni08nub/kRAnlfgvLyF 0zZvAXlegZXHpPtbPBeQ5xUwOP7SNeCFgDyvwMGO477NfiUgz/n/f1mS+ve1 gDyvgPNM80NebwXkeQW8DL2/278TkOcVmLPx98eS9wLyvALbLg4ec8JPQJ5X wO7qRfe+AczzCuxOHWWT+oF5XoG3qTvv7ApknlfAftLaJ52CmOcV8O48cXL0 Z+Z5BV6tm3TVI4R5XoGz657saxPKPK8Arp00+hbGPOe/73zfAeu/Mc8rYN07 0qB1BPOcf/71J1Z+i2SeV6De6edbNkYzzytgVLWwc7tY5nkFXrbP3xwTxzyv QL9qtxU7vjPPK9BobhMDq0TmeQWcDltbpycxzytwLKqmwbEU5nkFZgWcO26T xjyvwNJG8C5PZ55X4E5Yz7U3MpnnFTj083rSxCzmeSXsRUHZwhzmeSV+r449 8S6XeV4JlU6YsyKfeV6J4JNnky0KmeeVuDHjnXtSEfO8EltfPHjlWcI8r8S4 Vtcvjihjnldi8PzYtrXlzPNKZKzd6vy6knleiZUbEzqtVDDPK/EnsolXRxXz vBL+hjuDs9TM80qY62yPXdEyzyshPXWlZoqOeV6J4fIvxqY1zPNKrIr8GR79 k3leiYVbPHp4/mKeV8Kt0H3Q2D/M80qMsuhWLjMQkueViFqe5vCVE5LnlQiy DRhzWCgkzyth62KkHS0WkueVqDwhGWMoFZLnlehnWmQfKROS55XYZF1adsJQ SJ5XwvXUeJtJRkLyvBJFhWP78Y2QPK9E6dB2yWkmQvK8EsZxJh1uNRSS55Ww bOzcYrGZkDyvxJr37T9YNRaS51UI8Poi15gLyfMqfNZu4AKaCsnzKjjWX3t3 f3MheV6F3bu0KseWQvK8CiatRlY0aS0kz6uwS3nlbG4bIXlehfkjBhV6txWS 51W4cG5OwZb2QvK8Cvu8xp526Cgkz6swffHQUjNLIXleBafGmxQ5nYXkeRUy LAbefdFVSJ5XQWgdJN5tJSTPq7DfbnLjiT2E5HkV2q/o+d2il5A8r0JR44tQ 9RaS51WYWhAxI6SvkDyvgp+vSceL/YXkeRVmv7x7Y7m1kDyvQmTnqLBhg4Tk eRXM/SNumdkIyfMqGNvldSkZIiTPq3A0aeqCwGFC8rwKj2KXOV6wFZLnVaj/ dW7xKjsheV6Fdue293MYKSTPqzBnvKhPGwcheV6Fg6NtcvSjhOR5FUotFtt9 HyMkz6vw9Nm3Kc/GCcnzKoiMnrQ46igkzxXYfm7CucUThHTeFRhS8CtwhLOQ fFdgZKb+RtvJQjr/Cry/fqS3wRQhea9A66PaTVlThZQHCniN3uceOE1I/isw 6/OWtrdmCCkfFDjX3uLAnllC6gMKSDI+XF8wR0h5oUCHm1dWOMwTUj9QYO7C P5Vd3ISUHwosW9K7s/FCIfUFBbZ23t5EvUhIeaLAhZWWH1KWCKk/KJAwdHuz wGVCyhcFbpUFW91fIaQ+oYCo3mjd8VVCyhsFyjwmbfFYI6R+ocDyid1fz10n pPxRQPy33b0x64XUNxRQ99o5od9GIeWRAkvTj7xqs0lI/UOBzMGno+ttEVI+ KTDhe9Yd/VYh9REFTq8N6lO4XUh5pcDhTnu3JewUUj9RYIfz6p3Bu4WUXwrM vBBv83qvkPqKAn9ya1/f2S+kPFPAY7V10bmDQuov/Pf5xicePCykfFPgx/EW u7ccFVKfUWCfwbzClZ5CyjsFNGsqZfNPCKnfKHDwQOPiKaeElH8KbOjfYf+4 M0LqOwp0DVyWOfyckPKQv3/v/pqBF4TUfxTol5z8tdcllo8KpM+5NbPLFSH1 IX7/vc562u4ay0sF3p4qDGh5Q0j9iN8ff8WeTW6x/FSgrcvJ5mZeQupLCnTv m7DU5C7LUwUaH++0yei+kPqTAlG3UuwNH7J8VeBm7ZBE2WMh9SkF1m+531H2 lOWtAi3tl1rLngmpXylwJSXRUP6C5a8Cq3/b3TJ8JaS+xb/PSKHe6A3LYwWG vlhp2sBHSP2Ln+fHV5m9Z/msQO/SI6ea+gmpj/Hn436xplUAy2sFBtuNbNXh o5D6mQJh/ip5t08svxWIcxvr3+ezkPqaAoNSb/e2CWF5rsAIs4mrRoYKqb8p kOP6dLXTV5bvSuhsjQdMDxdSn1PC2z8qeGEky3slXslGNF0XLaR+p8SJgNC+ O2NZ/itREPjS3DNeSH1PiZAJs4OuJDAPlCj/3a7f4yQh9T8lWryctcYvhfmg hOu9hesj0oTUB5Xot/K8bWYG80KJThVjkqt+CKkfKhG0KNNamMP8UMJw+RO3 JnlC6otKBOabTLMqYJ4oca3JkqZ2RULqj/zzXa1/d1oJ84V/nvnzateUCalP KhHwMqD14QrmjRKpVruNb1cJqV/y7ytCFuGnZP4okZX9xiVRLaS+qcQ887wn Ci3zSAnPtapYI72Q+qcS9R3tQrr8ZD4psWBBn4OjfgmpjyrR90u7Jov/MK+U OPJj/aYDBiLqp/z78Dj44J5ARH4p8cnb/0GoSER9VQlnwcbNxRIReabEtPGN mteTi6i/KtH2U61nj3oi8o2/n8rjcZPqi6jPKpH8uXvxJhMReadE+qFhcdcb iqjfKjE9r/3xEDMR+ce/75ThLcsbi6jvKlH09dfORk1F5KESi9x93w5tLqL+ q8RnZcanJS1F5KMSoUGRt860FlEf5t+/f+WUjxYi8lKJ500eZZe2E1E/VsJn pdvwph1F5KcSvV7u2exgKaK+rITcZvXBjV1E5KkSNYEnV9zrJqL+rETkFKfO Sd1F5KsSl91NP0h7iahPK2FcMbLr4D4i8laJe7+c1q7qJ6J+rUTFoCsnbw8Q kb/889w4dThpoIj6thKnDl6baWQjIo/5+Vln+YihIurfSogG3Dq9FSLyWYnN N1ZrXw0XUR9X4mfE337lI0TkNb9+4k8TOzmIqJ8rMVvTYsz80SLym3/e+7tb Xx8ror6uRNTRmXGp40XkuQohHs3dmkwQkecqVNzuFjfFWUSeqzD34e/W5yeL yHMVjhz9Oy5xiog85z/3vjXNfJqIPFfhctpE+2kzROS5Crm2u02vzhKR5yo0 3HDz0485IvJchVmr2kxsP19EnvPXP7YuaOkCEXmuQoez0sbPF4nIcxWeP5s8 rnqJiDxXIW7114XDlovIcxWOhafMP7RSRJ6rsKCN3i5utYg8V+F07yuylutE 5LkK/az6vl6yXkSeq+Bx23rEm40i8lyFgKMtfbnNIvJchdjRro0nbhWR5yrU uzt72s3tIvJche2R9/ZW7RSR5yqYzrh/znaPiDxX4fP4pBNn9onIcxWeGnmv KzggIs9VwHKvoYMOi8hzFebc6KE+flREnquwb2z4mTxPEXmuQtbmypaDT4rI cxU2X2t05vRpEXmuwvjTPqqSsyLyXIXV15ww4oKIPFfBYqXr5uuXROS5Csom 42/or4jIcxUSLR6+dLkuIs/5+1tX9OrlTRF5roLN7INeJl4i8lyFnV7cntV3 ReS5CruXJjlF3xeR5yqctN1r1PORiDzn77/jPr9TT0TkuQrXdrhOV3uLyHMV asx3lkx9ISLP+e/v5rHC/5WIPOfvb3ZglsVbEXmuwqSAVIdD70TkOf/9H+1v V/qKyHMVFjvsr5oaICLPVZhwy7zPp48i8lyFqL07l3UNEpHnKnwwHnbhfLCI PFdhVEzyey5URJ6rkO0bzW9BEXmugn2P+zkZ4SLyXIUt1TnF46JE5Dl/PQdJ sX+MiDxX4fiHi1lW8SLyXIWzC1rE3kgQkef8+3hi7tcwWUSe87/vbnLjQKqI PFfB5e+x7T/TReS5CgkCs6lrf4jIcxVSLnbrVpQtIs/VqLGb/WtOnog8V+OY qmd4coGIPFdjz59u552LReS5Gi6d02ZHlorIczVKrwR3GF0hIs/VWF26rjSk SkSeqzGw0ZrndioRea7GvZ32G4I0IvJcDaV+16DhOhF5roaZ/6O/QTUi8lyN k4ucwkb8EpHnakzgfp4K/SMiz9VY9Xfg7LGcmDxXQz7oklWMUEye89eruvvX RSImz9UwDy9PSpeJyXM1/qT+frWgnpg8VyPn/OJz5fXF5LkaH9PfbvNoICbP 1bBTbF3GmYnJczX27bSfc7yxmDxXI+DivRnNm4rJczXEr7vNfdhcTJ6rYeS9 dKV1KzF5rkZoWMXesDZi8lyNto/H35nWTkyeq/FybpPo0g5i8lyNWdOyhTst xeQ5f/2lg+1Nu4rJczV6hL4/88BKTJ6rcb1+VfnQnmLynH9em3Uuib3F5Lka 215+/7aqn5g8V2NmryeOUmsxea7G1QzP7NuDxOQ5//s2xvuGDhGT52o06ful f9owMXmuhko+umbTcDF5rsbexd2jzUeKyXM13jsZvfVxEJPnahy03P7MdYyY PFdj/ptG/jXjxOS5GoHmq9OvOYnJczXORlk0GO4sJs/VCHvzZXrhZDF5rsZz UfV7z6li8lyNnc7jevSbLibP+c+PzvXLmCkmz9XY+jNy9sE5YvJcjd72PZr1 ni8mz/nfX9q6ImOBmDxX44X/wLQji8XkuRrWFU1zrJeJyXM18oQzBUUrxOS5 GqNmXx12cbWYPFdjuLfHhdHrxOS5GiN/HzGsXS8mz9V4/MT96jMPMXmuRu3y 6DELtojJc/7+htuYN9suJs/V+HnQlYvdKSbP1dAXBtU7vEdMnmtQO6vZgOH7 xeS5Bv37/95de1BMnmuwrl79Cp8jYvJcg+HhxVvXe4rJcw0sH/fq1vukmDzX ILjXgT9Vp8XkuQbKnoe0z8+JyXMNykOSG6y7KCbPNVjt2tS57xUxea7B50ul PtXXxOS5Bj/2Kuz8b4rJcw08XCO1u73E5LkG3E2L2FH3xOS5BtGWp+JNHorJ cw3+ij7+TnksJs81OHPccdIdbzF5rsHsmbmxq1+IyXMNpGMtttq8FpPnGvze +MRJ7iMmzzVYatN5Qsp7MXmuQfP+Ntsf+ovJcw022RxJ2vJRTJ5rMH3Buznj g8TkuQa/fi1vbBEiJs81iD0zplYTKibPNZhTrG8Q8U1MnmvQtKa1q1ekmDzX oLdufvTWGDF5rsGSsUs3ucSLyXMN4k6kTOqZKCbPNbhzdvr8eili8lyD6uln 7hSniclzDfaadW0elikmzzWY0fbrl/vZYvJcg/umjR4cyhOT5xpMvvP247JC MXmuQYifS33HEjF5rsGu5ZfP9i4Xk+caxJR3m9SkSkyea7Dqzpsxf5Ri8lyD NuYZWws1YvJcg0nKsYUxOjF5rsEr0WNPv59i8lyDT8O9Vt//LSbPNXDzy/A8 ayAhz/n9dFNQvEcoIc81sMaH3eskEvJcA0ORj6ubXEKea+DnfmGVi5GEPNeg URdZ8CgTCXmuwbyMN9OGmErIcw3iXR169mksIc81MNi2eFSXphLyXAPngYG3 27aQkOcaLD77c1iL1hLyXIMDNz+3MW8rIc/587cjaKRpBwl5rsGOWbefmVhK yHMNDq03mmPcVUKea/BO5D3ZuLuEPOff3/Tup0x6SchzDW4EWjcy7SshzzXo dswju/EACXmuRceG57TNB0nIcy2uPxjs0naIhDzX4vKdRr87Q0KeazHDNVLR 205CnmtxrYFRryH2EvJci+/mO/1HjZaQ51q4PYo86zJOQp5rkfz7tq+bk4Q8 16L1sIfd3Z0l5LkWLw4eUex1kZDnWgTnVwnOu0rIcy02uxxY9HCGhDzXQhCo bvphtoQ81yJSn9/q+zwJea7FrUDBxtIFEvJciy/vq1sLl0jIcy06rFnestVy CXmuxSxn6eqBqyTkuRYFzz0aTVkrIc+1aO8/v8H69RLyXIs9e9a5nfGQkOda 7Khwqvd6i4Q81yIk2Kte4nYJea7FwNuNF+p3SchzLWQ1Exq32ichz7V4bfqz zYiDEvJci2aygP3Lj0jIc/77goeOPOspIc+18Prdae6HkxLyXIv7Nm2Sis9I yHMtekdFPWp8QUKe8+sRnpo24rKEPOfXo2HpsvXXJOS5Fk8c7rnevSkhz7Xw iH55N8lLQp5r4Rjz1tnwvoQ818K/u+tcPJKQ5/zzHrWJ3vhUQp5rkTZcdtP7 uYQ81yJzsVt84SsJea6FaUjl0rY+EvJcC4sU5wWzfSXkuRaShJ6frwRIyHMt Gl+2OpgaKCHPtSj3KXveLFhCnmuxalkD25mhEvJci7cXhlrf+CYhz7VoHtX4 Qm6khDzXotVwm9mdYyXkuRZLIiYcX/NdQp5r8blQ0+l9koQ816Lhs4iugjQJ ea7FuLQNlx0zJeS5Fps+nVp/JVtCnmtxd0Kgb3GehDzXosz41sqBRRLyXIsF LeI9j5RKyHMtunbSNM+okJDn/Hlzv9ukl1JCnvPv6/vufQc0EvJcizWPOs3N 0EnIcy0u5vZ50q9WQp5X4712+NITfyTkeTVMcqsulHBS8rwaSqsUawexlDyv xves8+PuyqTkeTWmHgyOFxpJyfNqTLaqjVpoIiXPq1E+M2lomKmUPK/G1RaV 7bqZS8nzaowqT9txqpmUPK/G9LB+E3QtpeR5NZJbnr0410JKnldja5yn67f2 UvK8GnFD3p/sZyklz6sxw/KJ7e2uUvK8Gs++/lxu0kNKnlfjxhcbk129peR5 NRb2EPRQ9JOS59UI3Z4T5jZQSp5XY8KZlZlJNlLyvBpbfPqvGQ8peV6N4nPR O4LtpOR5NW7afJUPcZCS59UY3uy1mc8YKXnOX6+29bXejlLyvBqrjK7eeTZR Sp5X42H8267dXaTkeTW+dP/d29tVSp5Xw3PKH98eM6XkeTXapdgHv5wjJc/5 578012mAm5Q8r0azyKSZAYuk5Hk1vH/2Lx+xTEqeV2NwrcQgaqWUPK+GhTr+ outaKXlejaUu7d7krZeS59Wwztg+Zd0mKXleDfvTy7YbbJOS5/z3f17d5fRO KXlejSiR6ez2e6XkeTUM+6Y0eXdASp5Xo+UK+xnjj0jJ82oMrZ/ZIc9TSp5X Y4Vf283bTknJ82pwk8+7ND4nJc+r4aJ97/fiopQ8r8bsX0ZPHK9KyfNqzPzT oFP5DSl5Xo2DESOsPL2k5Hk1Qla2/9j9vpQ8r8b8dt0zYh9JyfNqRLtlHtzo LSXPq7Es9fnHFi+l5Hk17Ba12R/8RkqeV0PV5H7yyvdS8py//34ffJsESMnz aqR0z+waEiglz6ux4/6Obu7BUvKc35+rGwe0DZOS5/z+2Nc8Mz5cSp5X4099 wckD0VLyvBrD3GzjB8VLyfNq6H6PflCVKCXP+fd/6ITxg1Qpea7DlOi9snmZ UvJch+ZhF843z5GS5zoEHh/sk5QvJc91aLogc/m5Yil5rsO4pxWvJ5dLyXMd BKqU040UUvJch3NZ9cTJail5roOtnar+VZ2UPNdhqUz3dF6tlDzXId52f67l Xyl5roOumfC5QiAjz3UYn5Nu6i+Rkec63BB4GB8ylJHnOiyRDvRyMZaR5zoM vHAour2pjDzXoaX7t7OaxjLyXId6W+erQpvJyHMdZjx8VXqllYw812GYaZsd a9vKyHMdRhVJH4/qKCPPdShdG7XOoouMPNfBzDQm4aeVjDzXwcdhxfekXjLy nH/eO39XveknI891ECcW3z07UEae8+txa+/mDUNk5LkOvjmWJVNtZeS5Dtme fXSDR8rIcx12PK31shgtI891MHZLL5eOl5HnOlwt6JyomCAjz3U4eGDwrPTJ MvJchzn3F+0Nc5WR5zq8/vxn1NuZMvJch5/Lp3vfnSsjz3VYYf/11fkFMvJc B1X969MOL5GR5/z+uND55vYVMvJchz8hfgfd18jIcx2mX/QyWb5eRp7rsK5N j8ELNsnIcx0sDzyWzNkmI891kEsWbpyxS0ae8/ervXdw2j4Zec7vpwC/wdMO ychzHT6klp2efkxGnutQk7vHc9ZJGXmug8u+kK7zz8rIcx2ub/+5cslFGXnO r++DZZPXXJWR5/z7U039sfmmjDzX4e9CifH+OzLyXIcBLf1zTz2Qkec6PHZ8 N+vmExl5zq+fw5Dtz5/LyHMdjFYdHR70Wkae8/tnWM7ThHcy8lyHa5N3fSzx l5HnOkTM9PIw+CQjz3UoaXsosWmIjDzn9//RZel9vsrIcx2sz+8/7BQpI8/1 aDXLNHNFrIw812Ni4/GpRxNk5LkehabLdzxJkZHnengG3/kWlSEjz/Vo+Lrn R2W2jDzXQ3V0xMwmBTLyXI9S00a3h5XIyHM9DvVOPLmkQkae6/Gl3NfyjFJG nuvxeLlm6UetjDzXo1j5dnJ5jYw812NPaY/iFn9k5LkeHj9OdHIUyMlzPdZs FZnslsjJcz1Wn/hw+42hnDznv9+46EepsZw81+O8mXdoOzM5ea5HTfrg6bOa yMlzPWZE+l242EJOnuuxbO3UXQlt5OS5Hg+2DTAz6yAnz/XoGb530uTOcvJc j6Pz3Yaet5KT53psXFf7PaWXnDzX47PLevPW/eXkuR6WZypFiwbJyXM9WmSe uuk9VE6e6/HWfEehbricPNfjmFNi6ggHOXmux8Vgvy2nx8rJcz2aFziGZjvJ yXN+/SY/C+w9WU6e67Ez5+ei/a5y8lyPU+ecfVNmyslzPebfj/HtMU9Onuux 68DpJQcXyslzPeYkvfqctVROnusxaYNTxOBVcvJcjyPuO/dcXCcnz/WQtJpV oN0oJ8/18Kr5Wz1lq5w818Po2x6fdzvl5Lke4Yf07Vvsk5PneoxYsxW7D8nJ c/79VbeUFx2Tk+d67E7Q7J5wSk6e6/HsT+MHvufk5LkeB56e3dbxspw812OC 6+4/Z67LyXM9NvtX9BR4yclz/v5Sy03W35eT53q80x2/UfBYTp7r8fN2dvr0 53LyXI+2T9VhMa/l5Lkey/skuo16LyfP9Xh55czTTwFy8px/3+cH3rMJkpPn eqxv8338+y9y8lwPnz2r7gwIl5Pn/HmZbPrIJ1pOnusxYHvE7IHf5eS5HiW9 vYL8k+XkuR6df99IsM2Qk+c1+Pr+24WwbDl5XoNxZ7vIJhbIyfMa/DX50jmt RE6e18BS5qVfVCknz2vQ5OmXTWqVnDyvwdz9/e7v1cnJ8xqUuav2mf2Sk+c1 6PZG0PC+gSF5XoOB2UscB4sNyfMa6MvaD4qVG5Ln/P10HZiwxNiQPK9BZ8d7 rTkzQ/K8BlGLVzS91sSQPK9BTumRoIEtDcnzGtx6/rdZsoUheV6DP5XhbTd1 NCTPaxA/qiSlaVdD8rwGvz66IqCHIXleg5OfTKfM72tIntegxsK8uWygIXnO 30/r2SdeDDEkz2vwdl7uyxnDDcnzGsh/39wvcTAkz2tweMNJyZuxhuR5DXx8 HlkvmGBIntdgVruiJo1cDMnzGrw5iAeh0wzJ8xqc6PC4YOtsQ/K8Buuet/re y82QPK/BN6dTa4oXG5LnNZDc1PndXmFIntcg9NXot7PWGpLnNdCabZ7TbKMh eV4DdcgWn+QthuR5DXyHD/9wcacheV6D2t1B7tP3GZLnNRitLU9qediQPK9B rxNvS3I8DW3/D8t6RRQ= "]]}, {{}, {}}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 1.9267741928025102`}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], Method->{ "OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& )}}, PlotRange->{{0, 1.6}, {1.9267741928025102`, 3.31879026971162}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]], "Input", CellChangeTimes->{{3.915771872450286*^9, 3.9157718738014307`*^9}},ExpressionUUID->"c8acd08e-419d-47df-95d8-\ cd474e7cf4f4"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"e13", "=", RowBox[{ RowBox[{"(", RowBox[{"inisol", "\[Function]", RowBox[{"FoldWhileList", "[", RowBox[{ RowBox[{"Function", "[", RowBox[{ RowBox[{"{", RowBox[{"sol", ",", "\[Omega]22"}], "}"}], ",", RowBox[{"Join", "[", RowBox[{ RowBox[{"Append", "[", RowBox[{ RowBox[{"Take", "[", RowBox[{"sol", ",", "4"}], "]"}], ",", RowBox[{"\[Omega]2", "->", "\[Omega]22"}]}], "]"}], ",", RowBox[{"FindRoot", "[", RowBox[{ RowBox[{"e11", "/.", RowBox[{"Append", "[", RowBox[{ RowBox[{"Take", "[", RowBox[{"sol", ",", "4"}], "]"}], ",", RowBox[{"\[Omega]2", "->", "\[Omega]22"}]}], "]"}]}], ",", RowBox[{ RowBox[{"Drop", "[", RowBox[{"sol", ",", "5"}], "]"}], "/.", RowBox[{"Rule", "->", "List"}]}], ",", RowBox[{"WorkingPrecision", "->", "20"}], ",", RowBox[{"MaxIterations", "->", "500"}]}], "]"}]}], "]"}]}], "]"}], ",", RowBox[{"Join", "[", RowBox[{ RowBox[{"inisol", "[", RowBox[{"[", RowBox[{"{", RowBox[{"1", ",", "2", ",", "3", ",", "5", ",", "6", ",", "4"}], "}"}], "]"}], "]"}], ",", RowBox[{"inisol", "[", RowBox[{"[", RowBox[{"7", ";;"}], "]"}], "]"}]}], "]"}], ",", RowBox[{"Range", "[", RowBox[{ RowBox[{"Rationalize", "[", RowBox[{ RowBox[{"\[Omega]2", "/.", "inisol"}], ",", SuperscriptBox["10", RowBox[{"-", "6"}]]}], "]"}], ",", RowBox[{"3", "+", RowBox[{"1", "/", "10"}]}], ",", SuperscriptBox["10", RowBox[{"-", "4"}]]}], "]"}], ",", RowBox[{ RowBox[{ RowBox[{"\[Omega]2", "<", "\[Omega]1"}], "/.", "#"}], "&"}]}], "]"}]}], ")"}], "/@", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"\[Epsilon]\[Epsilon]", "\[Function]", RowBox[{"SelectFirst", "[", RowBox[{"solzeros", ",", RowBox[{ RowBox[{ RowBox[{"\[Epsilon]", "==", "\[Epsilon]\[Epsilon]"}], "/.", "#"}], "&"}]}], "]"}]}], ")"}], "/@", RowBox[{"Range", "[", RowBox[{"0.2", ",", "1.6", ",", "0.2"}], "]"}]}], ")"}]}]}], ";"}]], "Input", CellChangeTimes->{{3.908965845707684*^9, 3.908965933284802*^9}, { 3.908966061855267*^9, 3.90896634830872*^9}, {3.908966417734704*^9, 3.908966417829668*^9}, {3.909041956908346*^9, 3.909041957027675*^9}, { 3.90904201242258*^9, 3.909042012604719*^9}, {3.909042831164308*^9, 3.909042875324937*^9}, {3.909042936502192*^9, 3.909042990614989*^9}, { 3.909043033303988*^9, 3.9090430858649387`*^9}, {3.909043120074722*^9, 3.9090431489458647`*^9}, {3.90904317971463*^9, 3.9090432258672523`*^9}, { 3.909043264180773*^9, 3.909043270956205*^9}, {3.909044224006723*^9, 3.909044276911423*^9}, {3.90904459896806*^9, 3.909044606013604*^9}, 3.9090448090817537`*^9, {3.909045133487328*^9, 3.909045149072093*^9}, { 3.909045183744899*^9, 3.909045184480734*^9}, {3.909045272674652*^9, 3.909045275818399*^9}, {3.909045363781097*^9, 3.909045364556114*^9}, 3.909045705179872*^9, {3.909046708942043*^9, 3.909046709005525*^9}, { 3.916385716465579*^9, 3.9163857237454777`*^9}}, CellLabel-> "In[242]:=",ExpressionUUID->"0012cb53-2118-4c32-9687-3900486d9017"], Cell[BoxData[ TemplateBox[{ "FindRoot", "lstol", "\"The line search decreased the step size to within tolerance specified \ by AccuracyGoal and PrecisionGoal but was unable to find a sufficient \ decrease in the merit function. You may need more than \ \\!\\(\\*RowBox[{\\\"20.`\\\"}]\\) digits of working precision to meet these \ tolerances.\"", 2, 242, 33, 23804047810745838865, "Local"}, "MessageTemplate"]], "Message", "MSG", CellChangeTimes->{3.916386517291394*^9, 3.916387274542672*^9}, CellLabel-> "During evaluation of \ In[242]:=",ExpressionUUID->"a407657b-19ae-486f-b6cf-16ca559b3fb6"], Cell[BoxData[ TemplateBox[{ "FindRoot", "lstol", "\"The line search decreased the step size to within tolerance specified \ by AccuracyGoal and PrecisionGoal but was unable to find a sufficient \ decrease in the merit function. You may need more than \ \\!\\(\\*RowBox[{\\\"20.`\\\"}]\\) digits of working precision to meet these \ tolerances.\"", 2, 242, 34, 23804047810745838865, "Local"}, "MessageTemplate"]], "Message", "MSG", CellChangeTimes->{3.916386517291394*^9, 3.9163872747219143`*^9}, CellLabel-> "During evaluation of \ In[242]:=",ExpressionUUID->"2a251b03-af55-4ee8-b6ee-dc27429eff8a"], Cell[BoxData[ TemplateBox[{ "FindRoot", "lstol", "\"The line search decreased the step size to within tolerance specified \ by AccuracyGoal and PrecisionGoal but was unable to find a sufficient \ decrease in the merit function. You may need more than \ \\!\\(\\*RowBox[{\\\"20.`\\\"}]\\) digits of working precision to meet these \ tolerances.\"", 2, 242, 35, 23804047810745838865, "Local"}, "MessageTemplate"]], "Message", "MSG", CellChangeTimes->{3.916386517291394*^9, 3.9163872750673237`*^9}, CellLabel-> "During evaluation of \ In[242]:=",ExpressionUUID->"466d17bf-ce0f-47a2-8764-46320b67ac6e"], Cell[BoxData[ TemplateBox[{ "General", "stop", "\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"FindRoot\\\", \ \\\"::\\\", \\\"lstol\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ during this calculation.\"", 2, 242, 36, 23804047810745838865, "Local"}, "MessageTemplate"]], "Message", "MSG", CellChangeTimes->{3.916386517291394*^9, 3.916387275072584*^9}, CellLabel-> "During evaluation of \ In[242]:=",ExpressionUUID->"841bbca7-6ddd-4432-bc00-7d704794b41e"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"ListPlot", "[", RowBox[{ RowBox[{"Evaluate", "[", RowBox[{"Prepend", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"Join", "[", RowBox[{ RowBox[{ RowBox[{"{", RowBox[{"\[Omega]1", ",", "\[Omega]2"}], "}"}], "/.", RowBox[{"Most", "[", "#", "]"}]}], ",", RowBox[{ RowBox[{"{", RowBox[{"\[Omega]2", ",", "\[Omega]1"}], "}"}], "/.", RowBox[{"Reverse", "[", RowBox[{"Most", "[", "#", "]"}], "]"}]}]}], "]"}], "&"}], "/@", "e13"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"3.1", ",", "2"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "2"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "3.1"}], "}"}]}], "}"}]}], "]"}], "]"}], ",", RowBox[{"PlotRange", "->", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"1.9", ",", "3.1"}], "}"}], ",", RowBox[{"{", RowBox[{"1.9", ",", "3.1"}], "}"}]}], "}"}]}], ",", RowBox[{"AspectRatio", "->", "1"}], ",", RowBox[{"Joined", "->", "True"}], ",", RowBox[{"FrameLabel", "->", RowBox[{"{", RowBox[{ SubscriptBox["\[Omega]", "1"], ",", SubscriptBox["\[Omega]", "2"]}], "}"}]}], ",", RowBox[{"PlotLegends", "->", RowBox[{"LineLegend", "[", RowBox[{ RowBox[{"Range", "[", RowBox[{"0", ",", "1.4", ",", "0.2"}], "]"}], ",", RowBox[{"LegendLabel", "->", "\[Epsilon]"}]}], "]"}]}]}], "]"}]], "Input", CellChangeTimes->{{3.909042514190548*^9, 3.909042520941848*^9}, { 3.909043279228549*^9, 3.909043290980391*^9}, {3.909044758712824*^9, 3.909044817697377*^9}, {3.909045206161439*^9, 3.909045253529738*^9}, { 3.909045341508081*^9, 3.909045343371456*^9}, {3.909045626801211*^9, 3.909045676689952*^9}, {3.909046978946875*^9, 3.909047057939874*^9}, { 3.909047460827964*^9, 3.909047525484823*^9}, {3.909047561565816*^9, 3.909047563765341*^9}, {3.915533019222624*^9, 3.915533021933949*^9}, 3.915536859762843*^9, {3.916385726520988*^9, 3.916385734889188*^9}}, CellLabel-> "In[243]:=",ExpressionUUID->"abdd1227-571e-42c2-ba14-b0236a50da8f"], Cell[BoxData[ TemplateBox[{ GraphicsBox[{{}, {{{}, {}, TagBox[{ Hue[0.67, 0.6, 0.6], Directive[ PointSize[ NCache[ Rational[1, 360], 0.002777777777777778]], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[2]], LineBox[{{3.1, 2.}, {2., 2.}, {2., 3.1}}]}, Annotation[#, "Charting`Private`Tag#1"]& ], TagBox[{ Hue[0.9060679774997897, 0.6, 0.6], Directive[ PointSize[ NCache[ Rational[1, 360], 0.002777777777777778]], RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[2]], LineBox[CompressedData[" 1:eJx1mXlUj/nbx+/7u1R+oSxlqdREqWxJlkp1lYZR9iVpKC1SpLK3INpEWSJb yF5KixZbiDLZSiXTNhgSg1GJkEo8l3PmPc/vPOc8/nFeDvp+7/vzua738pO7 /6zFEkEQHouC8OP3+yU/filR3PGyWYoDBJp4Y8jsTOYBgc82/+CGNIc5mmlK NG9a0jsL5vKeZq3KsUq0c5DvwgBmsVtJYoivEt1pH1l8ijn/9vHr3lOVSHjQ Oq6W2XNj1NPy4UpklnwtqZu2QIquL+OzVJVoxYbw3rbMj7tbRSm1KFLq7Mlh a5ntdhz1eVipSM8NVZpTmROtDGSqlxVJQ6hc+JS5b9k2w6uHFWl2VUJxLx2B HtTsv1K5SZFi0xaZ/cK86FNxivNiRfotTD95PXOA1vPmX+wVqdOpoXcWc672 0oTEEYo0ekR22EvmEonH1flqiuQnD2zu95NA7/RrAwM7FCjpkaXLNOZJ37Z0 fqlToKdZ0pIw5o+moeG1dxSoT/Rds4vMUQOLp/U9p0AzXHYmv2WO8dbJyNmv QFtN56rp6AoUsmVbe0qoAhX8RyN8DvNrX639bUsUqP3Zs+Zo5gWXU5qPzVAg k4tJLteYC86v2pBopkDLtvuWvGfeUNlwtVlXgU56mJjrDxSo6Kz/2H1dFeix 2ZdkZ+a/zL9t2P5ZTr1V89V2Ms+NlBhVPpPT1L/Cw28yR0zu8WRZsZwir05+ 3/qDKzJoxgU55e9WcR06SKDld9QUNh+X02fvypJFzFsbvr/8GiunEdaHzPcy K2YEHCsMlNMSNbczd5lbIzZ/LfeU07G3+urfmJUkxnf0Z8qppqAh3ERPIIuw YTWFlnLqcSD7vRdzytpziqeM5DTZL9D1EPNfxpPG3e0jpzA7q/tlzOv00maO lMspr7/MQqbP/37fIZtHH2TU0nz3zDhmv/2pHUXPZDT09k715cwL3bWDmktl 5HlkbsRx5nVv7l2af01GR1ZpfKhk/na8Pl9Ik1Hl5DrX/wwW6MO6uvgXCTLq rpN834p5TZ3zZNk2GU387GuxinmMYv07lyAZhZaYpCQzN7W+PtbiLaOLJ76o P2b2erI/qMBJRs2B+RGqBgL9YXjp0O1fZGQwPeKDHXNdbtwwuZmM3PTsFwUx h14vnR9kKKODHSql6czG1a7TB/aXUcWDSovnzCa7FtlIlGX0nzOHUtQNBdql 0uml9lVKEza69XFgLlzo1PFro5RC5gyODGVuD15lWfmnlHKNGj/kMEcOVwvY VC6lBiFn0Wvmym3ZtQsKpaRXHViqaSTQQB2n33xypeSSbjV+JvP16j0bkpKk tC9clhrJ7LnS1bHnQSmVzb/XJ49Z95TyybQYKSka74psYk68M+TK6o1SIgXH Ft0hAp0wCmvzWSGlwMcabvOYtf5ouBLjKaWs7LrSGOYW5dketfOk9CY6efwN ZpXvu2fPcpCSruvy1I/Mq90DWj5ZScl59Ki+hkMF6jUuPO2miZT2KLdFLmQO MB78Nk9fSsV1+S1xzAYhywY86i8l2aUIt1vMOUrSSwNVpDR+h31Z+w82Gz00 XiqlNZ6qliOGCbTiS+n7IV8klG5elerB3Nesd9jfDRL6S/Vw3wPMe59kOZXV SWjAK7eoEua6tsyW2ioJzbs2+KMwXKDf13g+7FIioZ17Gt1GM0d28Qp2KZDQ HZ+cMh/mjXGhy6svSEikIMtE5l6XTo5anSYhM3XrsxXMpu+fzTU9IaGVDbJ+ iiMEmnFrrmufAxJKLbwXZcF8y1/vieYOCdUf2PXRnznpsq+LXYSENPwd3U8x +4wcu3p7sITm/KxZXsMcnrA6qzVAQrEazy27GQuUldyUGrZEQkXvk8/aMLd8 tmod5iKhztvL+61ltp1WNLxtjoTGJI7aksrcr0/i23oHCfmtbvv4J7Okz8G7 jbYSSra/7t5rpEDTPIy91M0l9FQnsnwSs/OO0EULR0qob6u91Xrmo10t5hca SGjGfdW0c8xdy5M/2OlIaOvJqn4vmYW+e8pf9JFQQdDhLf1M+Pmstj9wXEVC 7dPdP01l7tGxpzlYUUKj9A08wpiV05I2B3wXadnXxvILzOcVBn7a3CrSqYoc q7fM2sXKnzPeifT4TFCa9iiB5rzON259JZJaqHX/Oczpe5tmOT8TaepceXQ0 c/d9Cco1NSJFDSn+dJW5+WQX5YAHIuWLcR7vmVXkNyW690RqrXZ8oGcq0Gm7 6NONhSKNyNC0dmYe0mt6csUVkbwjnqftYE6wt7hWnivSMecz/W8yD1I/eORV uki1xn7Rrcyh46u/qyeL1EPR9POQ0QLdi9l82OWYSPZP2jwWMQ/yshiWf1Ck sJzrD+KZtf3yfEfvEenK1kjru8xGswrUf4sVqcXVIb3zB1/o/9onSqShY3po mIzh+Wsen6i/SSTPrtXRXsxjjrZ9aQsS6cjzw58TmPVkqhfrV4lUdcnds4w5 1zbuYP1ykbrvNKiQjhVIx2Owe9sSkSYtbrIex9xtiPfDQe4ihVrkpvsymxSV n1u8QKRLPYI1jjP7bi7Iv+IoUvMr662VzEfTggr1Z4pkmC9v7TJOoLzQXmFJ DiK5xRd7WjHb6236zXyiSAlL4ypWMvetDJ9Zz7ehguZRMvNgefb7oxYiKffR ynjEfCLTxy9gjEgTGp9rqJrxeUx/EDdnpEjrb57Zasd8XLdSf8pQkXIP+rUG Mk+U6rQ5Dhap0d90cTqz4ymNytW6IulNbK+oY+7m+XbLaS2RXDRvkLo53zd3 n6ev+4q070Nkhj3zYPuBqVa9RSq746AZyvxp2LyLSSoiKR3tsS2HucvK5iod ZZFoTXXrK2aVuxG1aQp8mx2OLNa0EGi/9cxd9hKRsn7yeDiDWXfe2PttnQL9 3WpgE8lsYJznntfGf17alHGZOb+wY2DsJ4F+PZWr2cQcqpf3wu+9QHuCg7fp juf9+3xKkHsj64oZ9MWRudTpxAWvNwLJBit4xTCfHGa5MuSlQJadxQ+vM/e8 PTLsWB3vpYdxNh9//P3KgdcqnwiUkTIv08CS78/fE9r7/8F7M1RLayFzeO+p PQKq+Jw51m+LY/64O+yP3ysEmjc05UsRc9OW9OGTy3ivSPy92pljr/V/VVIs 0J0a09+HWwlUsfLAE9c7rNsy2208mN1HrW4QiwQyi7yRuZ/Z9nJgU3aBQCt/ jdIqYZ5b8zZ/Zb5AZ0dOiRGsBZq9KtbM5opA9Yo920yZ64J2mQ+4JJDmn9Ve Pswx704kdjnP9zj3yO9HmCd11NlKswXavs3DtoLZ4vtjmXIm65hFhqyaBAq8 tLtQJ4339ph3WhbMc738ne1S+B50Ox/jz6zRZn92TZJA/vXBbSeZcyYtic89 KVDyZVpSw/y3g98n4bhAz3YqVHa1Eaj34oAM50Q+p14ltjbMW449P1pwSKCZ 43efW8OcpngkdfRB1jk9nQakMuu11GRe2Md797VW7J/Mp91HxNnF897Nr2/r acufy2m/8dM4gUbtTVkyifm5hWdA1E6Bli3zrwxhvj/GbpT5doFO2YyecI45 9JjVgvZtrGv7dJx7wezqnl16K1ogtaYbA/pN4HnqNsfvaBTP4d+iYqcyO74c ph0RwToyYUr7ZuZs2aGi1WG8twN6el9gNlWaPHHFJtZdE2sq/2Z+U24aFbSR dYVW4gRtO/5e41KWbl8vkHeLR9Zs5shllrVpwXzP7hpqRzMvsX54sTpQoNqj 72KvMn8P2dvQbR2fu7Xn25uZ72p+Xjh9Dd/zKSHeej/zewpP+3BoFZ8zXZuq +cwFCTlxLSsEuvJFwW4H86AXk3QdA/jclZZkFTLH+b+Muekn0NDTu7VbmX3O /3zBYrlAi0Octg+ZyPd/+sKt+csEOjJzQIcrM22Z3+iwVKCqwS+845lvXD5y r96b5/q3lKo7zGHBN7pELeFz87u/XSfzl3XRe0y8BNqUOjp75CR+r13fzHjj KdClTR3aXsxly74ZpXoI9N6xYHsC8yG3Lspr3AUyHLalo5T5RMjSPya78TmX TvWR/sLnetfhMINFPPdre1aPZe5cO7xR1VWgh5k1dr7MXW9dkUpd+N5FJWYf Y+6x+EXmtwXsSxZ46lQyV6faPpIyrzcx2tFlskCvzrv69/yV95pSc4cl8+P4 03ONnAVq/PO8z0rm5ZenrXOYL5D++ZDqJOaSbrOurXESyCXG5udHzKeq7FVT 5vEcclPMUbEXaMSsX51eOvL3Gntfx475Qp7SBiNmpe57dgQyp3/svjhwLj/H F05f05h35hl+Lp0jUFDegKV1zOVR5b2HM2ftelGt5sDnqbTu5N7ZfE+8Un+2 Z+5cYBYhZx5oGZCzkXl81dD4DbN4nvUa81MOc3DN64zOmQLFv+nY8YpZXSfl bCRzyfWCrxpTmGffXqDGLN+3ZekM5o05R3ekzeB55ju1JoL5/plZCg7Ma217 TbzM7HZ53abm6TzP+tbmNDJ/s36beZj5VVPiT7pTeY7dahs/nVm7yHOnI7Nx mU2RIrPTIaPObcxbNyc9LprG82xF89LrzK8SolW2Mt+ddKGm5b9YHLB+osG0 /2Xzjza5C/7r9//v7/3f/wc/Bz8XnwOfC58TnxvfA98L3xPfG88BzwXPCc8N zxHP9d/n/M9zx3vAe8F7wnvDe8R7xXvGe8c5wLnAOcG5wTnCucI5w7nDOcS5 xDnFucU5xrnGOce5xz3AvcA9wb3BPcK9wj3DvcM9xL3EPcW9xT3GvcY9x73H HMBcwJzA3MAcwVzBnMHcwRzCXMKcwtzCHMNcw5zD3MMcxFzEnMTcxBzFXMWc xdzFHMZcxpzG3MYcx1zHnMfcxx7AXsCewN7AHsFewZ7B3sEewl7CnsLewh7D XsOew97DHsRexJ7E3sQexV7FnsXexR7GXsaext7GHsdex57H3ocOgC6AToBu gI6AroDOgO6ADoEugU6BboGOga6BzoHugQ6CLoJOgm6CjoKugs6C7oIOgy6D ToNug46DroPOg+6DDoQuhE6EboSOhK6EzoTuhA6FLoVOhW6FjoWuhc6F7oUO hi6GToZuho6GrobOhu6GDocuh06HboeOh66Hzofuhw+AL4BPgG+Aj4CvgM+A 74APgS+BT4FvgY+Br4HPge+BD4Ivgk+Cb4KPgq+Cz4Lvgg+DL4NPg2+Dj4Ov g8+D74MPhC+ET4RvhI+Er4TPhO+ED4UvhU+Fb4WPha/91+f+43vhg+GL4ZPh m+Gj4avhs+G74cPhy+HT4dvh4+Hr4fPh+5EDIBdAToDcADkCcgXkDMgdkEMg l0BOgdwCOQZyDeQcyD2QgyAXQU6C3AQ5CnIV5CzIXZDDIJdBToPcBjkOch3k PMh9kAMhF0JOhNwIORJyJeRMyJ2QQyGXQk6F3Ao5FnIt5FzIvZCDIRdDTobc DDkacjXkbMjdkMMhl0NOh9wOOR5yPeR8yP2QAyIXRE6I3BA5InLFf3PGf3JH 5JDIJZFTIrdEjolcEzknck/koMhFkZMiN0WOilwVOStyV+SwyGWR0yK3RY6L XBc5L3Jf5MDIhZETIzdGjoxcGTkzcmfk0MilkVMjt0aOjVwbOTdyb+TgyMWR kyM3R46OXB05O3J35PDI5ZHTI7dHjo9cHzk/cn/0AOgF0BOgN0CPgF4BPQN6 B/QQ6CXQU6C3QI+BXgM9B3oP9CDoRdCToDdBj4JeBT0Lehf0MOhl0NOgt0GP g17n357nn94HPRB6IfRE6I3QI6FXQs+E3gk9FHop9FTordBjoddCz4XeCz0Y ejH0ZOjN0KOhV0PPht4NPRx6OfR06O3Q46HXQ8+H3g89IHpB9IToDdEjoldE z4jeET0kekn0lOgt0WOi10TPid4TPSh6UfSk6E3Ro6JXRc+K3hU9LHpZ9LTo bf8HizOqdg== "]]}, Annotation[#, "Charting`Private`Tag#2"]& ], TagBox[{ Hue[0.1421359549995791, 0.6, 0.6], Directive[ PointSize[ NCache[ Rational[1, 360], 0.002777777777777778]], RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[2]], LineBox[CompressedData[" 1:eJxNnXlcjW33t/d17akkUaQQMiSERBHSMiUNigoZM1QohCgkQ1HGyhxpREUD lXnOUClDyFiZMhaZQkLvunfP9/d5n398jsd9u1N7r+s81/quYxvOWDDWU5RI JIYKieS/X28W/fc/NZLd//b8e6CEbvwqG1XCHGTUNPU/7jT57JOXV9Xo+J8S 3a7LJGTUaf+uX+fU6OPdfaFTmCdsVC7WPa5GRqnTv0YxPyqJ9ByUrkZTV3Xx uM4c2vfFzLkH1Wi328ebv5mjd2TNjN+vRne6Zw/stVxCh4PvTCzfqUZq4rLU mcy11S2tO21VoyGPBrfcw2xhHqBYtF6NlmXI1hUxR1/7eCgvWI2yQm98layQ 0OS2m3U7B6jRh4mRHubMUbGL7TcuUKOOvcfdmsPsOvPBwJ/eajRJ2WZQLLN7 p59lPh5qtKPsRepd5ntNuxq/m6BGRdnJLZVBEspJu93Ud4wayTfOWzeQ2TZj 6tafo9TIyqPPtwXMBqXuuzcOVaOlFrUeB5idK107dB6oRhmNL956xNx+6rfO eX3U6O3L0EGaKyX0bMa7PX4matTutN3hIcy9s38sNOysRhMimuotZY5d/Dn5 sYEaRXo+WHeYeanOyd7RumpUMDDmWzmzosdAhYeWGonaM6brBEtIzyuoTU81 NRrwrsvtkcxXnTf4SAU1Wnzh46Ag5kiHVR+e1SrpyI7sw0eZn3pvjLzyVUkV c5fpvWbePuS1a0alktoMsV6vv0pC5pWPesZXKMmtpfy7I7NB4bkW0WVK2vLx xvS1zM1X/ZBEP1DS9SuRt08w97lY+zbutpL+RY+zqmSWD7HNTc9XUj+/Nkfa rZbQ570Lw3IvK2mBzUs9V+YPXXR6lZ9RUkqblPXhzAsqHx6V5Cjp+dd5388x n1oSKOuWriT9gj4zvjBb558xnHhISWPiam93XiOhZQMWSaLilLRxyUWricwv p67ac2uPknLt1x3Zyjzg3e0X2tuUVGdor3+FWSti6v0pm5TU51fTsJ/Ma3+a zc4MVZLvrQffu6+VkP3u6TuVwUo6eCBmhgfzn30arl4BSipbPuPODua1xVNj Cv2UpDvGeHAB89vwnV795ippdJdPR/4yj1z143DqTCWF/c3WNwuRkOa1+9M7 TFHSxXvLwryYPQ5GhCSMU9KvVOuavcz3tmxT6+KsJNPV8pm3mR1+uL7PGqWk OeMK70hD+fUyamLbEcOUlGASNbg/86LC3vFlg5T0RByf5st8Yd1S7yALJWk/ btMqgfmAyW1fQ1Ml2We+DCthfqv+KaWoq5JC1qXUqK/j338d2Ty4o5LOTZo/ czDz6erVKeYGSvreu2/xIua5qdumfNNVUg+134OTmfvcPmhysqmSPMsvpj1l vjf0YJM1jZQUm7OuVdP1EgqrWf/HWaakhxvtw4czB961rzb6pyCt6c1+BDJ7 pNY/E38pyLbfw5npzJP1T+dVfFHQas39xS+YP6+IjiuqVNDpVzOsdcMkNPhO kceZ1wr6cto43Y55zqENsoxnCuoW+anVKuZeGs1Ckx8raIZXTng28+HFGY8O 3VPQvkHLf7xltkk9WXfkpoLuadOsNuH8eji++c2JPAU1fi+/68zc9s7ubXmX FTT8YqH1OuanIx1ry84qaOXOqPTTzBWLujf/fVxBx33Gt/7EfDn6TGnrowr6 NMRgQ4cNEjpbsdlh2GEFGem9+jGOWXPU4Cl+BxQ07VPKrE3MFkv91ZJiFbT7 6vy7F5lXXSkf+XSPgu7s7UvfmQ8bWLTQ364gtYW/04038vvz+6C5k7coaMjI S62nMBt3u0gHwxS03GD9hijm1H9R276tUVDWN/uf15jLJTvcRwYpqLKgmedv 5vi6tIj4pQrqGP/wbs9NEkqpuNmz3k9Bk5fup5nMEwo/m870UdAOh5kZu5mT 8/QiizwVdLND1zZFzP3fj7EZ6KEgee2nDZLNEtpldMwxc6KCBt/O+dmXOcLB Nd7YTUFLDy73nMN86eP0/slOCspcQff2Mw8Yq960u52C3o5RDLnL7Oq91jBn uILaGxdlKLZIKCZT03uotYIm/ItqM5D5o9n3JyWWCoq6P37jAua0+WEB8/sq qOCwwa8k5vY2hv0a91KQuOaV5yPmmq8dm2d2VdCA8an3Gm+VUFlNrdr4Tgpa 3GPBkCHMY5W6TWXtFHREap65hHmF2reOJ/QVVPH4d5vDzBbfdaznNVeQwdFL G8uZB92RTu6qpSC39et/aUdIyDvWbckHdQVtnezgNZK5w+gD647KFHTdTPv+ CuY36dvCVtTLqV7t0ZCjzB8nFy6x/y2nfs/2Z1Ywfz4nsW9fIye/4zMN9CMl 1KyiSvhdLaeUTV03OTK/2Dpm56MPcnoxvfrXGubV2r/qz76Wk37/414n/vv9 0ccGHXgup7FNVtz/wNwpwc0m6qmcNlbQ0HZREmr14GrLkAdyunJGcdSF+XGb N0eWFcupLrLIIJx5UW3yX/8iOfX13rbpHPONfhK1JXly8rWaUPuZeW155bVl uXI6qNPWu/M2Cal3WGAWcl5OZe9f3XdnvjR+p23UKTnpXkodupV50Hs/6YFs OTntWnA0lzllZOupZzPkFOZr3vYn88BnOS4PU+V0aWjdpu7bJVTUyPPZzwNy +qV3uXYac4hy4p828XLqXb3eewfz/nf5B232yWnONYeSfGaXTR8f+O+SU+I+ 7WF/mUs2NtqUHCWnJwsfHe29g+tD3znnyzfLScc2tq0Xs8cK9zmtwuVk33bW 5r3Mjz723jgxRE6h37v+vsWckOLUOi5YTuduVHtLd0rom72u3rtlcqqJP17S j/l7dfUK8yVy6hGwYpgvs4e+49AwPzl5OQ45Fs88OuOAV5mPnGI7KtuVMIuV iyv6ecvpYW3RZvVdXA/GDT65a4actO5s+23FvPb0lie1U+Rke2jC7EXMWVpf R013l9PqoLYPDjFfWS0IN13ldHpsxbCnzDdcJtQNcpbTV+PDx7R28/Pw9Z6+ x+zl1K1+QbvhzM77fFK6jpTTzBLzLYHMx8qCxx4aKqd9R+p+pzGL6mE9uwyW 0/01l2e/YI7zHNw/zVJOjSeEPWixR0JWBp4+5uZyGtHTcbgdc57p5Su5pnJa KdPJCmYeP7+tlauJnE48edQum3mY9+h777vI6dPR2C1vmQd6Ga8N6SinLmGz 6lpHS2iN54YRhu3kNG1KtznOzD3lrvpXWslpT5/PD0KZt6/xq52tK6c76ieG n2Y+lFr0QltbTurPV2R9ZF5XMunWJU05DTkxpH2HvRLSKdM9u0hdTss3K7eO Y45u8ifJWC6nrBk36zYyb+mste6lRE6V/bfPucg8eYj7xPg/Muqk5f7wG7ND 6bt2M37JaPLrtiOM9/H5J7e4uMt3Ge08W5E1mblArYfvl2oZ3Yw63D6KuZNM v/JCpYwUs/22XmNeR6ftIt/KaPBgiz+1zEMCLcI8X8kooPmfOT1jJOS26ULM 4Gcyyvxw+eEM5ryloWGtn8ro3aWwEbuZ9RwuDfvzQEbtdztmFzLnGmfefH5X Ru7zdAwl+/l52GO7YcEtGUUNe7y1L/OGgOyBx2/I6IZ+3J/ZzFotJusdvC4j 8fOsufuZB0nKs/fkymjg9W6Pipnnt4hoFHlBRotjPo9QxErIR+OG3qYzMkpb dCJ7APMUn09PNpyQUYVtkOEC5vvhHo6bs2Rk0G5oRBLz02UbfLdlyMitRvn3 IXNHrYd9Yw7LaGvhzbmN4/j5XXQ2MfWQjPIStj8i5rRnGVlnEmVUH+Bus4Q5 sbXJ9NuxMuo/ul1OKvPPj9mH3+6VkV+n14blzCUTCjdJd8so9ffhCO14Pt9X 1kk6bpfRizt+f22Yu5++p7CJkFGrZAufFcw6bq+jfTfJaOzKP48ymQ/n5Z3Y FSajTS65NhXMzTfoTrwaIqMrXcNz9BL4ebNs4eqaVTL6U+/YwZHZ+0mQUbcg GfV9oBO5hjnW5oXtjEAZzUt7/Pc4s36afcV+fxkdXBvn84E5fPi8mlI/GZVP 8HzcNpHr4da6wHbzZKTbq/tIF2YXm6M+nnNk5CT/khPGfG3aqBsZnjIKe3qi wznmnH/hUXXTZXTpWFDkZ+YEP/ML9lNlVBs29F+nJAl97azvGDdRRr2nqvm6 M9sfEQf+GCejuX1vPd7C/Cfxaqizi4wSG+0Ymcu86IJ5lwwnGT197n78B/PZ k6bttBxkpHOyXcfuBySka79jzmJbGTlseR05jXmT6TDp0+EyCp155N925m0t Or0fMURG5y0X+uYz39hlqJdjJaMarX5P/jBnWXbb0nmAjHq++TOy90E+b3mZ jthrISOvc7nHPZlvT+9mpd1HRnHbwjvuZS620V60pZeMHs4eHXWL+YPkzXMN Exk1tW5eLx7iejoief0WYxnZtnji2485JWKSh3ZnGa2pjHviw1yo29hnr6GM Tl/2tI1n7lV0LalzWxl93d39xH1mL5doZU4rGXWb/6WjejL/eX/2bh/RUkYz h5+MsmKuu/hy+BMdGcW0Wlm/kDnWfLPeoqYyuv956LxDzAO3ndDQ1JSRZp7a 0yfMTvGhrY+oy2jE/lu2Win8fjvTZoSDQkbBi3ecGMY8OS9l3WdRRidGTewU yDyg97gnu+ulVN2u/bY0ZvdXbjT0j5S6/Hhd/5y5w7DSnOpfUvIoOjKvRaqE lN0NzeNrpLQnceHTUcydX0+74PJVSsWB/UYFM3/u/NCxUbWU1J3+nshirlYU PL9SKaWhna90esu8XFjhv/qdlJbXhW9rfVhC69+bK+i1lLKLR0ucmQPfjdgu vpRSZXLz+aHMisDfevnlUuoU/OTpKebWUw7tiHwqpcmu8aM+MhcmxkknP5LS zm5eJw2P8Otrp/XMbiVSuikx6TyO+fu5l0friqWkePhl20Zm58fv3t++JSXr 9JOSi8y9SnM0kgulFBCycv435ryKNJ01+VI66j6stEuahB4OGFA/5ZqU3vVS t5vM/GRUQaFVrpQMFbdPRjIPiSlY2v6ilNxLd3S+xpz5IP2v/JyUtmVN3F7L PCq7csqnU1K6Ed5e6JkuIdnfuh2Pj0tJOu3N/BnMkk0T4/OypDTQPK10F/Pn getXnsqUkr/GIrtC5uAvkm5paVJKe9HvVD3z9U1OSYmpUnp98m/nvhn896+o fbPvkJQMtl7ZPptZUrTx6+4kKY2btUHYz3xPiLyyK15KWwc4LShmtu6zd/ye /VLKa9qiTJ7J94OaQWkxe6VU/+aJ3QDm4ZebXEzaLaX+5+NPzWceVJ2yJX2H lBZu9zJKYv6QldziTJSUUueY7HjIfFP3sGvBVim9tP4qND4qoca/xtg+3SSl VrqnFhDzMHH4p+pwKblUrSzzZx5zpMtw5XopbcodZp/K3KdX8kjDECld3aN+ uoz55aYFP6xWS+nP/NtG2sf49b3SdPSUlVIyH7Fzhw3z58AYh1XLpTSv9SRx BfOyw7OrkwKkdOhLe79MZu1qh76F/lIqz3tT9or5SrFUv2ahlFrGptnrZfH7 Lcxun+ECKTn5LzrtwHzqw/NTzr5SCrfr32UNc2DghgVr50jpUvt/O44zr7RX P3/CS0q1P66IH5jf6BnHfZwppd43N/i1zeb7lslRnS7TpTQ3yal8LHPOzPl6 M6dKKXFZC4cw5nEmZkcSJknpqdPT02eZnYJvFrycIKXmRgldPjObPG6+yGic lBz+eO3slCOh3vQswddFSuvumkjdmQ9aKMYfd5bS+ZSvfluYe53zjJCMltKP 4FPll5ktR5XajraXUk+3YIcfzC6FdmtibaXk3X34mW7HuR4n7LD4MkJKcUIj 42nMo6PjvGyGSenRw9s7tzMrP7hoxZKUmmbslOYzLzWL6fnLSkqjQict/MN8 098z13WglNZMNHxmeoJfzzpx+dn9pXTG9K2DJ/ONogHWLSyk9FWRfiaaefZp k07L+kipe9ki41vMmiN9ljwzldLM7P67xJN8HrCoNrXtKaWYDf+k/ZjVd2W7 ZneX0v1pVxf6MHfNPV7evquUNC02Potjtp5aUxRpJCWbxs6O95lHu/gbSDtJ Kfhli7Nqp/jrKbK4FWAopZOnnhpbMb80G1b2qS3Xs60JuxYy25kk2s5uIyVj T2/ZIWbFrqlNKvS5ng3ssegJ86W160xmtJRSdLNvz5qcllC7fkYJL5tzPXt7 ynEY8xGjsXM9taXU6ELw2QDm1M9t1n/Q4nq2Y3jXNGaNKTFfF2pKacXcRruf M09yf5de14jrGd2RtTgjofSaVifC1KRUpbtr0Sjm6OnO6roKrmcfJz1fyWz5 /tDBQ1IpTbliODqLuevXwRssBa5n0W/PvmGO+DUg69Y/kW4tSO/a+izfbzdf bOv1RySFzeLdTszujt+K6mtFsm5jKQ9lHvbh35l9P0UK+Ppv0SnmZ60131rW iHQ0/+rzKuY2SXZOT76K9D5242jDc/z9sHnzJeizSIZLnM+5MX8oanrT8JNI E+11u21kDq//U55fKdI2w9LdF5iHJj7rvOi9SIU/E+TfmF0XV8cZvBVJest7 cZfz/P439rQvrBBp0IEeLyYxa81dYbTipUj+y7+NjmTec39+rx7PRUp3Pn3u KvPlLytnvSgT6bXRqm61zPf6vb+y+6lIbf8O39PjgoR2KL7ZOz8Wady9RooZ zLEHnv1u9FCkiNQ7i3cxnxxUcyvvvkh5q3a9uMHc++mK6+vviiQZN9mpntne 5/yzkXdE6m/S4XyfixLanSPX17gl0kLxXbfZzJ4TEv3uFIqU+ih9T8zF//o1 Lyt2F4j0MmOxopi5rZee//Q8kVqts/SXX5LQhEG72vS4JpLLpPoXlsyH6Fjp 71yRNve+5jSf+UnPS1k3Lol0VbnpfCLzpC2t98dcEOlvmXP3h8zJhw32+p0T yTxHN1rjMr9e93ZIsTkj0vyNpQpi9jAPv9b2lEiHPBL9/ZkHaGd8/nVcpGcW s1+mML8Kq+lSki1SS82ezmXMV1Muz8k+JpLzq2/nm+Xy+ZYCcrZnihR++nR3 G+ah94IUS9NFuhyxKno5s9aeAVMnHhGp1nOEMpM5d1mrM5QqktkgjSWvmDV1 wvW6Jos0V7v4ZcsrXP/SPgfoHBQp6d0uZwdm0wFXHtQnivT0wuQLq5m3uPv1 +RQvUvOdHUyOM9eOnru5PFYkB5930e+ZY6Sdn9+JEWndkAxl26v8+pPq9ri2 V6QLLf2XjGX2Xpaz8OwekX58tHy1nnmp6bK07F0i9bpa73yWud3W8qfpO0Ty 3nvtQjVzWZTHv9RtIsX7bTLpdI3fj3eDtFMiRXpkM2bvBOaCoCzdlK0iNTNo qbaFOdNprfrhzSKN+la65DJz8b7579M3irS2IPFVDfMGqsvJDhfpTNzsMd2u 89efmj737HqRvi3peXEqc/WtxurXQkXq7vDdZDvzrZ4JW++sFWlWhzN785iD bn+vLVstUsyvVWp/mB0Hbh/1MVikklsjlprmSehXsHrQvyCRNA9qVMxi3tLl TUSzFSLZrCgeE808h06HGC0TKXjM7os3mS3GNB9nFSDSyS5Teoj5fH+etFE+ bolI1X877LNgzniSGem3WCTj++/UfJgNLrT6sXmhSNMPZyyNY9b0mdH3yAKR olf7V9xjPnmqnV3hPJHujhswVq2A32+fqsw/+ojUqIfk0iBm2yueP5rOFWmY 9HqPhcw/J3TZaDFbpBWPN+07yNzS6k71FC+RcjLHqD9hPuIpMQqbJVLVupYB TW5wfejl3j1rhkidJ5dVDGVeNHnlv3IPkaaYJY0NYB7UrFms5jSRdqnNuXSE uereabXBU7ielffs+Zy5fENbK79JIimPf9/XvJB/f8lbywPuXM82nVEfxbzb 4sLfx+NFCpy+OmAlc/+rjmHNxnE962fz+hhz1wVDS+xcuZ5pNnZ5w/yvbNSb dWO5nlUUX2pVxOd9DZ3Tuc5cz87s7unEXDFitIPgJNL2yCkxIcyNu6fHDnHk eubVsdEp5tMpLzNC7EWSWb0PqGK+VZu4Im8U1zOdzNftb/L77UCSVNNWpCXv /V3cmN8v2zfC1Ybr2cUBlzcwH4kaSvuHi/Rmp6TXBeandmO/vh3K9cz3esxX 5p+26yb2HSLS+KGbG3W5xeeXRbsD1lpzPdMbGziJuVP1CNu7ViLlf2r5JoJ5 rJFTYcdBXM+ulblcZXY4v6h+6QCRLPclXf7FHL1z4avC/lzPFs7p1eO2hCYW ai7t0E+kwyN77Z/OnJTd6MRyc65nBjWNdjHffWKSeL+PSK2/nwm8wfxNHGBp asb17MbqN/+Y9TrULttiyvUs3sa1zx3++3qYzazqyfVsaeNcb2ZbvcxvDj24 njnc7RXD3LXYsltmd5EsOu7Zf4d585BYuU43rme1UzTkxRLab58aGmgsUvLt jsssmevqjA89M+J6dvD9m3nMRuFVs207i6QXlOmayFztcLUwqyPXs7FLch8U //c8WnOzbQeRNhgPNNW4y8+zjJ++m9tzPfsnibVmHnGuNqWurUi/71/X8Gc+ +mzyal8DrmdHNi9LYXbt+PNLeWuRfNaMfVvKvDwz7s/YVlzPxuu5NbvHr5f8 nnH5eiKV9ijPHcFcdHvlI+uWXM9kB0yXM8+08k4+1UIkxydzYjOY3ZKuN+rT nOvZ0V6NX/33z6cGCpnaXM/W1yxreZ9fT00mbTRpxvVs8tm39sz/4h0OHNHi etZnjdtq5hMjeow2aSLSbPWRV3L++/3qsvUZjbmePWvc+z3zi0RyNNMQ6fHx u7EGJVz/F/SPP6nO9WzznsZjmYctSg0erCaS3Yypy9czd7gf+Pa6gutZ/07v zjCvur75sbNcpLNNPrhVM7cMKXIplXI9q8i80vEB1ye79m5zRJFMzi7pPYE5 f/rC0p8SrmdRA+M2M0t1Dr8Lqxdov7egeZm5MvV4oP4/gUqs8pbXMAcsXr0p 7Y9ATZpvedf1oYRGnvvZbkidQDYfxo6byjzktrr5w1qBVl3Su7qN2eT7wYL5 vwQ6uau8dx6z2/xzpcqfAn32PRBXx9xzxeB5iTUCGQ+bq2n6iM/3zm2XD/4u 0HR90xWzmMnASSz9KlB0dc27Pcwl0muyFV8Eunvt7LibzG0Mlqxu/VkgjZg1 V4XH/Hz0d/M//0ng79NIMwvmv2pTnnl8FCjIVjN+LvPnvJBL8iqBctre04xj jo3I1U37INDH73tW3GP+2l3nhct7gToXTn2vfCKhTW5+bf++FWhqQqfxg5jn HS25mfxGoF0BH676MWfesP7k8lqg245HzQ4yd2+dFixUCKTstDT+MXMviX7w 0ZcC0e+BTZo8lZDZhXWVHi8ECrwjBA1lXh389Zr2c4GOHcp7v5T5l6NH4+vl Ar0P2jL+CPPJ1sXnl5cJ1MHF5doz5ocnRz42LRVoYlf9Ps1L+e9/N2/KuycC ba8vj7dlPvHLzS7hsUCFJQearGSu3vVz/6RHAsnS5gYdY676ljW+5UOBBq01 /fCaeUbviKX3SwRaMuHH+FZlfH+w21G77b5AGT3PXRvNfL1Z4bOx9wR6I1vb J4Q5vLeVcfO7ArV7OjLhJHOFcU3xgzsCjT+mqVXFPMP+39O9twWKDLsX1L5c QqEXZ43wuCVQ/pToD67/8UpzzS43BRL6TpuwgbnF6GCz6kKBLBt1vn6e2bDA MefUDYEWPf/Q5yvzOtfsqJACgQ6fOJpg9ExCjztcLHDKF+jV5qVak5i7mq2d ZJAnUOuZg1ZGMJ+3a2JTdU0gV0ux8gpzyd8l4eeuCrRZK3/CL2afA0WGW68I dO31lusmzyX0e4pRs+m5Av0969J3OvMgrT1u5pcFstimn7iT+ZNHv0+NLgk0 f/YzrRvMURdaPXlxQaDkwQdX/mPu7eaud+a8QM+b+1SaveB6pq2Rsv2cQHqV pu7ezCUJtuHzzwo05vKP6/uYA+d3P2V3RqANu8/1vcNcFnvTwvi0QLnz1ibK XvLrpYWdVHlKoN/DbJtaMmfNO9fm7QmB+rRqEjyPeetfWpt/XCCfz/cqE/7j 4u9mR3IEOnA92v0B86u0mh4R2QKVxkzLa/SK66dyxiL/LIFaLO5sbs1c1cS9 fuIxgRxHVSYuZn4d//ve0KMCrW93rGkKs/Vo7+rumQJdqFkaXMocO/6Ss26G QD8LB1U1reDze1qXn0K6QL0SxYkjmIM/XHzx6YhAswPz85Yx609K0yo7LFD8 6K3mGczzvjVdXZQq0ONOrkkvmZeM1TY7nyJQszr9Zi1f89d3saRTZrJAdsXP gu2Za7utGZ94SKCQ5INVq5jVuw4s2HVQoLMrfSbmMC/53m3Z5gMCfXfpnf+O eZRPoFdIkkAm3X6aG7yRkKSJQ+SKRIE8JeeTxjBb/btV45/A9ezB2mbrmTf8 7bZrQbxAD9JsV51hVvfd6OcTx/UspMnHT8yWI/VCZ8cKNNL9/sSOb/n+bSy5 47Wf61mvvfnjmfcPn+/iFSPQKbmHxWbmqtkRmt77uJ497XzgEvOWusi/s/cK 1DWrslkN86Ta+A6+0VzPwo+t6vpOQoXfP67w2yPQ3qkBH6cwb2+erLZ0N9ez vlaTtjF7aP/JC9rF9UxDWnCdea2lwenQnVzPXuRb1DFHew58umUH17OTWw/0 es8/LyG8x57tAh3f4qo9i/mYzDwzaRvXs5mtVu9hXv7df9rRKIGMBjz/WMTc 4vlyqwuRXM+aHpokfOD7lcdy25sRAu1+41Ngzjxkd/Kqsq1cz8717jeX2dqk 38tPWwRS2/7zQCyzsePUBQIzzTmvfY857chYoxabBVpmHbJaWSmhLkF2im6b uJ61GPVpIPMg/6AmtFGgD5VNJvsxzy1oN3j8Bq5nufcLDjAn9fLdsSBcoEl7 9vZ7zFzyMLrphjCuZ/M9DmpWSShk/otjSesFKhpupDOU2bZVUMDFdVzPWlet Xso8e3mSR2moQFZfjn06zOx8MMr3dwjXs7yAyc+Y23VZs1efOWO/1Q2dj/z+ lKS/t1zL9WyxtL8ts2eSs/ukNVzP7AoOBjHLapLfrVwt0IT2ETrHmO/ZVu9K WMX17IfrmtfM2R4zZ14PFqigqFW1/icJ6fgMcaxayfUs6fnk0cyuQp6LDvOA ZYdurGUeaGS2dGAQ1zMn3/4nmV2GX86etUKgI53NDlX+xybZGhHLuZ7V/dRp X833CZ2RK88sE7iun1/jyvw16pzybSDXs5SQ6nBm/QSXw82ZtwSPmnKeuSLa YdawAK5nrlqFX5g79XnXd/FSgf51K+lv9Jm/n6u8Wx9YwvVM2HdoIvOMjxot H/gLtOChR/MI5jdDWnZRZ05ON1p7hXne3kI7q8Vcz0Kqqn8yG8/xWbNoEdez iVlTTL5IKHGx5Y2UhVzPTAMLPZir7gR2eu7H9Uwx2HIn8423vhF6zLml0uQC 5ru+7o3GLhCoLqug+T/mCI+1OzbP53q2IWKt2Vd+/Wma9MifJ5DvNLfPXsw7 FfvuyZgPmLeeuo95QafmYUN9BSrTeFF4m9kstNRmjQ/Xs5eHLGXf+HmxzlL7 8lyBRp/yTe7PnH7d753AvH6rWYt5zHOM8vOHzRHo4qxfaxOYf59fl7V+Ntez ARc+l/zHz6sP3PAWyLRZ6NRG3/m83soxTot59ttRRYOZL5tUxLt5CZRwXmvA YmYXjT8pMZ5cz7aXJCczh5Q+PVExSyDtuftalDKPq7lR0IPZjqaHNK2RUNzD pi8CZnI90+3yZThzZq+autwZXM+qqqYuY5bfvaivxfw9N6sonbn61CnLydMF 6hEdOOAlc1fReNJhD65nCwan6P7g51eV28raaQLFjpDp2jP/ur8xbhTzg9Y3 QlYxG5hrXd47VSCtrxFfsplT47q/qJrC9Szfbdo75qkXjOutmVfHtr7Z5qeE Jjg5tdoxmeuZ/4sBY5g9O7zr/X6SQF/sklPWMU/WHTTCmrmr4TzdM8yzdHe4 7Joo0IyfZqGfmM1aWk7+5M717OavLx1+cb1o7j91JPO9pAvTxjN/abzVPWEC 17PloTc3MZ8V7jj8GS/QcGe7gZeYTb+s7TeBWZWHY9YsqdY7Pk5oyMPVcj2O m/ZZm1mVh2POsWh9fqGb0JCHYw7x9wkudhUa8nDM4e2j+5gxq/JwzGM+VT3d 7iI05OF+831zWebSH2OFhjwc8/jhXaUTmVV5OOYTRxNXXxgjNOThmL0lsz51 ZFbl4eokdN/puP1GZ6EhD8dcva189xcnoSEPx5wc1eWuO7MqD8fsXPGwNne0 0JCHY66vtmjSg1mVh/vDz/+Xm5rscRQa8nDMM48a/JYyq/JwzFs0+9zxcxAa 8nDM0nnakeX2QkMejrlHnWDpyKzKw/3l+8LekTfO2QkNeTjmtuXGw3owq/Jw f//Ld1Qmxo4SGvJwzKtk9941ZVbl4ZhzZnRuHmorNOTh/knogqtRp18jhYY8 HHOTVH29ecyqPBzz+utDq1/aCA15OGb1lIoUd2ZVHo5Z8WjI8OIRQkMerp6f 9z4xl0Yxq/JwzFvrzQ2uDBca8nDMm446uVsxq/JwzBv0u/mfGiY05OGYgxzl 8/oyq/JwEoHu320/7NhQoSEPx7w/9mxNT2ZVHo45Sqt5aPoQoSEPx9zpvfdH E2ZVHo45YPR303QSGvJwgkAjztc49mRW5eGY89VShh21FhrycMzrXW2a9WFW 5eGYW2tpnDgxWGjIwzH/qOrVeyCzKg8nCtTo1cc1l6yEhjwc81LDlck2zKo8 HHPHJi0Sbg4SGvJwzG7WVfPcmFV5OGarpf01ywcKDXk4Kb9PonsGezOr8nDM 8ZnipS8DhIY8HHPM47fFQcyqPByztWPTbDVmVR5OxnXDKX3GTkuhIQ/HHN6r +lkHZlUejvm9tbzbsf5CQx6OedBdAyJmVR6O+Yupl+GdfkJDHk7O/150o5se zKo8HHNCf4uhXy2Ehjwcs6WhzupQZlUejnmS3Y11LZlVeThmjfCQsUfMhYY8 nILrzHrP19bMqjwcs+LKTquSvkJDHo5Ze2P/iT7Mqjwcc8QnvwEisyoPxzzp ukdZdB+hIQ+nFKj4gPFQM2ZVHo75VMlb70IzoSEPx+wy4ZyjJ7MqD8cc+iT3 a31voSEPx9wiR3fcPmZVHk6NXzcvi5f2Y1bl4ZgDRE3X+6ZCQx6OebvTs6qF zKo8HLNxzFRqyqzKwzHbOMU5ZvYSGvJw6gKt8cjRcWJW5eGYXV0zo6p7Cg15 OObj/eOvRzKr8nDMrxN2HjNjVuXhmBclx4wp6SE05OEa8evzxaWDgcyqPBzz HK/G6W2YVXk4Ztf8MK/LJkJDHo45VGdAsRezKg/HHF9kXNWYWZWH0xDIu3r8 iezuQkMejvncx4Kek5hVeTjmPxmrXKXMqjwc88mIQKO0bkJDHq4xn0umZyW5 MavycMwnfbsW1ncVGvJwzNnzH+07zKzKwzHn7D/VfByzKg/HbJZ6ua/IrMrD afLr+dz73xnGQkMejrnx6s5ek5lVeTjmD21nL2nErMrDMZ8emdTldBehIQ/H /KR33orZzKo8XBP+9xJy/fSYVXk45qqqtfICI6EhD8dsLHzvv5xZlYdj3jlb 0siEWZWHY5aMiQoo7yw05OG0BIrbtnV1FLMqD8e8+mR5xxHMqjwc8zqpt0dt J6EhD8dcFqRhnsGsysMxa9RkxM9kVuXhmgo0T7tPoj6zKg/H7DwxsP+djkJD Ho45dODUGWHMqjwc8yL9K22tmVV5OObT40N9f3YQGvJwzfhc4hVsd5RZlYdj ltzafHIOsyoPx3zSamNWR2ZVHo754W7nAeWGQkMejnm85LRjNLMqD6fNP5/K fZWuzKo8HPOo7sXazZhVeTjmNME092Z7oSEPx2zXI+LXRmZVHo753++rObbM qjycDp/L3JJrFMyqPByz/yONM9faCQ15OObbpXmSdcyqPBxz4daj+cOZVXk4 5u5/9zaVM6vycM0FCu4++eG1tkJDHo65Q6eC1mHMqjwc8/xGJ0ttmVV5OGb1 HnV6GsyqPFwLgdz1fG7fNBAa8nDM6qml/yKZVXk45oS2RodcmVV5OObOPdte 1WNW5eGYU5vHjC9rIzTk4XT5fZ8aMC2RWZWHY365aMMTb2ZVHo5ZI+dwXg9m VR6OuSTkeOfvrYWGPBzzudLQb2eYVXm4lgINzfzeay2zKg/X8r/39YvHo5hV eTjmjLPdPjdjVuXhmP2GZSx80kpoyMMxF4qOU5KYVXk4PT7Xnn93zJdZlYdj Hrdz1nwLZlUejnmf7sEoCbMqD8c8wj6yVaG+0JCHY56br6m2i1mVh+Nffc8r 3Kfzr6o83P/3K/5//HP49/Dn4M/Ffwf/XXwd+LrwdeLrxt8Dfy/8PfH3xvcB 3xd8n/B9w/cR31d8n/F9x88BPxf8nPBzw88RP1f8nPFzx+sArwu8TvC6wesI ryu8zvC6w+sQr0u8TvG6xesYr2u8zvG6x/sA7wu8T/C+wfsI7yu8z/C+w/sQ 70u8T/G+xfsY72u8z/G+Rx1AXUCdQN1AHUFdQZ1B3UEdQl1CnULdQh1DXUOd Q91DHURdRJ1E3UQdRV1FnUXdRR1GXUadRt1GHUddR51H3cdzAM8FPCfw3MBz BM8VPGfw3MFzCM8lPKfw3MJzDM81POfw3MNzEM9FPCfx3MRzFM9VPGfx3MVz GM9lPKfx3MZzHM91POfx3Mc5AOcCnBNwbsA5AucKnDNw7sA5BOcSnFNwbsE5 BucanHNw7sE5COcinJNwbsI5CucqnLNw7sI5DOcynNNwbsM5Duc6nPNw7sM5 EOdCnBNxbsQ5EudKnDNx7sQ5FOdSnFNxbsU5FudanHNx7sU5GOdinJNxbsY5 GudqnLNx7sY5HOdynNNxbsc5Hud6nPNx7sc9APcC3BNwb8A9AvcK3DNw78A9 BPcS3FNwb8E9Bvca3HNw78E9CPci3JNwb8I9Cvcq3LNw78I9DPcy3NNwb8M9 Dvc63PNw78M9EPdC3BNxb8Q9EvdK3DNx78Q9FPdS3FNxb8U9Fvda3HNx78U9 GPdi3JNxb8Y9Gvdq3LNx78Y9HPdy3NNxb8c9Hvd63PNx70cfAH0B9AnQN0Af AX0F9BnQd0AfAn0J9CnQt0AfA30N9DnQ90AfBH0R9EnQN0EfBX0V9FnQd0Ef Bn0Z9GnQt0EfB30d9HnQ90EfCH0h9InQN0IfCX0l9JnQd0IfCn0p9KnQt0If C30t9LnQ90IfDH0x9MnQN0MfDX019NnQd0MfDn059OnQt0MfD3099PnQ90Mf EH1B9AnRN0QfEX1F9BnRd0QfEn1J9CnRt0QfE31N9DnR90QfFH1R9EnRN0Uf FX1V9FnRd0UfFn1Z9GnRt0UfF31d9HnR90UfGH1h9InRN0YfGX1l9JnRd0Yf Gn1p9KnRt0YfG33t/+tz/6/vjT44+uLok6Nvjj46+uros6Pvjj48+vLo06Nv jz4++vro86PvjzkA5gKYE2BugDkC5gqYM2DugDkE5hKYU2BugTkG5hqYc2Du gTkI5iKYk2BugjkK5iqYs2DugjkM5jKY02BugzkO5jr/N+f539wHcyDMhTAn wtwIcyTMlTBnwtwJcyjMpTCnwtwKcyzMtTDnwtwLczDMxTAnw9wMczTM1TBn w9wNczjM5TCnw9wOczzM9TDnw9wPc0DMBTEnxNwQc0TMFTFnxNwRc0jMJTGn xNwSc0zMNTHnxNwTc1DMRTEnxdwUc1TMVTFnxdwVc1jMZTGnxdwWc1zMdTHn xdwXc2DMhTEnxtwYc2TMlTFnxtwZc2jMpTGnxtwac2zMtTHnxtwbc3DMxTEn x9wcc3TM1TFnx9wdc3jM5TGnx9wec3zM9THnx9wfOQDkApATQG4AOQLkCpAz QO4AOQTkEpBTQG4BOQbkGpBzQO4BOQjkIpCTQG4COQrkKv4vZ/G/3AVyGMhl IKeB3AZyHMh1IOeB3AdyIMiFICeC3AhyJMiVIGeC3AlyKMilIKeC3ApyLMi1 IOeC3AtyMMjFICeD3AxyNMjVIGeD3A1yOMjlIKeD3A5yPMj1IOeD3M//5YD+ lwtCTgi5IeSIkCtCzgi5I+SQkEtCTgm5JeSYkGtCzgm5J+SgkItCTgq5KeSo kKtCzgq5K+SwkMtCTgu5LeS4kOtCzgu5L+TAkAtDTgy5MeTIkCtDzgy5M+TQ kEtDTg25NeTYkGtDzg25N+TgkItDTg65OeTokKtDzg65O+TwkMtDTg+5PeT4 kOtDzg+5P+QAkQtEThC5QeQIkStEzhC5Q+QQkUtEThG5ReQYkWtEzhG5R+Qg kYtEThK5SeQokatEzhK5S+QwkctEThO5TeQ4ketEzhO5T+RAkQtFThS5UeRI kStFzhS5U+RQkUtFThW5VeRYkWtFzhW5V+RgkYtFTha5WeRokatFzha5W+Rw kctFThe5XeR4ketFzhe5X+SAkQtGThi5YeSIkStGzhi5Y+SQkUtGThm5ZeSY kWtGzhm5Z+SgkYtGThq5aeSokatGzhq5a+SwkctGThu5beS4ketGzhu5b+TA kQtHThy5ceTIkStHzhy5c+TQkUtHTh25deTYkWtHzh25d+TgkYtHTh65eeTo katHzh65e+TwkctHTh+5feT4ketHzh+5f+wBYC8AewLYG8AeAfYKsGeAvQPs IWAvAXsK2FvAHgP2GrDngL0H7EFgLwJ7EtibwB4F9iqwZ4G9C+xhYC8DexrY 28AeB/Y6sOeBvQ/sgWAvBHsi2BvBHgn2SrBngr0T7KFgLwV7KthbwR4L9lqw 54K9F+zBYC8GezLYm8EeDfZqsGeDvRvs4WAvB3s62NvBHg/2erDng70f7AFh Lwh7Qtgbwh4R9oqwZ4S9I+whYS8Je0rYW8IeE/aasOeEvSfsQWEvCntS2JvC HhX2qrBnhb0r7GFhLwt7Wtjbwh4X9rqw54W9L+yBYS8Me2LYG8MeGfbKsGeG vTPsoWEvDXtq2FvDHhv22rDnhr037MFhLw57ctibwx4d9uqwZ4e9O+zhYS8P e3rY28MeH/b6sOeHvT/sAWIvEHuC2BvEHiH2CrFniL1D7CFiLxF7ithbxB4j 9hqx54i9R+xBYi8Se5LYm8QeJfYqsWeJvUvsYWIvE3ua2NvEHif2OrHnib1P 7IFiLxR7otgbxR4p9kqxZ4q9U+yhYi8Ve6rYW8UeK/ZaseeKvVfswWIvFnuy 2JvFHi32arFni71b7OFiLxd7utjbxR4v9nqx54u9X+wBYy8Ye8LYG8YeMfaK sWeMvWPsIWMvGXvK2FvGHjP2mrHnjL1n7EFjLxp70tibxh419qqxZ429a+xh Yy8be9rY28YeN/a6seeNvW/sgWMvHHvi2BvHHjn2yrFnjr1z7KFjLx176thb xx479tqx5469d+zBYy8ee/LYm8cePfbqsWePvXvs4WMvH3v62NvHHj/2+rHn j71/eADgBYAnAN4AeATgFYBnAN4BeAjgJYCnAN4CeAzgNYDnAN4DeBDgRYAn Ad4EeBTgVYBnAd4FeBjgZYCnAd4GeBzgdYDnAd4HeCDghYAnAt4IeCTglYBn At4JeCjgpYCnAt4KeCzgtYDnAt4LeDDgxYAnA94MeDTg1YBnA94NeDjg5YCn A94OeDzg9YDnA94PeEDgBYEnBN4QeETgFYFnBN4ReEjgJYGnBN4SeEzgNYHn BN4TeFDgRYEnBd4UeFTgVYFnBd4VeFjgZYGnBd4WeFzgdYHnBd4XeGDghYEn Bt4YeGTglYFnBt4ZeGjgpYGnBt4aeGzgtYHnBt4beHDgxYEnB94ceHTg1YFn B94deHjg5YGnB94eeHzg9YHnB94feIDgBYInCN4geITgFYJnCN4heIjgJYKn CN4ieIzgNYLnCN4jeJDgRYInCd4keJTgVYJnCd4leJjgZYKnCd4meJzgdYLn Cd4neKDghYInCt4oeKTglYJnCt4peKjgpYKnCt4qeKzgtYLnCt4reLDgxYIn C94seLTg1YJnC94teLjg5YKnC94ueLzg9YLnC94veMDgBYMnDN4weMTgFYNn DN4xeMjgJYOnDN4yeMzgNYPnDN4zeNDgRYMnDd40eNTgVYNnDd41eNjgZYOn Dd42eNzgdYPnDd43eODghYMnDt44eOTglYNnDt45eOjgpYOnDt46eOzgtYPn Dt47ePDgxYMnD948ePTg1YNnD949ePjg5YOnD94+ePzg9YPnD94/eADhBYQn EN5AeAThFYRnEN5BeAjhJYSnEN5CeAzhNYTnEN5DeBDhRYQnEd5EeBThVYRn Ed5FeBjhZYSnEd5GeBzhdYTnEd5HeCDhhYQnEt5IeCThlYRnEt5JeCjhpYSn Et5KeCzhtYTnEt5LeDDhxYQnE95MeDTh1YRnE95NeDjh5YSnE95OeDzh9YTn E95PeEDhBYUnFN5QeEThFYVnFN5ReEjhJYWnFN5SeEzhNYXnFN5TeFDhRYUn Fd5UeFThVYVnFd5VeFjhZYWnFd5WeFzhdYXnFd5XeGDhhYUnFt5YeGThlYVn Ft5ZeGjhpYWnFt5aeGzhtYXnFt5beHDhxYUnF95ceHTh1YVnF95deHjh5YWn F95eeHzh9YXnF95feIDhBYYnGN5geIThFYZnGN5heIjhJYanGN5ieIzhNYbn GN5jeJDhRYYnGd5keJThVYZnGd5leJjhZYanGd5meJzhdYbnGd5neKDhhYYn Gt5oeKThlYZnGt5peKjhpYanGt5qeKzhtYbnGt5reLDhxYYnG95seLTh1YZn G95teLjh5YanG95ueLzh9YbnG95veMDhBYcnHN5weMThFYdnHN5xeMjhJYen HN5yeMzhNYfnHN5zeNDhRYcnHd50eNThVYdnHd51eNjhZYenHd52eNzhdYfn Hd53eODhhYcnHt54eOThlYdnHt55eOjhpYenHt56eOzhtYfnHt57ePDhxYcn H958ePTh1YdnH959ePjh5YenH95+ePzh9YfnH95/fA4APhcAnxOAzw3A5wjg cwXwOQP43AF8DgE+lwCfU4DPLcDnGOBzDfA5B/jcA3wOAj4XAZ+TgM9NwOco 4HMV8DkL+NwFfA4DPpcBn9OAz23A5zjgcx0urW/64r/PecDnQPw/PvMxTQ== "]]}, Annotation[#, "Charting`Private`Tag#3"]& ], TagBox[{ Hue[0.37820393249936934`, 0.6, 0.6], Directive[ PointSize[ NCache[ Rational[1, 360], 0.002777777777777778]], RGBColor[0.922526, 0.385626, 0.209179], AbsoluteThickness[2]], LineBox[CompressedData[" 1:eJxEnAlYTl3bhnv2fqYUGaIkisg8FRWhRQiRQpJE5iQUmSJChpI50SBCCmWe QqKQEkmGEqISKipzpv7r3cv9/f/xHcd3nN//vtTz7H2vte513lfraQvGzBQ0 NDTy6mlo/Pff97L/+z81myD7ELemiYzdXSrm5YGt1jSx+o8Lhnx2889UM1+X grjzYEUbx2VtbqvZ0a77m5SDU8ZZtc9OU7NiceaaVroyFpGbNXtpqpoZPOtU NQZ80qJ9n7ZX1WzsqepJG8E/7s6LfHhJzTZvuJB1BXx8bWrI2vNqdnPSSqtq 8MEv/TV7nVGz32aDjrRtKmNnp2s1fXtCzXprqnVdwXrJI5KijqvZvKJ7a7aA s4KMcp0S1OzI+V1VN8BVv5NWa8ap2cvNru7fwN3+GFxKi1UzvWlGdzs1kzFj ZejygBg1G231xmoKOKlf+/Q+UWq2qcHxI7vAfnOahH3fo2bXS31074DNfiyt uBCmZrWXLdb+Bpt+X3ln6Q41M9vxu6qHnoytaGbfqe9WNfOaneY+E5wUr9Xw b4iaHeq/6W4E+Hv0u2XpG9WssIlDn/vg85u0Z4QEqZlueZN4QV/GHkcffDBm jZqNvF6gawm2PvYkxXCVmq0P3792LriX8eNO7/zVLMV7ZvV+8HOtu83OL1Wz b4M6T34E3qxXFrjOT826Na+5q24uY3Yh4zzH+qrZ7KoLffqDO9sNyW47X832 31oZ7wt+kf32+HcvNcuPGtT0CPhrL29l9mw1a7hQve4ZeIm5WBg7Q82GD7tf 3cBAxiybveywfKqarWkVNtkW7HyzW5XTZDW7/MU1eyn4WEr7rl3c1OxTllHf RHAfg9+vVRPUrHPsm/hX4CPBRdpvxqnZ9KXHmzZtIWOHxiiT0p3ULHqU77rh 4Hlj4m4cclCzxyaWNQHgPr9rhq+3V7P6P39PPgNOnNBmiOcwNRv6IC27DDxW Me/MyCFqturIpr4tDPE89NLcYTZIzS6udEgYDT53rNur5jZqhoevWRDYPK3p fqGfmnXo+GzdJfCUWd+zK63UzKNuf00l2LZp/Tn5vdUs4vHMKa1bylj0y+0L b5mpWe7xzvecwROnp7w7213N6q2t6RsC1n98L+tQFzUbNOFiwjXw7q9/9HZ3 VLMV3QKafQb3bhaSs9FUzc7KbYPat8LnqXeyeoWJmlU+U39yAy/2PObva6xm bU/fn7IdPEt52duzpZq5bwy7dxPceKXhbQ8DNdvtPtG6FjzxdcMNE/XU7L65 8dGuRjJ2+tmT4866aqaqV9ZsGjhm7wmLMY3UzObV8aBwcP+n+e0cG6jZsgu+ +EpkLPVF+LLRWmp2KtTSow5cEdCpm6Nazd5P+3PP3FjG9jV5MmSMQs1a90m3 9gQ7BT2/5iyo2USd4KPR4OgBa/ZOrFOxnW8c9HLB5/uoH3r8VrG7V3TXK1rj +f5y3suzVsXEnc8+9QF7Ls2Z6vtNxfp5HvCYD7YeHXlhxWcV8xsw6/5BsPOO SZ4bq1UsSbdLv6fggvxJS8I+qNib8pqjWm1kLH5ocdHBchVrdeOiHgO/C+x1 +MxbFRu/J2C9H3jnmai09FIV2zbP9nMC+GuIR98nr1Usw1Zz6guwTf/seuUv VUzDIOd+IxMZUwV2MK8rVDGr6rB+Q8H5oalnmhaomO/ticf8wZeMnm/q+kTF jkUb658En1uSeW5onooVLyxbXwKe55TXe+oDFWsxPPGzXlsZi60eohVwT8XG Gi2cOhJ8oen8XpFZKhb61TInEDxKiDh1KUPFbt790+88OGOp7ur8myr2Jzb9 2Hvw0wvd9tfeULHey4L1W7WTsYarLRoapqrYfIfRG8aAfRusyLW5qmIofl82 gH8YjyyekaxiRT+fTb0C7lJdO3DzBRXTyz2QUwU+a/a46sxZFXOMn9W/rSne 7xbdKwpPqdimgC7HJ4At3VzNlSdU7MbYT/pbwEaGRzJ6Hlex2o6XNtwAOyk8 4ycnqJiZxqovX8ErrD7lhsapmNcT22md2svYQ6e9Q68eVLFDiZoPJoNjZ5+Q f9ivYs/X5vTfBX6lGaxltE/FdF13H88AZwwMmDgmUsVGdXdr/hs8dcer6g17 VAwPy8YeHWTM5LP6/tUwFbtWWPZlBnhNwciazztU7NvpxGkR4LXdxIldtqlY 900LH9wDTxi7TjUrVMVmT7YaIHTE82bUrvZAsIod6PX3uAX4WDHr9mKDiuXX u9l8LjhxSvcjBkEq1uh18Mb94LQHwz1c16jY8Iujv+aBc0rfu0WsUrG1W5pO V3eSsfmpc/Y+W6Fil6cXPugH3v7DpGnL5Sr2uU/sAF9wg+hFuR5LVKxzw9mJ ceARHc9lxy1SsRllXbDEyditnQOVlT4qFn3108YGnWXsav9lAebzVezxzktf B4FvyM73XDlXxerPWTV9Kdi9g3Ob254qNtRmMEoM1jvvCw6NZqnY6qb1bF6B H/60uOA+XcUuVuQk6nbB872g94TjHipWfWO3wXDw8oKGvX66q1iHvW74imXs /rkOw0e4qdjU+a2/nQZrVj0Pj5qgYhGD304vA68s3WL40VnFHhok5Rp0lTFX j+iCgWNVrF7NQpvRYKfoOffCHVXMNsMqaR3YjLl8rxylYiv2/TW4BN48NWP8 YHsVO7fo5qZKsN06w4roYSpWOTzkm3E31OPdyWe/DVGxdsaOM5zB1l9kp5xs VQyL78NgcI6na1ESU7Hw7EKba+Db7dsO1BqgYvcPxiZ9Ak/Mvf1ojrWKqZbP btG+u4x99jkSkWmlYvjhgt3At1Z22NbJQsWWtfv8bRvY7/GZc6HmKnbq16UZ N8FXbh3XrO6hYu9zVz38Aa4v+G8Z103F2iQMZl17yFi/hCCby51VbOKqeiem glvYmBu17qhiu8Y9aBEObn/hQ+dgU9SzTuHBWeAuMw1nfjJRMbls0ve/4Hda HbImtUY9e9p6pnlP1Ivc5RPvtFKxxUlvH84G9x6yomlvQ9SzdUksGvzWLfzn weYqVua66MQDcLFvb83GeqhnPfoYKsywHgxPZ2t1VcxFWRfcB5xb7/iBz41Q z57f/D4PnGg7ocMsHRW7cyZk5kHwlzKLpwXaqGfBjnlPwPNHnk10qKdifaY0 G6hljnrbo2/CTRXqWe/nJ2zA7metMq0VqGdaBw39wIddDXXOCahnr2eHJID1 tMYu76qBenap64/n4LTG9qqEP0o2buvnmY16yVhwq0WXTH4pWeiM5Lwh4PwB fUMP/FCyW31XD/QHO5TprG31Tcn+NBxy8gTY6/30iH2flczibb2WJWCLVUdy W9Yo2fyUByF6vWXsm/WwTvs/Kln8rvAf9uBcg8sHW1cqWdGcSbMCwRsXzesb 917J9FmbR+fAenV51R3fKpljs3cD34N9n0y5dbJUyYIrk062tJCxtgvXXbQo VrIbaYtajgE3OHb69rUiJfu5t8/mDWDN8+6f7F4omdmCuh+XwTEdfvV5+EzJ 5g65NasKfPrHn2j3fCU71GLzIxNL/LxLnxmUP1ay5zWOgyaAC8cqzi7NUzJs /rBkYv2M+jxDmatko2Ket7wBNkk26BF+X8nW+x3c/BXcdFF1k/bZSnZthGdt RysZ6/ShXCc5U8m+G3dDyQLHB5qMzFCy7t8/P9oJzljZweHVTSXzvJc8KANs H+e6bXGakh04tPrUL/Dos5vLtK4rWcHyIXhkZGxBmMXYQylK1shRK3QG+Pv2 h4+sryjZCNPc2r3g/fb5Xo8vKdna3+Gz74H73riu63NBya48nPRY1hfPyzDF Q61zSobF0tYCPHOH0cGE00rWZfW7U17g9XHBQUNPKtkM5xOt9oPbvU1Z9iZR yfZ19gvNAw9qZLlq/TElwx/2U2WN593SJ8w0Qcka5NfN7gf2ull6+U6ckg09 ceuxD1h3ZcOauYeUbHXQZts48PtlCywaxirZxYlOpwvAj7qsCjkfo2TVPfSM GvSTsRMeyZVu0UrWUfUidBD4h3nMJDFSyaa+OPhzCXib4bGC43uULPKsp+dx 8OyyidOddysZisuTIvDgs91q63YqmZbHF1vd/vi8fh6KPL5dyWwtLp8eBl60 qY/dhK1KtlI70CgA/HTV/L+KUCU7Vzxky2lw7ti01HPBSvbhktavN2D1w3Mh MzYqWbttuZ4GA1Dv9W9PbrpeySbP3PPEATwkYol1xlolC7d2H7wObNfCztg/ UMlyGpmcuQj+dPGSdrdVSqZ6986oEvy3cKRGyQolY9dObDG2wflk6Pqfe5cr 2bIwv1/jwI/qlf4cvVTJTnv1nRMMFkIrNNSLlew903iaAs4NbKV9Y6GStdG7 PfgTeHxNXYsVPko28cPmM6YM74Nlkx4W85VsV7qTsRtY/qfQ7tNcJcuO0Nu6 DXxxwMtpJ+comdznxa908KlhMYHzZitZ/6GH5vwAP7p44ECXmUq22HDO0y4D ZcxquVda5TQlO/Gp25Cp4OeZgW+SPJSs7M6XM7vBPhZzNH0mK5nR/svGWWCt qKNdzScpmcviwK1/wdVt7jh9d1Wy7fZDcYSTsZHD7BdfdVGyO621vWaDP+Ul 71nrrGSyH7lPo8DGLyIvDR+rZH3u7xnyANwvc/HTRk5KtvCwO7bQMhZm//Dz Mwclw2atdR+w8Uyr+nEjlazE8f3WeeCBM3qY+IxQshbtT/6OBW8oHdS73zDU sz9+2MJgf33/xyDNoahneX3z6w1GfXAptH9qi3p2VANLMD4vDb/RRwYq2d/V t88uAhvvGTlqiQ3q2fjQ1glgPYuqwXb9lWxBlzHbnoNdB5X1bm6NeiboowTK 2APvq0aVVkr2Kv+F1xBw7OnfsusWqGcnD+UvB39wMXse1kvJnNbPGXoCHFnz LsnLDPXMrTseQRlr5Ja4ZGAPJUvr+bW13lD8PFfUFs27oZ6prmyzB/daG1JR 01nJzF8G/lkN7jH3Wvjdjqhn54biP9jP+fe0PNJeyQ6HaBe8A6/97ZO9ph3q mcfDoS3tUC821Rs/2UTJmlruPecEFus251m3Rj2rP7nNBvDDDesGGxgp2YYS k+2XwbIdqxNqDVHPkt//+Qie+qRBXYEB6tm2k3NNhsnYNZfrdlf0Uc9mLS5w AR9yN1m7rxnqWT9ru1Bwu2UZSYG6ShbbWHb+OvjIqn5ZMxqjnr273eYrOHpb 46fDGypZ49TQ7R2HY/1v+CyvewPUs91j/rqDHyWaXG+mrWTr5up77wTPdQmM +quJejbwZcFt8Mlha2a+VSnZF73Ddr/A3eoutsxVoJ59nHO++wh8XjYX0q+I SjbzZneTGeDIxg1c4mWoZ5Fft+8Fh9xxerqrTsGe+Fz5mw22/9pk8Jo/CtbA bo23zB7v/8K30Qt+KZhdS7tnvcGRk6a8nlyrYKs/aw/zAjvo6TQa/V3BLmU+ PB8DPjcspDP7qmDV+/ea5IFnFc7oYfZZwToumbxDNRLv7x8zo3Y1CobDQp01 WKNN8Hf9KgWLbFPu7QOe9efXpfofFOzhj5PPDoOPbjKeLlYomFbO4mEF4Hl1 m7/WvlOwwXHWF+qPkrGWr/IW1JQp2MoVsraDwJcrtuS+L1Ww804ZO5aA97dz NCgpVrAP7bfUHQOPzzs1/MUrBTP9O2ZeEdht5dAp+S8VbPIj/cImDqhH7+Mn PnquYHuOvRw2DPzS1Ns695mC5QQevrAS7LC6kywnX8HULl5tT4NDA/2P33ui YNhc4UiI/cGPz33uPVKw5eK3uuajZazn926J9x4q2OmCK/McwCZ302U5DxSs /OSawrXgXXL7vrn3FQwPH7bkMrZlkbvzo2wFc5tU/2IFWLdD2Jj8LAXbZZbX 1tgR64fvpp4v7ihYtjpi5zjw1Fd5NcW3FUxeNBlbIhnrOqjhrvc3Faz/+bbz U8Cd4p7q1qQp2JLN5YU1YPPxN5fUXlewE1NPDTd1wn7ulc8lIVXB3louwZKE eqGzrEA7RcGwGLXbBk4s9yvQu6JgE0plKKn495OFSybJCrb9cobGD3Bt3VW/ HhcVLHP7lvldxqCerrHRGXBewWSzxz73+I8HmG4ceVbB+vZvjkca+1e/+s/d TivYwiZFFzPBf2N21Pc+qWDH3x9u9xe8dvHoFgFJClaS6rXLbCzqy4cS+bbj CmaIzels8BCryszYowo2zvvb/Cjw5psKr/PxCrZl0NXnOeA7/e6XZsYp2C39 tSPk47Cf21jSp+iQgv39aHfJCmx5p8Tza6yCWdyqbzoPfGrSPF/tAwq2ICpv Vyx4TFGrsW1jFCzeN0L2BHym3Z76/aMV7JXdlAX1nGXsAFt8YHykgjVv1e7F ALB85QQt370K5vSlfMQi8KHJr0aFhitYSNapS/HguqOJsxPCFCztwBLT52DD ie4Tbu1UsF9L+oU1HC9jHnE7jUq2K5j5KEEYAnb9XXlVtk3BvE3uLFgOjtKs 36P1FgU7XLvlRRI49PSuZQM3K9iLnLH2xeC+jduETwtWsKZHmic3c8H3v851 U9BGBXNYWWRqD+6/u9Ahfr2CbRgTF7YaPLPxiPdZ6xQstcNc4Rw47M9Ql6o1 CobNvc878Iadfnt1AxWsx+NvLwwn4P8/ZHFi31UK5nn8qr0TOCS9YufUlQoW u2Zt8nrwyhp/+2B/BUPxa38ZHFV56/HpZQrWuFuD3R/B6no+PQuXKJi9/JFg 4orz6RPDyYrFCrbuWYSPC1iu5+PWY5GCXT015eVmsGZG/Y6TfBUMh/2R18Gf mkfe3rRAwbq6VyR/Aev6J5tfmKdgM81Pt+848b/+YUOf0rkKFqO5dLc7+HXL wSuaeKGeFfUTd4Jth9WOs/VUMJ0Lgu9tcO3Ix78XzUI9C73z8ifYKz5gYdwM BQuctnVkdzfUE829559OQz2zGnd5OniHa9atelMVrKaBAY6YMtbwwuWDA6ag nr0p2p0N3uKrM3KRu4JNuxInyiZhf6674EaCG+rZjrm+vcErJwUKRa4Klje7 J7b4Mra7X3mDZhNQzwZ8HxkDPvJ8bNmo8ahnuimXH4IXRszYtGEc6ln52g4q dxnzlt/8kjoG9ez6MGyxcB4vad75p6OCfQxvIPcB9+3ZoHPv0ahn8x75HgbL DId/8RmlYFNsI4vywZuVizYk2aOeNffAEofz0cZer8uHK9iDqnZXBoIrPC3k HYehnt2u6LAEXJfQumr2UAUbGH06/BhYtXx/bPxg1LOFS1FisN70d23xbpCC nRnWf2GTKTJ2d+sPt44DUc9aiXhFZKyzZfvpc20UzOTrnVErwSt7betxoj/q 2d2tV06B9S8+S6+xVrCw2HEd34Dftj5naNEX9WypAX5EnD/q3e67wkrBFA6v 5A7g7ZZXWt6wQD1re2ThWnDUoQG3VL1Rz37OfXUBXLX8V4/R5qhnD3o6VIA/ 6e3z2NMT9ezI9ytGU3G+0c4Z+6q7ghkHpHQcB07R71+vUzfFf32UPZvAQrdd 6/y6KNiOjsMVKeD4BQGpqZ1Qz+oaLKoBl/RMSNHqqGDCk0ev2k3D/q82NWBC e9SzxEiHieC1Ab51ce0UbNFaj6tbwZ6H5gz6YoJ6NsG0Uzr44FrnobZtFKy0 W+We7+B904rr7TJGPVOcUXSZjs/7csq2klYK5ly4dJEHeI357ke9WqKene7/ OgycdahZwYYWCnZ7ozg6E2zfpDq6oDnqmXvm1T9gw+Qco676CmbZa1snsxky VvBr+tQ1zVDP6jnvnQVe6es29YmugiW8MlBGgQcUzTDq0gT17MKrRTlg7z7d o9Y2Qj3bcuS1OFPGRh2a86hAB/VsuvdoK/C3+elZPRugnvUxS/EGd29ZGRCi rWDpOj86xYKHu+/6UFIP9exNyt7HYFn9Oc0HaCpYr6vrlPVmoZ5ZtZRFqFDP dg73GwBe1tzj8BeFgsV56hQvBG/QLxac5KhnAx6PjgdvuTvW8ISgYM2aRqUU gsd8m1mtJUM9q/Do3HA29jMhmau86uRs4w3TiMHgBke6Z2T+kbPUPZXK5eBG 4cMzO/6Wsx/zzvglgQ/n3QkK+SlnPQYvw5FfxphiSm3FDzmbYzDAsZkn/vy/ KaYO3+UstlrEkVXGmqfu0T79Vc6e3c7svBoc6BdzTPeLnDXety3iLFi+LEhj +Sc5s1/krHoH3jL6d/2X1XK2bngLHBlkzDHp0kPbKjm7avS62BF8YoG3w7EP cvbl6xHH9eBGsVmBjSrlrGu297VkcM7SDXOWl8vZrINm2LLhzx8/Vl38Ts5i lv2IaOMlY8szSyfZv5Wzpw7XVC7ggM0fZ51/I2c67YIWbwbfCWxralwqZ8N+ DceSif1jct/IzcVyFpir4/QF7ObzJu37KzlLjn98rcNcGfulVbB/RpGc1QRE dXEHj2uZ1ePhCznrNG4qShbWV495i9lzOZvWqb36NtjtytJ5J5/JWZTGh8U/ wQk2MfpGBXKW9+RMSTdv1PMO4Uu2PZUz7aRleGTw/j/X3ajxRM5wGEzdA25V njN84SM5C3CV41eWsSDtgGulD+XsfPesSI15eJ7bPyx1yZWzj4rt6t7g7sPW X72bI2dYLJfMAcccGTmE3ZezKWdalO4Dhx16uep8tpzt3fTa6SF4TWaNZ+e7 cvZgcnyqcr6MdcjuJx7MlDPN3vO6WoPXbVoyqvkdORuoZR61AHxQPt5ux205 83/9Q30YvGXBzmrNW3J25uK1Jfn//futS4atS5ezii1BpdoLsN5E1o3+c0PO sHkeMxC8fd1+xbLrcjapb8Pri8HuJ/3nfL4mZ2ENn3Q9Bt6nN3zFghQ5u1cW FfUSfOVlWt/KK3KG4qLZxAfn49EH4udclrMBu9ovtQM/L4y48faSnC2Z86F0 BVhu5Llp1kU5O2lzdswpsH5h+q835+XsbdPl10vBJj9ntph1Ts6MKwd0a+4r Y7e3qN6WnZGzCWny6FFgw5ypkz1Py9mOvVmaa8ERrbqtKT8pZ5nzty+9AP4s mo6ed0LOsNl4Uw7W6CbeqU6UM+sWhmONFuI8snB1hd9xOVtU8/r6WPDW++OS a4/KWWJGfLdN4Nkz+/dcnSBn+DKir4K91nweo4iXs5Z+5vVqwN67erYKjZMz 5xG1S9stQr01O7OzyWE522qc+sYVrGjZ41TUQTm7/S1o7FZwN4tZS9rGylld 9ogbaeAhm3TeJO2XM8tDDbt/B3vYvv1lGSNnPsufRHf2k7HVKQmX06LlLGF0 dD0PsN9CndYOUXL2ut20ZWHgDPFpt2cRctb8d/uyO+A9VldKZu2VszEPP4z9 A173Z6nNl3A5C0k4e6PnYqyPMzIHrt0tZ+mrluMIh/3B4bnlDcPk7Nc4m32R YNaiRZ8DO+WsV2cFjiBYr4aFde2xQ87mye4uE5fgPPZoV8b1bXIW93R7mSXY JPiJcsxWOXuZNH6cN7iDS/OKklA5axZkiC0g9p9jm/st2SxnoycWd38Mjrqw K1YzBPWsR8I+zaWoZ0VDFu3bJGfXlfO1BoAPOHx413Mj6tlzcyzB+H6O2wkZ 6+Ws59nasiNg3+uNUycFoZ4Fp44rBO9coW30ea2cHZyyPk1nmYxNq/rUOmQN 6llve5RAGWs6JiijdaCcNdFuFLMMHPFnlc7lVahnxU+0ksD+C2JrxwTIWdCl 6OWvwZnDjq2vXIF6tnUaHkE8nw4Tzm7wl7OvMzo4jwDXzvJa23o56pn1x7RV 4JMx+z9dXYp61uhcj7PgkSYXRdclqGdvl+M/+OeH+Jz/6od6lmKjbegvY9n+ Iapdi+SsYZjC3xF8csKt2h4LUc+87r4NAttGvNqc4yNna9gO52Rwpn50yvwF qGfNXNI/gDWfXNzaYL6cfao07NlmhYxZf/r894Q36ll6ccx4cPmphg0c58rZ 9IgE7c3gF0vvX6mZg3q2YL5/Krju/gdVmKecPRrS691nsJ1H908Ws1HPDH86 d1iJ7+f7WP9nM+VsyKfU9EnglLWGB1bNQD27s77nDnD3RiOmm0yXswsx9vtv gVs82pd+ZyrqmV+j+j/B/VsVXJ/vIWft7Z/6dwtAvZ6eMrHpFNSz1vveTQM7 9NXecdUd9ez7tPF7wEcnbJw+YxLq2b0ON++CS8Orc7XdUM8Of+ypsUrGjD9q Pj/vinrmf25/L/CqZbvXTJmAeuboX38OWO3rnKbpImdnTdmKfeBwc+2Yc86o Z78V73PBl/ut1PUYJ2dt8+6OV67G/rOjZzvtsahnR3fc7Atudmnng0tOcrZ7 tYvZArDl7WtNZzminjm3PHAIvH3MyS9NRsuZsktJ/Xxw5Yr289JGoZ4JR1do B8rYwDXlq3xHytnS/PnvGXjvjSsdW9ujnp3o5bIY/OvK5Hm5w+XsXdDPm0fB zjp7hq8dhnrmdt3sJXiGf4dr5nZy5tpzw4HGa1BPC59kvRmCeqYa2cAOrNdz 1oK9g+Us60WjlSvAvnsjj9vbop6de/r+JPi6g9XquoGoZyH7XErBS06J5WcZ 6pnHdBwJZWxEnxsVnjaoZxYdzUeB2wb1Dmo1QM7eaFcdWAOW27c7+6gf6lnJ uQYXwFWznJdttpaz8cn+2JLLWF5OSN6gvqhn27DlXYf1OTrk5k8rOcuYqcSW EucrwcD+rCXqmXX2rY3gO85/Z3lbyJlV453mV8GzNP/omfZGPXvnElsNXn2i 0P2VuZwdvdYSSzqery9TrKLMUM/CSla6gg2OjY4f31PODOYeLd8Czr7sc6xx D9SzgQsmpIF79AwemNNNzjbr9UZJxX639xTv0K6oZx9+mndeL2MXGyR3GtFF zn6nX4+dAt5i7L5S3Rn1LHKDThh49IdGUzM6op75jMQjLWO5ujH5Gzqgng1t XPH7v39+3J3ioe1RzwzzJ/TcgHq50WW1yhT17PO+2zPBo440PnGnLepZ5nT8 kXi+bl+fH2IiZ5v2dzx4H6w07HhjZBvUs8VVOuJGGYv91jhOp7Wc1dqfD7AE G98cYpBnhHrWZkXFXHB7nWDjPa3kzOsHcz0Adl59+KJbS9Sz+8qMR+DuBVOK jA3lrPBwdi/NTTKm/XftnjID1LMVOw/2B/+teFyU2FzORjpNaLgQnJpifGmR PupZ+1arjoCjj3U2ttaTs5Q/JRXPwB7KVD2xGepZ3lFXnWAZsxl4KOaurpx1 O7YgwxZ86+2Bc2FNUM8Ce/deBr5yMNB1cmM52z/+18FEsJ6l1pYOjVDPutxo +Br8fr3m6M86qGfixlVNQ2RsUOjg/dcaoJ4VjKwcDjaZvj4gpD7q2cnGE1eB 59jsfj9eW84ur8/POAO+6Nu/xEQL9cwtpvdb8PRZdl41mnLW2WzGoRabZWxq 3MpVqWrUM3WnRo5gs4dHjLaq5Cz6ZdWqIHD28W2j3JWoZ+fOV14Cb9SWqbsq 5Kz+5hUTP4Drl990+COink0deKd1KN5X57jW9wU5W2WpshgP7u7vHbhfhnpW /96hEPC3/aVevhpyVlWys1Eq+EKH/Fe2dSLDYX/1Z/CKHY2Km/0Vmcf2Vh/a b8H+b6Hb/PLfIts7q3TiJPDCgMD1136JLLffsTvbwUmB9u13/RQZNkMWt8AF 0zeO9awV2aD3vQ/XggM61mkO+CEy/9Rfjbptxff1MWCE7neRnd19Y/U0cGT5 fd2KryLDw/IhHNx9QYpn2heRtR00CkdMGRv7Tndo5GeRues3yawDmz4/kLjw k8h2f8y36LVNxt6Ud4m2rxHZ/Zsxhz3BOfeDdNtViwyHI2zxsf+f5Ne07qPI bHw7BeaCHwdmxBR8ENlSu+oPiu0yVjZ4xKlzlSI71fKCW19waead4dsrRIbF A1ssGWtirzPXu1xkrbMGWh4CD29Z3mT4exEPswpbBBl7daLdYNN3Itu55F5j 7R3Yj27c+kt8K7KskbsCGfjssJo+xW9EJpq4fvQDr080qLteKjLr2lYo0Xie NzwdcaBEZH45pZkvwD1vfjEMLBZZYtwxy8Y78f552Sz2eC2yNyt84oaCB0QE jR34SmQtx1jgFcF+buOOi22KRDa+w+/Ak+DxG8xj5S9Ftu3vjY8l4Pp1lg3f PhcZXrZJ+rvw+y3ylmcVikzj+Cj8iDJ2anVMQNIzkftw4ILHUSt2FIjchwOP GGT2d3G+yH048JSj3RVuT0Xuw4Xh81ZN286eiNyHAx9YuGe/6WOR+3BgHb0Y s/qPRO7Dgdf3HTz8y0OR+3DgVX0nlBTmityH243nJTRB4+YDkftw4O8pYmxi jsh9OLCtn9XN3fdF7sOBN3k39Vp9T+Q+HPj4ijk752SL3IcLx+e1Vew/7q7I fTjw/IQzc2yyRO7DgWveDNHvnClyHw78Y3noML07IvfhwM1POv8UM0Tuw+3B /vGtT9eaWyL34cD7opJev7wpch8OvHtSYbN76SL34cAncjOzr6SJ3Ifbi98v eZh4/IbIfThw5Pv2lyOvi9yHAwc7WNaEpIrchwOfqBiasOKayH04sEWhaZF3 ish9uAjsLx3id0++KnIfDpy5ee9dxysi9+HAez9lBdpeFrkPF/Ff/7rBeYtk kftw4Ftte3t2uiRyHy4S+yvDBpGtLorchwNv2eM1oskFkftw4JJpLZarz4vc hwOPnV7T7u9Zkftw4Dm7Uhy/nBG5DxeF84zoVFt+WuQ+HLh+4Uqj4lMi9+HA j5wbpxecFLkPB951u7gk94TIfTjw7t2pa7KSRO7DRePvZ/7R6Yki9+HAfSaV mqccF7kPB/66Pcfu4jGR+3BgWUz9/NNHRe7DgbNcfEoTE0Tuw+1DfUvI9E6I F7kPB568tcLn8BGR+3Dgj60Sqg/EidyHAx9cl1ux77DIfTiw768+06IOidyH i0F9fHZ2bMRBkftw4DvBja7viRW5DwfevbFdfPgBkftw4MpZaerw/SL34cCX cy6X7o4RuQ+3H/Vh1eu+4ftE7sOBlwzR1NoTLXIfDqxVT+G8N0rkPhzYLiNe PzJS5D4ceF3oTefoCJH7cAdwfgropr1/r8h9OPDdh5esD+4RuQ8HvpVvURoX LnIfDhxQvUJxbLfIfbhYGeu4zW3/iTCR+3DgHgOOnj67S+Q+HLhllFW/5J0i 9+HAm1xeDEjdIXIfDly/z9zkW9tF7sMdxP6++YXj2dtE7sOB177Z0fTRVpH7 cGDT/Q+/FW4RuQ8H7uY2cnRpqMh9OLDLoLxWHzaL3Ic79N/9nvXMbyEi9+HA Jntc22iAJR8ObH1JNr5esMh9OHDfuWqNpptE7sOBA/oOMjbeKHIf7jDW7/R1 FzpvELkPB35zMTbNcr3IfThwv0KfwYODRO7DgY0Ut62d1onchwOrjZckTF4r ch8uDr9fx/Eh3mtE7sOBm5hZv/YPFLkPB+7m/jMxeLXIfTiw6WvPD3tXidyH AxurJh1MCBC5D3cE+6NOR+9eWilyHw484Uq7OZkrRO7DgWf1ifd/5i9yHw78 zUrUqFwuch8O7OahU/tnmch9uHgZm+QZO7MhWPLhwB0Ntw0xWSpyHw480vXE XoslIvfhwOE6jyePWCxyHw6sO7Bgz2Q/kftwCTKmIeywXbRI5D4c+OSyh1M3 LRS5Dwde/2LRp32+IvfhwO/97b+e9RG5D3cU+4Gk7l5ZC0Tuw4G3F39zfD1f 5D4cWC9q6dEf80Tuw4F3e25a1BAs+XDgnR/rTnTwFrkPdwznt+JzbgPnityH A0+pt2r5RC+R+3DgETZmar85IvfhwDleCaqtniL34cCdN11cmjBb5D7ccZx/ D1lMSJ8lch8O3OH574SXM0Xuw4HLprye83OGyH04cPiCK5HNwJIPB74xaZq1 +XSR+3CJMqYISbJ3nCZyHw6sPdfv7rypIvfhwEuCtl7e7CFyHw78cG6e/rEp IvfhwJszDMruTBa5D5ckY88c+rV55y5yHw6ckqlzTwWWfDhwUcN5Ze0nidyH A4fV7zJ/mJvIfThwenLbGXMmityHOyFjz4263wlxFbkPB86caBKZOEHkPhz4 5e6CgvsuIvfhwPe1O22sGS9yHw4cofUhVhcs+XAnZSzw48+OVs4i9+HAta27 GE0aJ3IfDryvjeuawLEi9+HABgETHePGiNyHA3e4rw7NchK5D3dKxvzT+vWq dhS5DwdOapYzrBlY8uHAA/bszew3WuQ+HHiZ8cIL0x1E7sOB58b00tk8SuQ+ 3GkZy9dOzjszUuQ+HLjD0nyx0F7kPhzY7cfc/SJY8uHAvy6PPNJlhMh9uDPY /9SO1R8/XOQ+HFj798Svq4eJ3IcD3zS07n/MTuQ+HHhq+r2qR0NF7sOBR86u 1NYASz7cWZyntvmEdR4ich8OfPWB+QaXwSL34cDVD3SK19mK3IcDn7V9GX9q kMh9OPD3imVPXwwUuQ93DvvxqGQfLbDkw4Fnm/sv6sNE7sOBqw+GFc22EbkP B458V3wufIDIfTjw6kY2n2/1F7kPdx7n5T7rIr/2E7kPBz4dEnysHVjy4cCu A7qYjLcWuQ8HzosaIt/YV+Q+HFi79uSoS31E7sNdwH728pC691Yi9+HAU8a8 1jcESz4cuNUg90gHS5H7cBf+6yeFrVtjIXIfDnxzkcejc71F7sNdxH7ob3To u14i9+HAxQvbJhqCJR8ObLs318zJXOQ+HNh18GrjDWYi9+HAxyaqF1/pKXIf 7hKez2y7HjU9RO7DgWdH6I9pD5Z8OLDGfedn7t1F7sOBddc/uxPWTeQ+HPh7 2ZqW2V1F7sMloz50bJ8vgiUfDjxne9wP6y4i9+HAs73zV/l1FrkPB/7RIsor qZPIfbjL2N/Xy7xS1lHkPhx45Jn+C43Bkg8HDt/7aMvEDiL34cDTnOY02N1e 5D4cOCDg6eccU5H7cFdkLDfrZ38tsOTDgd2/nKgc2k7kPhy4VVpO3dq2Ivfh wFqafZammojchwNrHL895ncbkftwV7Geho/b2Qcs+XDg8xnXei9tLXIfDtx/ 6Ot+541F7sOBh7bfG//ZSOQ+HNgrNHWxGVjy4VJQ3w6Zx/u2ErkPB3ZMeGB9 uqXIfTiw8HqheY2hyH048I7Yb1t6giUfDiwbYWW/sIXIfbhrMnZ0qO7cswYi 9+HArRvO/vCluch9OHD/zvUfWoAlHw78o0OJ/nJ9kftw4LlHbt24oidyHy5V xq6M3JH9t5nIfThwo9w2fQaBJR8OvPHLeNWGpiL34cBGQfUss3RF7sOBT08w uNMALPlw1/G8jp9+eWwTkftw4MYL0upHNBa5Dwces0837WUjkftw//F7i6dt wZIPB3abpRw1t6HIfbgbMmZl7mFyRkfkPhy4h3/ribUNRO7D3fjPV25fw8CS DwfeOWH0u031Re7DgecGLLHJ1Ra5D5eGn9/S/1tzsOTDgTe+s6w/XUvkPhx4 f13ousR6IvfhwIFfx7t+0xS5D5eO59Vh0VYGlnw4cPuI1Dab1SL34cAmPs2b PVGJ3IcDWy6b7NkaLPlw4C5TvZvPU4rch7uJ/e4b447JCpH7cOBbWa57FGDJ hwOfevVl+hi5yH04cJXswdb9osh9OHBSk0y9D4LIfbhb+PMU1/72BUs+HPhB bqhtsEzkPhy4eGWTsqcaIvfhwGea9igzBUs+HHjh+eu2S+oE7sPdxnln9aG/ t/4K3IcDX4i90KwZWPLhwAfH5m+e9UfgPhy4x9My94u/Be7DgQcvux6qBks+ XAbOD6G2+hN/CdyHA0/2c9BI/ClwHw78ZG/q4L+1AvfhwNHzFr9xBEs+HLhy gUPxoR8C9+HuyFiyaUfr798F7sOBI9uUVo0ASz4c+NYfd4393wTuw4G/uS32 /vxV4D4c2Ltc3WsYWPLhMnHem/J9/L4vAvfhwP1XGj3+9FngPlzmf/XD48Qw sOTDgcvz9xTHfBK4DwdOyYjz/VojcB8uC/uVy55uI8GSDweO2J+6/1C1wH04 sOb84AG/qgTuw4FbmcZZjgVLPtxdGauXWxNy/KPAfTjwq0AHKzlY8uHAWxwj bdw/CNyHu/tfv//cgQuVAvfhwLK3K9wagiUfLhv7b50HC7wqBO7DgTcbbH9x s1zgPhy43CHqsBFY8uHAI349uOn/XuA+HPjzkoYDnrwTuA93D/W6dZ+GZmDJ hwMPmN7JeutbgftwYJaYfq28TOA+HLjH4tJIO7Dkw4EfDPDOOfxG4D7cfRnO bX0nCWDJhwNfr+s20KNU4D4cWGjdcdW1EoH7cOCUcHWTlmDJhwPf1UyqW1Es cB8uB897p2+2ha8F7sOBg86kF/UFSz4cuMbj68PIVwL34cAGf71a/ioSuA+X 85+PI091A0s+3AMZWzEi9uLVlwL34cBBJ1urWoElHw58b/7MpNUvBO7DgYsX jzz2+rnAfThwQvKFP7ZgyYfLRf2zCIo/UihwHw48uiosXhMs+XBgm6o7f7yf CdyHA5fYaRx7UCBwHw6s07hFYi+w5MM9/O99qRUj8gXuw4Fd16w4/eepwH04 8B//NeemgSUfDmywrUL7zhOB+3BgzdqIy13Bkg+Xh/PkT++UXY8F7sOB/V4M bvrzkcB9OHDLalmaB1jy4cBPNwWlZ+QJ3Id7hOdZntS8O1jy4cDFN91uhj8U uA8HXtrLN/1vrsB9OHBI2r1ms8GSDwdu/MbpWs4Dgftwj/F86b9MtgJLPhx4 zssxmgdzBO7DgRtc356oBZZ8OPA5+2WHFt8XuA8HLm5a/qHonsB9uCdY75Jv bx4Blnw4cMzjjyvPZwvchwNfamR7wxgs+XBg5+aHJ4TeFbgPB24T82nQjyyB +3BPZWyRi07gDLDkw4F7C4U6uZkC9+HAJR4Wn/qDJR8O7GMttD9+R+A+HNhm itEJfbDkw+Xj59s/f+OGDIH7cOCvDx+c+XJb4D4ceEC+aY/pYMmHA8/f4VSX e0vgPhy4W1lP44FgyYcrkLG+6Qk7T90UuA8HHmOwZ7wxWPLhwN2LX8zdni5w Hw68qNnkhxpgyYcDh1/8EeybJnAf7hnOU1lbdxbfELgPB7afKKscC5Z8OHCw X8/wW9cF7sOBS7po7LAESz4cuGeUw/OjqQL34QplLLvwz1JDsOTDgQN1qqZv uyZwHw68xE08IIAlHw7c432LLktSBO7DPZexBWXN1eVXBe7DgTuvf2k+GSz5 cOCgXyNOPrwicB8OfHId87cDSz4c+J3bgbCrlwXuw72QMc/b9n97giUfDjxK s+3F+GSB+3Dg3fPrpbYESz4cWDX4VdOwSwL34cDtCzdcqQeWfLiXOJ8FF51c c1HgPhz4+ZG7n35cELgPBz68vUuQD1jy4cBTj5RMf3de4D4c2NP+4Q4PsOTD FeH7LiuoX3BO4D4cOOB14VMnsOTDgUuOJldlnRW4Dwduc2qc82Cw5MOBS2dv VV87I3Af7pWMvbcbpmkFlnw48M/M6S5nTgvchwM/9Ur71AUs+XDgTseGFMaf ErgPB/avl9PQBCz5cK9lrFkjtivmpMB9OLDWUP9pBmDJhwPr9pqyKvyEwH04 cLDng7LGYMmHAzstOhm1LUngPlwxzmNlL6K1wZIPBy5z6V8enChwHw6c7n5y nQos+XDgbzuazll/XOA+HHj0dqdIESz5cCVYf74N1lt7TOA+HDh2Zm6RBljy 4cCy1fmfVx8VuA8H7v3WemxdgsB9OLD/4Bd/VoElH64Uf9+AmM9/4wXuw4GP Bnr0Wg2WfDiw23nF9bojAvfhwGEhC8IDwZIP9+a/9WT1RRlY8uHAvx7pmayL E7gPB3ZJal4gB0s+HHhJ5ayCDYcF7sOBD9u9NtEESz5cGfbDi70ubT4kcB8O bNOtNLwBWPLhwDWdeqTuOChwHw5sbNqjZ1Ow5MOBvQtvVe6NFbgP9xb7BVVe jSFY8uHAlp59WOwBgftw4I5Xnz1tB5Z8OHBd2t5Lx/YL3IcDm/d3Lu4Olny4 d6jXlTXjzscI3IcDh+1wbGgNlnw48NLqMbo39gnchwNrZT/zsANLPhy497vM r/eiBe7DvcfnqynkjQNLPhzY5cuMH4VRAvfhwF7zH82cDpZ8OHCn/mYtKiIF 7sOB/Uw99BeBJR+uHO9ftY37rwiB+3Bg86ln368DSz4ceJhNdIo2WPLhwA2c nufv3itwHw5cPcnZ2ggs+XAVqI8d35cm7BG4DweesnL5YzOw5MOBBxq+004J F7gPB86632yzHVjy4cChrm9HP9wtcB+uUsZurrF2cwdLPhx4uPbXxHdhAvfh Kv/zl74O9gNLPhx4hKuRiQZY8uE+4Px7aKxd6C6B+3BgV3e/0/pgyYcDzxgx fWrcToH7cODFnQUXM7Dkw4Fb3TDbmbpD4D7cRxnTv/uk8Siw5MOBB6gf5D/b LnAfDrzCQqPUEyz5cOArjYf3+r5N4D4cuGRCaOZ6sOTDVcnY1fTjh3TBkg8H /qAdnHZoq8B9OPD7SoWpOVjy4cDFBvL7aVsE7sOBr4+ceXkMWPLhqmWsvqVW RXGowH048IfQp1MWgSUfDtxYI1FfDpZ8OHAC82q6e7PAfTiw05/PzqZgyYer wT9f0unZxRCB+3DgYfuqY4eDJR+u5r/9hGlSYbDAfTjwb/OTv+aBJR8OHDB5 7hYNsOTDfcLnXdtv2q5NAvfhwNrxCn9TsOTDgYtU8Y+SNwrchwMPvywsHAWW fDhw4sSfTq83CNyH+4z1fd0Cv8VgyYcDz8i2LdAESz4c+NXdCYEx6wXuw4E3 NN0+xxws+XDgx33vht0JErgP90XGarMqZJPBkg8HvjUm79TndQL34cCHJk2P DQZLPhw41Ccgzwgs+XDg301EuwtrBe7DfZWxt5mPf40ESz4c+FTjpzUlawTu w4ENvN91WAGWfDiwrVPFgcZgyYf7hvW37w3XY4EC9+HA1/bZjx0Elnw4cPyH uVuerRa4DweeFSmqF4ElHw5s2ehLmhZY8uG+4/2/2ura4VUC9+HA68WZtf3B kg8HLhqR4Pc0QOA+HPjT58zuvmDJhwO3dz/eSQss+XA/sF697jozbqXAfThw 12dmRTZgyYcDj4iK2vtshcB9OHDDpcN3LAZLPhy429WWmQ3Bkg9Xi/X0Qq1N or/AfTjwl8RrX+3Akg8HPvhmVHnJcoH7cOCE2E0tA8GSDwfuYuS4zRAs+XA/ Zaxq73qb5GUC9+HAdkPrdRsPlnw4cGO31ImflwrchwNfUG24tR0s+XBg3eU2 87uBJR/uF9av/Oxx2UsE7sOBH9jrLPcCSz4cuMvXt8/UYMmHA3f9bOkfv1jg Phw40+PV+KFgyYf7LWMjndN83vgJ3IcDu5ReywgCSz4c+FHLi25twZIPB66t H9rl5iKB+3Bg65RWfWeAJR/uj4w59nAMkoMlHw5s6inTilsocB8OXDS1yf0h YMmHA+c0m32vzFfgPtxf1L+VL9SbwJIPB14Z5BLYESz5cOCThhfM7/oI3IcD a3R/1mYeWPLhwAGxh0fpgCUfrg77kfHfzp5eIHAfDpzc+ZTzOLDkw4Gb/j5j 9n2+wH048IN9RSMiwZIPB/YqaRbTHyz5cBo410X16fJ6nsB9OPDG7R2+BoEl Hw48Lvjmjw5gyYcD7xj20eKet8B9OLCwZcNJX7Dkw8lQhxrNn9YMLPlw4JTQ 9aOvzBW4Dwe+cTppiQdY8uHAc7tnPFWAJR8OfPbUmYXHvQTuwwn4nJ872jmB JR8O3Gn8WufvcwTuw4HXXG2/bx9Y8uHAGcdatxoMlnw4cK9LjvnlngL34US8 R8t2390Blnw48I3lD75bgSUfDnx+WPGkV7MF7sOB/b2P/9wIlnw48BVP7dzu YMmHk+N7TXlT9HSWwH048Pc3eu0DwZIPB66auO5IB7Dkw4FnbFdPzp0pcB8O nP5t4yh/sOTDKVAnf772MwFLPhy4Qv49L3uGwH048H7/eK8lYMmHAxuk5FkZ gyUfDvy746QBWdMF7sMpBWbWovUKP7Dkw4HryoSqVmDJh/uPi15HZE4TuA8H 7uUcs8IPLPlwKqyDO/XDjMCSDwce/bJHSdZUgftw4BmrMjyXgCUfDqx39mrb NmDJhwNnJFc3u+8hcB9OLTCPbFsbf7Dkw4Hntw7fZwqWfDhwq8qMnnlTBO7D ge0nJf9aDZZ8OPDGmBG/uoAlH05TYB2eu/V4NlngPhx4lPW9yI1gyYcDV71c 1bc3WPLhwG/LHHVK3AXuw4F/LzBpvgMs+XD1UAd2PXGxAUs+HHjdnBF3P0wS uA8H3iWfsigaLPlw4MZLvoy2B0s+HLhNdrnHTzeB+3BaAmvRuM2Ro2DJhwNH O/obuYIlHw4csSUvWw2WfDjw7Oz6Jy5NFLgPB86ur5nuCZZ8OG2BNXCM02oO lnw4sGxb2sZMV4H7cGD9m8zSHyz5cOCFZXXNO4MlHw5cXV7U/fkEgftw9XFO u3l92Raw5MOBy6at/TIALPlwYM/z8kPVLgL34cAsoX3QQbDkw4E1TO/uGQeW fLgGApusl/NCCZZ8OPCw6U3GJ48XuA8H/vpxqYY3WPLhwL/2PX/eCiz5cOAp Y1pX5DoL3IfTEdixynad14MlHw780z4r2gos+XBgQ4ePNpXjBO7DgaNzfHUP gCUfrqHACo73MhgHlnw4cKuUZk5qsOTDgc89/37p6liB+3Dg2uKLTr5gyYcD +8VbtDAFSz5cI3x+GuOaFo4RuA8HDr1VZbMdLPlw4KdZ7yOHgCUfDlz2prXp LyeB+3Bgz4qlr0+BJR+uscDSTt7NngWWfDhwO9Wft4ZgyYcDx9+qMMtzFLgP B3ZNXZoUDJZ8OPCMO4EuDCz5cE3w+50v6/F9tMB9OHD7icF9ToB5Phyem9Bh vjPBPB8O72lreb4hmOfDgaui5j1yEP7lwwnM9l5Vz1Awz4cTWKOdRW0Hg3k+ HP68ZvZDf48S/uXDoZ6YNw4/B+b5cPh9bunqzgPzfDg8p3Fm19uBeT4cnrMz 9pEvRwr/8uHwc9+1ObgHzPPh8Dzd//jUEczz4XBOj7Gyrgfm+XD4PYz+3E23 F/7lw+F9szAMCQDzfDiBNc1avNgSzPPh8L3ffL+lZoTwLx9OYBMbT8g7Dub5 cPg+DxwYMgvM8+FQpzwOlRqDeT6cwIwGs1OFw4V/+XB4Lga5JISDeT4c3v9x d7KdwDwfTmDL/Ra1rA/m+XBYBw5aRd4ZJvzLh8P7X/R9UBCY58Ph7++5Q4+B eT4cnt8DpXq/7YR/+XACu9bnoe0lMM+HQ53R7hvlB+b5cPicOv9u2RPM8+EE Fnzqx90PQ4V/+XCob+d14o6BeT4cnttJrY/OBvN8OJxTM+rntwXzfDiB5Rid 71k8RPiXDyew8F3fz+8H83w4rN/jzs9wB/N8OJzbI+73bwHm+XD4efeZDCwY LPzLhxNYvUNh8/eAeT6cwOyqZLedwTwfDu/1fXs7XTDPhxOYy/Yxnx7aCv/y 4fDfod9u7wDzfDj8+8b6txzBPB9OYKmJeyp1wDwfDt97pHP/nEHCv3w4gb2a YHZxK5jnw6F+Tmow0QHM8+EEtswoq10DMM+Hw+/dbqjB/YHCv3w47GO/TrPc Cub5cPg8jGUBDmCeD4f1s5+sogGY58OhrpTZrslhwr98OHyv6UdttoN5Phze 49VNTJ3APB9OYH/uT+3VGMzz4QT23HuxV56N8C8fDvs+w+53wsA8H05g+xIW jBoP5vlw+L5K9X7qgXk+HM6Zier7BQOEf/lwOJcUt8mMAvN8ONQnP7sKdzDP h8N7Md6llzGY58MJ7M4G88PF/YV/+XBYj+ql9I0D83w4rMefHn2fDeb5cP+t s5MKO4F5Phw+Z9debz70E/7lw+F7azeg6Wkwz4cT2IeqiXP9wDwfDr//97lv LcE8H05geevHBP+yFv7lw6EuVVQ5poJ5PhzqyYZ2A9aBeT4czpEpjxztwDwf Ds+jRtEmLTDPh8N7fLddWU5f4V8+HM5JcSGeYWCeD4f3xahKxxXM8+Hw8zzq 9bwlmOfDoR7M63+vuI/wLx8O71NEeXE8mOfDoc7pt2o5D8zz4bDvOpu8wgzM 8+EEFttv/9/vVsK/fDh8j7tPxaWAeT4cnqNjOT7rwDwfDp+378spw8E8Hw6f d/W1hTpgng+H+m8x9uhjS+FfPhye/ykBYjSY58NhvdlttGYamOfDYf+qbdim I5jnw+H3UjmXVVkI//Lh8B49Trx3Aczz4fA95SryA8A8Hw7v6YxBiiFgng+H uiMf4qwN5vlwAjvTuzojr7fwLx8O799GU/coMM+Hw345Ikt3Opjnw+H3bpb6 sROY58Nhf3axrPxTL+FfPhy+56FtNa+AeT6cwLaHTxy+Dszz4cCh3sftwTwf DnXPoH93XTDPh8N7ZHPy0XNz4V8+HD6fekei4sA8Hw7ff4Q8aD6Y58Ph79E/ scUSzPPh8N5cX39JA8zz4fB8PZ8vzzIT/uXDCSwzfaTvLjDPh8Nz8VKomwTm +XA4dx72SzIF83w4/HmR61dW9xT+5cPh5x3f3PsymOfDoW6tbLIyCMzz4QQW kuaS6ADm+XA4t1dm/tYH83w4/O/3Rs0r6SH8y4fDvmRExp8kMM+Hw+/nYnBi GZjnw6Hu/+i0yhbM8+Hw8wx8Ma8BmOfDoS6NbxpQ0F34lw+H/cm8i8cPg3k+ HD7vu/G1C8A8Hw7nwNtZs6zBPB/u//+b/nf65+jfoz+H/lz6e+jvpZ+Dfi76 Oennpt+Dfi/6Pen3ps+BPhf6nOhzo8+RPlf6nOlzp++Bvhf6nuh7o++Rvlf6 nul7p+eAngt6Tui5oeeInit6zui5o+eQnkt6Tum5peeYnmt6zum5p/eA3ov/ vSf/3ht6j+i9oveM3jt6D+m9pPeU3lt6j+m9pvec3nuqA1QXqE5Q3aA6QnWF 6gzVHapDVJeoTlHdojpGdY3qHNU9qoNUF6lOUt2kOkp1leos1V2qw1SXqU5T 3aY6TnWd6jzVfVoHaF2gdYLWDVpHaF2hdYbWHVqHaF2idYrWLVrHaF2jdY7W PVoHaV2kdZLWTVpHaV2ldZbWXVqHaV2mdZrWbVrHaV2ndZ7WfdoH0L6A9gm0 b6B9BO0raJ9B+w7ah9C+hPYptG+hfQzta2ifQ/se2gfRvoj2SbRvon0U7ato n0X7LtqH0b6M9mm0b6N9HO3raJ9H+z7aB9K+kPaJtG+kfSTtK2mfSftO2ofS vpT2qbRvpX0s7Wtpn0v7XtoH076Y9sm0b6Z9NO2raZ9N+27ah9O+nPbptG+n fTzt62mfT/t+OgfQuYDOCXRuoHMEnSvonEHnDjqH0LmEzil0bqFzDJ1r6JxD 5x46B9G5iM5JdG6icxSdq+icRecuOofRuYzOaXRuo3McnevonEfnPjoH0rmQ zol0bqRzJJ0r6ZxJ5046h9K5lM6pdG6lcyyda+mcS+deOgfTuZjOyXRupnM0 navpnE3nbjqH07mczul0bqdzPJ3r6ZxP537qA1BfgPoE1DegPgL1FajPQH2H //Uh/vUlqE9BfQvqY1Bfg/oc1PegPgj1RahPQn0T6qNQX4X6LNR3oT4M9WWo T0N9G+rjUF+H+jzU96E+EPWFqE9EfSPqI1FfifpM1HeiPhT1pahPRX0r6mNR X4v6XNT3oj4Y9cWoT0Z9M+qjUV+N+mzUd6M+HPXlqE9HfTvq41Ffj/p81Pej PiD1BalPSH1D6iNSX5H6jNR3pD4k9SWpT0l9S+pjUl+T+pzU96Q+KPVFqU9K fVPqo1Jflfqs1HelPiz1ZalPS31b6uNSX5f6vNT3pT4w9YWpT0x9Y+ojU1+Z +szUd6Y+NPWlqU9NfWvqY1Nfm/rc1PemPjj1xalPTn1z6qNTX5367NR3pz48 9eWpT099e+rjU1+f+vzU96d7ALoXoHsCujegewS6V6B7Brp3oHsIupf43z3F v3sLusegew2656B7D7oHoXsRuiehexO6R6F7FbpnoXsXuoehexm6p6F7G7rH oXsduuehex+6B6J7IbononsjukeieyW6Z6J7J7qHonspuqeieyu6x6J7Lbrn onsvugejezG6J6N7M7pHo3s1umejeze6h6N7Obqno3s7usejez2656N7P7oH pHtBuieke0O6R6R7RbpnpHtHuoeke0m6p6R7S7rHpHtNuueke0+6B6V7Ubon pXtTukele1W6Z6V7V7qHpXtZuqele1u6x6V7XbrnpXtfugeme2G6J6Z7Y7pH pntlumeme2e6h6Z7abqnpntruseme22656Z7b7oHp3txuiene3O6R6d7dbpn p3t3uoene3m6p6d7e7rHp3t9uuene3/yAMgLIE+AvAHyCMgrIM+AvAPyEMhL IE+BvAXyGMhrIM+BvAfyIMiLIE+CvAnyKMirIM+CvAvyMMjLIE+DvA3yOMjr IM+DvA/yQMgLIU+EvBHySMgrIc+EvBPyUMhLIU+FvBXyWMhrIc+FvBfyYMiL IU+GvBnyaMirIc+GvBvycMjLIU+HvB3yeMjrIc+HvB/ygMgLIk+IvCHyiMgr Is+IvCPykMhLIk+JvCXymMhrIs+JvCfyoMiLIk+KvCnyqMirIs+KvCvysMjL Ik+LvC3yuMjrIs+LvC/ywMgLI0+MvDHyyMgrI8+MvDPy0MhLI0+NvDXy2Mhr I8+NvDfy4MiLI0+OvDny6MirI8+OvDvy8MjLI0+PvD3y+MjrI8+PvD/yAMkL JE+QvEHyCMkrJM+QvEPyEMlLJE+RvEXyGMlrJM+RvEfyIMmLJE+SvEnyKMmr JM+SvEvyMMnLJE+TvE3yOMnrJM+TvE/yQMkLJU+UvFHySMkrJc+UvFPyUMlL JU+VvFXyWMlrJc+VvFfyYMmLJU+WvFnyaMmrJc+WvFvycMnLJU+XvF3yeMnr Jc+XvF/ygMkLJk+YvGHyiMkrJs+YvGPykMlLJk+ZvGXymMlrJs+ZvGfyoMmL Jk+avGnyqMmrJs+avGvysMnLJk+bvG3yuMnrJs+bvG/ywMkLJ0+cvHHyyMkr J8+cvHPy0MlLJ0+dvHXy2MlrJ8+dvHfy4MmLJ0+evHny6MmrJ8+evHvy8MnL J0+fvH3y+MnrJ8+fvH+aA6C5AJoToLkBmiOguQKaM6C5A5pDoLkEmlOguQWa Y6C5BppzoLkHmoOguQiak6C5CZqjoLkKmrOguQuaw6C5DJrToLkNmuOguQ6a 86C5D5oDobkQmhOhuRGaI6G5EpozobkTmkOhuRSaU6G5FZpjobkWmnOhuRea g6G5GJqTobkZmqOhuRqas6G5G5rDobkcmtOhuR2a46G5HprzobkfmgOiuSCa E6K5IZojorkimjOiuSOaQ6K5JJpTorklmmOiuSaac6K5J5qDorkompOiuSma o6K5KpqzorkrmsOiuSya06K5LZrjorkumvOiuS+aA6O5MJoTo7kxmiOjuTKa M6O5M5pDo7k0mlOjuTWaY6O5Nppzo7k3moOjuTiak6O5OZqjo7k6mrOjuTua w6O5PJrTo7k9muOjuT6a86O5P5oDpLlAmhOkuUGaI6S5QpozpLlDmkOkuUSa U6S5RZpjpLlGmnOkuUeag6S5SJqTpLlJmqOkuUqas6S5S5rDpLlMmtOkuU2a 46S5TprzpLlPmgOluVCaE6W5UZojpblSmjOluVOaQ6W5VJpTpblVmmOluVaa c6W5V5qDpblYmpOluVmao6W5WpqzpblbmsOluVya06W5XZrjpblemvOluV+a A6a5YJoTprlhmiOmuWKaM6a5Y5pDprlkmlOmuWWaY6a5ZppzprlnmoOmuWia k6a5aZqjprlqmrOmuWuaw6a5bJrTprltmuOmuW6a86a5b5oDp7lwmhOnuXGa I6e5cpozp7lzmkOnuXSaU6e5dZpjp7l2mnOnuXeag6e5eJqTp7l5mqOnuXqa s6e5e5rDp7l8mtOnuX2a46e5fprzp7l/ygGgXADKCaDcAMoRoFwByhmg3AHK IaBcAsopoNwCyjGgXAPKOaDcA8pBoFwEykmg3ATKUaBcBcpZoNwFymGgXAbK aaDcBspxoFwHynmg3AfKgaBcCMqJoNwIypGgXAnKmaDcCcqhoFwKyqmg3ArK saBcC8q5oNwLysGgXAzKyaDcjP/laPzL1aCcDcrdoBwOyuWgnA7K7aAcD8r1 oJwPyv2gHBDKBaGcEMoNoRwRyhWhnBHKHaEcEsoloZwSyi2hHBPKNaGcE8o9 oRwUykWhnBTKTaEcFcpVoZwVyl2hHBbKZaGcFsptoRwXynWhnBfKfaEcGMqF oZwYyo2hHBnKlaGcGcqdoRwayqWhnBrKraEcG8q1oZwbyr2hHBzKxaGcHMrN oRwdytWhnB3K3aEcHsrloZweyu2hHB/K9aGcH8r9oRwgygWinCDKDaIcIcoV opwhyh2iHCLKJaKcIsotohwjyjWinCPKPaIcJMpFopwkyk2iHCXKVaKcJcpd ohwmymWinCbKbaIcJ8p1opwnyn2iHCjKhaKcKMqNohwpypWinCnKnaIcKsql opwqyq2iHCvKtaKcK8q9ohwsysWinCzKzaIcLcrVopwtyt2iHC7K5aKcLsrt ohwvyvWinC/K/aIcMMoFo5wwyg2jHDHKFaOcMcodoxwyyiWjnDLKLaMcM8o1 o5wzyj2jHDTKRaOcNMpNoxw1ylWjnDXKXaMcNsplo5w2ym2jHDfKdaOcN8p9 oxw4yoWjnDjKjaMcOcqVo5w5yp2jHDrKpaOcOsqtoxw7yrWjnDvKvaMcPMrF o5w8ys2jHD3K1aOcPcrdoxw+yuWjnD7K7aMcP8r1o5w/yv2jHEDKBaScQMoN pBxByhWknEHKHaQcQsolpJxCyi2kHEPKNaScQ8o9pBxEykWknETKTaQcRcpV pJxFyl2kHEbKZaScRsptpBxHynWknEfKfaQcSMqFpJxIyo2kHEnKlaScScqd pBxKyqWknErKraQcS8q1pJxLyr2kHEzKxaScTMrNpBxNytWknE3K3aQcTsrl pJxOyu2kHE/K9aScT8r9pBxQygWlnFDKDaUcUcoVpZxRyh2lHFLKJaWcUsot pRxTyjWlnFPKPaUcVMpFpZxUyk2lHFXKVaWcVcpdpRxWymWlnFbKbaUcV8p1 pZxXyn2lHFjKhaWcWMqNpRxZypWlnFnKnaUcWsqlpZxayq2lHFvKtaWcW8q9 pRxcysWlnFzKzf2/ms47rsf1/+NuXNd1JyOEgwjZI9FA1m1ElJGslnGs7JIt VHb4GicrHfObOspWso49T0Zm9jy2LxmHHPR793tfr/Pf63HMT/fnuj93no/n Ex5deHXh2YV3Fx5eeHnh6YW3Fx5feH3h+YX3Fx5geIHhCYY3GB5heIXhGYZ3 GB5ieInhKYa3GB5jeI3hOYb3GB5keJHhSYY3GR5leJXhWYZ3GR5meJnhaYa3 GR5neJ3heYb3GR5oeKHhiYY3Gh5peKXhmYZ3Gh5qeKnhqYa3Gh5reK3huYb3 Gh5seLHhyYY3Gx5teLXh2YZ3Gx5ueLnh6Ya3Gx5veL3h+Yb3Gx5weMHhCYc3 HB5xeMXhGYd3HB5yeMnhKYe3HB5zeM3hOYf3HB50eNHhSYc3HR51eNXhWYd3 HR52eNnhaYe3HR53eN3heYf3HR54eOHhiYc3Hh55eOXhmYd3Hh56eOnhqYe3 Hh57eO3huYf3Hh58ePHhyYc3Hx59ePXh2Yd3Hx5+ePnh6Ye3Hx5/eP3h+Yf3 Hx0AdAHQCUA3AB0BdAXQGUB3AB0CdAnQKUC3AB0DdA3QOUD3AB0EdBHQSUA3 AR0FdBXQWUB3AR0GdBnQaUC3AR0HdB3QeUD3AR0IdCHQiUA3Ah0JdCXQmUB3 Ah0KdCnQqUC3Ah0LdC3QuUD3Ah0MdDHQyUA3Ax0NdDXQ2UB3Ax0OdDnQ6UC3 Ax0PdD3Q+UD3Ax0QdEHQCUE3BB0RdEXQGUF3BB0SdEnQKUG3BB0TdE3QOUH3 BB0UdFHQSUE3BR0VdFXQWUF3BR0WdFnQaUG3BR0XdF3QeUH3BR0YdGHQiUE3 Bh0ZdGXQmUF3Bh0adGnQqUG3Bh0bdG3QuUH3Bh0cdHHQyUE3Bx0ddHXQ2UF3 Bx0edHnQ6UG3Bx0fdH3Q+UH3Bx0gdIHQCUI3CB0hdIXQGUJ3CB0idInQKUK3 CB0jdI3QOUL3CB0kdJHQSUI3CR0ldJXQWUJ3CR0mdJnQaUK3CR0ndJ3QeUL3 CR0odKHQiUI3Ch0pdKXQmUJ3Ch0qdKnQqUK3Ch0rdK3QuUL3Ch0sdLHQyUI3 Cx0tdLXQ2UJ3Cx0udLnQ6UK3Cx0vdL3Q+UL3Cx0wdMHQCUM3DB0xdMXQGUN3 DB0ydMnQKUO3DB0zdM3QOUP3DB00dNHQSUM3DR01dNXQWUN3DR02dNnQaUO3 DR03dN3QeUP3DR04dOHQiUM3Dh05dOXQmUN3Dh06dOnQqUO3Dh07dO3QuUP3 Dh08dPHQyUM3Dx09dPXQ2UN3Dx0+dPnQ6UO3Dx0/dP3Q+UP3Dx1AdAHRCUQ3 EB1BdAXRGUR3EB1CdAnRKUS3EB1DdA3ROUT3EB1EdBHRSUQ3ER1FdBXRWUR3 ER1GdBnRaUS3ER1HdB3ReUT3ER1IdCHRiUQ3Eh1JdCXRmUR3Eh1KdCnRqUS3 Eh1LdC3RuUT3Eh1MdDHRyUQ3Ex1NdDXR2UR3Ex1OdDnR6US3Ex1PdD3R+UT3 Ex1QdEHRCUU3FB1RdEXRGUV3FB1SdEnRKUW3FB1TdE3ROUX3FB1UdFHRSUU3 FR1VdFXRWUV3FR1WdFnRaUW3FR1XdF3ReUX3FR1YdGHRiUU3Fh1ZdGXRmUV3 Fh1adGnRqUW3Fh1bdG3RuUX3Fh1cdHHRyUU3Fx1ddHXR2UV3Fx1edHnR6UW3 Fx1fdH3R+UX3Fx1gdIHRCUY3GB1hdIXRGUZ3GB1idInRKUa3GB1jdI3ROUb3 GB1kdJHRSUY3GR1ldJXRWUZ3GR1mdJnRaUa3GR1ndJ3ReUb3GR1odKHRiUY3 Gh1pdKXRmUZ3Gh1qdKnRqUa3Gh1rdK3RuUb3Gh1sdLHRyUY3Gx1tdLXR2UZ3 Gx1udLnR6Ua3Gx1vdL3R+Ub3Gx1wdMHRCUc3HB1xdMXRGUd3HB1ydMnRKUe3 HB1zdM3ROUf3HB10dNHRSUc3HR11dNXRWUd3HR12dNnRaUe3HR13dN3ReUf3 HR14dOHRiUc3Hh15dOXRmUd3Hh16dOnRqUe3Hh17dO3RuUf3/v95uH6Gpaas 35jUXjAPRzsvueq7YR0E83C0X4d6FK7jLZiHox06z+3Rq06CeTjaC2XE3G0+ gnm4ELr+HDp9CusimIej7dmoeD33boJ5ONpLn5Sv9627YB6O9qjCJz8d6SGY h6M9bs3g+XN7Cubhgunz513/Z116C+bhaK9o8ap42b6CeTjakcFRBR8ECObh aIfbjz2WHCSYh6O9OLyEb0SIYB4uyLDs0g9satVfMA8XlM/jnD9VZKBgHo52 JZvVaTd/FczD0R6RNH1c4mDBPFwgfT7wvf49YqhgHo52O+/cnu1CBfNwtB9V aj+t9AjBPBzttPl2YU9HCubhaNtP3e+aPlowDxdA10v5+NPzxwrm4WjbnClW JzhcMA9Hu3C5sCCXCME8HO2tNxz6iQmCeTjaZpGwRncmCubh+tL19ebU9V2T BfNwtCNzpvosmCqYh6Mde+L18oGRgnk42nFeE1I9Zwjm4WjPXT5+tX2UYB6u D/3/Hx36vIsWzMPRHlKq88vzswTzcLRbrrjTNWmOYB6OdoNZAfNnzxPMw9H2 LFVt5a8LBPNwvQ1r0a7fJrdZKJiHo73WpphL1cWCeTjaAd/fHDKWCObhaA9I XO74ZKlgHo62Q2BI31PLBfNwveh6/SN1WHKcYB6O9uZ+D7ssWimYh6NdOLKv bfhqwTwc7Q3WhA294wXzcLR311hVrGWCYB6uJ53HDyr7V18nmIejvTN4dHjR DYJ5ONpNzj4J/bxRMA9H+/i8J80ebBbMw9E+2+Li03OJgnk4f3p/nBQj0pIE 83C0vZq+ObfxD8E8HO2At08KL0kRzMPRjpnQreL0bYJ5uB6G9XPdsmKjdgjm 4WifGl/sbtAuwTwc7Z2tas7z3SOYh8vf0a1LtEoTzMPRzs07NN5ln2Aezs+w XPcXzHDaL5iHo536avytcgcF83C055aYfKvoYcE8HO0XD8MyCh4RzMPl//ze JyfmHhXMw3U3rLqJN+1zjgvm4Wg3aGv328uTgnk42gMfXs15fFowD0f7Zfj8 RvfOCubhaNvXjuuRfV4wD9eN3q8RIb2uZQrm4Wj/VtjHM+uiYB6OttNfJ4xL lwXzcN3yv3/tnHrhimAejnb214/NLlwTzMN1pestamrKhRuCeTjaXWfWNS5l C+bhaN+vOap51m3BPBztdy+TAq/dFczD0Q6K7NA/+75gHq6LYfW+urPTvYeC eTja62t0r/DksWAejvaB14uzXj4VzMPRrvTw6ticZ4J5ONqj8xZ+zn0hmIfz pefd+VUGFXotmIejPfTHvxnF3grm4WgXqLbgyy/vBPNwtLN+NHaskSOYh8v/ 8XcGuzT+KJiH8zGsvd6x9azPgnk42l3LlSjZ7YtgHo52fHD/R/1yBfNwtM1x zxPG/iuYh6Pt87l0++gfgnm4znRenPW7+VueYB6Odnyp4n2SDMk8HG231ukn DhaSzMPRds7bVylLSObhOtH9xjt6yHMlmYejPbJP1NqfNpJ5ONrXUp2Oli0q mYejHWh3+2rD4pJ5ONoJS0rd7GQnmYfzpvvBjBbnB5eSzMPRrjH5zLYoe8k8 HO3NIU4xv5eVzMPR/rPP0Y4Hf5HMw9EeeKN43q0Kknm4jvn/vjczOddBMg9H +8rcWe0rOErm4WgXylt4tXlVyTwc7S/zi/Tu5ySZh6Md8z0sM7qGZB6ug2E5 Tm3UZEstyTwcbZeRf678q45kHo62W0zs65x6knk42oUPmh7lnSXzcLRLBqVO bOMimYfzotc758W2EY0l83C03/ZpfDfOTTIPR3vjru/GUQ/JPBzty6MOOb5p KpmHox3Q9pl7+eaSebj2hlXO4137ji0l83C0q6zy7TKxtWQejnbhAuO7bWkj mYejbdPnjs/NdpJ5ONpDL35ta9NBMg/Xjs6Lp23dW3hL5uFotxns4hTWWTIP R7vKkKbFEn0l83C043yufLzdVTIPR7vFuQk3S/pJ5uHa0o+/F5/RyV8yD0f7 w9X9q2J6SebhaPt6+0w41EcyD0f7fbWzfl8CJPNwbQzLdu0fDVyDJfNwtMM8 htuE9ZPMw9G+ey7q720DJPNwtJtOGXH8za+SeTja1/Zt2FB/iGQezqLz1Htd 1Ohhknk42vta3f91x3DJPBztwj/udPwwUjIPR7t6k9IuHmMk83C0e+fkVZwW JpmHa03v36jKRY+Nk8zD0S646HUBc4JkHo72tSJPv3WbJJmHo/2uw5xvq6dI 5uFo/7zjW+DJNMk8XCt6ffZlFHWeIZmHo92xYscqU6Mk83C0vdZMbH4mRjIP R7vzL6f7lZkjmYejbV7ZGzt4nmQeriX9+fyPH9m7QDIPR/vmjDE/xSLJPBzt iPnNOvb9j2QejvbYb5vjU5ZK5uFot9/jnJu3XDIP18Kwhj0LHNRrhWQejvYS h623UlZJ5uFof3VdF1woXjIPR3v7gP1vghIk83C0r9WfEZu2TjIP15zuH5PH ethtlMzD0baPtMsZuVkyD0d7xMmnB84mSubhaLs3CYurmSyZh6PdtmSTGXO2 SubhPOn8eH548t+pknk42nMSF8zusEMyD0d7yDLHTcm7JPNwtMd4iyu2eyXz cLQ9jx21D0uXzMM1o/uBT/aI6xmSeTjaX5Zeudb8oGQejvbYOA//zYcl83C0 u+1Z+Mz2qGQerimdv4kBSyYcl8zD0T4TWbvrw5OSeTjadZOinHzPSObh8vfb VyX2n5PMw9EuE/G+dK1MyTxcE7pf7q/gsvKiZB6O9pG1HwfLLMk8HO07/mLP pKuSeTjaHpNuV3h1XTIPR3vX1x8JIdmSeTgPw1pX+99mV25L5uFo26SFfOh4 TzIPR7v41l2n/3wgmYejXX3crH0ejyXzcLTDb/Q/teOpZB7Onc6jvKvv6zyX zMPRnhcx2jPxpWQejnZWhQObqr6RzMPR/qe5d931/5PMw9H2mLElq1KOZB7O jb7+Lwet+f2jZB6OdtdnJWIq/yOZh6Od3cpz0Yavknk42gsqR2Q4/SuZh6N9 vJSPSv4hmYdzpT+frf+UBgUU83C0/xvgUGJvQcU8HO2QPU3PNReKeTjaoS6e ySeVYh6O9hjfPaldiyjm4Rob1qdnHjdvFVXMw9FObde39tASink42llFUjZ8 LKmYh6M9sdMJK8ZeMQ9H+3G4u02pcop5uEb0fBi08tum8op5ONruXtPKuDso 5uFoZ2RNCTxbWTEPR/uFbe3zwVUV83AuhlV/iMOQD06KeTjatdLf1ltQUzEP R7tia1fHqnUU83C0WyTPbn2gnmIejnaxglMX93RWzMM1NKyDp1Js3rso5uFo j7++e+8iV8U8HO1TkbWX1PVQzMM1zOeVt6w511QxD0c7MOv0teHNlfbDGdbp WtXb2LZS2g9nWJdCAx5ss5T2wxlW80/GTr92SvvhDMt/xf49/3gp7Yej83CW w+sEb6X9cPR5fOCZ3u19lPbDGVZjq8+XN12U9sMZll/C8Asruyvth6P754CE W238lfbD0fPU08UO/+ultB+Orv93d1eu7au0H86wLu6t3alzkNJ+OMOacsvO 7VuI0n44w/o81r1vygCl/XD0eeObR3rIIKX9cIa1aVR615JDlfbD0fVVu1e1 06FK++EM65iR1ihypNJ+OMM61HLydNcxSvvh6PVd3ka+CVPaD0fnfZ29mYkR Svvh6P2ZEJE1YKLSfjh6Hv/qVKbSFKX9cHS9Hhm++vY0pf1w9Ho/fRm0ZobS fjh6f1zuNCAgWmk/HF2//RtuqTBbaT8cPZ8+tpzvzVXaD0fnn2ON3A0LlPbD GfnfR1FDFynth6PPT86FAusvUdoPZ1jRt3xzPi5T2g9H59dH8+KhOKX9cPT5 bdnD93NXKe2Ho/OxzfTAHvFK++EM66HNAlvH35X2w9Hno2HbC79dr7Qfjl5v v9UdDm1S2g9nWNOafshalKi0H46+/iI0qV+y0n44+jznsOVMoxSl/XD0/BcU 4Cq3K+2HM6x7FRu+vrNTaT+cYe1pfP3d7j1K++Ho/fU+t83CdKX9cHS/q+L7 ePB+pf1wdB4Wn5bV+pDSfjjDspvpYedwRGk/HN1/053X5x5T2g9Hf99J9jOz TyrthzOsLgXX7Mw4o7QfzrDSy4xxiz+vtB+O/v7vvWynX1DaD0fPH35X3Qde VtoPR88LE8/t7XBVaT8cnReOd+c3uKG0H47Oy0VHdpe5pbQfzrBUVG3XvDtK ++EMq3XLzCKv7ivth6PrO3aA541HSvvhDGv57rXHTzxV2g9H50+U2393P1fa D2dYSR0eP9j0Smk/nGHdyg6eGPdWaT+cYfVaFhw6773Sfjh6v3eLT5/2UWk/ HJ23ky4NDP9HaT8cXW+f0kaE5irthzOstGbmlQHflfbD0fNEq+jVgXlK++Ho 6z377p+9CpraD2dYv5e+4dVDmNoPZ1ivp9d17m6a2g9H9897Kyd3szW1H86w Wt7MrtG9uKn9cHR/XL3do0dJU/vh6P55+0ZKL3tT++HofHtkNzewnKn9cIZV KtLh9IAKpvbD0edreWBUaCVT++EMa0Lo1qnhVUzth6P7Qbkd76c5mdoPR+d9 2dhL82qa2g9nWCs+/yi3oo6p/XCG9cv1C+c31ze1H45+/0GHX+xpaGo/HL0e 95eOO9XY1H44w2pXptjwbHdT++EMq//QL5lvmpraD0fP/8fLrC/YwtR+OLp+ tjo/LN/a1H44ul+62Sxr3NbUfjg6j8Xo3b5epvbD0XnRt5pXqLep/XCG1ex7 Tqc5Pqb2w9H12SPx2OaupvbD0fNcD7nthJ+p/XD0/LfgQdG/e5raD0c/v8L3 R6qvqf1wdP4crtWgfpCp/XB0/Zx0fufXz9R+OHr/lr1fe8pAU/vh6PV0LXRn 42BT++Ho+nUbJTOHmdoPR+/vzOcpX0aY2g9nWPU6emVWH2NqPxzdX2J7hvqH m9oPR/eXcs+iZo03tR+Onjds/yqbNsnUfjh6/qtyve6Lqab2w9H1vPXGYYcZ pvbDGdb1hE2Xe0Sb2g+X//3DooNjZ5vaD0fXd8KLySfmmdoPZ1jbkmztfsaa 2g9H51lZn7qe/zG1H86wan6JPDtpman9cHS/+zrpdXqcqf1wdH8eXjruyypT ++Ho12tR60Sztab2w9HzmFw0Zfo6U/vh6Pn+R4WM4xtN7Yej55Pv22baJJra D2dY52c7Zvklm9oPR9fD/s7b1qaY2g9H5+Mg2zLPt5vaD0f3u08tbdx2m9oP Z1gpMUdiY9JM7Yej8/Kv0fFXMkzthzOsHR61mlU/ZGo/nGGtyTo/bNIRU/vh DOtwz6a1Mo+b2g9nWKJa98nVTpvaD0fni9fHoKnnTMspVW6Jpn0hM/8/0/o/ JQihhg== "]]}, Annotation[#, "Charting`Private`Tag#4"]& ], TagBox[{ Hue[0.6142719099991583, 0.6, 0.6], Directive[ PointSize[ NCache[ Rational[1, 360], 0.002777777777777778]], RGBColor[0.528488, 0.470624, 0.701351], AbsoluteThickness[2]], LineBox[CompressedData[" 1:eJws3Hk4lG0fxnHmXmbaREqSNgrtiShUF4VE0mIrWmhRSUVaRZIkFFKyFBWl RYVC2rRIqEhIJSVFJSmEtHjO577m/ec9Pm/1VMz8ZuY9vs85zGXD/JUiGRmZ QDkZmf//+8nj//8jIWN2rJ/Z2SxLpn3+ePQJnKYdNuZ/v9Az6NmnSEK+iBfE jmuRJRdMRv+xK5AQtWpliStcGHl4VXy+hCy+Wu0dDdfcnGP5Pk9CDh9Iqi2C x63SPa/1QEIeL1s7T6ZVlmyfoRaw4Z6EsPoT7ujCcgOayzNzJWRqr7Yxa+Cr Ob6n/t2WEO/aG7HH4ZM9Tn8yuyUhl677S0rhbf+mpBy6ISF1h8y38D9lieGR wTWV1yVkyKpeHwzgWTWjD6tlS4i90fN5G2BrZupt90wJCe8Tc+c0PHP0WJes qxJS8GnJ2Ep4xbEXvqIMCZG9MzyuZ5ssGRbTv691moQYHPkiMYaHhjwaFntZ QjzXXdniDY95nXe2LlVCLhhv+XAO1ucaknUuSkhtf6P51fCsKEVV//MSovpN NrdPO/68agO7F6dIyMIH+WPN4a8ObzYMOishYbFhcTvhR02T5rgnS0jexgXd rsBjLsmcunFaQv6ZDdj6AdZcO8CjxykJ0Rv09oNyhyzJlDilLU6UkA0tSfPn wNd2Ja27eEJCzhaszfWHq4qexv+Nl5B3CRPGZf7/42zWzLlxEqK8pS3uC3xk 1hTXkzESMs/qZrchv2RJ1EPtjpZoCQlW27N1Abzvpg9jflRC7nWYfwyCm7e0 7Y2NkpDOp70W3IR7ztvp8y1SQnSSn+d+hy9erf9sEiEh7jtjxo3olCWmKspP og9JSNK8pfGOcI3k84jGMAl5ozmi+0FYSUm/1SRUQvr9+7L1Hiyqq9aPOSAh 1mVXPrbB00ff+t60X0L2nd+yYPRvWVJ95tJg8yAJubPb6O5SeJlW+N0TgRLS bicaHwVfDJv2si1AQiaMfRT/CO55/+jKuXskxI052P0vPPS+96qU3RJy8uWC bdp/ZMnLo9mvZf0k5OXlAXUrYS9bo7zFuySkz763C2LhdcOr1TJ3Sshsp+S7 T+Gd+jtb5XdISMDEdeOZv7IktOT7FPdtEnJDon1cH86ertqSv0VCWqvburvD hrWvhgz3xvPp2s1tibCHZvfc3V4SsjJkT10ZnLsv6PmbTRJyYvmshd3+yZIr wRMWGW6UkAp9uXtT4XsP3y+I8ZCQ3nJl4z3hXe935ra7S4j5h5jjZ+Clh14m 2K2TkN05S3u8hivCXv64tkZCssNHbO/dhefvRcfMfm4S8mNVQ90MuPShfqP3 KgkZOTVt4TY4NX/e0YoVEuKiuPXeRTjnTGCavquExH42mlADZ65JmxazXEKe 3xGd6CcjIsOGZ0z9vVRCehx91GM2PLXd7ZLzEgmZ6X5wuy8s6pMWnuskIT4m C+vT4QFpaz6oL5aQa8oqtvVw5eBN54IcJaTx29t7A2VFRDcj+W2DvYRo5CVP sIFzn3/cZ2MnIUvi1p3YC59u6Z1wbaGERG/S7nkdjjws0hq4QEKKzdu3N8JF xvHD/OdJiGTwrfphIhERx94IqZ8rIcate2zt4F2m01dZW0vI9sJZ9w/Azzu5 tGtWEpKeKKd9B1bx/bZukCXu2ZayEy3wo8QXRwMtJER9TmxPLUZErhgnan8z xz1TX7bDCf5jpWlkbyYhUb9GfAqHR9y0zMydiXtW3GCbBzcc+ZowaoaEcGfS 7v+C53/71BFljHvms1V7HCsi0XVD7nZNl5At86cmuMDjUjd2rJ2Ge6bF9IqG r+3KOVFhJCH1/x7tKIJbE6syTAxxz8oPfuqCi90z9S9PkRCHCwvtdDkRMZ+p OUp1Mu6Zv8oDN9g9Wi4kWA/3zP6d9nHYudZyUbsu7tm4MwnPYMP029ErdXDP WPdePC8imnFmM8q0JcTrlfZOA3iKyX2nGRNwz660f/KAdzr0/ZA+TkI+7Ltl dxp+FzfgpdpY3DPngAcvYPIi3fDwaAmx1bGY2FMsInPf3+nBjsI969Y7kcCx J4daeGtJyMO3Zb284R38tZY6Ddyza7E7z8FKvZ17OI6QEP3QZZ/fwAsfdhwq Usc9c9Gw7yMRkVcz3PynqUlIyuSvD8xg2Yshb9OG4p7JpU/cCT8fP+P8iCES MuDj1sTLsKjXhpqYQbhnN6bKfYA/hjXtlVOVkAMRjI9yNxFZ1y05KkAF92x1 wWcrWLV2g/wvZQn5PfWQvT8sFzKhw6M/7llf27xr8Ltd+ZYf++GefVHR+QJf ndmvh1Nf3LPcd4mDu+P779056Xkf3LOjZ+QWwBZp9o9nK0iI0np3nyD45Nle T+/1xj2bMfHLDXiA4l8DQzkJCRrQYf8d7srhFa/2xD1rupU3vIeI/PXsYTe2 h4R05AXoOMJKA78yZ7vhnsVbnAyDYxOCVYdJJGSNZ+/e92C1Xw8S4njcs1nl Pm3wwTF+YUqchLwaHPdlVE8R6Zgd8zGCwT37ucxhKZy+qfVsL5GEWBZpPDwM TyvcVBYsg3t28qvOI9jyQPNavktMbm5NP/kHPt9ivy7gr5i0ztnWW7sXfnxh QLnMHzEZO3zarpWwPm93zrdTTFZ2Mg0xcNCGtLo/HWJyoqTA4Sm8XLQ1bGe7 mFScOfRQJCcizUb7j3f+FJPeu2x19eGV5x4q7WgVk1kLBp5aB799o/jrV7OY 7B5Z0zsR3uEzb+aOH2JyvevMrjLYUGd5R2eTmPwod2+Q9BYRhZvD+/l8E5NR Fyc6ToULq3bF/v0qJi57Oh5ughVXW+/3axCTOIfbumfgdZO3Vct+EZPn4/ae egWrG7yJ3/tJTHpys+V7y4vIguVL74vrxWTm696+M+BXl97NC/koJrvSyhu2 wvPHz5jV+4OYXAuKc7wI9/7tdubwezH55rw8/x3cV0/XXblGTDR0NSf1U8Dv Lx8Uc/ytmCzt3njKAnZ5MGOcerWYRL9Ll/eFO2KsRp2rEpOSzG2+6bBbbUDY +NdiIgmb9rUOrvhXZJ/5UkyMXdlFA/vg59uKg6dWisn2KYX5c+EeS5SH5VWI SXrv8El74WfRNUPmlItJw0fb09nw/kOmgeXPxUT95kCFRvhDlca8JaVi4hRZ 4ztMUUTk1d0C6kvEJMrt7FdbOF7+68BNxWLyZNr6RQfgwKVHVH4/EROun86j 2/DwcjO/wMdiMq2hY1ILPMGk1kK+SEy23L19WrOviGTsmbMjrkBMLkfvVXCC xb5u8pqPxKR+/Wy/cPiZRv+eGQ/FZOhM+cYH8K8dRuun54mJg0rFol/w2YAb Oo/vi0nE97hHY/vhHtluXep4T0wKHi7Xc4FNey/4XpcrJqLjmklH4QNV2nWb 74iJgVejQhHc0txGmNti4mWR4df1/48fDpSJvCkmF4Zsb9RREpHt3e8OH3ZD TD78nLbYDZa5HJp65bqYqD5mC+LhjbVFsSRbTGxPFeo9g0f2c/lakikmB7eF J3H9RST85sRTy6+JyUNruz4GcA/nYTebM8Ska7jqbg/4714Fg73pYqL/u6bx FHznSd1ApTQx2fjs7OIXcNzrvctTLotJytn1BT2UReShc3F3w0tiUrNLR5/A i+TO9396UUwGLPyVtBm2Te8IWn5BTOaPutPnHBw2IGHxz3NickAmcPcb+NJg /8jgFDG5XzH7m8IAPB/P7hkz+KyY/L4o72QGe5wOGpmRLCa6ARUFO2AXuc3B s5LExN0xXv8yXNM42qr6lJgkj3dJroW95h/etPmkmLzhtBSVVUTE3v7gr+6J YqJU1bjbCvZRk/1w8oSYWKdnfNsN7/xQPGHKcTEJ2r/d6Rp8uLL6bUmcmOQu mV74GU6a2eeHW6yYdOhykwcPFBGt7dYrZGPERLtHUfJ8WPvZ1imx0WKypiZc MQheku65UeeomJzKsvO/Ab8JVe/2JEpMXoWpNjXBS197MKsPi4niivdOw1VF RFl9ylLZSDGxNEgpdICzWlapxoeLyV55j8lhsEt9lYH+IdyzOp0zd+FLp/xy SsPE5OfNX4ptcEKZTpxHKO7Z4Tv+owbBetVV3UPEZNWawKYl8LZQV7+zwbhn 0y2dD8MLk1L2zNwvJi/6KRTlw+l2kXU1+3DPvlZM/gOv3Mdd8AvEPbsXf2bC YBEJGVpfPGgv7tkxl74r4TBVVdube3DPPLT2xMD9fIINFvvjns381vQE7mXZ d3enH+7ZwKvOoiEicjTh5IhYXzFx/bG9SG/I/+9vlEYb7MI9y58+ZR38YYVD +KudYlJ2nDubAFfrWtnu3IF7trmobxn8cNaL7arbxcR0dsQeyVARifhc/ffW VtyzofbfjWDrtbNqlm4Rk8w21SWb4GFav9RF3rhnj98XJcPkQEVekpeYaJ5O mfIK/ir78KG5J+7Zdo+zcsPw+OqeqtGwUUyOzdXtNwOWH7np48ENuGcjOvds hQc2tot0PMSk25873y/AT5s0/F64456VBi55BzuX1Tr6rBOTHSmWj/uqicgX 876Hh63FPfNVMLCAd8ueGJXvhnu28MXZXbDCvVVD16/GPRt9vF867L5w4WbF Vbhnsq4BdbBRmJVGzgoxOfJC64eKOt4PWE7SW+6Ke5b6bclcuM+W1tMSFzHh 9159HAAfkNm44coy3LNFOwyy4fl1YccclorJ1gkk5SusOFZ3iOwS3DOeVxo2 HO9XP8xizjuJyaeqogBb+OXw9JkLFuOeZUT8CIbLFexq/ziKiWOw/dLb8OUX Km/POOCeLR30pBk+drFOf569mBROqjXQHCEiq0oSGn/b4p71PJeyGI4MHSNz dqGYGL73UAqHJ+p6bZi/APcsW3fvA7hFfZHhv3licvFg548OuP+9fNfzNrhn K3KXjtUQkfW+pz7ZzRWTQYb7niyHbUpLChhr3DMFK8OjcAKZIk6zwj2rVzhX COfY3ktcYol7duuFUhfse3b+0Z6zcc8OH9+ro4nvf3lJfc4sMZm81rV5NZwX pH5kjTnuGRm5LB6esUn7hLKZmJxTanpSAi+aUyN6NBP37OtVQ05LRHrWDLi/ dYaYqNzfcW4KfLvzbrWmCe5ZDOnvAWt75tpWEjEJ2cAHnoJ3af3RDJ6Oe2b6 uLkC7iFxsjWYJiZ/BkYu6zFSRI6w+W8ajHDPmu2fTocHDRx+97ihmKx/NMho M/xl3qKuuQa4Zydqz6XAgdk2x0RTxKR687n+b+D01d9CrunjnlluCFQYhcev v8orNz0xmTtsUospXD/h5h7VSbhn7Z3LdsA+53MCS3Rwz57kPr0EXx399/3e ibhnp/cZ1cLTfq+NnaKNe7bD6nz/0SLyya3hwrfxuGc2fZSt4MQnK/snjcM9 06gM3A2vCblb5ThWTF7/Od5yFV7cq+537zG4Z89dl3/+/+fn52x+OEpMrM6N LB40RkTW6mua7xqJe+bXZDQfbn3fx0tXS0xu2V47vw/e7riyo0ED92z0TuUb sJ4O/+L0CDEZJzLe1wQ7K7yRcxqOe1bJt6qPxfvPE88S+qqLScKlx8sd4L2h RcFPhuGe7Y0sDoWTj6U/3jdUTOQXO0y9C68P8nAjQ3DPtAdf+AmnatQ7dQ4S E3/xB+VR4/D5aQ57/qoq7tmbc/uWwDNepc7dMFBMmjM2tEbCoZlFc0ap4J4d mOSSD497bpr0URn3bNnv4t+w9ih2wcn+uGd6d6dOGI/7efubo7MS7lnPoAsr 4OVxjdkD+olJr1qrATGwX/mnDRWKuGfX+wQ9gSuCH/ke7iMmvocqW2Un4PlZ vfmjjQLu2coTLnrwENmK03LyYtJkuKJkLfxkZNn1x3K4Z31GTUuAhx6z1wzp JSbLPjVdeA6fipr11aIn7tntawMk2iISsPGQpFsPMXkWtTPICI4M7OvzqBvu 2TrjnxthA71cs/0SMTExFrsmw76NO9xmiXHP+j8peQm3Dh5bI+HFJKMxcprc RBG5b3bnSgGLe3bf4aIJHP95wIsDjJgMjx2sshXOihqx0EqEe7bxQ9AF+Nmb Qk05Wdwzs/M/38Jqrs3zSrp48kR1o2tfHby+Fe0tjfzHE75l0rNZ8K28teds //JkWsHvabvgZ93CKpT/8GRrwt2LaXCqfZljVSdPrngHqdTBj7aO1En8xZNP lnP2q+ji85Wht8uKDp4MU1Nss4bjdiTWa7XzxLGj0jUA1lWOutf4kyeRT088 y4Lz/05uSW/lSWHSiulf4aRB27Zva+EJs3NU6tBJIrLB08B2WjNPDOd9V7GF B3S57WN/8GSzZub+YLjq6deeRU08ufh3Z9steOrPS58ivvHk43PjFc3wv7Bj AxwbeTLovLhUQw/vP29FJgz9yhO73U+mL4a/XNq349MXnhy0O5x6CH4Y7Xz+ ymee5I9xHPgAXnJVZvz2TzzpEg0J7oCDLBwlJvU8mfzyQ9sYfdy3JBu9HnU8 2Xj5/Irl8JUBJdllH3hyLnBj6RF4qPjuoRO1PHm/WI8Uwp3Pet5we88TlYl/ Uv/BufXxBjo1PFkguTdQZzLu3e1Fcv/e8iSkOih4NRxWOl6voJonD67OaY+D ZS5w6VFvePLngOLKEnhseZ7/siqeTFr+spSdgs+rdY7JY17zZL0+LjX8Z9cF 1V8veXKm18pL62EzklSfV8mT6tpRqqfgw6/H8odf8KR/zvfgCjiVm7htWQVP 5oZntnc3wOdxn9ip48p5sn+Vz8rpsBY3z+7Pc57kGpk894Kfr59+r7CUJ7/6 SIxT4NKQuf4xz3ii/fnJpSo43GjdYbcSnqy9c1hVwRDvR1f6dOgX8+TUEccD prBVi/sV8VOevF43pGM77P1a48aLxzxRNPm48hJ8TiVKOaWIJ1bKF56/hyOv nXi0rZAngd82Gvc3EpEL2ROKLAp4cuuB3mVLWH+y7tCBj3jSFvtHdTdsYnM4 /+tDnozbdO/AVTh++OS7t/N4stp8f8cn+Pm7nr0iHvAkYZD1qkFT8XqZ/fu8 632eVLYols2Db3/8Fqt3jyfyhS+N98FjL5ZUdbvLE4vEhMs58GfbkI1v7vDE f8vKQU1w90nd7NJu8yTHanSI+jS8PzqtGxZ4iyfNaj867GFVUUe/RTd5MvpX 5qpQeFfO1O/jbvDEtdinLBceMPX7QDaHJ/HJJiY/YW1R57GX2Twp2ym5MnI6 Xn+DTVdfzuJJr/lPBy2Bny26tS8wkyemWlEhkfBD1qp98TWe+P5z/PUQFg+u yp54lSdZZUNW/4ZTZjoUdcvgSdP5j2XjiYgYD74wriaNJ1r+F0xWwN/s77zP vsKTZfabrhyDZ53xqw+/zJOYsfqDn8AueRVGay7x5BnzN0TWGL/ftsvvjVN5 0v3VvV+TYK+Q1kqVizwxubJ/9Vr4RXH4kNbzPNm5z7r8BPxkyIbMJ+d4kuHU d8Zz+JjTjuNnU3jydeKrK2ITfJ7wOF7mf5Ynw7slDjaCM8zuL3Y6wxPntytD N8JbXldM1E/myZFrozuT4KbR9x37JPHkaciP1S/hydO8ShpP4Z65ZJX3miEi d4eUHi04yZPpk3fNMIEtPhZeTE7EPZObkbYFrjo/q8+eBNyzD5IhF+Diw3r5 S07gnuU8DX0L3y70KzI8jnsWEdWpOFNE9vn3HjIgnieLVi9ymwWb/ii52xaL ezZ1aIUPvGDR5YyyGJ4UKdbNSIOns0db04/hnn25kPYRLp66cW9ENE+McjcN UTHFPXAa6brxKO7ZUf0wa7j29sXwuUd4kur+t3MP/DL/Y8/xUbhnJvfdsmCb 2jsv5A7zZPCA4IoG+EOAxo9vEbhnTdYzh5qJiKU651gczpNDeX3TF8LOJua9 rxzCPYt7NSQY7ramUjHiIE9kPBPDbsELNZJWeYbhns1a9fsHbC9/VLwwlCeb Bo9Zo2GOz88PYtomheCetf6oWASPqYvVUT6Ae1aYNfMQvGFY4O3O/bhnJ3el 34eJ1szoN0G4Z1tnDO2AP2bcv5W7D/dsTreDY2aJyIm9TdpJgbhn6sW/l8Hn lme0BO3lyd9fUWuOwIYDfovcA3DPSha9KIB9d6cvtdnDE48zQ03/wWFeed0m +eOe+dSlT7TA5+3yIbIqu3nydv7Foath1fBU0y5f3LORngfj4PVRi1582MUT my79P8Ww2qs+mYU+uGflf9ews0Xk9dJ7NVd28uTuhfsvJsP9R9suit6Be+Yf bLoeHjcra4jvdp5MdJibcRKeV1imvXIb7tm4fsMq4ICimHCrrTw5zb4+2N0S j2f3ZkPdLbhnrxL/TIN1ygt1VL150jdt1VovOFen9zZ2M+5Z0JjKs/CmWxck jZ64Z87NplXwtEuhH8s34Z7pZGfIW+Hz2KwTcnc24p518x1mCj+seByQsoEn 49/NOLQdHp7CmkZ64J5ldvubCr9TnDjfZz1PEkOL176HD281vrDKHffM5Uil 0hwR2a8/xGbeOp4oTFlsZglfu51FjNbinvUedtUPvu3b7qO5hid7PtYNuwp/ bSpkFd1wz25cPPQJHhsxuPLfKp60RHj+VbXG581P1W1fVuKeuU1eNw/O2d2x 7MUKnqyY9q8yEO5stFd64Ip71veBWQ48quCzUpoLT8q/BF/9Bk9Nj3U5sRz3 7O5cNfW5IpI51/5XyDKemEX3C7eHz1r3fL19Ke7Z+td/Q+ALLmfEbktwz2ac XJcLfzLt42fnjHs2YPXLVpi/bmRs6oR79n2M+UgbEZkQ0MdadzHu2cPmq85w b8/dyeqLcM/is9Ui4UeOXuaKjjwp9fQNfwh39K3UYRxwzyxm/uuEM/bGrW2x 48mMId3dx8/DvQ4/31Bri3v2s/ilKzxbozmzbCFPrhYdMT8G7zRY+jhvAe7Z ycXXHsOv8qtHZ83nyYhtw9Rl54tIdLFzeco83DPr+vBJsKljwaNYG54cHZ76 bw1c4SnHh83FPev0dD8Bx09QCfOz5on42eRXpTBJfensOQf37Ow/c/ECEXnQ zWDbSiuebNv14JohvGu9VpWDJe7ZggPqG2EFPjLYajZPPo+0iUiCt4hX7CYW uGcySl2VcMOFkFzdWbhnFa/dey0UkXadNouR5rhnF0++Mobd6sJVB5vhnu1Z PWsLbCVvMVnRlCes49jM83Az2/O4ZCbu2fgW9bfwh0H5s/+Z8MSbux6haCsi dTmrjVuNcc9e+3aZw83Gr3d/ITypS5u53gfWG9K7W8103LP93V9fgeXzvr98 MY0n9ktKZn2Eu19c3/J0Ku6Z7tHMAXa41/O9bB8a8eRRd6fh1rDrtKauW4a4 ZzXDIvfAp349bb5mwJMpWfVdmfCtfjLjLk3BPQtLXd8At4/cmHZmMk/Ou3q9 HmIvImnPe+5K0Mc9mzLFYiHsmnk//JgeTwbKd2Xuh+N27vkaMQn3rO7B8Fvw 31K98BBdnoTePBD5AzbwfLozUAf3LNJGRsNBRPr107/sNxH3zE3JYxHssGvJ qB3auGfTq14fhMs9JzZunoB71u+UxX149f3E9g3jeXK2YXVWO1xvEm2xbhzu 2d2xI8Y4isj4IqZ21VieKB9riVwG9zcqu+8yBvfM47rMEXj9zraGJaN5EjzT z6MA/rXZYfHiUbhnKqZVf+EtKp8UHEbypPN799kTF4lIhOvh3rZauGf5JVmr 4I9zZi2cr8mTdcePjoiD26ta387VwD3zcjpcDOurBKXPGcGTKgs1WXYxns99 G4ssh+OeDf3kMRne9r7vmNnqPJnTllrlDhcd/1o6Sw337LHX7JPw59UuuebD eHL71JTscvjU6hWtZkNxz7Z1jejuJCInC955mA3BPZubd3ga7JqbN95sMO7Z iBBZL9hwr6y+2SDcs982G87Csxfs2Wuminv2TOnNa9hnk56y+UDcs5Sq2fLO IhKi1bPZXIUns31PZc+E2/J/KFgMwD1b6KaxHWaSy7fOVubJjVHjolLhLJUz 6lb9cc9kWmXfwy+D5/WzVuLJmBfXNygtwf1zeGhl0w/3LNXvzWx4TGtzwfy+ PDkeYGrpB4c+yQu1VcQ9c+xxPQPOdBp7xKEPT+QmPNP4BIuGKNcuVsA946Oj VJeKyI7ozVuWyvPEr8pJNA8us9ae69ob9yxdbWMg7PHcaP1qOZ583//pzXXY +npgybpeuGdLL1l+gwfHdm7b2JMnyydtvq62DH+efgdWeffAPethoGkPLytW i9nRHfespisqBJ7plSG/uxvuWXaeKBduvzLqSaAE9+xgyMZWWHva1qchYp74 rJhXrbUcrz8VQX0jedwzg/5WzvCfKZYJxzieNMq/uR4BV46/4pHA4p7Vn9J8 CBcFJO85w/BkyS23I52wg1jldaoI9+zwOGa8C15vIv5svSbLk+I1rRtd4YZ/ ho63ZHDPSE51NByune+b18URorTb6jEsVgj79OQfR7Z9Nc2RcRURpwM+Ryv+ ciTtXg+tSbBS+N79b/9w5POxZ0fWwBNVom5/+s0RtQ3RzAlYXSN2cnMnRxaZ Om8qhZ9kBrb9/sWRwwPV3/IrRCSwzLSDg4t+fLIyhHuGFUyV7+AI++hSzgb4 YEvXQ5V2jhid2KyVBCcMrTw8oo0j3psNjlbCkycaJ034yZHU2TJsr5X4fluO 6jBs5Ujd0IebjOHnR/YcMm/hyJD2kLfe8PlpU9YuaOaI/ZN5c87DV7ZP3b/0 B0fCT/e/UQ2n+fl+XvedI4+2v9FSXIXPTwcbwrY1cUTW5vRRczj4i5d34DeO TNFYw/rAJ17ziZGNHPH8M87zCqx55XCvxK8cOV/a+vYDvO9Gt9upDRypTcmZ M2C1iKyyc0i78YUjA/1235gD51R71Bd85shCW7ORe+CsLKNllZ84Ejq6Z3Qm XGGRNrC+niN5sqVsA1wsujmgrY4jf19Eew5xE5EjtlaLOFjvkvO7BbB9zrw3 fT9yxGOvuvV+2OfSjVPDP3Dk7KLPN27CJ65uP69by5G3Ey6P/AEfXLizdeZ7 jiiLvaNHrMHni4FXdtvWcGTeGwNuEdwZK5676h1HgjNkvA7Cf9ZuWrr1LUfu BT98dw8u1nyTtr+aI51LQ63bYRUvA7PYNxzR0Zt/c/RafL5p2aZ6sYoj63oq j1oGr7Ldr3v7NUeS3r+JjoKXWTgcLHnFkars01wBfDuwcmTtS470O7TG6y/8 IK+Db6vkyJyV42u014nI44KUEd3gfYY/rVfBZvaVgaovOHJb4cbNWDhj8lbN CRUcaa/fPaoYTpnq3X1mOUfG3zY7xrjj/ZrBvXEOZRxxi+rJT4azu1lHuT/n SOLaUi93WC9YYuhfypGX5FhNIvwnvkbt6DOOKPRfMrccLhxbYHmhhCOzG9Vv dVsvIitHXr6WW8yRPfc/j5oGH9wTsKziKUduxFw+5glz2npWX59wpHWDN38W 3qedtU0EjzEz3PwavhfY9lH5MUdWqsq+7+2Be6v74fD4Io4cb344dybMWWzc Y1bIkYpHobe2wXplB9KcCzgilzB/dCq8uUF9mPcjjph7K8fUwBrnRj8LzeeI n2U1r7QB93xM5N2khxzJHpa0eTY8JNa8+WYeR763r3nvC99TMXItf8CRkU/H 22TAoVVL+367z5HlST9v1cMufU5zYjh2x43RqhtxD1p/6g29x5FSG/8YG1jl 9qyUKXc50kPTXBwIK6aHOC7I5ciMvz29r8PGSpdnr7/DEZ/npe8b4cJJp3cG 3ebI1XPHbNQ2iciZZQ5fT97iSKPfktt2cFzD7fibNzmiYTd8TAhsPCE/9MUN jiwZ8yXmDvwrdPnN5hyORIuuiFvhbyt8R8vBxZXe3lqeItJnqNyrkdc5Irls WOsEq46WfWSajXsWKDsvAg5qN/+5PIsj2xfn386DQ3+XLvfN5GgPB6ulR/aK u8bRHs5LRP7Fbu3IusrRHg4ONfBUK8/gaA8Hfx/gFdKcztEeDhblr9WRh4Ue bjNeL8osVMalcbSHg3u/lCFWVzjaw8HjN+1OWnuZoz0cbDL1unnwJY72cHDQ +7iRKakc7eG88X6u+4DZ+Rc52sP97xXDztVd4GgPB189nWzGw0IPB6v5HVXT OM/RHg6OyfhgZHaOoz3cFvy4yP/IqhSO9nDwkglOY4LOcrSHg4Mkq2VTznC0 h4PXOUb2LUjmaA8Hu7c9XfkliaM93Fa8387q9bMHLPRwsMr26ffGnuZoDwfb qto+mXuKoz0cnLdvupLnSY72cPD+U03xUYkc7eG24fVyid3yrASO9nCwWuoK 11cnONrDwYX7epz+e5yjPRy8ut5w6DBY6OHgE8V1r2bGc7SH2473WzP/lrrF cbSHgyvnbpSExXK0h4P3dk3YmRbD0R4OVl41YXTFMY72cHBI7FLl39Ec7eF2 iMiM7MsmQ2Ghh4P7vlU4b3qUoz0cbKSz1XrdEY72cPCKNyXjI6I42sPB8d3l rbMOc7SH2ykii76OOPcmkqM9HLw5mzFmYaGHg9XPxfYbHcHRHg7u+vNaY344 R3s4uLMte/P2Qxzt4Xzw+1WrdSUe5GgPB7//1/3hozCO9nDwphSXgu+hHO3h 4GXjB3YbAAs93C58vv46ItA4hKM9HKxvtHnq2gMc7eFgm93t2oeDOdrDwZqD T7rc3M/RHg4O93Mp/hjE0R7OF8/3PmO39YaFHg4utGh2mrKPoz0cfCLu9C7X QI72cLA4YOKrsL0c7eFgLb9wz+wAjvZwfvjzKl42q93D0R4Otsz3s5ODhR4O ztFoPTnFn6M9HJx596/Wyt0c7eFgvzEHG8L9ONrD7RaRgK6jn2/6crSHg11e dFP/vIujPRz8ZWFldD9Y6OHg/oNazU18ONrDwT1fWuts2MnRHs4fnz/0XjnG 7+BoDwcnfQy6UbCdoz0cPPe4hUP7No72cPATJYUJI2Chh4PbepeYLNjK0R5u D14fZ28L99/C0R4O1gv7rXzFm6M9HBx00rKqejNHezi4xXbRq16w0MPBz3wG KE714mgPF4B79nXHPndPjvZw8HG/jbrxmzjaw8GRfb+qPt7I0R4Olj34dvqf DRzt4eDwUqPjY2Chh9uLzxePf+o6e3C0h4PvrfvDH1zP0R4OLjtponjHnaM9 HFy1Msfx+zqO9nBwdLrtq2Gw0MMF4tfv448sWMvRHg4e8PF2cOAajvZw8Nyy jdlZbhzt4WDFpXLDvqzmaA+3T0R6RQXfV4WFHg4uDyxLmLuKoz0c/Gd2zbU9 Kznaw8Ey/05ymSs42sPBc29JDn125WgPFyQi5hfE8wfBQg8Hj/sWbj3PhaM9 HKx75ejewOUc7eFgzyE9Wq8v42gPB39c/y7+21KO9nD78XnxmcRPHRZ6OPhJ wJZYhyUc7eHg5HsDm8KcOdrDwVuKv/jcd+JoDwfHNJXP+LWYoz1cMF4/3Itn jIeFHg72jSzwWbmIoz0cPDYj81ucI0d7OJhVD44pdeBoDweHGOjs6gYLPdwB 3D+7szHEnqM9HFxS/uLbVjuO9nDw6UFZPpdtOdrDwVZH9GfUL+RoDwfPSbE0 GQILPVwIXi/zPm63X8DRHg4myzs+H5rP0R4OlvvhHfloHkd7OPhLk42XLCz0 cPDQqp2hBjYc7eFCReSW/uc3XnM52sPBgftDVqdac7SHg9vsbUfWz+FoDweb 6kxRHwYLPRzsfGGk7WIrjvZwYXg9WDjgzhFLjvZwMP+oc1nJbI72cPCHxFyD HrDQw8ED/ZytzCw42sMdxPODf3DEfxZHezj4SFWd0i1zjvZwsF9qdnGHGUd7 OLi75phcXVjo4WDN3zqfNppytIc7JCJr3t4zT53J0R4Olgkrqv48g6M9HHwn l6RqwEIPB/cx7JfhasLRHu7/n59r+D3RmKM9XDjuZ/+zK6oJR3s4+H6P2fKq sNDDwbHu/Vscp3O0h4N79hT1OjaNoz0c3D33j3PFVI72cBEiouDS+bEvLPRw 8NjixqQFRhzt4eD2+oLYSEOO9nBweLh//jMDjvZwcOIV8WgFWOjhIvF5VWdu ns0UjvZw8Fqx5dHwyRzt4eAeQ74dL9HnaA8Ht2wYXSUPCz0cbNfy02aeHkd7 uMN4viWTPxGTONrDwY+D/r0p1eVoDwenx6u1KcJCD/e/GxJm2upwtIeDl/mt KTg6kaM9XJSI3F3pubdSm6M9HGx9JdVbBRZ6OLjRS+640wSO9nBw66OgzhPj OdrDwZpFPQ/WjONoD3cEnzdjwu2Hw0IPB2vZ8/arx3K0h4MPjFween4MR3s4 WM8gqr1xNEd7OLjlWuQxbVjo4Y6KSN3juRu8R3G0h4OPpt/eeX0kR3s4uP54 6a2/Whzt4WDlAt9JJrDQw0Xj/dimzPf7NDnaw8HvKt3zijQ42sPBGSZH3sjD Qg8HV7WpjbYbwdEeDp5Dul2KG87RHu6YiMxeb7iqRp2jPRy8svjiAk1Y6OFg 3xs2W9arcbSHg+8HqzzNGMbRHg4+f+Tvos6hHO3hYvD3ndqoagwLPRx8+kOV 4v4hHO3hYK7pzvTiwRzt4eCUvOBEJVjo4WCnsrF6SwZxtIeLxfvvAwkyZ1Q5 2sPBHo6lXY0DOdrDwaezruvowUIPB0cOsoj3VeFoDwfriTdPyR/A0R4uDn/+ lrE95GGhh4NPrVyr4KjM0R4Odn+vanWqP0d7OPh78+QbDUoc7eHg0erpSybB Qg8Xj8/jIh89v34c7eHgBLUDJgV9OdrDwWkDSvYowkIPB4/cbdzurMjRHg5+ /eNZQkofjvZwx/H+oZe3T4sCR3s4uNF7cNg0WOjh4DPFd58Fy3O0h4PN7s+f Xd6boz0cbPHnQdtQWOjhTsAje75wl+NoDwd3/h7YkN2Loz0cPHLkp4kcLPRw 8A23FZfm9eRoD5cgIhe89zqf6MHRHg6WyBmRhu4c7eHg1mZfu8mw0MPBpz+R xMBuHO3h4IWZ3oOeSzjawyXifmgoPB0KCz0cLOHF6R5ijvZwcOEIy4KbPEd7 OLi74zPFHrDQw8FGW8IiHDmO9nAn8Xpg52WSwnK0h4MXvdii0c5wtIeDp70I mWoGCz0cLJpyJuiIiKM9HDz0/XX2oyxHe7hT+Px3I+eqLiz0cLDJ5fjovTIc 7eFg9dQFqWVdLO3h4H5nnv8cDgs9HLzxoPwm738s7eFOi4i/87/BD/+ytIeD 9/aK6FKChR4OvhB3s4/bH5b2cLCCxNvh+m+W9nDwA9tLJd1hoYdLEpHrB5x2 OnWytIeDSy97OVz6xdIeDq4sqV8tAws9HLzjz8Vz8ztY2sPBc2ZmDUpuZ2kP lywiRTc777e3sbSHgy13rYufDQs9HCxJ/Hvm+E+W9nCwikly7fdWlvZw8JYA u/kzYaGHOyMiDfu4lugWlvZwsJrnmbyGZpb2cPDx9WMLp8NCDwenJx2UifrB 0h4ODjW97fbpO0t7uLMiMsr/imgqLPRw8OIQx6cRTSzt4eBbsalFdd9Y2sPB tz8ldhrCQg+Xgtf3NM3FEY0s7eFgc129xrqvLO3h4IT03CtGsNDDwRM33UiO bGBpDwc7Zqk8/vSFpT3cORHRLi5Vnw4LPRwcw1VePPKZpT0crHt+8Oqvn1ja w8FLe8fNnwELPRxscMB4Q2w9S3u48/h6ePK3ftSxtIeDB6pXG1rAQg8Hi37d bEj8yNIeDl64MPpxxweW9nBwUfTyahtY6OEu4PGgJT/sXC1Lezj4wIboKFlY 6OHgexUNkxe9Z2kPB3cUycpl1LC0h4Md7jxR7AkLPdxF3AP1mbNXvmNpDwef 8nBMu/2WpT0cPFlZZKEMCz0cPDduooJnNUt7OHiJ99tuj9+wtIdLxfsrjb8T NWChh4M3au8O3V3F0h4OPjTQWen1a5b2cHCl+/6SSbDQw8F1l9tywl+xtIe7 JCLfNsWXN7xkaQ8H3zPxGGoOCz0cXHB1WdypSpb2cDDr7Gb27wVLezi42/Pt wxbBQg93Ge8P04LHZFawtIeDUw6Hru4DCz0cbKmytdSjnKU9HJxXN3V9URlL e7grIrL7eLm+Fiz0cLDnx4kTA5+ztIeDVdxmO70vZWkP9//PfyafOR0WejhY v2TH9OPPWNrDpYnI/H67OjpLWNrDwesX9qxxgIUeDk6aMehXZjFLezj4SFwS 6QcLPRzs3D86y+spS3u4dHx+2/zZufQJS3s42MkrXEcbFno4eGrF7snhj1na w8HmLpfdm4pY2sPBf6rlS6xhoYfLEBF7pViXS4Us7eHgvLLpw+VgoYeDR35u 6+tRwNIeDi4bflX36SOW9nDwgcXuAeNgoYe7KiI7XfvKHspnaQ8Hm/U7mdr0 kKU9HNxqKQ62gYUeDv71wfBwWh5Lezh4fK7O4z6w0MNdE5GXd2p1Nj9gaQ8H JzwiheX3WdrDwSF3px/Sh4UeDu4eVb4n5h5Lezi4YXR70u+7LO3hMnEPtsb8 dIaFHg5+uyptc24uS3s42LVRR00dFno4WENG6V/gHZb2cPC9o1aSz7dZ2sNl 4f3mhcfEChZ6ODh+SsjZy7dY2sPBt8guI0VY6OHgbXeju7bcZGkPB/e6U/z9 1Q2W9nDZ+PNPV5GfDgs9HDzHwt35dA5LezhY5lNOpRgWejg4VvO3v/t1lvZw 1/H1UlJzfJbN0h4Ozns4fIkeLPRwcOrsjvC4LJb2cPCI7IgfMrDQw8EizTq/ VZks7eFy8P487Yvh42ss7eHgGK+oERNhoYeDTUMrjY5dZWkPB09Vvej/L4Ol PRwcZca2roCFHu4GHr8TKg4XpbO0h4NLZPsvnwgLPRz8p/bG4pg0lvZwsAKT EyADCz0cPCWMf7n6Ckt7uJsi8jz96OLiyyzt4eD1Z5b20IeFHg5+GG/36cQl lvZw8NPHG5t5WOjh4MQNp0duSGVpD3dLRAJya8NeXGRpDwd//qMxhMBCDwev X+HyJuUCS3s4uHRyyCMFWOjh4K5bR9/tOM/SHu427pHBjhEfzrG0h4MlP0dF z4GFHg5eMeXEpKwUlvZw8L4FBTLDYKGHg7siTnYcOMvSHu4Onl+mqoN+nmFp Dwffzx3nsRQWejg42+FpQ0EyS3s42G7F9yO6sNDDwVeMDrgnJLG0h8vF+1Oj iA3dYaGHgy3vdZ7wPs3SHg5WHnOz890plvZwcObrwj1WsNDD3cW90lXVzz7J 0h4O1o1P7j8cFno4eOgOp+HhiSzt4eDv+nrOfxJY2sPBZsZa99xgoYe7h+8P o7Wg/ARLezh4ctMoeRNY6OHgqd4avy4dZ2kPBx/rJi+nCgs9HCxRe2MdHM/S Hu4+Pj/qBdxoi2NpDwePym1fsAIWejh4seEE5dJYlvZw8IkRahICCz0cnPLv nvqlGJb2cA/+76Mk61RhoYeDXwXWvzlwjKU9HDxnqp3Pr2iW9nDwsDYLMzdY 6OHg91OyDV8cZWkPlyci8lFHncxgoYeDB0W+Srl2hKU9HLzu/vahI2Chh4Nn X19zPyqKpT0c3MEnRrCw0MM9xOPZuE/I5sMs7eFgO5nMyx8iWdrDwQOqdnct hIUeDn6ywW1HXgRLeziYOLgM1YOFHi4ff37dFT/OhLO0h4P5JNfG/rDQw8Er Ztv1DT7E0h4OPlykvarzIEt7OLjwScP7dbDQwz3C3+/X9gNvwljaw8E+7c+c 5sJCDwdf3fzZ8W4oS3s4eN3gTH8dWOjh/v/1SWPLkkNY2sMV4PGVZTpPGRZ6 OPh499aOAwdY2sPBUQvGFf0NZmkPB1fM+pK/ERZ6uEIRYU4Paqrdz9IeDj6k epvYw0IPB+dsunuzMIilPRwcuWyQ6zRY6OHg7yn5Oun7WNrDFYnI9p6Z4zRg oYeDj1lXL4gNZGkPBwfo6p2Wg4UeDtYNzFAN2MvSHq7o/3/f1iq3PYClPdxj fD4P+RnmDgs9HKxXmRxYs4elPRzc79b8s3aw0MPBPbo3Nxf5s7SHg4+Hb3cz hoUe7gmeH8PfirN2s7SHgy1ilJ+NgYUeDlbMH/jglB9Lezj4eWD1O2VY6OHg S5ftNA/5srSHeyoivkN3RHOw0MPBJdemafvsYmkPB9dZx7Y2+7C0h4MzHu+p WQMLPRz8WuFb+7udLO3hinGfRKX6DrDQw8ETAoefLN7B0h4O7u7/WsccFno4 OOrt16bb21naw8FPQ6zL9WChhysRkeWebbWXtrG0h4OP+78aqAkLPRy87dx3 n4StLO3h4AOvx4mVYaGHgxV6hOSEb2FpD/cMrwdjfh/tBgs9HByh7x2/x5ul PRysod5U+HszS3s42OXzEjVvWOjhSkUkLjDn1DcvlvZw8IPWdks3WOjh4FWT eg1+78nSHg5ONv+u7AQLPRxsODbaqGITS3u45yKy9XP7fhtY6OHgaf6Sf4Ub WdrDwdzv23GmsNDDweVLFFxyN7C0h4PNMn/aGMJCD1eG9/c9XdwyPVjaw8H6 HlYp2rDQw8GXPp+XT13P0h4OvnLQ66QWLPRwcJRH/KIkd5b2cOW43/EDjYbC Qg8Hi8bUm8avY2kPB1fr/NyqDAs9HGxQZFgatZalPRzco0faQgVY6OEq8H6m l2VX2BqW9nDwkqauZ91hoYeDLZ/kPQ5yY2kPB/s9jGxiYaGHg9f8djLYs5ql PdwLEWkLU0ntWsXSHg4OPnnXfBcs9HCwaPGs7r9XsrSHgzPfJbVug4UeDt64 6AnfvoKlPVyliGz+kUW8YaGH+98li061uLK0h4Nj1C+O9oSFHg7eqXyq6rsL S3s4WL164rUNsNDDvcTzNXnhtW/LWdrDwXIJf6vWw0IPB+/rUh/TuIylPRw8 5vetU+6w0MPBIx7dJV+XsrSHe4X3E8dH8O6w0MPBl669bW5YwtIeDg61qOPd YaGHgxcdGW/y1ZmlPdxrfD8r0pLcYaGHgy/Odh3X6MTSHg6On2jwdj0s9HCw ZfGYrG+LWdrDwUtctTM3wEIPV4XPExOnVX1fxNIeDu4eYDHSExZ6ODgr1uJ4 iyNLezj4613dyd6w0MPBvU1kO9scWNrDvcHr68rk99tgoYeDt2/v39xpz9Ie Dp5aOEdrFyz0cPDXM9MCu+xY2sPBUUvfSfbAQg9XDZuOzGBhoYeDj1/ovTfI lqU9HHzxY/DO7rDQw8HdLQ7GhC1kaQ8HzxujWC0PCz3cWxFZWi9nEbWApT0c vPz51lf9YaGHg4tmz4yMm8/SHg62Pbd24xBY6OFgWauazafnsbSHeycifSNO JGjCQg8HK1Ue+37BhqU9HPzc/+HqCbDQw8F23wdx1+aytId79///33Pk0RRY 6OFq8Pp6Xj39tjVLezj42p3bd2fAQg8HZ49zbn80h6U9HLxi6c/51rDQw8F6 N3aVPbdiaQ/3Hs/vi193OsJCDwfPSpxs8daSpT0cfETkYLQSFno4WNXE2LZh Nkt7uFoRWf30y+FNsNDD1f7/71NZdrRbsLSHgz0jHPb4wkIPB5ukdpvIwUIP B7e8XSgOncXSHu6DiLAJE0SKsNDDwcOWH1aLNWdpDwcPPeHlNgwWerj/f35x /vMUM5b2cHDn+n0rJsBCD/cRn5/bklWyTVnaw8HRH1TbpsNCDwc7Z9a05c9k aQ8He375omoDCz0cfFdmvFvlDJb2cHV4P7ojqXIZLPRw8MaXxh6fTVjaw8Hz T/7V8oSFHg72snsq+W3M0h4OdvU932svLPRw9Xg9Ttiv3wsWejg4wGTpvqOE pT0c7NI0vHMILPRwsPuEkshz01naw8HZ4fY2OrDQw33C62V82sRb01jaw8E/ 3pVNMYeFHg7e/TVr5bOpLO3h4GjreZmLYaGHg69HR4+uM2JpD/cZ7x8c/fM2 wkIPBx/U4Pb+NmRpDwefihyweh8s9HDwnonXPBRgoYeDRfFPY+MNWNrDfRER 8SqnBk1Y6OFgPy3bZRlTWNrDwSt8Lv+aBgs9HJzze3lW4WSW9nBwqLFrjB0s 9HANItL0+VzCe32W9nDwv4gxhR6w0MPBL1/UKP/WY2kPBycvyg0JgoUe7ive T+TcVusLCz0cnHHs+ZvESSzt4eA50T9vjoWFHg4OdByYm6PL0h4O3hdgWG8O Cz1cI14vcqwmluuwtIeDQ5NMT7rAQg8HV31S1f0+kaU93P8/Pr7gyy5Y6OHg a8OM83rAQg/3Da+Ha3bej9FmaQ8HX03z+KgJCz0cHHNGYXTmBJb2cLDcz0VR M2Ghh4MZS+Nhz8eztIdrwuuF/Y1ny2Ghh4PrC+4kfx/H0h4O9lxgetwPFno4 +GqySbYcLPRwsK3XpbbjY1naw33H13+Dn8NYWOjhYLHNxTc3x7C0h4P7FIze ZwULPRy8MaJ1XtVolvZwsPuyv8QdFnq4H7j/34wW/BnF0h4OZlrP7Q+FhR4O zhttWKMKCz0cvNmm3il1JEt7OPjjoOTfU2Ghh2vG5wmbdbeearG0h4Przkw4 tRQWejg4rrrh3HdNlvZwsFPW4TJ/mO7D4fn7Y7CaIkz34USkm/XeyCQNVroP h8+rh3JG6MF0H05Ecrdmv84fwUr34fB5pGjzVUeY7sPh/dzcussNw1npPhzu zyPm6S6Y7sPhPv+9LycP0304vL+4NsjzlDor3YcTkQ9Z4g5dmO7D4fX36bbE fDVWug8nIsb3V69bBNN9OLxeLCtyaBzGSvfhROTGxli33TDdhxORZXeLYhVh ug+H9yND7JrODGWl+3D4/Go/YZUBTPfh8HgzmNf1ZAgr3YeDj17OWQ7TfTh8 /YxMjv0czEr34fD5529XdDBM9+Hwfvr82+uDYLoPh++3cuXftEGsdB8Ory8D 3rmawXQfDp9//b81vFJlpftwIhKk2XlkA0z34UTE6t2v5SxM9+Hw/n/Ph7kx A1npPhxeX+quLB0H0304fN79YBtxX4WV7sPh/YNt4QcHmO7Dich0RW7RtwGs dB9ORHZ1/PkeANN9OPz6dynnBsB0Hw73OaUr4LIyK92Hw+vnmA4/U5juw+Gf Nzv4+Ov+rHQfTkSevTtXtQmm+3AiYlpsM1UC0304EUn6ufnOCSVWug+He6zb y3USTPfhRKSnh7zW436sdB/u/3/fzlvOFab7cHh8OeoodfZlpftwIvLzGZke AdN9OBFZXxoVrAXTfTgR+TJd4+cdRVa6D4f3PzJf/e1hug+He9ZZNb6pDyvd h8P97Pf93z6Y7sPh3k5RbRoM0304vH+0cZDJUmCl+3C4FyZxE+fCdB9ORDQ7 XwfWy7PSfTgRKXVR6PSD6T4cPg+5TTykDNN9ODwe2yaZpvVmpftweL/a2Ud1 Nkz34URkhkuuYq0cK92Hwz1XnTTGB6b7cHh/p+y2sh9M9+HweczU5s6lXqx0 Hw6vZ1EfpsyC6T6ciLxoG1he05OV7sMxxHhJY/hOmO7DMWTNrbnr+8F0H44h 8WKDtZd7sNJ9OIY8n3A6yAKm+3AMSR+7J6+2Oyvdh2PIgZYn6r4w3YdjiOO2 XaeUYboPx5AH6UHGGd1Y6T4cQwbF1spYw3QfjiHOGvvffZKw0n04hmjZuL8L gOk+HEMK5INkhsB0H44hE12KSY6Yle7DMeTvNKOTtjDdh2PIulMPhv3gWek+ HENc9i+9FwrTfTj8eCMToAXTfTiGXH+a4vqAY6X7cAwZPMp0xTKY7sMxRPFf 8d4/LCvdh8Pf34LkHYPpPhx+fc+wEZNgug/HkCDz1ORnDCvdh8Pf93e0qQdM 9+EYojpyJtcDpvtwDHn4POXDWREr3YdjyL+/N2tnwnQfjiGmF7aK3suy0n04 htx8W0z8YLoPx5ChiTdPqMJ0H44hT3/oqubIsNJ9OIbkvhp/3R6m+3AMObg8 yftnFyPdh2PI2rDgeYdhug/HkOGrKqy0YboPxxDNVv/Vxf8Y6T4cQ7aRgJPr YboPx5Dshc86e8B0H44haoauXuf/MtJ9ODw+/o3vYQHTfTiGLDk/7l79H0a6 D8eQpNl2x/bBdB+OIX8ajoeNgOk+HB6PcX9OPvjNSPfhGLJw9ZpyV5juwzFk v/NrTQam+3D4c4RZxJzqZKT7cAxp5i6MNIHpPhxDPrxoq6z5xUj34RhSpDj8 rD9M9+HwzykcGTUMpvtweHz27kq428FI9+Hw92qJLVwO0304hsw40Kooguk+ HEP86kU+p9oZ6T4cQxYPuSWaAdN9OIYkm6mk1LYx0n04htzwVHDfC9N9OIYc uh5jPQKm+3D4+drn5z78yUj34RjSt3nKhtUw3YdjyJ4+JFUC0304PH8uZHQ7 38pI9+EY8qwsZK8lTPfhGFKRcmdQYwsj3YdjiLqxWflBmO7D4fmVrXRhAkz3 4RjSe6RWQmkzI92Hw9f/8qa0zTDdh2PI6NVfapRgug/HkDnrgydc/8FI9+EY wrw1Pb4Ypvtw+P1eKWn9+85I9+EYorCrpSQRpvtwDLlfVxo9A6b7cAzJ0rvo U9fESPfhGNIVusUvGKb7cAzR6z4ycQxM9+EYsq84p7r4GyPdh2PI2X9qhl4w 3YfD9/m6wzUlmO7DMeSX+oI5OY2MdB+OIQ7LujFLYLoPx5C6SM8KWZjuw+Fx +i4wP/krI92HY0iLu0GFBUz34RjCLg0SfWtgpPtwDFlV5WoVCdN9ODwfe+Rn 6MF0Hw7P774pk19/YaT7cPjvQf9e+cF0Hw7PA5vc2OEw3YdjSFvZx60Fnxnp PhxDROUrPT1gug+HP+cO/QOKMN2HY8jepnl3sj8x0n04hngtvaiwBKb7cPj6 /pzqz8B0H44hbtV/e52rZ6T7cHg8mdVmWcN0Hw5/jkUffVvrGOk+HB6Xs367 xMJ0Hw7fj2mqKwhM9+Hw/Fk3fU/dR0a6D8eQt/8W3wqF6T4cHmdaa/rpwHQf jiH8gCUHXn5gpPtweHzITlTdDdN9OIaQPlWFGjDdh8PzxnfB0Se1jHQfjiGP tx3y3QzTfTiG1OoEBQyE6T4cvk612sn33jPSfTiGKN/cV7sGpvtwDNFu9pmm ANN9OIaMv9EjM7uGke7DMeSL1ajZy2C6D8eQ/DfFnWKY7sPh65nUkn/5HSPd h8MdehmaZg/TfTiGmGREZnW9ZaT7cPi6r/vz8ixM9+EY0mhwV9kGpvtwDLFZ XOnVUc1I9+HwuOenNCTCdB+OIVO2vfK1gOk+HL7vXzLGNb9hpPtweL2LvdkZ C9N9OPx+9xvez4DpPhy+Pqcm13+tYqT7cLhTW2LFR2G6D4c7tVMyczpM9+EY MvLH9vhPrxnpPhy+nkp18pEw3YdjyLLRM08awnQfDq9HG0LmfHzFSPfh8Lga ntHvEEz34fB4DUn/NRmm+3D4/n3c/ev9S0a6D8eQTVv69QuD6T4cQ+x3r7bS h+k+HEP6m3sk1FQy0n04hryUGyYXCtN9OIbYqW49pgfTfTjcsaurp9W8YKT7 cPj7Dv7SFQLTfTj8/id+VunBdB+OIWd2+ZfXVDDSfTiGmIkCP4fCdB+OIY82 tytPhuk+HENeDypxrS1npPtwDLllxhcehOk+HO7AlAhLA5juw+H1Z7rbp49l jHQfDo+T5D2JETDdh8Ovu/bCaypM9+EYMvDmEpfPzxnpPhxDxvG93Y/AdB8O 3893b8ONYboPh69P7KOSxlJGug/HEMPduaNjYboPh6/n+9snzWC6D8cQsfyN iS3PGOk+HEP8HS9WJ8B0Hw6vT70PJFvBdB8O3/8Ay6BfJYx0Hw6vx+JPAWdg ug/HEJlvdnELYLoPx5ARBw49kYHpPhy+r+ODVS4VM9J9OPzvOoZ7FsN0Hw73 73M82w2m+3B4HJ1NPpn5lJHuw+H5+MDKcQVM9+HwOIoOHt0HpvtweB3ZskA5 9wkj3YfD9zvn5BAPmO7D4U7cWGesCtN9OIb0ep6yq/AxI92Hw+vhYpuybTDd h2PI1EuOppow3YfD40TzZkl5ESPdh2NId7UNW/bCdB8Oz8PONXo6MN2Hw+NG Lkn+fSEj3YfD3bvRl4uA6T4cQ44vyVAkMN2HY8hd+61GTQWMdB8Or7e8g98J mO7D4etbaFU1B6b7cPjzs3MW/H3ESPfh8Ov72Xy4CNN9ONyR5XMOOcF0Hw7v 1yyMFvaE6T4cQ5om9NW5mc9I9+FwV3wej3aH6T4cQzrDnaapwnQfjiEWz2+s ffyQke7DMSTmXM0VH5juw+FxviNPfixM9+Fwx1OXHHiTx0j34RhSfD5p0EGY 7sPh+fLqYOE0mO7D4Xlxpm9E0wNGug+H96fbx25KhOk+HO7bzZK182C6D4f3 R1U/d4lgug+Hx8XMqPMZ9xnpPhxDri4//X0FTPfhGNJ+UsVGCab7cPg6ef14 lH+Pke7DMWTRzCGLt8N0Hw4/f28cPxqm+3B4f5fsXFR1l5Huw+Hxr+R87iBM 9+Hwejg7IpHAdB+OIeXpP6405zLSfTiGhN73fpUE0304PB6+9x1kD/9X1FmG V5FsXZjTTXU37h7cXQLBoXB3Qgju7jI4wYIHgkNwdwnuOrgOg+vgLoM735rU Xve7f+ZZdxhycrqralfV2u8yfDjUCeuP9Y8Bbfhw+D57jHi154AtfDi81xtL D+oGbfhwqD/vfUyfHtrw4Ww9bci8e3/vt4UPh7/3R47do6ENH87W9a7MXlsU 2vDh8B6F3t72cp8tfDjUMaFvry2ENnw4rOe1TiauB234cJi/WjTv6EAbPhze k4A1V3bttYUPh89VfXGTrtCGD4fxnLHE93TQhg9n60VFem2+tMcWPhzW89jF R4yFNnw4fN9pJ3UqAW34cPi9PrTq/Ha3LXw4W6ePFTlqGbThw2F8PO2+vSG0 4cOhvos7K1ocaMOHw/sePU3rQ7ts4cNhnq3x43ZfaMOHs/Wz7tl75oA2fDjU 5+/n+d3daQsfDt9Xi5r/TIM2fDiMy1KF9laGNnw4WxdKVmXTzx228OFsXaLv 8L2boQ0fztahDy7/0x7a8OFs7XtdMnVqaMOHw/4qfWTPi9tt4cPhPY6V9c4Y aMOHw76l2KxWJaENHw6/f6mvv95ts4UPh/l1Rfktq6ANHw51rt0zpBm04cPh /X/at3ViaMOHQz32pGrzU1tt4cPhuU1/0msYtOHDYV0cVW5BALThw2Fdqdrg 3ssttvDhbL0hJFmJpdCGD4d5btfQDcHQhg+Hei18ZJH40IYPh993fuobxzbb wodDvT6g/LQh0IYPB33wTeuC0IYPh3EXJ1n1F5G28OHw3v2MrLYE2vDh8P3m 3tkqGNrw4fD3FE8/JT604cNhHjn+8MrxTbbw4fA8e37zD4E2fDjMZzeCVwVA Gz6crQct/+b/eqMtfDjMb30uXVkObfhw+Pkv7oQ3hTZ8OFvv3pigVRJow4fD P9u3qXp2gy18OIzPneeqhEIbPpytf1ar3KIktOHD2frlyRNhH9fbwofDe3ir 0sX10IYPZ+v9ufflbgdt+HBYpzqlW5QG2vDhoEt1zH51nS18OLw/QZNPToY2 fDjM423GD6sMbfhwmB+T1q3pgzZ8OLyHqe4U2L3WFj4cxnPWLHl6Qxs+HOrN l+l1LmjDh7P1+jQnOzxaYwsfDuOtV6JVC6ANHw77pvlffgZBGz4c5pkGPTol gDZ8OMwjDXq9OrXaFj4c6pnAT6NHQRs+HMZNnA8BpaANHw7rarHWPz+vsoUP h+93VvEbkdCGD4e/736fs52hDR8OdeB152pmaMOHw7xU/Nmnuytt4cNhH3My Ue4IaMOHw7+vMHRAfWjDh0M91DPdrbjQhg+HejH+u/onV9jCh8Pzevr8wUho w4ez9bgD1rhS0IYPh5/bOH/5r8tt4cPZek1otyRboQ0fDu+js/lHN2jDh8Nz X/3+a3Zow4fDelAkZ5xHy2zhw+G/G147YBG04cPZulvdxn0bQxs+HMbfgHKn kkIbPtx/dWW0QheX2sKHs/XIOBO2hUEbPpytb6W+Ua0KtOHDoV468+hzdGjD h8NzeLV818EltvDh8PsHJZwyGNrw4Wyd5n6GoUWgDR8O83ub88M+LLaFD4f1 Zle8OZugDR8O6/Sem8e6QBs+HNbLCjljZoc2fDjMQ4U+tXq0yBY+HOavTgX/ Wgxt+HBYBw7frt8M2vDhMH+ne/4qJbThw+G5t6kz7+pCW/hw2J/0jtVi+kJb +HAYf/niF60DbfhwmN9HBGWNC234cJjPal/PcXqBLXw4fN6RYeXGQhs+HOor u0vPCtCGD2fr8D1dtlrQhg9n67ezx8Q+ON8WPhzq4bFbBwyBNnw4rOcDXnwv Bm34cFg3GmWa9mWeLXw47PPSBJXeDm34cJhvdw6K1gfa8OEwT6UcfyU/tOHD 4b0oNvDQm7m28OEw3uOVP7Qe2vDhbF1jyt3LnaENHw6fc1f539mhDR8O39fw ziWfRtjCh0Nd8bha+Apow4fD/PDo9uc20IYPh3E7OEWfjNCGD4e6fu2n6Pfn 2MKHw7zcp+uaRdCGD4d9w42+bZpDGz4c9gn3XP800IYPZ+uLYamS3p5tCx/O 1m2frIozD9rw4bBefFqZojG04cNh//9n/GIpoQ0fDu9p45vdrs+yhQ+HeuLU 7x2zoQ0fDnVB6j+SNIQ2fDjUoa0DxiSDNnw4PP8NReJcnWkLHw7PJX7flTOh DR/uv/XpQWADaMOHwz6/w+DkSaENH87W5ccXfnN5hi18OLz3KeLcmAFt+HC2 3pnv47VAaMOHw/7k2ZMXSaANH87WR1veTnhlui18OIyz7WdrzIQ2fDjsy5zI eQ2gDR/O1lV7h/xOCm34cHhP0ub/4+o0W/hweH9y7482G9rw4fD7/ZlmYUNo w4fD+IxZrU4KaMOHw/4qW/FkN6bawofDe17xydsIaMOHw7o0pdKdxtCGD4fn HFD/rh+04cPhc7VWH25PsYUPZ+s/KtfzWwht+HC2Tp4soGELaMOHw3O2VqxM D234cBj3pefGfBBuCx8O4zV63OHLoA0fzta9xn6K2Q7a8OGwXqsaq7JCGz4c xvGOGMHPJtvCh8PnvZYp9Vpow4fD/7965ocu0IYPh+fQIehuHmjDh8N8ENT8 9ttJtvDh8PvtWvF6M7Thw+H7+Ttzor7Qhg+Hz/38UtXC0IYPZ+uildbN+Bpm Cx8O48N/2fs90IYPhz//dWubodCGD4d58vGVpxra8OEwH1SxhtnQhg+H979n 3hzHJtrCh8P3sKnBk7HQhg+H96dRjx3VoA0fDuv+n30i4kIbPhzmqwpNwv+a YAsfDutnwbRzpkMbPpytI19u2xoEbfhw/61/yR+khDZ8OMwH2XWmO+Nt4cPh uXbK1H8xtOHD4Xm93nenDbThw+HzJlMNs0EbPhzGfZV3D16Ms4UPh3H7YsiI jdCGD4d6ru0i/97Qhg+HuiJd3c8B0IYPh/lw9ISz38bawoezdQq3wvb90IYP h/kpXr/IEdCGD2frlvFTHqgIbfhw+JyDs9yNCW34cLZudnx6gvNjbOHD2bpm +6YNpkEbPpytT/7df30QtOHDYTyNvpvUD9rw4bAf/Tpu6j+jbeHD2Xr82h7p lkMbPhz+npQTD3aENnw4W3c4dqlXHmjDh8OfL1Cu8PtQW/hwqBvun4+zE9rw 4fB5mvb+NBja8OEwDrNn+bcMtOHDYR6/+M9PB9rw4fDPe3P9zoyyhQ+H9/JR rRpToA0fDrrrx8kNoA0fDuMgZujDVNCGD4d9bK3PVe+NtIUPh/n7QvkjK6AN H87W/pnb1egCbfhwtu7yqN6z/NCGD2frA2udWZ9H2MKHw/eWuF+DfdCGD2fr BfvmZx0JbfhweB6VesesAm34cNi/1Hv7Ky604cPhPRkdR10ebgsfztZDRh3x mwtt+HCoSz/FrNgS2vDhML+F3hqWFdrw4fDf38l39tUwW/hweP/XRcu5Fdrw 4VD/LywfMRDa8OGwbnb8mLIMtOHDYV+4L9Z6F9rw4TBf1B5W+1yILXw4vG/X q6kZ0IYPh/ctQfvTjaENHw7Pe8upJRmgDR8O39fg7hOeDbWFD4ffP2fN0E3Q hg+Hfebw5uH9oA0fDvOOnreuFLThw2H+y/PzuoI2fDiM4wSDkp8dYgsfDp9n c9wO06ENHw7j6NamE42hDR8On6tJo2IZoQ0fDj8/WvR9zwfbwofDvDFnRe3N 0IYPZ+u634t9HABt+HCYT77uWlMG2vDh8HM6+/WMAW34cKi/cjSu/NcgW/hw WB8TdM83B9rw4Wy963vt7C2hDR8O9eLJrwWyQxs+HD5Pk1Y1/h1oCx8O78XM kf13QRs+nK2PNWmwdTi04cPhe5/5d7Sq0IYPh/oi94emCaENH87WAXEiT98Y YAsfDvNHervqUmjDh0O92/jBtc7Qhg+Hffzaqv0LQhs+HL5/VSDbz/628OGw /2k29elRaMOHw7jZ2GbXJGjDh8O88+/iiCBow4fD35uu3MR00IYPh/m5aJlJ z/rZwof7795lxqLN0IYPh8+fr8iRQdCGD4e6PXHGT+WhDR8O3+vbmkXjQhs+ HN77s1snXv3DFj4c6tOtNd4ugjZ8OMwrWxO26QRt+HBYJ27+eOIPbfhw+Gcx NfhnX1v4cBh/DzOlOw5t+HC2zvem/qVwaMOHw+fsOWl2I2jDh7N1qdGnumSC Nnw4vCeVrTqv+9jCh8P7ejlPhZ3Qhg+HcVyjSpUR0IYPZ+svf1dtWh3a8OHw vCfmGp4U2vDhUD/Nf7L1n9628OH+u7fo+2UNtOHD2Tq427lqfaENHw7v4eiX G0pDGz4c9isrT6SPCW34cKibrCbLLvWyhQ+H9eP0woCF0IYPh3q8cNi1jtCG D4d1IiT1+ILQhg+H9fB2lWq/e9rCh8N4nhTL7xS04cPh9zzf+Md0aMOHw3z6 wP9lc2jDh7P1qVhhL3JAGz4c1sdJLb597GELHw7jZ/PK5IegDR8O9dLhxhUn Qhs+HD5fjD9GBkEbPhzesytvzmeANnw4jJP+h3O+7m4LHw77onJPZu6CNnw4 PO+JQQlCoQ0fDvuY1bHn1sY/DR/u///J/59/jv8d/x7+vfw5/Ln8HPxc/Jz8 3Pw9+Hvx9+Tvze+B3wu/J35v/B75vfJ75vfO58DnwufE58bnyOfK58znzveA 7wXfE743fI/4XvE943vH95DvJd9Tvrd8j/le8z3ne89xwHHBccJxw3HEccVx xnHHcchxyXHKcctxzHHNcc5xz3mA8wLnCc4bnEc4r3Ce4bzDeYjzEucpzluc xzivcZ7jvMd5kPMi50nOm5xHOa9ynuW8y3mY8zLnac7bnMc5r3Oe57zPdYDr AtcJrhtcR7iucJ3husN1iOsS1ymuW1zHuK5xneO6x3WQ6yLXSa6bXEe5rnKd 5brLdZjrMtdprttcx7muc53nus86gHUB6wTWDawjWFewzmDdwTqEdQnrFNYt rGNY17DOYd3DOoh1Eesk1k2so1hXsc5i3cU6jHUZ6zTWbazjWNexzmPdxzqQ dSHrRNaNrCNZV7LOZN3JOpR1KetU1q2sY1nXss5l3cs6mHUx62TWzayjWVez zmbdzTqcdTnrdNbtrONZ17POZ93PfQD3BdwncN/wv32E7Cu4z+C+g/sQ7ku4 T+G+hfsY7mu4z+G+h/sg7ou4T+K+ifso7qu4z+K+i/sw7su4T+O+jfs47uu4 z+O+j/tA7gu5T+S+kftI7iu5z+S+k/tQ7ku5T+W+lftY7mu5z+W+l/tg7ou5 T+a+mfto7qu5z+a+m/tw7su5T+e+nft47uu5z+e+n+cAPBfgOQHPDXiOwHMF njPw3IHnEDyX4DkFzy14jsFzDZ5z8NyD5yA8F+E5Cc9NeI7CcxWes/Dchecw PJfhOQ3PbXiOw3MdnvPw3IfnQDwX4jkRz414jsRzJZ4z8dyJ51A8l+I5Fc+t eI7Fcy2ec/Hci+dgPBfjORnPzXiOxnM1nrPx3I3ncDyX4zkdz+14jsdzPZ7z 8dyP54A8F+Q5Ic8NeY7Ic0WeM/LckeeQPJfkOSXPLXmOyXNNnnPy3JPnoDwX 5Tkpz015jspzVZ6z8tyV57A8l+U5Lc9teY7Lc12e8/Lcl+fAPBfmOTHPjXmO zHNlnjPz3Jnn0DyX5jk1z615js1zbZ5z89yb5+A8F+c5Oc/NeY7Oc3Wes/Pc nefwPJfnOT3P7XmOz3N9nvPz3J/3ALwX4D0B7w14j8B7Bd4z8N6B9xC8l+A9 Be8teI/Bew3ec/Deg/cgvBfhPQnvTXiPwnsV3rPw3oX3MLyX4T0N7214j8N7 Hd7z8N6H90C8F+I9Ee+NeI/EeyXeM/HeifdQvJfiPRXvrXiPxXst3nPx3ov3 YLwX4z0Z7814j8Z7Nd6z8d6N93C8l+M9He/teI/Hez3e8/Hej/eAvBfkPSHv DXmPyHtF3jPy3pH3kLyX5D0l7y15j8l7Td5z8t6T96C8F+U9Ke9NeY/Ke1Xe s/LelfewvJflPS3vbXmPy3td3vPy3pf3wLwX5j0x7415j8x7Zd4z896Z99C8 l+Y9Ne+teY/Ne23ec/Pem/fgvBfnPTnvzXmPznt13rPz3p338LyX5z097+15 j897fd7z896fPgD6AugToG/gfz4C8RXQZ0DfAX0I9CXQp0DfAn0M9DXQ50Df A30Q9EXQJ0HfBH0U9FXQZ0HfBX0Y9GXQp0HfBn0c9HXQ50HfB30g9IXQJ0Lf CH0k9JXQZ0LfCX0o9KX8z6civhX6WOhroc+Fvhf6YOiLoU+Gvhn6aOiroc+G vhv6cOjLoU+Hvh36eOjroc+Hvh/6gOgLok+IviH6iOgros+IviP6kOhLok+J viX6mOhros+Jvif6oOiLok+Kvin6qOiros+Kviv6sOjLok+Lvi36uOjros+L vi/6wOgLo0+MvjH6yOgro8+MvjP60OhLo0+NvjX62Ohro8+Nvjf64OiLo0+O vjn66Oiro8+Ovjv68OjLo0+Pvj36+Ojro8+Pvj/6AOkLpE+QvkH6COkrpM+Q vkP6EOlLpE+RvkX6GOlrpM+Rvkf6IOmLpE+Svkn6KOmrpM+Svkv6MOnLpE+T vk36OOnrpM+Tvk/6QOkLpU+UvlH6SOkrpc+UvlP6UOlLpU+VvlX6WOlrpc+V vlf6YOmLpU+Wvln6aOmrpc+Wvlv6cOnLpU+Xvl36eOnrpc+Xvl/6gOkLpk+Y vmH6iOkrps+YvmP6kOlLpk+ZvmX6mOlrps+Zvmf6oOmLpk+avmn6qOmrps+a vmv6sOnLpk+bvm36uOnrps+bvm/6wOkLp0+cvnH6yOkrp8+cvnP60OlLp0+d vnX62Olrp8+dvnf64OmLp0+evnn66Omrp8+evnv68OnLp0+fvn36+Onrp8+f vn/2AbAvgH0C7BtgHwH7CthnwL4D9iGwL4F9CuxbYB8D+xrY58C+B/ZBsC+C fRLsm2AfBfsq2GfBvgv2YbAvg30a7NtgHwf7Otjnwb4P9oGwL4R9IuwbYR8J +0rYZ8K+E/ahsC+FfSrsW2EfC/ta2OfCvhf2wbAvhn0y7JthHw37athnw74b 9uGwL4d9OuzbYR8P+3rY58O+H/YBsS+IfULsG2IfEfuK2GfEviP2IbEviX1K 7FtiHxP7mtjnxL4n9kGxL4p9UuybYh8V+6rYZ8W+K/ZhsS+LfVrs22IfF/u6 2OfFvi/2gbEvjH1i7BtjHxn7ythnxr4z9qGxL419auxbYx8b+9rY58a+N/bB sS+OfXLsm2MfHfvq2GfHvjv24bEvj3167NtjHx/7+tjnx74/9gGyL5B9guwb ZB8h+wrZZ8i+Q/Yhsi+RfYrsW2QfI/sa2efIvkf2QbIvkn2S7JtkHyX7Ktln yb5L9mGyL5N9muzbZB8n+zrZ58m+T/aBsi+UfaLsG2UfKftK2WfKvlP2obIv lX2q7FtlHyv7Wtnnyr5X9sGyL5Z9suybZR8t+2rZZ8u+W/bhsi+Xfbrs22Uf L/t62efLvl/2AbMvmH3C7BtmHzH7itlnzL5j9iGzL5l9yuxbZh8z+5rZ58y+ Z/ZBsy+afdLsm2YfNfuq2WfNvmv2YbMvm33a7NtmHzf7utnnzb5v9oGzL5x9 4uwbZx85+8rZZ86+c/ahsy+dfersW2cfO/va2efOvnf2wbMvnn3y7JtnHz37 6tlnz7579uGzL599+uzbZx8/+/rZ58++f3IAyAUgJ4DcAHIEyBUgZ4DcAXII yCUgp4DcAnIMyDUg54DcA3IQyEUgJ4HcBHIUyFUgZ4HcBXIYyGUgp4HcBnIc yHUg54HcB3IgyIUgJ4LcCHIkyJUgZ4LcCXIoyKUgp4LcCnIsyLUg54LcC3Iw yMUgJ4PcDHI0yNUgZ4PcDXI4yOUgp4PcDnI8yPUg54PcD3JAyAUhJ4TcEHJE yBUhZ4TcEXJIyCUhp4TcEnJMyDUh54TcE3JQyEUhJ4XcFHJUyFUhZ4XcFXJY yGUhp4XcFnJcyHUh54XcF3JgyIUhJ4bcGHJkyJUhZ4bcGXJoyKUhp4bcGnJs yLUh54bcG3JwyMUhJ4fcHHJ0yNUhZ4fcHXJ4yOUhp4fcHnJ8yPUh54fcH3KA yAUiJ4jcIHKEyBUiZ4jcIXKIyCUip4jcInKMyDUi54jcI3KQyEUiJ4ncJHKU yFUiZ4ncJXKYyGX6H6dJuE3kOJHrRM4TuU/kQJELRU4UuVHkSJErRc4UuVPk UJFLRU4VuVXkWJFrRc4VuVfkYJGLRU4WuVnkaJGrRc4WuVvkcJHLRU4XuV3k eJHrRc4XuV/kgJELRk4YuWHkiJErRs4YuWPkkJFLRk4ZuWXkmJFrRs4ZuWfk oJGLRk4auWnkqJGrRs4auWvksJHLRk4buW3kuJHrRs4buW/kwJELR04cuXHk yJErR84cuXPk0JFLR04duXXk2JFrR84duXfk4JGLR04euXnk6JGrR84euXvk 8JHLR04fuX3k+JHrR84fuX/kAJILSE4guYHkCJIrSM4guYPkEJJLSE4huYXk GJJrSM4huYfkIJKLSE4iuYnkKJKrSM4iuYvkMJLLSE4juY3kOJLrSM4juY/k QJILSU4kuZHkSJIrSc4kuZPkUJJLSU4luZXkWJJrSc4luZfkYJKLSU4muZnk aJKrSc4muZvkcJLLSU4nuZ3keJLrSc4nuZ/kgJILSk4ouaHkiJIrSs4ouaPk kJJLSk4puaXkmJJrSs4puafkoJKLSk4quankqJKrSs4quavksJLLSk4rua3k uJLrSs4rua/kwJILS04subHkyJIrS84subPk0JJLS04tubXk2JJrS84tubfk 4JKLS04uubnk6JKrS84uubvk8JLLS04vub3k+JLrS84vub/kAJMLTE4wucHk CJMrTM4wucPkEJNL/D9OsXCLyTEm15icY3KPyUEmF5mcZHKTyVEmV5mcZXKX yWEml5mcZnKbyXEm15mcZ3KfyYEmF5qcaHKjyZEmV5qcaXKnyaEml5qcanKr ybEm15qca3KvycEmF5ucbHKzydEmV5ucbXK3yeEml5ucbnK7yfEm15ucb3K/ yQEnF/x/nHDhhpMjTq44OePkjpNDTi45OeXklpNjTq45OefknpODTi46Oenk ppOjTq46OevkrpPDTi47Oe3ktpPjTq47Oe/kvpMDTy48OfHkxpMjT648OfPk zpNDTy49OfXk1pNjT649Offk3pODTy4+Ofnk5pOjT64+Ofvk7pPDTy4/Of3k 9pPjT64/Of/k/jMHgLkAzAlgbgBzBJgrwJwB5g4wh4C5BMwpYG4BcwyYa8Cc A+YeMAeBuQjMSWBuAnMUmKvAnAXmLjCHgbkMzGlgbgNzHJjrwJwH5j4wB4K5 EMyJYG4EcySYK8GcCeZOMIeCuRTMqWBuBXMsmGvBnAvmXjAHg7kYzMlgbgZz NJirwZwN5m4wh4O5HMzpYG4HczyY68GcD+Z+MAeEuSDMCWFuCHNEmCvCnBHm jjCHhLkkzClhbglzTJhrwpwT5p4wB4W5KMxJYW4Kc1SYq8KcFeauMIeFuSzM aWFuC3NcmOvCnBfmvjAHhrkwzIlhbgxzZJgrw5wZ5s4wh4a5NMypYW4Nc2yY a8OcG+beMAeHuTjMyWFuDnN0mKvDnB3m7jCHh7k8zOlhbg9zfJjrw5wf5v4w B4i5QMwJYm4Qc4SYK8ScIeYOMYeIuUTMKWJuEXOMmGvEnCPmHjEHiblIzEli bhJzlJirxJwl5i4xh4m5TMxpYm4Tc5yY68ScJ+Y+MQeKuVDMiWJuFHOkmCvF nCnmTjGHirlUzKlibhVzrJhrxZwr5l4xB4u5WMzJYm4Wc7SYq8WcLeZuMYeL uVzM6WJuF3O8mOvFnC/mfjEHjLlgzAljbhhzxJgrxpwx5o4xh4y5ZMwpY24Z c8yYa8acM+aeMQeNuWjMSWNuGnPUmKvGnDXmrjGHjblszGljbhtz3Jjrxpw3 5r4xB465cMyJY24cc+SYK8ecOebOMYeOuXTMqWNuHXPsmGvHnDvm3jEHj7l4 zMljbh5z9Jirx5w95u4xh4+5fMzpY24fc/yY68ecP+b+MQeQuYDMCWRuIHME mSvInEHmDjKHkLmEzClkbiFzDJlryJxD5h4yB5G5iMxJZG4icxSZq8icReYu MoeRuYzMaWRuI3McmevInEfmPjIHkrmQzIlkbiRzJJkryZxJ5k4yh5K5lMyp ZG4lcyyZa8mcS+ZeMgeTuZjMyWRuJnM0mavJnE3mbjKHk7mczOlkbidzPJnr yZxP5n4yB5S5oMwJZW4oc0SZK8qcUeaOMoeUuaTMKWVuKXNMmWvKnFPmnjIH lbmozEllbipzVJmrypxV5q4yh5W5rMxpZW4rc1yZ68qcV+a+MgeWubDMiWVu LHNkmSvLnFnmzjKHlrm0zKllbi1zbJlry5xb5t4yB5e5uMzJZW4uc3SZq8uc XebuMoeXubzM6WVuL3N8mevLnF/m/jIHmLnAzAlmbjBzhJkrzJxh5g4zh5i5 xMwpZm4xc4yZa8ycY+YeMweZucjMSWZuMnOUmavMnGXmLjOHmbnMzGlmbjNz nJnrzJxn5j4zB5q50MyJZm40c6SZK82caeZOM4eaudTMqWZuNXOsmWvNnGvm XjMHm7nYzMlmbjZztJmrzZxt5m4zh5u53MzpZm43c7yZ682cb+Z+MwecueDM CWduOHPEmSvOnHHmjjOHnLnkzClnbjlzzJlrzpxz5p4zB5256MxJZ246c9SZ q86cdeauM4eduezMaWduO3PcmevOnHfmvjMHnrnwzIlnbjxz5Jkrz5x55s4z h5659MypZ249c+yZa8+ce+beR/nhoNf2HdV0QSxl/HDQezq02VAntjJ+uAVY X7I/LaDiKOOHg/72PdWLndBRfjjoKtljX+0SVxk/3H/6x5+f0sVTxg83H+vb kbpVL0NH+eGgV5w/9Ne4+Mr44aBf9U0TViqBMn446P1x+g5+Dx3lh4O++e9f C1clVMYPNw+fZ1iZz00TKeOHg45McWFEosTK+OGgF2YYX/YkdJQfDrqyNTgg JIkyfjjonBk3NyuUVBk/3FzU4++K7HkBHeWHg+5y36/6kmTK+OGgl7TtlCA4 uTJ+OOgj73PHip9CGT8cdIDbp+hx6Cg/XAT2p6mrzBuaUhk/HPTSHbv8A1Ip 44eD7hZ88fcr6Cg/HHTe8QujrfBTxg8H3eRS7oBmqZXxw83B+nR03KKkaZTx w0GrNwdKn4eO8sNBL314K9HYtMr44aDfl3zlVyadMn446DUzfjb6Bh3lh5uN zz8u5bkt6ZXxw0EP3VP7j64ZlPHDQbc9v65e1ozK+OGgq3Yt3u4edJQfDrqG jrFhbiZl/HCzLH3rU4acDTIr44eD3lJ2xu34WZTxw0H/c63L0dPQUX446KM9 t98fnVUZPxx08pNDC5XNpowfbqaln8y/uO8ndJQfDnrm5v2DdmVXxg8H/fhM re59cyjjh4N+v23q7Pw5lfHDzcDzKDb98yvoKD8c9PjsLSeuyaWMHw46W5AT 1D63Mn446Mg54UGZ8ijjh4POejr2pHvQUX646Rg/J8Z8W5BXGT8c9Kvecec3 yaeMHw665qb1fVPmV8YPB32oba9R16Cj/HDQLUI6npxZQBk/3DTM5y8Wlg/0 V8YP95+el+FTooLK+OGgz4z5dfsidJQfDvrRcv1jSiFl/HDQDd5/rF0nQBk/ 3FT8/t1z3opfWBk/HHSstK/nX4CO8sNBd3KrzQwvoowfDrqhf62jtYsq44eD XrTJzZmgmDJ+uCmWDg8ffvwv6Cg/HPTnJycjphZXxg8Hnfv8q2X1Sijjh4NO 0Orbo8QllfHDQcc8+KPpFegoP1y4pWPHtuLMLqWMHw46okuy98GllfHDQR+J VTW+n1bGDwedLdnKNnego/xw0NEOFn+7qIwyfrjJlk5YPMmW1mWV8cNBHzio 12cpp4wfDjpa2Ok7z6Cj/HDQHe8errS+vDJ+OOis3/2f9qigjB9uEj5v1lwH C1ZUxg8HHbJ+5/kv0FF+OOgZtx4n3VdJGT8ctM/5c8bwysr44aBThTStXrGK Mn64MEs/XHSwWKyqyvjhoJ0T31pcgI7yw0Ffq5/iwIxqyvjhoJuuzR7YuLoy friJ2O/5F82YvoYyfjjoT0GB2Z9AR/nhoEPHTmi/vqYyfjjofYWf3e5dSxk/ HHS6W4MmFqutjB9ugqWfv6nd21dHGT8cdNx/+049AR3lh4PWLb88m1xXGT8c 9NujjwYE1VPGDwddY1W1smnrK+OHG2/p6jMKl3sCHeWHg16aesfgjYHK+OGg L1y++rpfA2X8cNDJG6yco4OU8cNBTyjmPyRGQ2X8cONQT2ccN+cidJQfDjr3 lu2v5wYr44eDHjr15OC2jZTxw0GX7XK+XN7GyvjhoOe8uVzuK3SUH24s6p3z zwcfaaKMHw56+eFUb8KaKuOHgz478o+Ihs2U8cNBd/3LC8nYXBk/HPSjrv/M ew0d5Ycbg/1F2lgfdrVQxg8HXXDTzFGhLZXxw0HneR1es04rZfxw0JXWunVT t1bGDwdda583+Rl0lB9uNN7PX4vV9jbK+OGgf1S9t21EW2X8cNCXQy8trNVO GT8cdJzp4474tVfGDwedqHnc9M+ho/xwofj7L/XYuaODMn446BSP9o8L7aiM Hw768GhnRr1OyvjhoGdtDryRvrMyfrhRmL/b7g5+Cx3lh4O+tLhsogNdlPHD QR/u/MOZ1FUZPxz0szMfCzbtpowfDjr8Yon5ubor44cbifEx6W7pH9BRfjjo qYlf+p3poYwfDnp+SI+C83oq44eDnvhy4OguvZTxw0H/NThFopK9lfHDjcD8 FtjoRpw+yvjhoMcsrnbrDnSUHw46IOx78k19lfHDQe+v2j98+B/K+OGgP8W7 ULZeP2X8cMPx/JMmyJe5vzJ+OOha86s0/Awd5YeDXvZozJ6TA5Txw0EnCbgR PG+gMn446NjXa/p3H6SMH26YpZOl/lCp7GBl/HDQz+tfm5VkiDJ+OOhWV2Nk fAYd5YeDHvl75rO9Q5Xxw0GH5Jr0IjxEGT9ciKW3H/qZre0wZfxw0LuzfFhc dLgyfjjoasdDGsQdoYwfDrpFoo0VH0BH+eGgs4WE99o5Uhk/3FBLuyML3Agb pYwfDnrB3KVDWocq44eDPlXlXZOio5Xxw0GvSJi7f7wxyvjhoMNDWp1/BB3l hxuC+TPN4lZ7xyrjh4OuPexz/mnjlPHDQRcu0adkp/HK+OGg67zMHFpmgjJ+ OOgWeVPFSDFRGT/cYEv3XNXq5FvoKD8c9P1fMY+dCFPGDwfd5k6G34smKeOH g/72aWefAZOV8cMNsvTvHzez1A1Xxg8HnXF1RJKcU5Txw0H32WmXiT5VGT8c dKOXmVffho7yw0HPixm/5o5pyvjhBuLn3b6Qd8p0Zfxw0CX8+9XsPEMZPxx0 4rsJ1lSYqYwfDrrczo1l081Sxg8HPSGiefLv0FF+uAGY/9rly3lltjJ+OOhR v/MNipyjjB8O+lqtHl5YhDJ+OOgp5X9e7DBXGT8c9ILzj2+Un6eMH66/pds/ KZ4u/Xxl/HDQp0bHWvoTOsoPB51hfZvWNxYo44eDLt+sQcsdC5Xxw0GPXfJm 3vRFyvjh+qEeG106aa/FyvjhoAP9As/WWqKMHw465YDSh3MvVcYPBz1oR5yP sZYp44eD7vLpXNvn0FF+uD8s3Tl4auKTy5Xxw0GP8dr7Vq1Qxg8H3Sxfk1xj Virjh4POYA2f0W6VMn446DlbHpaouFoZP1xf/PuQmRmyrFHGDwe9denyis5a Zfxw0A/bpF/9GDrKD/efjpmi6vF1yvjhoMfcn5t91Xpl/HB9sH6U3FVp3AZl /HDQeXsOW9ZpozJ+OOh416Pp6puU8cNB17xUJWWeSGX8cNDW8U7+8Tcr44fr jfUyRe8J76Cj/HDQE4v1ynB5izJ+OOhfEf2+7NiqjB8OOsPmqXHmblPGD9cL f/77xZZDtyvjh4Me87nSx5Y7lPHDQfvl9J2osFMZPxx0wnRxb2TfpYwfDvp1 m6E54+5Wxg/X09JfJ7bc+w46yg8HXSbf8YlX9yjjh4Oe+2L/vL17lfHDQa9o 0fDl4n3K+OGgTxVaOmjMfmX8cD3w3yfdWLXrAWX8cNCJNk8IrndQGT8cdMr9 lVcVPaSMHw7a/fAxIN1hZfxw0K0SLlXuEWX8cN3x+95qnvg1dJQfDvpwyhKt L/+pjB8OOm1EpXd7jyrhw1l6ca6ph5YdU8KHs3SW1Tn/mnhcCR8O4/tFxvR9 Tyjhw2E9uDQ+sulJJXw47Jeq9BhR8ZQSPpylWxd8OC3vaSV8OPz80E+Pkp9R woez9Oj8O/pbZ5Xw4fDf5w+o/hLa8OEsPWnEyBZXzinhw2G/lH3jtoPnlfDh 8P3lPllt7QUlfDis7/PuZZj5lxI+HD7fOK/48ItK+HCW3hmj5vQufyvhw1n6 WLHDeRpeUsKHw/6vZN+Y5S8r4cNhf1WkX9Z8V5Tw4bC/DroW6ndVCR8O+4eT qzLHuKaED2fpP49+cT5BGz4c1sfQa9kfXFfCh8N8XKXhpAs3lPDhLN0ucGzB /TeV8OHw89/391t3SwkfDs+7d7GKEbeV8OEsfT7r7cixd5Tw4fD7durZvN9d JXw4zNcRbq12/yjhw2E/nmrTsMB7Svhw+D7rD/pQ/r4SPhzmu60D1hR8oIQP Z+nBG/YsyfRQCR/O0kG769xO/EgJHw71eWD1RuqxEj4cPo+1N8UnaMOHs/SV KpGpnjxRwoez9I4dJVpce6qED4f19U63JyefKeHD4fdv0DByz3MlfDi8D3ti 7F//QgkfDuvfpmlxFr1UwofD573pLJr6SgkfztLjnvfuG/paCR/O0hcnvQjr /0YJHw77zZChzzq/VcKHs/SmASXHNv9XCR8O+/VSRTvVe6eED2fpv2eMmFzp vRI+HOqDajm+FP+ghA9n6SIFyizL91EJH87SC9Ndm5b5kxI+HL7f97+Ppfys hA+H+iXsZMn4X5Tw4bCfuFThi/qqhA+H+mh76Kfv0IYPh/U0S0SRd9+U8OEs XSDl9P1Pvyvhw1k6afiosXd/KOHDWbrJ+MEzr/xUwofDfJAg7OnZX0r4cKgn 8h8fevS3Ej6cpV/8Kh68L5ojfDisT1N+9Nvmc4QPh/2qm/LmessRPpylT49c PmKF7QgfDutn3k3dFkZ3hA+H969otYWzlSN8OEuXujIm8VTHET6cpfOX6ndu gusIHw772005zoZ6jvDhsF723hJ/WAxH+HAYH+czzBkY0xE+nKVzJRnfrm8s R/hwlk4T8a1/j9iO8OGwXuwKvdA5jiN8OEt3+7tE1/ZxHeHDob6umb9W63iO 8OEsPXBWnz+ax3eED4f1JW3yB40TOMKHw/NukntGw4SO8OEwf549OjEwkSN8 OHyeD+9O1k3sCB/O0i8bHqteO4kjfDhLXx9XJ0nNpI7w4fD+p1yRsXoyR/hw lraXX+5XNbkjfDjUy8f/TVAlhSN8ONQz2WK/q5TSET4cxmPPgOSVUjnCh7N0 1XojRlX0c4QPZ+nio3yFK6Z2hA+H+fbg0bwV0zjCh8N8fvKfbhXTOsKHs/SS 9m0+VEznCB8O+4v2rQ5WSu8IHw7Pe/7Li5UzOMKHs3T/+4lzVc3oCB8O80vi V6erZXKED4f6M+WYzTUyO8KHw/O99eFurSyO8OGwv6tRuX7drI7w4VBvtZ4W LzCbI3w47B9TPk3QMLsjfDisp30aNm6cwxE+HPaLgz69aJbTET4c6v8Sl460 yuUIHw71xGn7QbvcjvDhLP2k7KwqnfM4wodD/XZk0efueR3hw2G/16vAqz75 HOHD4X0f0izHwPyO8OGw/0hSeGNIAUf4cJYu1uvcoFB/R/hwlv55MSB8QkFH +HBY3weNeDmlkCN8OHz/24+Ezw5whA+H+efv2EMWFnaED4fvJ3uPyBVFHOHD WXpfkmh5NhR1hA+H5/P13LttxRzhw+HvK/Xm977ijvDhsH+s2zvwWAlH+HCW jrmu6/tzJR3hw1k6/tG316+WcoQPh/UvbbwY90o7woez9LsyN4c9147w4Sz9 eHf7Mh/KOMKHQz2X+njVX2Ud4cPhz0ePPd8r7wgfztLV41cpkqiCI3w4S3d4 HO6XpqIjfDj8fv6fqmSv5AgfDvPN2gkHC1Z2hA+H5+22GaarOMKHs3QCZ+q4 6lUd4cNZekjXbLcaVnOED4f1NEax/m2rO8KHs7Ref71prxqO8OGwn8iXMiyk piN8OKw/veI6YbUc4cNZukLwyRMRtR3hw2E/fr7p5VV1HOHDWfrG8Ts5d9R1 hA+HertY8zNH6znCh8N4y/Ju+6X6jvDh8PnC17x4EOgIHw71wai5nd43cIQP Z+kvia/52w0d4cNZ+kRw70qJgh3hw6He7TVsecZGjvDhLJ1vZMKaBRs7woez tLOrRJkKTRzhw1n6aYWEIQ2aOsKHs/TaVivcDs0c4cNZemXN2DcHNHeED4f5 q1bQ1wktHOHDWbrk5ohWC1o6woezdI6Tz5JGtnKED4fx/Coo6Z+tHeHDYX0e 9qXF1TaO8OEsHefpnU/P2zrCh7N07ilprv1q5wgfDvPfm1PRE3VwhA+Hemfo 58FZOzrCh7P0tv07dIlOjvDhsN4UTlu7TmdH+HCWntavzNp2XRzhw1n6n0QF 6g7u6ggfztKZVkWvMLWbI3w41GtXzoxc1d0RPpyl71ReEPdAD0f4cFh/Nkx8 dLmnI3w47Hf3rfVe9XKED2fpg/7x+kfv4wgfztL+l0/5+/V1hA9n6dld3hUv +IcjfDhLjzw9J7x6P0f4cNhfn7qUv21/R/hw//mjdqQdOsARPhzmp5yBjWYN dIQPZ+mbzQ/f2zTIET4c9iM3Em4/NdgRPhzmt+mNrj4c4ggfDvuP8PUVfg91 hA9n6R6X0/pSDnOED2fpsN5HYxQa7ggfztJDh21uXnuEI3w4rAcpvltdRjrC h7P06pZb3o8Z5QgfDvXTqDf5l4U6wofD/LzlyL6Dox3hw2F8ZSs/6/YYR/hw lu6ePnT/t7GO8OGw/j2O8E8+3hE+nKWL/jnnU6EJjvDhUC/Gn+nWn+gIH87S 9bMsa9crzBE+nKVjdLyWaMokR/hwlm5atlK8TZMd4cNZulpGFXw+3BE+3H/9 dln+fT3FET6cpWs/OHA17jRH+HBYb48/ip13uiN8OEs/2L8uvNYMR/hweL+b ZG/dY6YjfDjUqyV7jJoyyxE+nKVLR5/5YfNsR/hwlq7XaOOWS3Mc4cNh/vj3 wqFPEY7w4VCfDo+XNsU8R/hweN9PhZwuPt8RPhz+/mkBx5stcIQPh/l6TeWE IxY6woezdJVHp9YtX+QIH87Sh9JenHlysSN8ONSXpXpfeLXEET6cpd/kPBKc cJkjfDjMnzevFCi83BE+HOafikcaN1nhCB/O0ve6zb80fKUjfDi8z00Gzl+5 yhE+HOrNtN23n13tCB/O0lfPh6f9sMYRPpyle0/4cC3lOkf4cBhv/TfeL7Pe ET4c9pdHr5TouMERPhz2FytCnoRvdIQPh/1x0IH7Ozc5wofDfjbN2jz3Ih3h w2F/U77h6RhbHOHDoV5Nc2tnga2O8OHw86JX/9x4myN8OEv/1Wjf6NDtjvDh UG+Pq9B+4w5H+HCoL61vs6/vdIQPZ+kUJd+mir7bET4c5uvdJd/m2eMIHw7j y/qSpNFeR/hwqB+XFgwL3ecIHw7raaEYDSL3O8KHQ30UOKHH7QOO8OEw/627 cCvGIUf4cHj+j15HBBx2hA+Hen3n9zWtjzjCh8N+4p/Ycab86QgfDutVpiKH 9h91hA9n6bK1px1/ecwRPhzqqSIF06U64QgfDvP9znynq5x0hA9n6anbFpzo f8oRPhzGd8rpyVeddoQPZ+m+N7PsuXrGET4c1uv3XTa55xzhw1k6sO3gL4XP O8KHw/6gROdpHS44wofD/mlCreFz/nKED4fP37X04VMXHeHDWTqbqtPgx9+O 8OEsXWtwRMk8lx3hw1l6vSrQv8UVR/hwmN9v5namXXWED4f9s1725Og1R/hw 2D8MWev39bojfDjMR4+Dl+e66QgfDt/35aPDW9xyhA9n6Whr1ebptx3hw2E+ vJg34OQdR/hw2G/tbxT3111H+HCY75/MK+Z/zxE+HOaDv2Lv6XDfET6cpdO5 hyYveOAIHw77wxQXdl566AgfDvPhstoBsR47woez9JgqwV7ZJ47w4SzdbGu0 vAOeOsKHw/s7q+maTc8c4cNZ+vmG0QOfPneED4f1bN/UheleOsKHs/SvsNkp gl85wofDev1xw9Mprx3hw2H+OPcy9uk3jvDh8H7/7jA6+r+O8OEwP/cqFljq nSN8OEsvS91/QP/3jvDhLH38Z5H3mz84wof7r59q+uFXHx3hw6F+HbjoSbbP jvDhLO0r3rdVmy+O8OFQv/TL7r/oqyN8ODzfoEvBt745wofD+IwRdiX5D0f4 cKhnj3ZaHfjTET4c5ovToy5O/eUIHw7rX+t3dS78doQPh//+9qmscX2u8OGw X5qeuX51yxU+HMbLsxRXx9uu8OEsfaTigU0no7vCh7P0hzS573mOK3w4rIev Bnao7LrCh0P9HnCw4ljPFT4cxk9o4sEnYrjCh8P63mOyFyOWK3w41N/TK7+s EtsVPhzej9lBWSfEcYUPh/kz+6VdZ+K6woezdFrflaVx47vCh8P3e6fPo9oJ XOHDoR4dd2LotISu8OEsHXL5afcriVzhw1m65dxXO1MkcYUPZ+m2+18HN03q Ch8O81uO6PUWJ3OFD4d64+8Kyx4ld4UPh/3p9tM1cqR0hQ9n6XI31tfqnsoV PpylU9aIvmarnyt8ODy/LE+afEvtCh8O9ceYbh10Wlf4cJZePnvzmdHpXOHD WXrUxNPjzqZ3hQ+H92/BXwsTZ3SFD4f1O8HtuE0yucKHw37D37m6NLMrfDhL Dwhu++VFFlf4cHhe9xP2LpjNFT6cpTsVzlppSHZX+HCWXnR8d59jOVzhw1m6 cZzH3+PlcoUPZ+mOEw7dCs7tCh8Of/5s22TL8rjCh0O93OHF2td5XeHDoR78 3imiaH5X+HCW3prz5/1RBVzhw2F/vWZ36AV/V/hw2D/m2zvCr5ArfDhLdxue 8kaHAFf4cJbe3P71hG2FXeHDWTp0Z+3ZVlFX+HAY73Ua/a5VzBU+nKVTp8p0 aH5xV/hwlp4R/fjtFyVc4cNZOpbXJLBYKVf4cFivsv3IOq60K3w4PP9eBwOv aVf4cFhvvh26k7WsK3w4zHf3UhzpV84VPpylG9W4Z50o7wofDu9Dz/wLkld0 hQ9n6aNjMs7oWMkVPhzmt8sXnuyu7AofDuNnZd2Zsau6wofDfiDw8KJm1Vzh w2H91UXdyOqu8OFQj128cNKu6QofDu/T0CVPG9RyhQ+Hevjw8dZrarvCh7P0 +4yNiv+q4wofDutlwd7d69ZzhQ+H8TkxV7SV9V3hw1m63YWFr74HusKHQz2z 7nHhOkGu8OEsvfFqyrsrGrrCh8P+PkGDBz+CXeHDoT7MtLl8vcau8OEwPh9W ttc0cYUPZ+lEuQum9TVzhQ9n6bqPw2Y3bO4KH87S46P16L6phSt8OEsn/OPD Uq+VK3w4S1vVCgW0bO0KH87SJcKqZ9ndxhU+nKW71K/fJ1E7V/hw2O8ebpeu a3tX+HCWHuZbkON4B1f4cHh/KiWelr6TK3w4jK9LD4IHd3aFD2fpc2+yhFzt 4gofztKpXn22/Lu5wofD/j97z0eTurvCh8P7G3N9lhc9XOHDYb/mO3asUi9X +HB4/uOvHF3W2xU+nKXTZ/ua0errCh8O9VGnyvea/+EKH87SU57d+bmvnyt8 OKx3la8O8BvgCh8O+7GC1QMHDXSFD/fffVHD8BuDXOHDod6LSJqz2BBX+HCW nrlwceaIoa7w4bDfrJZ42LcQV/hwlk4yeFyxxsNd4cNhvffzC9w7whU+nKUn pHtyPvUoV/hwmD9Hq7Uhoa7w4TBeG0x9fG+0K3w47EeWrRpRfqwrfDhL95/Y OmTlOFf4cHi/A+7cijnBFT4c9CX/ud0musKHs/SGJSG7L4a5wofD+vbkVrHC k13hw2H9et/Ob164K3w4SyfPWLS5b6orfDhLN7/ZzW4/zRU+nKVvT8wY4+x0 V/hwqCc29+rhP9MVPhzG/1/9ikbMcoUPh/prQM02vjmu8OGw3pdP+G+HCFf4 cKi3rt25e2GuK3w4Sw96eD5f0fmu8OEw32XwPVy8wBU+HPZrQZO+xlzkCh8O 9X/daT37LHaFD4f9xKuc1e8scYUPh983bp9xlZe5wofD+7V0TPYty13hw6F+ XTkiV5qVrvDh8H2lGT513CpX+HB4fikWNv642hU+HOrRzV/GtFzrCh8O81fc NcnOrXOFD4f3q+n5mMU3uMKHQ71yc1TLVRtd4cNZ+sDZx6mSRrrCh7P0z1EJ io3a7AofDvNr0/R7321xhQ+HendvgSUtt7nCh7N09iStXl7Y7gofDvvtB6cj 9E5X+HCoNzdOXL9plyt8OKxnMQ9lSr/HFT4c5odpodGm7nWFD4f57d0nbe93 hQ+Hf38r/+M+B1zhw2E/Ga/e28cHXeHDYf8c2K958GFX+HCWXjlyj/+ZI67w 4Sz9dWCJrqWPusKHQ72UJVnsLcdc4cNhPA3tED/rCVf4cNgPjqgxcO5JV/hw ls5X9kGV+Kdd4cOh/rxcMST0jCt8OKxfzWek/H7WFT4c6q34L1P1PO8KHw7z ScYOI59ccIUPh/F8K0udZhdd4cNZeuzkCqGX/3aFD4fPN+te2hqXXeHD4ftv ljz90Suu8OEs/SXQHVfymit8ONRHv04Hbb/uCh/O0h0ejAzLe9MVPhz+/Jzq OVbfcoUPh/fvz3J5Mt5xhQ+H+Tv+mDnz77rCh7N04oCCXZLfc4UPZ+l43zus mHbfFT4c5ve85SrHe+gKH87SNzb8U2fCI1f4cNj/t2x+xH3iCh/O0hmL3Z43 6qkrfDhLdy7S/47vuSt8OPz89jXHhrxwhQ9n6VO3hkT8fOkKHw7z/d5MSQa/ doUPZ+ni/i2/fHvjCh/O0gMH1yk/8F9X+HCWvns70dev71zhw2E+W30s6cAP rvDhLP2uxNj53z66wodD/Wj1Cxv02RU+HPYn3SMf//jiCh8O49FpsHroN1f4 cJauVn/k5Wg/XOHDWXrN+6DOI3+6wofDvx//rpPz2xU+HOqnUz0vjYvmCR8O 82nPDyvjWJ7w4fB8qs55NMX2hA9n6Um5QsKSKk/4cKj3v/65cK7jCR/O0hEL x/ml9zzhw1k6aaqX9soYnvDhMH57xWqQO5YnfDhL/97tJNoa2xM+HOrPRD+L FY/rCR/O0otXxjl3OJ4nfDhLV4kMOlM1gSd8OEtn7vut0N8JPeHDof4rnyRW k8Se8OEs/c+Q49UeJfGED2fpuBPyfemWzBM+nKX9HnSP/zW5J3y4//ptl08f mdITPhz2q2FvRsX184QPh3ogTvd7c1J7wofD/jlvuTWZ03rCh8P+at2Eu5Hp POHD4f0r12F4qQye8OGwPh37Mvl0Rk/4cPh+4jWNFZzZEz4c3hdn2/vHWTzh w+H7XJyuSt9snvDhsB+/fyBW9Bye8OGwvl/dXHxaTk/4cPh956a4niG3J3w4 rA8NEz/cnMcTPhzmo7JHmpTL5wkfztJZ51Ysdym/J3w4vL+b989q6+8JHw71 yYNqjT4X9IQPh3pnVtwJ4wI84cNZulL5rDn8injCh7P0+S7bC28s6gkfDvuB Rbe2lC3uCR/O0tuG7F5wpYQnfDjsd9b3+NKplCd8OEvPepz20O/SnvDhMJ5f P/0yvYwnfDhLv5jxcmGOcp7w4fD891bbfrC8J3w4S/+onrVEUEVP+HDY75dZ lP91JU/4cNjvLro6M7SKJ3w47J+Gvu6cuponfDg8z28qclt1T/hwqNcrlG5X s6YnfLj/6ps9E57U8oQPZ+nTZealH17HEz4c6ttpVrZU9Tzhw1l66ft4C7fV 94QPZ+mDfz8aXbuBJ3w41Ktblt99EeQJH87S19L0XD0m2BM+HMZDZMeHGRt7 wofD+5cwMvxgE0/4cJYu+bnDhqbNPOHDob7LtKXk9+ae8OEsvb1jZKk5LT3h w/n07hWhkYVbe8KH8+n1x+vMvNLGEz6cT188VvhV33ae8OF8utS64O1JOnjC h/PpK2HX/93W0RM+nE83n3x9YYPOnvDhfHrI/UEHP3fxhA/n04eP3a83p5sn fDif3jQuX6PiPTzhw/n0wdFj/r7d0xM+nE93yxrz4LDenvDhfLr4gxtpM/X1 hA/n0ztL+70//ocnfDifnnjhbdEu/T3hw/n0oMKDPsQf6Akfzqc7Z7qTYfsg T/hwPt07sMTRxkM84cP59PWZO2/6Qjzhw/l0uiN9260a5gkfzqdjH5nZttYI T/hwPr0urNT1TyM94cP5dIts4YcWhHrCh/PpOys2pKk0xhM+nE+Xzrnv7Zux nvDhfNp6fKfwnPGe8OF8OmnSwh/KTvSED+fT97xnmV+FecKH8+kKKZOfnTXZ Ez4cfv7WJ8/KTvGED4fPV2fQ4NdTPeHD+fS7Pz6NipjuCR/Op0fvHWxXmukJ H86npx/L/+X9LE/4cD49o3LR1ovneMKH8+lt0XeUrzXXEz6cT986fW7ez3me 8OHw74cs67xugSd8OJ/e7jWJbLzIEz6cT2ftlKJbrCWe8OF8OteGaEv2LPWE D+fTJ94UqtFluSd8OJ9+2fB299QrPeHD+XT/DKlinl/lCR/OpytPT+Q3fI0n fDifLqxeLPdf5wkfDn//zaMrH6/3hA+H5zfhRPqIjZ7w4Xw6/ZxkiWtGesKH 8+k2s68OtbZ4wofz6fI5c7fasdUTPpxP17RL7u+y3RM+HH7+vZzTMuz0hA+H 93FGmnvXdnnCh8Pn/VV01eQ9nvDhfHpxrKVPK+7zhA/n01t3D13ya78nfDif jpvi3eXtBz3hw/n0gHIZRnY/7AkfzqfztCu4JtufnvDh8D7srVHt/lFP+HA+ fWrqtHbzjnvCh/PptWVz/mhw0hM+nE9fDSgWO+FpT+c+1qP8t3c+ffbMf//z 9P8BSPPCIQ== "]]}, Annotation[#, "Charting`Private`Tag#5"]& ], TagBox[{ Hue[0.8503398874989481, 0.6, 0.6], Directive[ PointSize[ NCache[ Rational[1, 360], 0.002777777777777778]], RGBColor[0.772079, 0.431554, 0.102387], AbsoluteThickness[2]], LineBox[CompressedData[" 1:eJws3HlYTW3fxvGy11p7qyQZG6gk0aAQlSEXIYlSEmmgQgMlRSFT0oAiqWQq oSSVUlGkSYpQpqhkphBFlKHkPu917fef9/gc9/TcDb+91vN+31PNdb3N6j4S EhL6chIS///ve3f//x8RGbJVsblJVUBU9Ue5VMOyqbfcn8OzXnR01N4Rkbnb DtQNUBMQT6Yxt65aRHba2JrOheem3z/z7LaIXBmjmLMVvtVwr/z1LRH52vty xEVYMemW3IcqERlTlxL5Fk4VFUS1VYqIy4W1f4aOFJB+moeNO2+KyLHg8R4L YL1+1oN6KkTk4dKfdbtg9fsfhgtg6XHXTfPhKeHWdlI3RMSUCcn5CPda7L4+ oFxEtjXOUxmhjr9+it9ihTIRycuWjbKBb64fNkytVES+hD3+Ewa3y6yTHlsi IhpOxzyuwf0MVumOLxYR54krn7TDV/v+2m58XUTi+46ePWqUgBTnjfg7s0hE al+25iyDFZxr0+dfExHh5RyVKLhbXzJ88VURIZGBUWVw5fILhxwLRWSz6/Tu TlhG+mb16gIRyTESeGppCEi0/5wJ66+IyEfZ20+c4Vm31G9tviwiI98fmH0Y nj1jaeTufBFZfs32UhX8Vu7pjsg8ETl8SFG1Bz4aeCwpPldE7ri/itIfLSCy 2Qltpy6JCGOS2r0KHvj71toLOSIyfdA6z6NwyuGRQy9ni8imT+Of3oNby098 Lb0oIlmlP2f30RSQSXfH/bqTJSLN8dcvTYa7u2p1n2aKiIp3iOpa+Hlk4KE3 GSKy1NT8QBJ8ukFZve2CiEQr9O95BBtpX3nzO11EbrU/9hSNEZDsB9Pvs7Bk 5bGn0+CZKmmtA86LiPGJlXM2wPM8vhiMSBMRP7/RuSmwqYDN0DonIunzPqs2 wg/mNS8yTBWRtyMuHZAdKyBXDkeoz04REaXOwJ5Z8FPyVt36rIjY3pnuFQhP vvjF2vmMiEQmC+ovwD9nJGWuPS0iNwNvz3kFO9q1T96SLCJ/Fx7MHaSF78/S ui9hp0Rk8qglaubwpQvzHsYmicj6P4oHt8PXrpF3pxNF5Nz9Vz05cPz3PPWc kyLyKjXVqxkeUnYiuuSEiAzbvq5eUVtANGLbtWqOi4j14glzreDqF2c7mo6J yN6xv3JD4JGD81paj4pI+b/ragXw6sxBUt0JIvKnLuTgZ/i1SrG9FDwxw/yv qo6A/Gk+90ThiIis3d1/7RJYd+ftXWPjReTssrr6vXBfd8VlxnEi0jTu+Nxi eKJKjKN5rIgMZl3yOuDVWmMO2B8WkYXPRo/U1BWQdf0ef/aMEZGwnM8HHWAN q6jNWw+JSHH4pb8H4eDNFuP3R4vIT6fNayvgkEHc0BMHRUTPwKThFzwtO29s 5gER8ZBizHTHCUhNo6VncZSInHp1O88F9tS4W1cbKSINlw+OjIcXqo9a/3q/ iMhHLYmuhis9LSd93yci892Uenth3ehZY1g4xPj12ol6AtKi98ts6F4Rudb/ XIM7vPrdmtixESLy4/06sxOwukVYv2nhIqJTNCH/PpwqsMy1DBOR1TG/RrL6 ArLtYn6oS6iInPQojjaGTTry9mzcIyJPTPb0esN7N5hmh4fgng2ev+40zNYt Ex3fLSJmrf0bn8DOlZ8js4Jxz8rqzKTHC4jZt67p5btEpODI8fwZ8GbBeqUn O3HPvF3UN8KZGQs0Pu0QkbGzNQ+lwamJ4Q6923HPFL/0NsEaUUOL5eFjXy+t GzBBQL7q/liguQ33rHJz4xy4xmiwaFoQ7tlJk3lb4TB3v/ZFW3HP/JnLWfDr TQLBmi24Z+bV6m/hFLXSWUGbRSRfJfrQ0IkCckzrVFZ0IO5Z55J/FvAem+Nz UwNEZPRdJe9dsIbTeamiTbhnp1835sHT5Mr/PNgoIkc2n5v3EQ6Z+HzIB3/c M0vvy8MNBCQ3usO5109ERBoTR9nAQd9/PxwEk+5fh8Lg8LGtftobRGTLg+J/ V+FtfYpNZvninp3b490Od1l5TbZfLyKfts9/pj5JQKLet9j7+uCe2cqZL4Pv Jow7H+4tIg5aTy5HwoYzJ49KWod7JnFiVBlsVtBVfXmtiNx94hLTCa9rcD9Z 44V7lqkpoTUZP++7g483e+KehXzxdoY3HZp6s9cD98w+91kM3P0hSnEonKW3 xbwKrl/re1zPXURa2BlXuuHp/xrN5q3BPWtiNPQNBWT+vpsqLqtFZNml6phV cP8uTfWtq3DPIqIljsLRun+sD7uJyG1nO5978LXhBhkZrrhnk5SbJI0EZEP+ vfGVLiIyRfqN+WR4x/viNy9X4p69PnfFC0489a/49woRuXDFWyMJDnwWXjkQ fhs18fAj+ESk1W9dZxFRXvVbQmSMr1eG5dJ5TrhnU0p8psGXJm1/5eooIlFy oU2+sPOoR7HbHXDPmufPT4FrAuZtTFguIr1FcgUNsKZu3Y5ce9yzw080ZKfg n2e+Ia9mGe6Z54nDs+Cc2kGDPy3FPZvhKhn4v29eOcXCrwaPWX8BnjLRZqma He7Z5y9NL+Gvak1G05fgnpXnzh80VUBWnlw4x95WRPYlbCmYB/+5lLht02Lc M58Zo7fDcn5VLw7ZiEj3bDY2B65vLVmbZY17pnRHshleN3GX+p1FIrLuW/R6 xWkCcsNJgvtghXtWZffcEi4MNhrIws9PKluEwKICVYuRlrhnG98UXIHnK+Vk zlgoIpbz00Z/hn9XvZ7itAD3TNUnVnU6/v5N6R1bLUSkpGtinyVww2amLmE+ 7tnd3+v3wotKml9fNhcR/TMlz6/DZY/MFerm4Z5tCbXogDufaQR9NxORZCuL wtEmAnL4n59QHm7QGKDpACt4jC3Wn4t71vMk9iD8hsxMspqDe/bwRJ8KWOXK pXSf2bhnaa6+v+Cm35teRZmKSNGOMS90ZghIj3EIyZyFe2bbZuECT0l/WH13 pojoaucVxsGjdzru/ExwzyS3albDY9qHOcvAiU9nxPXCQRMk3HVm4J5lsoKJ REDGh0gdW2AiIv333PF1h/WG6/9cNx33bPmhF8fhcSaeO6Kmicgu/aUL7sOF Gll6WVNxz7jhV5mZ+OODf0rVThGRb01vNI3hIqtpcl+Ncc9y0+K84VWKATMG wK57fQSn4c5rJxImGOGerTDY8ASW356mZGsoIo8m/XkhNUtAxqYdurVpMu6Z TOmCGXDg3kVJRyaJyOw3oVf9Yan1z5MKDXDPCizGpMGFafrVzybinh0YEN8E a0fMGtE7Afds1VPBAFMBebhS+oQqPHrqyQ1z4I/hIaam40VkxQC3l1vgrbZn Bq3Rxz1rGbMwC7ZTceu/V09E7l9vu/oGHmZ6bWLGONyz2LwxQ2fjHiqfDa7V FZGZXlvjLeB00ZDfHTq4Z4Qwu+ATHn2PDYEvDeH88uC8kwGrpmjjnn2+8/ID HCBtt8xZS0TUbxxaOHwO/n2Hntq0eyzu2dGl16zhZ5oLi1LHiEjs+uFjw2Cn 1CU6dzRxz+a8jb8Kz/6bc7N9tIiwyueZdvhTwvKIQfD0Dh8/9bkCsrbFbKOx hogE3DJ4tRROWea313kU7lnin4WRsKHzw6oQddyzjaXXSuGQtSv1zo/EPbMI G9sJp3cOKq1Rwz1TW3BkrJmARPp/2PJDVUQO/RzAOsO3nR45KsK37z31i4HL xtV4EBUR6XP25KtKONr1wck1I3DPtrpZdsMDAuu6I4eLiP+isUV68/D71Ppw d64y7tno9rGr4Gmzyic0KonIu568Iwnw/L/HpSVh5Udb2XvwneRl/cYoisiS 88Rf0hzPd5e/Glop4J7t5F5Pgr+VO+4PGCYilUvuWnrBd63jhIlDcc+0Y4oS 4T1tMRk3h4iIYZ9lWo/gnaMtt34ZjHtWPzxBOF9AXkSU+A6G07LestPgwNSX B6cPwj3bc97fF64bcO7p6oEiouCw/vVZeNoK2XkH5HHPxk+yaoCTR8m+vjwA 90zYXdTPAvfwd+Lpl3K4Z89LtWbBdwILI0Vwd25YQgAsOcUuaXx/ETHYt4C7 ACs9925cLot7tlJ+40v4wL9f0/f0E5GUyfWvBy4QkNCZX29nyuCeySRazYMb Zi/Y8VQa71dv3a5vgwdnsg6SsGXhWO0ceJPK4JXaUiISfrA94T38epZ/1JK+ uGer8znFhfh6lQx7u1MkIr+mBm20hL+Q3pXpQtwz+ZlvdsO3NigL6zgR8fzA LboCj5JYV/ePxT0rvnu9FV5w/P0dLbgxNkZb1VJApv4I/rSEwT1bu+yoLRx3 3Xh8sEBELGaOEO6F0y6wpzL64J4NfbfxOuy98cXkekncsy/n33yDw2qLOgXw jxvrF422EhAScLRJTwL37Nik4uVwpLp3q8M/IVnt2619EBbF6o+M6BWSxLll R2/AP0KbduX9FZKnyuHCX/DUQk/h6x4h6f99wSadRfh9aL+f3w+ed1v+7Uq4 sFUqckq3kOxKql8UB//zk9vn/kdICjclFt+Gr1o0Xoz9LSTfLFbp9ML9TFz+ lv0SEq2RWscmWOO+DUz0a/8pJK6/2oXu8LiEvf2Hw8dr8jcdh30SlB/P7xKS R2eD3tbCo99alW7uFBKZoJnWjI2AnJmn/Dj1h5DMthaWGMEPjm3tX/ddSLZr 3tPxhqdnuvkJ4Py/MceSYfkl93vGdwhJ26Nloiewomdh1spvQjI6fUSA1GK8 T5YNjTj4VUhW7Hr31gRmjN9FFLcLyRG7dGt/ODp9aM6XNiG5r+Nbcg5O/p4u MRzuK5is2wTLf48PXPBFSGY2dB+TsxUQh72PB2/7LCRbL5aJ5sBRCY7PLrQK yaXQ8IAtsC0z5tazT0LS6rDwXSb8M0evSRpWnzDQ5g28OGLd0GkfhcRR1FAy ZAl+/tY/3bLug5DEvkjUtYBzbDwFJ1uE5F7equM7YU9lpbx7zULC7tfqmweb XX2/v/e9kJi4fA34AKsqle/TgwMML79TthOQFXrns1e+E5KL/bbZWMOCj4f/ HnorJC1vZ5aGwqemBm248UZIVK8Kx139/89XXibT+VpIlkXfO94G9wSr14yG D6053Fd9KX7eVz25vOyVkNyeZh+4FD5b7Fm576WQ9Bmo8n4/LNj/pKfohZBM +fjOphT+Ujl4eftzIfEvSS/9Af/0VX2hBmfE+Y4buwzvo3vbI2ybhOTd2skn nOAjA7YtD38mJMNn9fSNgXX6ldhcbRSSJcPKAyvhhl05G740CMmBtvD3f2DG f8EVVbiyYuFiPXt8nrRGqNvWC8m/YwPL3GDVHysuhz8VEsMNDeMS/v/jR6rX X3siJL5mSSfuwilvyqza64QkbfhqKcnl+Pd/a2KnDr/+rrV5EhxwfkrI0sdC olD99b0nPGpu1pP9j4TE5tTlxYmw9t2YRaUPhWRfwLayh3Cd1euvPx4IyY0F s/SEDgLyqznmyli4e6To5FS4Pe3UWef7QmLw+56UL5ycJSg4XCsk62oPbz4L b5bP/3arRkhSUuyb62HPr5nWvfeE5EWQim0/RwFpXd3ydCI8xOZ92Uz476Hl ezzvConVmAt6AbBGnMTSpDtCEt7rezId9jz00KquWkhKH0+WfgkvS7/tIw3/ Su/ZPNBJQPqwL3Nn3haS8cHlzWbwnypplc23hMRzaYTtNnipknl2VpWQnNa1 LM+Gc8ZEu7+vFJJGwSD99/BIpcbZyvDAxoaTCs74vFVRnbf4ppBYZCdJW8IT 3Rw27KsQkj1hq7fshvcNCS0tuyEkRY7aLZfhVV7xk36XC0nnhG+2rbDDoYj7 +rBu3yvlKitw70psD3mUCcmal9v0beFtWj8CT5XinuXPSoyArfuu3FNfgnu2 XyRzHY6NPXRZDu7vWrPlG2zD7ZY1L8Y9M4pt0VgpIIOOaUUGXxeSYNnlS5av /P+/X9mjd7UI9+ydyo0DsM7wvb86rglJx9X3+jfgP/vGt2jDWocuJP6EC4cG dq+6KiRu7htkdFzw/MMtnpRYiHs23XDrSnjS8eLYpwVC8njg35ZYeKJyrsIA WOZT+ZLb8Nn7YyvmXxGSOaURN/7CSySVY/dcxj2Ltxw/wVVAIn7t3lucLySX 1w1KWgN3SS47+ysP92xWo8xxuMYr9t0EWFPh1NZaODd4/HzvXNyz9tUfBG4C cj1+TN25S0KScFPbzgje0u0X+iYH9+z4txvr4A99pByGw339roxPhrdJtixZ lo17Nm97Uh08fKEg4PBF3LMRpv2kVgmI2vRl12qycM9+iIJMYFutlxpScGt1 zQc/uN3nUP6cTCEZlRxrdw5OWuPhFZyBexa4vOIZvMvHafb1C0ISt1B1gtxq AVF+72n6Ox33TL05aTbsqxXuPgnm/lzotwV+l5SVveE87tn9DUGZsFVaw4is NCGeMww/voZ/npO89Okc7tm2v3ZD1uDzn1H10oQ/2NyomA9P0BhntioV92zs 3gk7YV8/DfPkFCGx/2d5Khc2sfu3/sVZ3LO6QbIf4N6p+deU4OoLjUHK7vh6 RBMd+zO4Z7tPfVwEt5cdK4s/LSRTl61ZGgr/nnE96HEy7tk4nZuF8Omg5OXy cAbTMaENdmohzotO4Z41Xjk10kNA2J+xYQeScM9ytssuhZtUjjy6mygkduGm 2/bDkfVkjjR8wKnvpxJY4+j+Z+YnhaRqYu3SH/CIZ77xESdwz/rG3Rzjic8L hU+bqo4LidGr5ROdYO7+1y0c7HtZNfkQ/GLbjtNzjgnJ+chm2Ur4fWJk+56j uGeuGdv+wPsuD3KpSBASRWO/T+O88P2aI/dTANv0N1rmBtvXbs4xPSIk+9// vXkEtqo3iw6Jxz27dmPiXXhrc8DhG3FC0nNob7LEWgExCP53VQAbeFj1nwQb j3/GzY4VEm+Twds94ZRdgsA9h3HPBj37dBL+8WeD9M0Y3LNPp5Y9hCV0VStY eEjZmkpuHb5eKcLkuYdwz47oGEyFj3eonQ6Pxj3z7kheDxekelTdOoh7ZlrQ /yycs7hOTgr+rbBjez1sFOWyw+IA7tlX01YZb9yTD5xcVJSQeFX2tZ8Jh3QX 36yJxD07UVu5CQ50DkmSg5/5xRmke/9/HxeetNmPe2bucPoFnLxlaEnsPiFZ oKImN9AH7x8ejczTvbhnnc3bzeARA6N9FODrdzJag2BphQk9DhG4Z8l+9tnw fYWrmYnhQjJus1HVOzjtslrI6zDcM8teA4X1+H7HuG4bBSeNqji9ENZfFHDU PRT37M9eud2wVLxdY/oeIZF7YLXjMmwu9dekLQT37Nzgz5/gBlu3qvFw8PZn 9iq++HkeEeK/aTfu2eLkqsXwwoF2poXBuGdj3SdFwHnP6yb/3SUk2hK6Z4pg P+2ehTNhtycdct9gxQvlEaE7heRERsEOjQ24pzLqLbd34J7t3vHZHlaQHOop C/ezn738AGwwNUF28XbcMz2pW+Vwuc+pp0e2CckO9v6kn/CPRWMrmoJwz57F ndH2w+d9gs5jNbg9x2HASvhAzxmh+1bcswi1nbFw8+S9zhlbhGSlc8vnW3Cp 5JP6b5txzwwyl/+Fnw3bE2AIP5DyvzXeX0BmGUcZbg/EPXttNHkNbK3WqnQj QEhmXek9cwzOiT6i3hfeGlUxoBZeNi/S0mqTkOS67dsp2Ih7K3XjRNxG3DPj RV8M4dpjk2Sb/HHP5IY4rIP7Fj8/PRJ2bH526xTsOCV/uacf7llR8uQ62PBp /qTsDUJSE+N+tu8mfF46NUz86Yt75qkrbwKXxissMYFnzPi+0w8us/Q9Groe 92xw4ZdUuMP6qcQ9HyHJbt3h8Aye6DNv/yD4Q9ns2/0DBCTT77qRo7eQqCVI Gc6G7+vp9z27DvfM5/7ZzfDiwGM9rWuFJGZ2vHwmbKDcJW8AVys67noNF3RM W7DNS0gE39TaBgfieeC+R1qFJ+5ZVYvDfHhYpL9mP3jjyczbO+CGv3a3l3jg nvn7G+bC3D+ZA4nuQvLe3DilBZ7qdXBTyxrcM9V/8sqb8fulVL9TH7brqti1 CN7X/ipjy2rcs7v72vbA426e6SlfhXt2epFjIfwtSHG9DCyxZUj1F7j4hwlj 54Z7ZtVkOHKLgNwYIF2U5CokGzROp9jB6y5vjv/ognvW7T5wP+xZFXx4Ivzm gW5wCZyqpZq7fSXuWdr3tu+wTdXCzqoVQrJ4R6HjmK34eQlllsvD+213VjvC rVYmrx2dhaRCa47RIdhHrnPfOSfcMwnp1Jvw/tyRSzschWTS0/sD/8DnRpfN mQ57Z8YHjwsSkDXLqu0iHIQkNcSx3RVONTLa92g57pn9SKcj8O4C5tUIeKj+ h+o78KLqscu87HHPuCwjiW34/HdJ7shfJiQRTf6pBvB8/9UXJeHSS8aDPGHz zvUHFi7FPYv4F3wSfv3i6sGjdrhnK262P4APjiG575fgnk3a78Rtx728+/vX ePiMtPWdKbBexeuVO2xxz14PMV4PT+jX8al6sZAMKmhKPQN7nR11ZCi84MDp QfXw2gj/1atshCR0lcdumR14vyuoX5JjjXs2ZdxXAmsaWnr0LhKSLrkfTptg BbbmhAU8rqXwznl41mib7wlWQuJ+fafxC3h20uO1zZa4Z4fnnJPfid//TVac AVzvKT3YDHbOKSoPXoh7Rh7sDoJL7Yck1y4QEvMhR75ehCM32yUPh4M/Ozq/ g9cMC7yx1kJIrpaPvDtsF94P5/gJr87HPUv4YLwQfiI9y1sEa6/POhcM52x9 9cPOHPdszsbBl2H1ZLPElHm4Z0pTQj7B1Qc3eP4wwz379u/riGC8/y9bZmcK 97t103kxrCLbtSpmrpDMTdx/Nxz+XTE77vUc3LON1lOKYKcYkxZ9+Mr8oWlf 4frI58t3zcY9U30+WGM3/nl3lb7WmgrJmJ+nQ+zh0Z7fU1Xglfc8vkXBndud d66fJSRHz4xbUQ4/1li6pWQm7tmWH3e74PHbn8b2h6UWXZ2iHYKfr+SGBysI 7tnoXWkr4J6cpfrZM4QkqGfOkFhYvcYiWwLOfSi95xZsPDTb2tpESD6nPfjW A4dd3DHo9HTcs51HVozfIyBBV3N+dUwTEqclTvdWw3mOpr2mcJy2+tRjcNc1 XY24qbhnkh/TauBx/7y8m6fgntVnDRGE4vPCsvOJITwja+MeQ1jiUaXLXmMh 2bxnSsda2ORKQ79nRrhnyyVWnoILRo95pgN/1K+89xhWt8y4vcMQ90wYObVv GJ43HFY23J8sJMufW5+fDi/bbiKlDsfkDh3qB897Rxw3TRKSO3uf70mF/cpc aqsMcM9WnulohOeYHXdThKdN9lzZPxzP4+dbhnlPxD2T0asxhR2VZ7aXTBCS zDc/pm6GJzxJbpaH3xdcPZ8B1/Vj/q0eLyQjDu4a+hr26HYxKtTHPVs9N3Rw BN7v6vNjZOCDU2W+m8OhL373W6mHezbg4codcI/5mPTccbhnH47UXIINl051 F8JGxU7TWuC/prpzHHRxz2LV05X24o9b/TK9qIN75vVx6CL4c0G8mwB+Qy6G 7oHnlPc5u1RbSJSGbvpeAIdnTmYztHDPvkxx+QIPKdYJl4Ajb0jUqu3D+6nR y7FLxuKeHa2cZgebu877cn6MkPxdH5m+D56/2/VBrybu2VybYSXw0leaTxbD PsrDwr7Da27GdKeNxj3reP5dcz9+/4JOzuzVEJKXt864OMI/F85KWwwPTfKs jYZ/RATpnR8lJIs26U2/CbdsMX3aq457ZtGZ/htetD42yRYuU7s2bFykgNwt 8IhIH4l79nNXmCvc79zVQxLwhJq5P+LhN/v3XLNTwz07K+N6Bx5/tZTNVMU9 2/qw9h/8O9TTVwA/W5Qw3SAKn++zt3Tbq+CeaTpf8IA9LT6lZo8QkoV/1RVO wuEdl/2EcOijj2EPYFFMg7PzcCEpPn/xB3tAQFxCFqzNV8Y927nJdQqsqCaV IAPr2U297wPXVcq8d1PCPdORNDkDz31gaXNNUUhO9am68BQ2TKx+KQ/X10cq yBzE80Pk1igvBSEZcNEmnMDaPcscyofhnoUO69wIa1quNFeEdzu8cD0Px7/b t9RvKO7Z+LP3n8MpIx+FVg8Rku9CLxP5aAGJWzfx8UhY+4Vexlz4smbqrKDB QrIqr1MhCPa5qvHg0SDcs33Xwi/C4yMzdurAdSuDO9/Coewky9CBuGeGZm7D DuH9Prpw2gt53LN+/R4sgK3iDSwM4R1vH5oEw+p7Tm2JHoB7VpiQkQ/PqfxZ 9VFOSL4edFb8BO+rNphsCo9ZMypiRIyAPP1nXXGiv5C4TPvUaQOrPDH365LF PZPPdguHXYuHkEXwww+bHlyDs7VyddP74Z6VTJ3xFR55QGEqA5vGSWaOOozv v+NsD2cZ3LO1VYr2sIbMuPwCaSHJmxkVEQVryT9QGwh/Hrq4qww2adbM8pYS Eo22Yau64KsSustv9cU9q3jxQCsWz7+NjRrqcPyxszNWwJvbtQfsEOGe+Xpl HoZPFSoqNwiFRGimr3QL7sxPnmsAzxjeFdED93G9Fn2Qwz37fq1LPw73aZrr n08s7tnt4FWr4SMV0SFz4Y9JZg+PwiuCZuqcZnDPAvqRGtjxjc+PvwLcswWP MvvE4/Nx28Ame/jwyKNKhnD13bFv8/vgnv1y3rsWzl+W0VceZmpH/UyC76TE WflI4p6lfFr1GH465VVetYSQbArKfig6gufBpDBjTTjTOoBMh9WdQp6H/ONI s+a0rA3w0L/3T73q5ciIXknlVNhDyitkOrz0cdXeRvivnHnosb8cOZge9VM2 QUCKTnqk/uzhyK1di1ebwjEmN5ptYYmlCo8CYZ/di+de6uaIse5LkgHP+D3w Zn94gyAl6xXcPfGfq/cfjqQ3eCkPPoqf34r+qnd+c+TNRf195jBjQnrGwEph XT+3w8Rg/8+wXxxZ7Fi0+tL/ntY64P1PjkRO2P2oGe5tXW5hCt8UzZupdAzv 742PzyR3ceTvi34XreDopMVKEvDk/EfKe2Dbxw9ynDs54rP/6L4C+JL8fPfr PzhyzmXFr89wYuflqcrwS0ONNWrH/38/G6gX9J0jw2RbHy2BPyjYz2zs4Mii d9kz98Hq8SF+xvDeqwEXi+FUnajyhG8cKYueNvz78f8/n3zH//rKkT9r+uzX PCEgymPHlCyFJ0y/9csBvv8ga+2Vdo6sHXhgTTS8SPHf5KHwmY+LH1fAG1IH qgW2caSpRGHWb7iPUsvYp184Mij+5UXdk/jrh2+0NoQXrksZ7gqfXJJ/5Mhn joTOWrs/Hh7rldLzs5UjxcPG/66GdZgZu5bBXW1da/7BS+5tG1n4iSN6N4se T0zE+5+v/VsF2OP47lke8JWE2vKtHzlyasO87BOwzveG0mcfONJgJjviATxV 1//5NHjAiMf72SQ8f3fGDUts4cj8H0d/G8Mm3dP8/jVzZHf1CncfWLPd9dNK +NopjbrT8MHdfYLL33Pke0DrrKdwg/uQyaNgnYU52dKnBGS5zdG+Ye84sko9 cASBnbpCu1vecuTk72mRG2G1vk+l58N1tX3+pMENJHxKxhuO9nBwlu2hcFmY 7+GS8fvf097h+5qjPRws3XFy26NXHO3h4NNtcaMmw3wPB/tnPvyU8JKjPRzs +smytvsFR3u403jecGUfOsN8Dwd/fvi1o+w5R3s4WNQtPUED5ns42OyY9cGI Jo72cPCsDUVSn59xtIc78///PcrsrBXM93Dw3nufHXIbOdrDwQX158YPhfke DvbU9NcIauBoDwe/22Fu+LKeoz3cWXy9UjTcTWG+h4N/uvTJP/eUoz0cfGNb o6oMzPdw8PXitHTfJxzt4eDab+42dXUc7eFSBOTBK/lhU2C+h4NDl57tTnzM 0R4OThg59K8A5ns4OLX/GmXPRxzt4eAJX/bb1zzkaA+XKiAZ+0LyJsJ8Dwd7 F5jpHn3A0R4Ovmb26EbvfY72cHCplNrmVTDfw53D5+Nj7fnVtRzt4eApW9qM 9WG+h4Pj7rmZxddwtIeDt5wL8+u5x9EeDj7x3PqaK8z3cGkCkmRWqnb7Lkd7 uLT/3+fvpujBfA8Hz1P0M4u/w9EeDs6efIH7W83RHg7e3ub31g3me7jzAlIz vOJ59W2O9nBwevLRzvEw38PBPUvbtI7e4mgPB8eqXN8uAfM9HDy6XqLNvYqj PVy6gFi45gXVVnK0h4N3Jj0cbQjzPRw80s+uPfEmR3s4ePN1fLdgvoeDU1Zv rfep4GgPdwH3z0ru95MbHO3h4L0uPyfPgPkeDu4M1oo5V87RHg5OTTgrJQfz PRyseWDlqc1lHO3hMgTkk4X94telHO3h4OlFe9Xnw3wPl/H/++1nudwSjvZw 8ETX7UrKMN/DwY99J5uGFnO0h8vE+8I7+Yi26xzt4eDV6f0+LYX5Hg6OylXz LCviaA8Hv243Z7VhvoeD0xYFF8de42gPl4X331vlsb1XOdrDwd3z+kZ4wHwP B6+pskp4WMjRHg6WMDp0cxrM93Dwyuhb/c8VcLSHuyggvyq/BgyA+R4OHvyI 6Q66wtEeDn6Z8e9482WO9nCw/cIme2uY7+Gy8XyZFWdQlM/RHg7Oqh6townz PRz84OQ+EpPH0R4OnjSqaMPfXI72cPBwh8slHjDfw+UIyDmyUevxJY72cHDl o685M2C+h4PnDdK0u5DD0R4OftBHfuhQmO/h4OenMn7szuZoD3dJQEq+fmtr u8jRHg4+3dnEOsB8DweH5XoYV2VxtIeDZ+pF750I8z0cvNPHsispk6M9XK6A lAcm7pSB+R4OdrUJ0tiSwdEeDt7LvWp5f4GjPRxsfLKq0gbmezh4jqpueUk6 R3u4PHx+HZNu1IH5Hg5uHuIse+w8R3s4eO5plRVCmO/h4ARzi7sb0zjaw8G1 ik1L3pzjaA+Xj9+HUfe6rWC+h4MbAxSKr6dytIeDs9WKTmjDfA8Hb5icfeRo Ckd7OHhs1dcsIcz3cJfxvty8+c2msxzt4eDSNNMJ785wtIeDq9UWJNrAfA8H q7hHjS47zdEeDm460OeOHsz3cFcEpPVi6v7EZI72cLDwzUaPfjDfw8GF0z1c tp3iaA8H2zUFBbQmcbSHK8DzVX36ueUw38PBeRZff9xO5GgPB2ssNnM2hvke Dn4jdeFt2kmO9nDw7OghocNgvocrxPOWZOisiBMc7eHgJdu/Kf06ztEeDs5W XzrAA+Z7OFg4OGdk/TGO9nCF///3lX+s5sF8D3dVQIqdxx0tOMrRHg4e2WPW Owbmezh4r8+snUcTONrDwT6Nw5SlYL6Hg4esrny89QhHe7hreD81mHu+NZ6j PRx8bv3ho44w38PBnMn5lHtxHO3hYNlbu++ZwHwPB7dNVhqQHcvRHq5IQI7n efuqwXwPBz9eu6k15jBHezhYMUJ3NwPzPRx8ddIhg4AYjvZw8I3k430+HOJo D3ddQGT+mH22h/keDh7vfejbnWiO9nBwnJa/vAnM93Cws+sHy+yDHO3h4IA5 n1NHwnwPV4znKXarYtwBjvZwsHJd5HkhzPdwsF2Liu3WKI72cPBk33GKXyI5 2sPB287mdq+A+R6uBJ9Xhem/Hu7naA8HC5plB8yF+R4OPrDy2ezCfRzt4eCB LtKxOjDfw8HKqsd6k/ZytIcrxefJk917BsJ8Dwenl5RqhEdwtIeDRYOt3vwJ 52gPByfKj73qA/M9XBl+vn+YZ74J42gPB3v8yrhmB/M9HBzosPB9dShHezjY 33G01gyY7+HgtCkT9+Xu4WgPV47nx8nr2TEw38PBqQfrjp8I4WgPBxdHuCwc APM9HJzlJqsYtpujPRy82e2pZHcwR3u4G/h9vXOF8YX5Hg5e8jp95PtdHO3h YOWPFxyWw3wPB2uOvXyxdidHe7j//aFixByY7+EqBCTC+1Ha1R0c7eFgf8nn C/VhvoeD73xu6pe6naM9HDxuS80HJZjv4eCurxkvDm3jaA93E58fSf7tQpjv 4eCC2uFKO4I42sPBbG2qy4+tHO3hYKdPfW94wXwPBxeunzXj9RaO9nCVuF+Z Fk+WwnwPB//5rhpRs5mjPRy8Lua67RyY7+Hg7gblaUWBHO3hYEPlKSYTYb6H qxKQtRfkHNIDONrDwfGNx2PUYL6Hg33/PnmXsImjPRy8xuO6tRzM93DwCd/5 DeEbOdrD3cLzyNotQf/8OdrDwa+z5xgFwnwPB9+IT+/f7sfRHg6O3HRG0h3m e7jbeN9L0ZZ9uYGjPRw8Jdhk0lKY7+Hgoy5PA2p9OdrDwbXJ3x6awXwPBzuc jDAvXc/RHq4aX4/sI41GMN/DwR8NFcNyfDjaw8Huh6QXaMF8DwfrK7nrnPHm aA9X/f/78BhNZZjv4e4IiOm0+dPi1nG0h4OPH761Vhbmezh4yfHE/PC1HO3h YIP8KgVJmO/h4HTTGQlbvTjaw93F+9N5ifE/PDnaw8GHLYTvvGG+h4Mdoyxz Wjw42sPBax4/SHCB+R4OPhQWeeyZO0d7uHu4z1JbLy+B+R4Onl4V97l2DUd7 OLh11LNp82G+h4MHRc45V7Gaoz0c3GfNfe0ZMN/D1eB9QTmwunAVR3s4uEBx UogBzPdwcMAd1u6iG0d7OLj52LtZWjDfw8F5nXfNU1w52sPV4vfB/KqXKsz3 cPB6QVrKcReO9nCw3OFDf4bAfA8H+7n7ecas5GgPB5/4OqejH8z3cPfxvpsk jNu7gqM9HJz77pI1C/M9HCw50XRMsDNHezi4vid32F8njvZwcHS+hPoWmO/h HgiI7oNRZp2OHO3h4OUVSqEbYL6Hg72Z101fHDjaw8GrhL6WXjDfwz0UkPem FQ3Nyznaw8HTxzfscIP5Hg5eZZY+/ZU9R3s4uKt3whAnmO/h4CkPfESNyzja wz3C55uR/aClMN/DwdpZX4wfL+VoDwenZmlusYb5Hg72zO/zsMaOoz0c3GOy dfYCmO/hHuPz/Nbe+7eXcLSHg1/X6gSYwXwPBwc9cp5005ajPRy8wUZJ1hTm ezh4910nibLFHO3h6vDzU64mMwPmezhYN891/HUbjvZw8NZRyr5TYb6Hgy3i zG8VWnO0h4MP7W02NoL5Hu4J3qf3tFVcXsTRHg4OknbynATzPRw84bSuZp4V R3s4OLzGoXcCzPdwcMKQt205lhzt4Z7ivkuW/NKH+R4Ojh/cqpS9kKM9HPzp mesyPZjv4eCqJrWsrAUc7eFgv2T14eNgvoerF5CHuW4pmRYc7eHgdYnP5+rC fA8Hu3+OlMycz9EeDo4Y612nA/M9HGzwZkt5hjlHe7gG/L6eybqlA/M9HPzs D/chYx5Hezi4KGCHqi7M93Dw1xQ5v0wzjvZwjfh8H1rYpAvzPRz8wdF/ZdZc jvZwcDA79e84mO/h4GFnpHMvzuFoDwcnVb0K1of5Hu6ZgJxnL3vmzOZoDwe7 fA3zmgDzPRwco2S1J9eUoz0cfEpJ6ooBzPdwcFRobp/LszjawzXh57ttrrsh zPdwsHxbybuCmRzt4eB8BcWgKTDfw8EL+1prFRGO9nDwa9uVHdNhvod7jve9 ONNHJTM42sPBo9267s6E+R4O/rBs48sbJhzt4eB7coVSc2G+h4Ofa5Ra3prO 0R7uhYBcmxh6YT7M93Bw8hOB2r1pHO3hYLcLhhetYL6Hg72tlO0eTuVoDweX r8wcvATme7iXAvJ3e/OXp1M42sPBNnNvvFgO8z0cvM9+xofnxhzt4WDRMjsp F5jv4eDyN4I574w42sO9wvvjcdMEd5jv4eBi9QFMqyFHezj4xQiPCB+Y7+Hg P3qzNTomc7SHg3/9OdW4CeZ7uNcCsnjU1rTfkzjaw8FK1ncObIf5Hg7uGh0d JQnzPRw8fEHF2VADjvZw8Ap3t8d9Yb6He4M/ruqpfGAiR3s42GrEg23yMN/D wduljnTGT+BoDwdXRF0OU4L5Hu6tgNRZa+ufGs/RHg7ukPj2bRTM93DwtzmC u+f1OdrDwVPuOhWPg/keDq6a0XMrV4+jPdw7ARm1sLHVCOZ7ONgn+fvo4nEc 7eHgJZ9Mt5rCfA8HD3tS+f6WLkd7OHjfwM2eljDfw70XEGmbxexjHY72cPDB mbaF9jDfw8FHYgJCX2pztIeDJ3fle66G+R4Olhshu6ZVi6M9XDP++UVbt26A +R4Orgz5mfpzLEd7ODhfc1frdpjv4eB/DnLzGJjv4eCBdWeK9o3haA/XIiCf zSabD4D5Hg4e4nXjyxFNjvZwcOq3uekjYL6Hg2fHFe1IGc3RHg4eKaO6Vgfm e7gP+LyU9V6fq8HRHg7WXZy0fwrM93DwrthLJWWjONrDwa77T0ubw3wPB1d8 81p/X52jPdxHvN/uFrYuhfkeDo7+6b/j5UiO9nDwsX4ZY91hvoeD1+y68LlN jaM9HJwk41MVAPM93CcB2bG+vbBXlaM9HHxjjXZFGMz3cHBR9vBmWZjv4WAi U65yRIWjPVwr3ieMBm1QgfkeDu7o7N94bgRHezh4J5OzXB/mezjYRuN7R8Fw jvZw8HeFh6dnwnwP9xnPL2fNvaqVOdrDwSvDl5gvhvkeDn4X+m1GkxJHezg4 xU3BcjXM93Dwo3e3/NsUOdrDfcHXq6Y7OxDmezi46V0mKwnzPRxc3Na4YZ8C R3s4WPHSjs6BMN/DwTc6Y6NPDuNoD9eGn4dgBVNNmO/h4E4lUb+coRzt4eDK A45tU2C+h4O3nJZvqRjC0R4O3qU6+qclzPdw7QLy5GHMiIbBHO3h4N8htk5u MN/DwZ971+R+GcTRHg426l+puhnmezj40y7vlD4w38N9FZBYVfuZUQM52sPB Ftf2/BgK8z0cnD7ic/FpeY72cHDNsP2ndGG+h4PtNzsdLRjA0R7uG37fZVac N4X5Hg6+fHb//Ro5jvZwsMOAl7LLYb6Hg6XVl6x635+jPRzclf7xvi/M93Ad +OdtTbDtkeVoDwdXrXJqD4f5Hg4+MtUgeSDM93Bw4MNhXkn9ONrDwSp/ufna MN/Dff+/b/lDrshwtIeDDVa0W5rCfA8HHyWv/WulOdrDwZf73r3oAPM93A8B uR19oc8HKY72cPCBjKB1G2G+h4NnGxh9kYD5Hg5O+9e0J6ovR3s4+Gfz6omK MN/DdQrIl/KaX6kijvZwcOW6gXUTYb6Hg6cV690qFXK0h4MjDqk8XAjzPRzs Wvaio5HjaA/XJSASYz21PGC+h4OHnL26uZPlaA8HP5Wtfb4b5nu4rv/v+2l7 OZjv4eDY0fqfTzIc7eF+CojHgY1x2jDfw8HxDmuXFAo42sPBN9bJ6ZjBfA8H yyWvUKjrw9EeDlautx3uBvM93C/c02+tht8kOdrDwTa1qp47Yb6HgzWs27P7 wXwPBwvtF/c/IcHRHg7uc3veHi2Y7+F+4/0v5E7/wn8s7eHg+2uf5pjBfA8H j1jt4fWkl6U9HLx18Vbj1TDfw8G2Sn1VfvxlaQ/3Bz9PyXJKITDfw8Hn7kTq ysN8Dwe77dxil9zD0h4OHnnmYZw+zPdwcMHw2NaSbpb2cN24T08Kl1rBfA8H S+fPaHzxh6U9XPf///9oav4+MN/DwatCHUb2/mZpD9cjIIz5x5YomO/hYNsn lTeGw3wPB/sN/Zqf+YulPRz8s2tl8XSY7+HgrysGP7/3k6U93F/cw+l95Z1h voeDH28zcmrrYmkPB0/om1S8A+Z7OPhLrdHk/jDfw8EexZIVSZ0s7eF68XxR 3umuD/M9HLytWm5k2Q+W9nCw7k3LDmuY7+Hge8kX6t98Z2kPB/dfpF7nD/M9 3D88D5XmtDAw38PB0W9s5OI7WNrDwSFpfaw0Yb6Hg4ME188UfGNpDwcHvt8u Ox/mezgJhnwiMw8++8rSHg4uEglGe8N8Dweb6Zc87G1naQ8HO1/YEBcN8z0c bOozxGckzPdwkgzJ9j7vmNfG0h4Ovp842mUuzPdw8Oyfe4Pqv7C0h4NHeNde 8IL5Hg5+19XxreczS3u4PgyJ3v914UGY7+HgqJEVJWow38PBRbmeZnmtLO3h 4HWGz9/NhfkeDnZNVUxo+MTSHk7AkEe/h7usg/keDvbQfjvj30eW9nCw8aQ1 BjEw38PBDwecMdGA+R4O1i+Kcy74wNIejmFIqd6UWAuY7+FgF4/Ily9aWNrD wW6uEcQP5ns4OFxR6woL8z0cy5DeKG/To80s7eFgr6uW73VgvoeDm07ePlH6 nqU9HPx0cqOnLcz3cPCCPdsWfHjH0h6OY8iJ0IzZ22C+h4OPTVljIwfzPRwc eiZl09m3LO3h4H5la7KMYL6Hg61jU3ruvmFpDydk8PzuvNIF5ns4OMc1sqHz NUt7ONjAVcdjH8z3cPBM1SkyKjDfw8Gqp3Ju5r5iaQ8nYkjY+wOx82C+h4Pj f9zb/PwlS3s4+PUDLz8/mO/h4DW7XYKFMN/DwTHSWSknXrC0h+vLkOn+C16O h/keDs4qMRpX9ZylPRyc8NMnxhHmezhYaWSrdEcTS3s4+Obc88fCYb6Hk8LP l3eKyXCY7+HghsRnPy89Y2kPBwe9NaucB/M9HJw9u/n8i0aW9nCw2t1LpzfC fA8nzZC3IeezpWC+h4MDAiofnWpgaQ8HV2axMoYw38PBY43c7O/Vs7SHg11H PLvmBvM9nAy+v96eE/88ZWkPB6+fIFUaDfM9HPx8S6GLJsz3cPBia/9hxU9Y 2sPBKZUT39nCfA/XjyFDPnRVtNaxtIeDLSsKru6G+R4OXuW16aYCzPdw8OOP Y95nP2ZpDyeLnyebWoV5MN/DwbfzVrm9fMTSHg5epva+LADmezh46fkFk2Rh voeDFzkfuZ7ykKU9XH+GGNqULZ8O8z0cvPZIpUzdA5b2cHA2OfNoHcz3cPBE l8UXGZjv4eD9Mo+STtxnaQ8nx5DLdiNSDGC+h4MVbMeX3K1laQ8HByuI2lbB fA8Hqxcljv9bw9IeDj5u/W1vHMz3cAMY0tbe3aUL8z0cHJp5dXPlPZb2cPDE 5LH9V8B8DwfrvZl99eddlvZwsEKEaGs0zPdw8gz5me5rORbmezh4ktsWw/I7 LO3h4JTbIyY5wHwPB+/86Wj2o5qlPRzsxun7RMF8DzeQIbZysedHw3wPB1/X C/1dcpulPRzsvfOfkz3M93DwMcV/TzpusbSHg18o71oVCfM93CCGGJ3ewY2G +R4Olq3qKiqpYmkPB49JexduD/M9HJzvOtv9eyVLezh43iB5hyiY7+EGM6S+ 0dxNE+Z7OLj8ccvOspss7eHgCtUP2Q4w38PB7Iu5XZ0VLO3hhjBESkdiUTTM 93BwmZZcsRbM93Dwlj9+5OYNlvZw8Ptro56ugPkeDlaOVtv9p5ylPdxQ3IeE 1TPjYL6Hgyf//DxIH+Z7uP9dk9tTXcbSHg6eRi7/Wg3zPRxs6ftVJAnzPdww /H4EO+ueKGVpDwcfS+hZbQjzPRx8r77y0sMSlvZw8N81hQN9YL6Hg4d73I/o C/M9nAJ+PiVF8inFLO3h4JfLHC8SmO/hYKvY2yubrrO0h4MtGi1Gb4b5Hg7O sn75byDM93CK+P6o7fpysYilPRzcu0Gr3QLmezg4wquR+XCNpT0cnDcxctwe mO/hYNOuqetUYb6HU8Lv97P314uusrSHgzfJhKnbw3wPB+/IHXays5ClPRx8 5c9RrRiY7+HgmzLc3XEw38MpMyRzkH3wnQKW9nDwo+kH53vAfA8H/809q8nC fA8HW52JG3b6Ckt7uP9t5Dx8Bsz3cMMZ8irpz6Smyyzt4eB5QnfXLTDfw8Fj TiSdHgLzPRwcFnmqKzefpT0cXM6tcbaG+R5uBEMSjT83tOWxtIeDp9rqeUbC fA8HDwvTltGC+R4OHvivqbwql6U9nAqeN9pnRK2G+R4Ozg9ftFYA8z0c3PFL yin5Ekt7OHjzxrWuM2C+h4N7tX2CnuewtIdTZchR6/5pQTDfw8FFQy0+KMB8 Dwcb5gyfVpDN0h4OnmodcsYOpvtwDLHR3jyi8yIr3odjiKf/r4zDMN2Hw+eT k4TVBJjuwzGkv0ok8yCLFe/D4fnw85F762G6D8eQmj8q6bIw3YfD89Au1WOZ max4H44hirlxJxfAdB+OIRtuB+W1ZrDifTiGTPlT82IfTPfhcP+27VfWguk+ HJ4vIjK9b19gxftwDPllO/6hB0z34fCfT2ngfBFM9+EYoj3Qqu5cOiveh8Pv R8BrfzOY7sMxpHp7pUbLeVa8D8eQlW5/PoXBdB8On+cuW26Mhuk+HEO25cy4 WJnGivfhGGJy0DxrDUz34fD8MOlwKQfTfTiGfH45rDn1HCveh8PzZfWTEWYw 3YfD55n+ba+WVFa8D4fnX6vPt8Nhug/HkFurpk0bA9N9OIakZuSX3Uphxftw DNFYbbvcE6b7cAwxvzuIk4LpPhzuver3ivSzrHgfjiHzT7XGW8B0Hw4/b/v+ BH0+w4r34fD7pqK8MQqm+3D4+UxcsHMcTPfhGHLNLOJk7WlWvA+Hr5fDnRpf mO7DMWS7ovxAeZjuw+F5v3KZV24yK96HYwg5dfyxLUz34fA88OmJddcpVrwP h+eHZu7NEZjuwzFkfL1mqDFM9+EYslty8tRnSax4Hw6fB6m6zHaY7sMxxLev 9KsRMN2Hw+f/+uqa0kRWvA+He44D6wrTfTj8fNm9esfAdB+OIXIuejLnTrLi fTh8HgZbzzWH6T4cQ2p7Zx1uPcGK9+Hw+zhc4nsUTPfh8LyuEbpaH6b7cPjn OdV8enicFe/D4f1Bun73Jpjuw+H3JzBRdxhM9+HwvPZxeOvVY6x4Hw7/vudt rjnBdB8O718SxokSMN2Hw/2cfO/wmaOseB8O38846RNzYboPh+dN96+XPyaw 4n04/P53Br6LhOk+HJ5f9iaO0ofpPhyeb3xWBj46wor34XCvvhY2BcB0Hw6/ f/bnbBVhug+H55nOUS+vx7PifTiGtPfX2+YC0304hgzqKtNmYboPh+ebHw1f 0uJY8T4cnleW+pcvgOk+HD4f1+07/zWWFe/D4T7tVjoTC9N9OPz934+8aATT fTg8HzSfuNd0mBXvw+Hz+EFo7y6Y7sMx5FlXw0wNmO7D4Xk3Ne7I7RhWvA/H kOJx+f+8YboPh/fhVwZb5WG6D4efr34DhFcOseJ9ODzPC+amOsB0H44hh4fc XyoB0304hhyIv6CUEs2K9+EYklT3+Js5TPfhGPJRY15j20FWvA+H55MGybrD MN2Hw/Pc7N7XRjDdh2PIvgJjyRcHWPE+HN5H9mZPCIHpPhyeV2VWBIyB6T4c Q+IOz7x7L4oV78PhfW2jrYE/TPfh8PVhYrOGwXQfjiEnj/RMKY5kxftwDBm1 Z1+DG0z34fD8qDJlX1+Y7sPhzy8VLry4nxXvw+H983q72hKY7sMxJH1dm6h7 Hyveh8P905DokwzTfTh8PYhaPzOY7sMx5OwgS60ve1nxPhyen//stj8M0304 /D6ZFx0zhuk+HEP2OHZ9eRnBivfh8PXar7s4DKb7cAyR0Xeu1oHpPhzeX87u WfwonBXvwzEkbdbJti0w3YfD+8Xqs8dVYboPh6+fe/zyqjBWvA/3/1+/XtsH pvtwDFkXqCM7GKb7cPjzp93uUxTKivfh8HmxaFZfN5juwzHkjGysmhRM9+EY wtVdtcjZw4r34fC+IpEbvgym+3AMqWrbXPcvhBXvw+He/xVNOgfTfTj8Pu5f kWoJ0304fP26No/t2s2K9+EYMifRuvgkTPfh8Hn0+v2qOTDdh8PziOqE4V+C WfE+HJ6fCye0xMJ0Hw6/L7LvyqfBdB+OIZ07Z2W/28WK9+Hw/OU9/2IkTPfh 8P2a8qvEAKb7cAwZN3fem6adrHgfDs/73ycPCYXpPhxDNqaUOujCdB+OIUeu v75Ut4MV78Ph8zopXmkHTPfhGOKX+SxuNEz34RjyzyJTrXY7K96HY0jJC2FJ IEz34XAfbrd4q8J0Hw6fj37m425vY8X7cPh8nDZWwg+m+3B4Po8KeasI0304 hmTcsa2/EcSK9+EY4u549MU6mO7DMUSUurBrMEz34Rii2t9HpWQrK96Hw/tE b5e9B0z34Rhy4dm7lAEw3YfDfelnILi2hRXvw+Ee/321YRVM9+Hw9Rrw4Vs/ mO7D4f04b07Ilc2seB+OIeELuzRcYLoPx5CCuV0NUjDdh2OIT99ZSXmBrHgf DvfoX90mZ5juwzFk4eEsJxFM9+HwPKJ3y+5SACveh2PIBBMVF0eY7sPh+UE7 exsH0304fJ64Bp7P3sSK9+Hw/bLa0LIcpvtw+H44HZvMwnQfDs8Lf9riL25k xftw+LyMWStaDtN9OLwPHJbZz8B0H44h671qRlz0Z8X7cPh+78m8YQ/TfTh8 v6xTtzAw3YfD87lJPrnox4r34fB5ce3JsOUw3YdjSOBkYR8WpvtweJ9RMe25 uIEV78Mx5E1zmNABpvtw+PfpqVHnYLoPx5AB94da5/iy4n04hng9cjroCNN9 OIasCDz5QgjTfTg8f+g+Msldz4r34WD37ovOMN2Hw/vVEfkJUjDdh2OIgf7g m/k+rHgfDs8DZ/95uMB0H44hLWtqhveD6T4cvp+t298WeLPifTi8j6dKXV0F 03043BOpDclyMN2Hw/tXVObRonWseB8Oz0Nnik57wHQfDp+/5ceKBsF0Hw7P f86zW0rXsuJ9OIb0tOWP9IbpPhxDvn9o9VGA6T4cft9vvLlz04sV78Ph5+NH vLEfTPfhcP+/MwUjYLoPh89r47FmdzxZ8T4cPt+mSrQEwnQfDt9f/7Ajo2C6 D8eQc/YFyx54sOJ9OIZsXROjtQOm+3B4Phw4oJ82TPfh8H7eoC9R786K9+Fw vye0CUJhug/HkBsJc4ZNgOk+HEPuhk2c/nINK96Hw/ttYJ5fJEz34XBP31cU GMN0Hw7Prwtc+resZsX7cAzp1gwLiIXpPhxDDv7Qa5sJ0304fL6McwhoX8WK 9+EYssSG6X8SpvtwDFn9XLNgPkz34fC8sbB8wy83VrwPB6vcn5oK0304hgQ9 WDjEFqb7cHjfemMo2Qem+3B4X3uwr+eiKyveh8OfP9xU5AzTfTiGOM1xGiUD 0304hujdrlt01YUV78MxRHrs+SgPmO7D4Xnz/aPGITDdh2PIlx02RjdXsuJ9 OIY8CFBL9YfpPhxDtlhOHzUSpvtweB4IP33p/gpWvA+Hn8ezC613wnQfDv/+ mlMlxsF0Hw7PM4fdS5qcWfE+HEMee9Ue2A/TfTg8P41f7zMFpvtwDNFcZ+r8 0YkV78Phfp+c55wA0304/Pnzg3zMYLoPh+f9X08PdDmy4n043Bdth5IUmO7D 4fvlJSmxBKb7cHg/M65axMB0H44h31TO5+Q6sOJ9OIacOnNmpBtM9+EYEmmR e0Yepvtw+M+f+NigfDkr3ofDXz+KebIBpvtweD5bbRKuBtN9OIYYfdw574E9 K96HY4ik0U2FYJjuw+F5qFGqWx+m+3D4+y1f+PnVMla8D4fn2Zl7v0TDdB+O IYMVrvUSmO7DMWTk2pcq35ay4n04hqwp71iUDNN9OHyenP92yBqm+3AMmZtR /0YSpvtwDIlfctb0kh0r3ofD+8l46zxXmO7D4X347jODgTDdh2OI9SVy88YS VrwPh+dH322rN8J0H44hy2L3D9aA6T4c3r8ueNXV2bLifTiGnJ81JCUMpvtw eN/8uG+PIUz34fC8pHvT/8NiVrwPh/fHxDK/ozDdh8P9uLMteD5M9+EY8tv0 e1K3DSveh8P394haTQZM9+EYIr+UkXGG6T4cvp7yCfb9YboPh89zh4bLpdas eB+OIaNvVKj7wXQfjiF1jXan1GG6D8eQXINInbpFrHgfjiFD3VxuhcF0Hw5/ v18P/Y1gug/HkE0Rz8d9smLF+3AMuZ+y/fdxmO7DMWTDu4uPFsJ0Hw7Pv/W+ 1/9ZsuJ9ONyLIdcv58B0Hw6/TxMOlbjBdB8Oz3tlH58Ohuk+HL4/y2/8q1rI ivfh8PxySNFwK0z34fCf/2/rdh2Y7sMxZNgkg8cvFrDifTg8/9a0Gx+C6T4c Q6xclC6awnQfDt+fPbkTuyxY8T4cfh/u51WlwXQfDs/jz5XWOsB0H44h1abv h8vCdB+OISNO9HtVOp8V78PhfXznoRx/mO7D4X0iwjtmNEz34fDPX5S4u8Gc Fe/D4Xlmg+ruSJjuw+H5K/Rr9AyY7sPheWOs9MWOeax4Hw7Pxz/XNaXAdB8O P9/75BXsYboPh6/fzl+rZGC6D4fPP3+l0hIzVrwP9/9/P7FZyx+m+3AMqa2S OjsapvtwDAl2u6/TOJcV78MxxNHvZkUUTPfh8NfHNK+dCdN9ODxvuOqP7JzD ivfhcM92JbWkwXQfjiG6UfpFjjDdh8P72uhXSXIw3YdjyLYv6TEVs1nxPhzu X3BU7GaY7sPhfofsSdGB6T4cQ77GRt58ZcqK9+Hwvmh3+kcsTPfh8L7rWT7B HKb7cAwp9f248+8sVrwPh89j2UFNOTDdh2NI4jsTszUw3YfDz8+RNWWKMN2H w/PL7fD5tTNZ8T4c7s2IpDchMN2HY0jzlPN7jWC6D4f3rxunZ3whrHgfjiGX HCOY0zDdh2NI2wW7ejuY7sPhj9tJXZOG6T4cvv99TmWUzmDF+3AMeWk3KHMT TPfhGGL4261IC6b7cPh6RO9v/K+oswyvYtmaMNCTmSFYcEmQ4BLcvSG4e/CD Q3CX4B7cIbhbcAvu7u7uEgju9hW7V93v/jlP3XMgO7OnZXXXeut+CS/hw6H+ OjramQFt+HCWDipRN7AStOHDWfrS0ncT/hb3Ej4c6o0F9Z5vhTZ8OEuPuTa8 entow4ez9J7PPY+lhjZ8OEsHL89Y5WoxL+HDYf84acaDsdCGD4f3s+m+4Rra 8OGwv9o9P/+Xol7Ch7P0p9q5vqyBNnw4vE8Xux9tDm34cNhfPmi+NCm04cNh PxLwY9LZIl7Ch8P81KLQuOHQhg+H+TlH8hmFoQ0fDvufErPXvS3sJXw4/PmS 264shzZ8OOy37wd7N4Y2fDi8r2e2VEsAbfhweB4RkxafKOQlfDhLT6n0I8Zg aMOHs7Rf4Xfd80MbPhzq59yd30cW9BI+nKWLPOk6aAm04cPh+Uf/nLwBtOHD Wfp04a+H40EbPhzWgxI9Bxwr4CV8OMwfB9sFDoQ2fDhL/+h5MVk+aMOHw/fr vebXq/xewofDfJ7vQ9RiaMOHs3TllUvf1oc2fDjUv4n3/IkHbfhweB55Cvkd z+clfDhL39qcqMIgaMOHs3SFytWG5Yc2fDhLj9z48NTrvF7Ch0P9N+u0/zJo w4ez9JMId3QjaMOHw37h8IwfCaANH87Si3t2GXAqj5fw4bDfGzI19jBow4ez dPMFP8MLQxs+HD7PyJVB73N7CR8OzydqaoLV0IYPh/Vnyq7bzaANHw7zVUbf LcmgDR/O0l/abAq7kMtL+HDYr8QOGR8Kbfhwlo53odtEDW34cJZe1nHGgm85 vYQPZ+nB8x7u2Qht+HAYDylqv2wHbfhw+PNLnqXzhzZ8OIyPqLCON3N4CR8O 88meNoenQBs+HNa3E1UyV4I2fDhLpzxXfm4MaMOHw58fV8dvd3Yv4cNh/7Kv y5oe0IYPh/1b+pkVAqANHw7z14AjH58EeAkfztJqxNe186ENHw7ryc9sPetB Gz4c6o3FTSvGgzZ8OOzXCowPOJHNS/hwlj7ab1PKodCGD2fpgOyn/YpAGz4c xlP8a1k+ZvUSPhz2n8/PlVkLbfhw+D67be7UGtrw4fB9dxu4LBW04cNZunt4 wMvrWbyED2fpp/f2FJ0CbfhwqO8uZZ1XCdrw4bD/rtDD24I2fDhLj/CaNmpv Zi/hw2F/f3aUTx9ow4fDz2tTeVUuaMOHw/w6/W7VV5m8hA+HP5+qSPRl0IYP h/rsZJNDTaANHw7jvXHZKUmhDR8O+5n5bzpdzOglfDis13Vr1x8HbfhwmO8q 9ahRFtrw4SxdvGylen8zeAkfDvv9uFeDd0IbPpylrc4+43pAGz4c1pMc33dm hzZ8OKwfScd/eZ7eS/hwqM8+H9VL0osfrt+/931pWOP04oeDbhfh/ydJevHD QS/IWbzbxXTih4PeeOLD+3HpxA8XYuklVUsOKZdO/HDQN8em9oueTvxw0Omr Tj66O6344aC3NZ84oHda8cNBZ5qZpFTutOKH64/6aUeGhK/9xQ8HnXDWjg8r /MUPB30o2pn7zf3FDwe960jjW37+4ocbgPd7c9tH19OIHw66wZyXX6emET8c dIcq91NUSyN+OOgFs8tWjplG/HDQWWsnH3MktfjhBlp6XaWgK4NTix8OOmet XwFFU4sfDjp1Ma9pX1KJHw66zu3O9uZU4oeDjqUKjO6USvxwg/B+jQpKnCWV +OGg3aIXNj5JKX446Msf5zVYlFL8cNA5Ru2K1zil+OGgmx/PcDlpSvHDDcb+ cMLtpZf9xA8HPXjdjaGT/MQPB23/Td6psp/44aAX1p/X2vETP9w/PaVxh8O+ 4ocbgvE6NGjQYF/xw0EXij52QVFf8cNBj33x7vTXFOKHg47wGWNvTSF+OOg0 tatX65pC/HBDLT17jF4akEL8cNBBExt4vUwufjjoP0Vn9VyeXPxwQ//5e768 a55c/HDQq/70CEmVXPxwwzAfnY4d/3Yy8cNB/1q/d+usZOKHg640enjrOsnE DwcdN3ejdPGTiR8O+vqYUlFnk4ofbjh+Xpe8x8YmFT8c9OED2deUTyp+OGjf xtnnW0nFDwd9N03OeQeTiB8OelNUzlWDkogfbgQ+7/KAg0WTiB8OunTGtM+/ JRY/HHS7mnFSRCQWPxx0FzeyQY/E4ocbifU/+44VuRKLHw563uJu0aISiR8O elyFRG3XJBI/HPR7a/6tdonEDwcduMttlDGR+OFGoT6qUufF44Tih4NesHDA sMUJxQ8HvTlsUJb/EoofDvq4X9Bdv4Tih4PuEV8tuJVA/HCjLb278eAOYQnE Dwft8/RE2XoJxA8HXXPKnYBECcQPB32mwvY0l+KLHw662Me6/pPjix8uFPVO 3205qsUXPxx03EOXKsSOL364f3pHeJdTPuKHgy5ZpsjSUB/xw0GPqDHocTkf 8cONwXg53iOXl4/44aD/Tk069nA88cNBZ1zY5t3QeOKHgw683qSljid+OOiW mX48+hNX/HBjLe01oFCXvXHFDwed5FBid0Bc8cNBv382cV2RuOKHg259Y9F/ 3+OIHw56/YgKqXbEET/cOEv3vTXsZe844oeDvn+iysH8ccQPB92t5NLln2KL Hw46IMfwmVtiix8OesDIl9O6xxY/3HhLlypweX7u2OKHgz6du/jWd7HEDwd9 Izj99Q2xxA8HPffCSLtLLPHDQUfUb1o6Ryzxw03AevM5fOwbb/HDQW+b3e7+ Wm/xw0EnLjJdd/QWPxz0kVNZ12fzFj/cRLxfOkvmyJjih4N+O3n8+vCY4oeD 7rmpZqn2McUPB90krNeDLDHFDwddvdjncS9d8cNNQn04/Wzgalf8cNBxw346 wa744aD/KzngRmZX/HDQu4dV2fbCET8cdIxGwQtWOeKHm2zp0IPnp7VzxA8H nXDjgBmZHfHDQd9J02npC1v8cNBT4i7Yu8oWPxx0rZ6xn7SzxQ83xdJbq25L ksUWPxz03pkz6r70Ej8c9OvK4YtWe4kfDjpH+3dfg73EDwf9KqpVo6xe4oeb aumv163Tryzxw0EvSXe23BpL/HDQ6y/sOtfBEj8cdI17p1oEWOKHg85b5UeM N0r8cNPwvqUot2GdEj8c9JaKa9p2VuKHg353K2NATiV+OOh157f9ehtD/HDQ D7LUvbkxhvjhpqO+iox+qFsM8cNBn0i2MyJPDPHDQW/d0mf7x+jih4MedqDI ka3RxQ8H3Tvw751e0cUPNwP1QKlD0QtGFz8cdMb9Q/J8iyZ+OOiIQwW77Iwm fjjohLWebA+JJn64mdhP9Rgeu1g08cNBf8mRoNPvv5bw4TB+x024uQ/a8OEs /XnSh5pDoA0fztL5ypW4Vgra8OEsvTKiUxsFbfhw+OergTGO/rGED4f6/XWH 8FHQhg+HevlovqYVoA0fztJnh1xN6Q1t+HCoJ7NWfnn6tyV8OPzzzNQDE6AN H87ScXqtXlod2vDhML/nHD81PrThw+H9jllowuVflvDh8HN9wqfNgDZ8OKxn Ne8vD4I2fDhLx7975XByaMOHw3M4MPrN7Z+W8OGwP4j9Oe0CaMOHw3p9IXmr ZtCGD4ffz+/jxrTQhg9n6SrRB8V8+sMSPhx+zpTtnVZCGz4cxu/deXeDoQ0f DvPnt6wNAqANH87S3z81fRD13RI+nKXbPMvfYxO04cNZuu2DtfF7Qhs+HJ7D 1wO7C0AbPpylJ5bs0u37N0v4cNjfnduaZw+04cPhv9s58e8gaMOHw+dI+uN6 KWjDh7P04z8fd1vQhg+H33dUvzXHv1rCh8P8enT0irHQhg+H7+uK77qq0IYP h59zOs9+H2jDh0N9dOTknctfLOHDWTry+l2vWdCGD4fPl6ZjkYbQhg+H8bqj W0hKaMOHw353d+TRB58t4cNhPgy87rcM2vDhLD28U+7BbaENHw6fo+7X11mh DR8O70vyjG2iPlnCh7P0xSu7Xm2CNnw4fJ4Vm0N6QRs+nKV3rPNOUhja8OGw XrsH9vz6aAkfDvX81fOdD3y0hA9n6aL5CwaMgDZ8OPy+FT5+Kg9t+HDYb+WI fjIWtOHDYVx4N111/oMlfDj8vN/2tGnQhg9n6Z1ZvocGQRs+HMbTptxjfaEN H87S13asm3n/vSV8OMwvLdqvXwpt+HD4HFdaXWwLbfhwmL9zz/mbDdrw4fDf L3QKv3tnCR/O0mXKhg/c+s4SPhz2Z+UHn+0LbfhwWI/ODs9cHNrw4Syd/+/W idGhDR8O773yiXbsrSV8OMxHMaYOGAtt+HD4vdMXsqpDGz6cpVNM/zszIbTh w6H+DXma70aUJXw4rLfRnt+dB234cJYOqxV9anNow4fDc5qbu2ZGaMOHw/vs 1cs38o0lfDhLl9h/4t0GaMOHQz36McvFntCGD4d648KMPYWhDR8On3N4zC1/ XlvCh7P0i8LDth6GNnw4S69O9/tAKLThw6He6tLnRlVow4fDc68a9SMBtOHD WXry66aZb0Rawoez9J5Bx5rNhzZ8OOyX86Vd1gLa8OFQb+kuHzJBGz4c9g+X wyu/eWUJHw7zov+lDZuhDR8OP7fJo1R9oQ0fztL+u26EFYc2fDh8Dx03p1TQ hg+H32d1x3UnXlrCh7P02hVWhYnQhg+HcR/W501taMOHw7iJODQ/ObThw+H9 L/i4/v0XlvDh8PNqXku1HNrw4VBPFpv9tj204cNhvObJcjoXtOHDoR5qP3zT l+eW8OHw3FMtX7IH2vDhLB07dNyCYdCGD4fx8jDv8grQhg/37z57bkRcaMOH s3S2WvsvXXlmCR8O38/9ed/nQBs+HPZXlXNnaw5t+HAY15f7tc0Ebfhwlv6w pcf6N08t4cPhvc7mF20rtOHDWTp5366NQ6ANHw6/x81OhzW04cNh/E2In9+B Nnw4S1e7Vn/T2SeW8OHwnn3UhaZDGz6cpX+mP36yIbThw+HvXfeitT+04cNZ utH5JbFfPLaED4f98JkPe9dDGz4cPu/zq/16QRs+HPaLrSvqYtCGD4fnOKZS fAVt+HB4n8KuvT75yBI+HNbb668uTYY2fDjMG+NGHA6CNnw4rJe/Fu1LBW34 cJae1aX4kacPLeHDYT4KCLqyFtrw4TCf9I+M6gFt+HB4jsu+JiwKbfhw2D+/ 7RsYA9rw4Sw9cGXHgScfWMKHw3qR+MLBydCGD4d6e/gin/rQhg+H51rsdnBq aMOHQz0ybuDZZ/ct4cPhOe8bUXQ9tOHDYV1PHbWlF7Thw1m64++IAsWhDR8O +4Nldw5b0IYP9+85N2505p4lfDjM36F5f0+DNnw4S/dp8d/qRtCGD4fnVuru f+mgDR/O0pd7haeJvGsJH87Sx6ofidwMbfhwll6TJvPBEGjDh8PfX+TyotLQ hg+H8RJ1aKw3tOHD/bsv+DTo0h1L+HD4/Xu2HjgH2vDh8H69TjCqBbThw2Fe qvojLCu04cNhP/YmWcSH25bw4bBvSNPx7i5ow4fDfqLY+7jDoQ0fDuvJ7OWV KkMbPhz2TRNGTU4IbfhwWOe6THlw+5YlfDhLR4UdLrIM2vDhUF80T7GwI7Th w+F7STstTn5ow4fDvJM/26jfNy3hw+H5fLrvHoM2fDj8vbvXz5gIbfhw2Hc9 mR4QBG34cJYefXrS2dTQhg+H+ubsvL4vbljCh8M8Vm5n9k3Qhg+HeXH6o9f9 oA0fDvV/4iQRpaENHw7zUqaaY2JBGz4c3sesU9pcuW4JHw77yoGXq86HNnw4 1MeDE5dsA234cPj7p9YpkvO6JXw4/P1JJ5b8ds0SPhzmx677qx2ENnw4rKd/ nrYdC234cPj7M/wdWxva8OEsPaO8u8MP2vDhLH3v5J+op1ct4cPhvfJ5kHMD tOHD4ecPXh3SF9rw4fDnB9Y/Xwra8OHwHnR9lT0WtOHDYd7Y23jmlSuW8OEw X55d6y6ANnw4rK/2jRFtoQ0fDp/v0m3v3NCGD2fpeGHb5vy4bAkfztLeh1rk OwJt+HB4f3c+uD4B2vDhUJ+8DBgZBG34cJZOuadMMX9ow4fDujQ/w+9Xlyzh w2Fe+nbm+NZLlvDhLB1SpNC8QdCGD4efe6FVSAVow4fDepmpRosE0IYPh/d3 /dfady5awofDeLxcv/oKaMOHw3O0u9XpCm34cHgPI4q3LAJt+HB4b2rv6W9B Gz4c6prqr+afu2AJHw5/f4qjJ8OgDR8O9VKmSn9bQBs+HNa/l71LZIc2fDi8 NxcrjP563hI+HOqlOntvHoQ2fDj8uecX84+HNnw47Kd+DZ9bD9rw4SzdP9ZF b39ow4dD/RwaMTzynCV8OEsPepXbjoA2fDiMi1V66hBow4fDfrbQg0yVoQ0f DuM0UdzjiaENHw7PZcvxLg/OWsKHs/SGSd5p10AbPpylN/pfudsL2vDhMG4e +y/V0IYPh/1kzffdYkEbPhzG85OSla6dsYQPh3+fIlbAYmjDh8P+rnONpB2h DR8O/3+TOLELQhs+HD5vq5LeMaANHw71mXoS/+xpS/hw+P0jvqUNgzZ8OOzn /oQUbwlt+HCWPt6gXfMc0IYPh/Wu4r6J309ZwofD71M15OgRaMOHQx3zYrbX 5FOW8OH+nW+nqN4I2vDhLP3w2ffFGaENHw7ju0b+P+9PWsKHw+dqdKrlXmjD h8P+ZmzEpVBow4fD/rTF10p1oA0fDt9j8NgzqaENHw51UvpOQZH4p+HD/f8/ +f/zv+Of49/Dv5c/hz+Xn4Ofi5+Tn5u/B38v/p78vfkc+Fz4nPjc+Bz5XPmc +dz5PfB74ffE743fI79Xfs/83vke8L3ge8L3hu8R3yu+Z3zv+B7yveR7yveW 7zHfa77nfO85DjguOE44bjiOOK44zjjuOA45LjlOOW45jjmuOc457jkPcF7g PMF5g/MI5xXOM5x3OA9xXuI8xXmL8xjnNc5znPc4D3Je5DzJeZPzKOdVzrOc dzkPc17mPM15m/M453XO85z3uQ5wXeA6wXWD6wjXFa4zXHe4DnFd4jrFdYvr GNc1rnNc97gOcl3kOsl1k+so11Wus1x3uQ5zXeY6zXWb6zjXda7zXPe5D+C+ gPsE7hu4j+C+gvsM7ju4D+G+hPsU7lu4j+G+hvsc7nu4D+K+iPsk7pu4j+K+ ivss7ru4D+O+jPs07tu4j+O+jvs87vu4D+S+kPtE7hu5j+S+kvtM7ju5D+W+ lPtU7lu5j+W+lvtc7nu5D+a+mPtk7pu5j+a+mvts7ru5D+e+nPt07tu5j+e+ nvt87vtZB7AuYJ3AuoF1BOsK1hmsO1iHsC5hncK6hXUM6xrWOax7WAexLmKd xLqJdRTrKtZZrLtYh7EuY53Guo11HOs61nms+1gHsi5knci6kXUk60rWmaw7 WYeyLmWdyrqVdSzrWta5rHtZB7MuZp3Mupl1NOtq1tmsu1mHsy5nnc66nXU8 63rW+az7eQ7AcwGeE/DcgOcIPFfgOQPPHXgOwXMJnlPw3ILnGDzX4DkHzz14 DsJzEZ6T8NyE5yg8V+E5C89deA7Dcxme0/Dchuc4PNfhOQ/PfXgOxHMhnhPx 3IjnSDxX4jkTz514DsVzKZ5T8dyK51g81+I5F8+9eA7GczGek/HcjOdoPFfj ORvP3XgOx3M5ntPx3I7neDzX4zkfz/14DshzQZ4T8tyQ54g8V+Q5I88deQ7J c0meU/LckueYPNfkOSfPPXkOynNRnpPy3JTnqDxX5Tkrz115DstzWZ7T8tyW 57g81+U5L899eQ7Mc2GeE/PcmOfIPFfmOTPPnXkOzXNpnlPz3Jrn2DzX5jk3 z715Ds5zcZ6T89yc5+g8V+c5O8/deQ7Pc3me0/Pcnuf4PNfnOT/P/XkPwHsB 3hPw3oD3CLxX4D0D7x14D8F7Cd5T8N6C9xi81+A9B+89eA/CexHek/DehPco vFfhPQvvXXgPw3sZ3tPw3ob3OLzX4T0P7314D8R7Id4T8d6I90i8V+I9E++d eA/FeyneU/HeivdYvNfiPRfvvXgPxnsx3pPx3oz3aLxX4z0b7914D8d7Od7T 8d6O93i81+M9H+/9eA/Ie0HeE/LekPeIvFfkPSPvHXkPyXtJ3lPy3pL3mLzX 5D0n7z15D8p7Ud6T8t6U96i8V+U9K+9deQ/Le1ne0/Lelve4vNflPS/vfXkP zHth3hPz3pj3yLxX5j0z7515D817ad5T896a99i81+Y9N++9eQ/Oe3Hek/Pe nPfovFfnPTvv3XkPz3t53tPz3p73+LzX5z0/7/3pA6AvgD4B+gboI6CvgD4D +g7oQ6AvgT4F+hboY6CvgT4H+h7og6Avgj4J+iboo6Cvgj4L+i7ow6Avgz4N +jbo46Cvgz4P+j7oA6EvhD4R+kboI6GvhD4T+k7oQ6EvhT4V+lboY6GvhT4X +l7og6Evhj4Z+mboo6Gvhj4b+m7ow6Evhz4d+nbo46Gvhz4f+n7oA6IviD4h +oboI6KviD4j+o7oQ6IviT4l+pboY6KviT4n+p7og6Ivij4p+qboo6Kvij4r +q7ow6Iviz4t+rbo46Kviz4v+r7oA6MvjD4x+sboI6OvjD4z+s7oQ6MvjT41 +tboY6OvjT43+t7og6Mvjj45+ub+56MTXx19dvTd0YdHXx59evTt0cdHXx99 fvT90QdIXyB9gvQN0kdIXyF9hvQd0odIXyJ9ivQt0sdIXyN9jvQ90gdJXyR9 kvRN0kdJXyV9lvRd0odJXyZ9mvRt0sdJXyd9nvR90gdKXyh9ovSN0kdKXyl9 pvSd0odKXyp9qvSt0sdKXyt9rvS90gdLXyx9svTN0kdLXy19tvTd0odLXy59 uvTt0sdLXy99vvT90gdMXzB9wvQN00dMXzF9xvQd/8+HLL5k+pTpW6aPmb5m +pzpe6YPmr5o+qTpm6aPmr5q+qzpu6YPm75s+rTp26aPm75u+rzp+6YPnL5w +sTpG6ePnL5y+szpO6cPnb50+tTpW6ePnb52+tzpe6cPnr54+uTpm6ePnr56 +uzpu6cPn758+vTp26ePn75++vzp+2cfAPsC2CfAvgH2EbCvgH0G7DtgHwL7 EtinwL4F9jGwr4F9Dux7YB8E+yLYJ8G+CfZRsK+CfRbsu2AfBvsy2KfBvg32 cbCvg30e7PtgHwj7Qtgnwr4R9pGwr4R9Juw7YR8K+1LYp8K+FfaxsK+FfS7s e2EfDPti2CfDvhn20bCvhn027LthHw77ctinw74d9vGwr4d9Puz7YR8Q+4LY J8S+IfYRsa+IfUbsO2IfEvuS2KfEviX2MbGviX1O7HtiHxT7otgnxb4p9lGx r4p9Vuy7Yh8W+7LYp8W+LfZxsa+LfV7s+2IfGPvC2CfGvjH2kbGvjH1m7Dtj Hxr70tinxr419rGxr419bux7Yx8c++LYJ8e+OfbRsa+OfXbsu2MfHvvy2KfH vj328bGvj31+7PtjHyD7AtknyL5B9hGyr5B9huw7ZB8i+xLZp8i+RfYxsq+R fY7se2QfJPsi2SfJvkn2UbKvkn2W7LtkHyb7Mtmnyb5N9nGyr5N9nuz7ZB8o +0LZJ8q+UfaRsq+UfabsO2UfKvtS2afKvlX2sbKvlX2u7HtlHyz7Ytkny75Z 9tGyr5Z9tuy7ZR8u+3LZp8u+Xfbxsq+Xfb7s+2UfMPuC2SfMvmH2EbOvmH3G 7DtmHzL7ktmnzL5l9jGzr5l9zux7Zh80+6LZJ82+afZRs6+afdbsu2YfNvuy 2afNvm32cbOvm33e7PtmHzj7wtknzr5x9pGzr5x95uw7Zx86+9LZp86+dfax s6+dfe7se2cfPPvi2SfPvnn20bOvnn327LtnHz778tmnz7599vGzr599/uz7 JweAXAByAsgNIEeAXAFyBsgdIIeAXAJyCsgtIMeAXANyDsg9IAeBXARyEshN IEeBXAVyFshdIIeBXAZyGshtIMeBXAdyHsh9IAeCXAhyIsiNIEeCXAlyJsid IIeCXApyKsitIMeCXAtyLsi9IAeDXAxyMsjNIEeDXA1yNsjdIIeDXA5yOsjt IMeDXA9yPsj9IAeEXBByQsgNIUeEXBFyRsgdIYeEXBJySsgtIceEXBNyTsg9 IQeFXBRyUshNIUeFXBVyVshdIYeFXBZyWshtIceFXBdyXsh9IQeGXBhyYsiN IUeGXBlyZsidIYeGXBpyasitIceGXBtybsi9IQeHXBxycsjNIUeHXB1ydsjd IYeHXB5yesjtIceHXB9yfsj9IQeIXCBygsgNIkeIXCFyhsgdIoeIXCJyisgt IseIXCNyjsg9IgeJXCRykshNIkeJXCVylshdIoeJXCZymshtIseJXCdynsh9 IgeKXChyosiNIkeKXClypsidIoeKXCpyqsitIseKXCtyrsi9IgeLXCxyssjN +h9HS7ha5GyRu0UOF7lc5HSR20WOF7le5HyR+0UOGLlg5ISRG0aOGLli5IyR O0YOGblk5JSRW0aOGblm5JyRe0YOGrlo5KSRm0aOGrlq5KyRu0YOG7ls5LSR 20aOG7lu5LyR+0YOHLlw5MSRG0eOHLly5MyRO0cOHbl05NSRW0eOHbl25NyR e0cOHrl45OSRm0eOHrl65OyRu0cOH7l85PSR2/c/jp9w/cj5I/ePHEByAckJ JDeQHEFyBckZJHeQHEJyCckpJLeQHENyDck5JPeQHERyEclJJDeRHEVyFclZ JHeRHEZyGclpJLeRHEdyHcl5JPeRHEhyIcmJJDeSHElyJcmZJHeSHEpyKcmp JLeSHEtyLcm5JPeSHExyMcnJJDeTHE1yNcnZJHeTHE5yOcnpJLeTHE9yPcn5 JPeTHFByQckJJTeUHFFyRckZJXeUHFJySckpJbeUHFNyTck5JfeUHFRyUclJ JTeVHFVyVclZJXeVHFZyWclpJbeVHFdyXcl5JfeVHFhyYcmJJTeWHFlyZcmZ JXeWHFpyacmpJbeWHFtybcm5JfeWHFxyccnJJTeXHF1ydcnZJXeXHF5yecnp JbeXHF9yfcn5JfeXHGBygckJJjeYHGFyhckZJneYHGJyickpJreYHGNyjck5 JveYHGRykclJJjeZHGVylclZJneZHGZymclpJreZHGdyncl5JveZHGhyocmJ JjeaHGlypcmZJneaHGpyqcmpJreaHGtyrcm5JveaHGxyscnJJjebHG1ytcnZ JnebHG5yucnpJrebHG9yvcn5JvebHHBywckJJzecHHFyxckZJ3ecHHJyyckp J7ecHHNyzck5J/ecHHRy0clJJzedHHVy1clZJ3edHHZy2clpJ7edHHdy3cl5 J/edHHhy4cmJJzeeHHly5cmZJ3eeHHpy6cmpJ7eeHHty7cm5J/eeHHxy8cnJ JzefHH1y9cnZJ3efHH5y+cnpJ7efHH9y/cn5J/efOQDMBWBOAHMDmCPAXAHm DDB3gDkEzCVgTgFzC5hjwFwD5hww94A5CMxFYE4CcxOYo8BcBeYsMHeBOQzM ZWBOA3MbmOPAXAfmPDD3gTkQzIVgTgRzI5gjwVwJ5kwwd4I5FMylYE4FcyuY Y8FcC+ZcMPeCORjMxWBOBnMzmKPBXA3mbDB3gzkczOVgTgdzO5jjwVwP5nww 94M5IMwFYU4Ic0OYI8JcEeaMMHeEOSTMJWFOCXNLmGPCXBPmnDD3hDkozEVh TgpzU5ijwlwV5qwwd4U5LMxlYU4Lc1uY48JcF+a8MPeFOTDMhWFODHNjmCPD XBnmzDB3hjk0zKVhTg1za5hjw1wb5tww94Y5OMzFYU4Oc3OYo8NcHebsMHeH OTzM5WFOD3N7mOPDXB/m/DD3hzlAzAViThBzg5gjxFwh5gwxd4g5RMwlYk4R c4uYY8Rco//lHEnuEXOQmIvEnCTmJjFHiblKzFli7hJzmJjLxJwm5jYxx4m5 Tsx5Yu4Tc6CYC8WcKOZGMUeKuVLMmWLuFHOomEvFnCrmVjHHirlWzLli7hVz sJiLxZws5mYxR4u5WszZYu4Wc7iYy8WcLuZ2MceLuV7M+WLuF3PAmAvGnDDm hv0vR0xyxZgzxtwx5pAxl4w5ZcwtY44Zc82Yc8bcM+agMReNOWnMTWOOGnPV mLPG3DXmsDGXjTltzG1jjhtz3Zjzxtw35sAxF445ccyNY44cc+WYM8fcOebQ MZeOOXXMrWOOHXPtmHPH3Dvm4DEXjzl5zM1jjh5z9Zizx9w95vAxl485fczt Y44fc/2Y88fcP+YAMheQOYHMDWSOIHMFmTPI3EHmEDKXkDmFzC1kjiFzDZlz yNxD5iAyF5E5icxNZI4icxWZs8jcReYwMpeROY3MbWSOI3MdmfPI3EfmQDIX kjmRzI1kjiRzJZkzydxJ5lAyl5I5lcytZI4lcy2Zc8ncS+ZgMheTOZnMzWSO JnM1mbPJ3E3mcDKXkzmdzO1kjidzPZnzydxP5oAyF5Q5ocwNZY4oc0WZM8rc UeaQMpeUOaXMLWWOKXNNmXPK3FPmoDIXlTmpzE1ljipzVZmzytxV5rAyl5U5 rcxtZY4rc12Z88rcV+bAMheWObHMjWWOLHNlmTPL3Fnm0DKXljm1zK1lji1z bZlzy9xb5uAyF5c5uczNZY4uc3WZs8vcXebwMpeXOb3M7WWOL3N9mfPL3F/m ADMXmDnBzA1mjjBzhZkzzNxh5hAzl5g5xcwtZo4xc42Zc8zcY+YgMxeZOcnM TWaOMnOVmbPM3GXmMDOXmTnNzG1mjjNznZnzzNxn5kAzF5o50cyNZo40c6WZ M83caeZQM5eaOdXMrWaONXOtmXPN3GvmYDMXmznZzM1mjjZztZmzzdxt5nAz l5s53cztZo43c72Z883cb+aAMxecOeHMDWeOOHPFmTPO3HHmkDOXnDnlzC1n jjlzzZlzztxz5qAzF5056cxNZ446c9WZs87cdeawM5edOe3MbWeOO3PdmfPO 3HfmwDMXnjnxzI1njjxz5Zkzz9x55tAzl5459cytZ449c+2Zc8/ce48fDjpD zbcb40S3jR8Outb5NMGDoT1+OOi/7yMLvof2+OGg/W7USdkyhm38cF+V9ln8 X/Kr0B4/HPThjj4B5ZVt/HDQMxt1qLsT2uOHg243seeMbJZt/HDQ0zPmej0f 2uOH+6L0+7JLGvh42cYPB3097vm7w6A9fjjoJMt29f0M7fHDQUfLEpy1nW0b Pxx0i4P3ME/axg/3WenQKakvVXVs44eDLrYv54kD0B4/HPSxjgmv5nVt44eD fnPo3LcV0B4/HPTXZ63zpohpGz/cJ6VX/b0zYgK0xw8HXSZfoTfRvG3jh4Oe uLZ/x57QHj8c9MnJa2K8gPb44aAjYp7Z0CiWbfxwH5WerR/2OA/t8cNB5/vv bbXA2Lbxw0GfmvRDb4f2+OGgU/+2K2WLYxs/3Ael+1xK1n4htMcPBz2raL7F CePaxg8HfbxVk7ejoT1+OOhzIWF1fkF7/HDQX8JfXugazzZ+uPd439PVbfUU 2uOHg24U/37chj628cNBRywbd+EctMcPB9059n+rA+Pbxg8H3aBvk9k7oD1+ uHf4ecnGLcqewDZ+OOjwVK/3LYH2+OGgK+8e8SlpQtv44aCnp2lQagK0xw8H /WpIp+UxEtnGD/dW6ULxjqXpC+3xw0G//tNmyxtojx8O+vvwOk1aJraNHw76 2qWpqW5Ce/xw0EPSZPxaLYlt/HBRSvdbkuD5EWiPHw762MTGUUWS2sYPB/3Z 142zCdrjh4NOMjR5YKZktvHDQR/+PH3yfGiPH+6N0ik2D/qcMLlt/HDQ+6Ju dRsL7fHDQd95ss4regrb+OGgM5z7ubEPtMcPB335yYkeUdAeP9xrpZe3TF6t ta9t/HDQT0a+L3kH2uOHg242um7F2n628cNBd1lWsf0paI8fDvpj8ktLSqW0 jR8uEuM7w8cPO6A9fjjowdamhrlS2cYPB/3hc7xbK6E9fjjo9YUSdUud2jZ+ OGgd+1DqWdAeP9wrpfdsTPksbhrb+OGgD7fJdmQUtMcPBz2oy9udf6A9fjjo hbE7H+/tbxs/3Eul2wxZ8zoK2uOHg54TZ22Wtmlt44eDnvy1x6D70B4/HHSG YU5kUDrb+OGgj7xv3+UCtMcP9wLjf9ySWBXT28YPBz1k+ub9B6E9fjjo7LUX jiuSwTZ+OOjocTt12QLt8cNBp42dpkNARtv44Z5jfM/YM2g5tMcPB73ifbnw VJls44eDTtL+8JtZ0B4/HPTr8gUqxs9sGz8cdMKrS/eMhfb44Z5hPm3kU8HK Yhs/HPS2TEMiB0J7/HDQx4Z/XfEV2uOHg667JySkW1bb+OGgfVLFbRMJ7fHD PVW6wJdtwa2z2cYPBz1rau+R96E9fjjoSaXq7GwQYBs/HHSsWrW9rkB7/HDQ YxP2Da6W3TZ+uCdKJ7t27OkJaI8fDrruq8CQwBy28cNBd178MeM+aI8fDjp9 1VuRhXLaxg8HfbzkrxNboD1+uMdKFznTZF+OXLbxwz3+N7+rM6uhPX446A/R 3r9Pn9s2fjjoqzWz5VoE7fHDQR+ZEDHKN49t/HCPsL/wnvV5JrTHDwddPdXF AQny2sYPB50yTbDfRGiPHw76v7Ytr8TMZxs/3EP8+ypHlo2E9vjhoL9knDwh en7b+OGgfWuenjgQ2uOHg66dPmTVd2iPHw76249Ft3oVsI0f7oHSP3KWyfAB 2uOHg76Xql1o54K28cNB70sX34qE9vjhoCvMDQxrW8g2fjjoQ49U2SfQHj/c faXd+vW8mxe2jR8OemyDki/uQnv8cNC1yh2+17CIbfxw0L8HPntzHdrjh4M+ 1Gxd4rpFbeOHu6d0p+p+9S5Be/xw0C3XFNxQvZht/HDQi68p/7PQHj8c9O68 I9dUKm4bPxz03QwHqp2A9vjh7mI/6LPTu1wJ2/jhoF/U73n/MLTHDwedseWX M6VK2sYPB514RuDl/dAePxz0wzrNPhTXtvHD3VG6asyaWfdAe/xw0NuSp+hf pJRt/HDQCaL2P9kB7fHDQX+JKte2YGnb+OGgJ4zcEiMC2uOHu630Il/v7fkC beOHg57qW33EFmiPHw66+btR7fOUsY0fDnq1V0TwJmiPHw564fEHQ3OVtY0f 7hbGw9JYWzZAe/xw0EO9iv7OUc42fjjoF417NFsP7fHDQX9OuvNO9vK28cNB v1vu030dtMcPdxPzZe9BabJXsI0fDvr2D/vFWmiPHw6689L1JwIq2sYPB53v Ub9Da6E9frgb2M9k6XQ1oJJt/HDQbV+Pj74O2uOHg+644G657JVt44eDvrSl 5fJ10B4/HHT3xelS5qhiGz/cdYzXO/7r10N7/HDQr263qJ+zqm38cNAzE0f6 boT2+OGgM0Xf/y1XNdv44aDDkjyO2gTt8cNdU3r0uUZ/8lS3jR8OOs+S7Jm2 Qnv8cND9YzUJzl/DNn446Ccjoo5EQHv8cNBTxjwrXKimbfxwV7E/mFHxxE5o jx8OOiS9X9eitWzjh4POvrVF7r3QHj8cdKJD/rFL1raNHw562Jkm0Q5Ce/xw V5TuVss3bmAd2/jhoPtfbpr/KLTHDwf98HxA7/J1beOHgx5zYsyFk9AePxz0 rxIhZarUs40f7rLSwdtiXDoH7fHDQa9Yn6lfzSDb+OGgs61/U/gKtMcPB52i UINEQfVt44eDLnKxs3sL2uOHu4T3+0+eJE0a2MYPB92qfHjxB9AePxx08dw3 B7VsaBs/HPTTwCM3n0F7/HD//nuna7X2jWzjh7uI8W89vPMG2uOHg254xHdk t8a28cNBZ7+YvvxnaI8fDnrytmjp+jWxjR/ugtI3fm1J9hva44eDjp43MPPQ prbxw0FvebK5ptd/tvHDQZdY6MwYA+3xw0HPe1f2Q5xmtvHDncf717Z78FRo jx8O2mfalB9JmtvGDwfdRa1aPhfa44eDzl9xV/s0LWzjh4Pe+vlMxeXQHj/c OaWfzXlSOmtL2/jhoHuf9qq3Adrjh4PekSL/8HytbOOHg17r1+fUTmiPHw46 RpsL2Uq2to0f7izen/FlVx6B9vjhoCPT3y5WqY1t/HDQxY/PeH0e2uOHg+7s HRJRt61t/HDQU0aNn3Mb2uOHO4P9zZWLYc3b2cYPB914QrVNz6E9fjjoaZWd J52CbeOHg765OlruT9AePxx0eGDJsJD2tvHDncZ8sO148ugdbOOHg647d8G2 0dAePxz03GknOsTtaBs/HHRgsUrFZkB7/HDQOl/mTH6dbOOHO6V0Lt+2AUuh PX446LZTYlXJ2tk2fjjolwVTjNoE7fHDQXfcOOtWoS628cNBN5ofWvEAtMcP d1Lp84vfXyrf1TZ+OOjZza/3Pg/t8cNBFxlaIn9QN9v44aBfLM8W9z60xw8H Pb7X0uhtu9vCh8N+cmZ4vLfQhg+H8bmxbKE+PWzhw2G+6tCv/19ow4fD+9a1 0s3RPW3hw+H5t9tb06eXLXw4pbv+vvYkDNrw4TC/3Zo71b+3LXw4pTus8WkU Dm34cEoX9CtSIm8fW/hwSv+86VdsD7Thw+F5TN1bp2xfW/hw2A98TBN6Dtrw 4VC/rat8LaifLXw4pXd2KV3yIbThwynd5FXMw+1DbOHDKe11fkXzT9CGD4f3 93xK30H9beHDYTws7PHWGWALHw7zxbu196ZAGz6c0jn6nXvhO9AWPpzSp1/f ibMC2vDhFB7y3aq5BtnCh8N60unyql3Qhg+H+f3FkVRlB9vCh4POErHhPLTh w6H+f7mmUcMhtvDh8P49DE/7FNrw4VDfnN5udR1qCx9O6b4tr0f/CW34cKgn WsZNMWqYLXw47I9Cm1eNP9wWPhzmz0lX586DNnw4pf0LdPHKPMIWPhzq7yJ5 x26BNnw4/D6NM2YtOdIWPhzq4UZVn56CNnw4pdt9W7u73ihb+HB4/p8qrnsE bfhwSi9IkGVX59G28OGw/0pc/dEPaMOHw/jbfyDD6FBb+HBY368NG5FwjC18 ODyPNHP+LIQ2fDjs95vHmh4w1hY+nNITm90usxPa8OGUVs/ixi83zhY+HP7+ neHfLkEbPpzSA5Zt+fnfeFv4cNjfd82R4g204cMpXe956johE2zhw+HnXx2/ 2ploCx8O+32vkBQzoA0fDvNh2dcr0k6yhQ+ndNMWL6pthDZ8OKVnZO2RoMRk W/hwSufuNOX9aWjDh1M69o/yrxtMsYUPh/G4eG6MF9CGD6f0rvxT8vWeagsf DutbaPZh1jRb+HBKX+nQK3IqtOHDYX7a2qmr/3Rb+HBKRxXwjb8R2vDhlI57 YtjZEjNs4cMpbZdYvfwstOHDKb2yy7TZjWfawofDfJGv3OpIaMOHQz3W+tiV kFm28OEwP99K5ucdZgsfDut559KDZ0MbPhzqvV/l/2SebQsfDu9j0xyzd0Ab PpzS67r/qF5hji18OKWdxJvS3oA2fDilN6YLit9uri18OIyHge99v0EbPhzm m+gjS4fOs4UPh3pycpKRyebbwodT+pH3mseroA0fDvVt7fJNCy+whQ+H9a7y u08noQ0fTmnrRvjKhgtt4cPhfbjTv3cktOHD4f0u3q75gEW28OHweR/1bBdn sS18OKxnG1aMWwBt+HAYrxNjnM65xBY+nNKp207IeBDa8OEwf/lXWVBrqS18 OKUPrArM8wTa8OHw+Z71fdRrmS18OKWzHH+33lluCx8O+60CG2fNhjZ8ODwv /z3zsq2whQ+n9K3eyffthTZ8OKU3pz/7s/pKW/hwWE9S3Kn7CNrw4bDfrFj5 TM9VtvDhlC63JPV/zmpb+HDYDyRpGncOtOHD4fuYE+tWQLgtfDily6bJfmg/ tOHDKV14/vFjtdbYwofD+2E/eP4U2vDhlG5Rq3+Gfmtt4cOhvuqzYHDsdbbw 4ZQe3Lnal4XQhg+ndKmck8fkXW8LH07pUVvaFT4ObfhwSi/5fMer0QZb+HBK 73/3PioK2vDhUG8tWvtp2EZb+HBKX4yRIGnSTbbw4VA/JspUbw204cMpfezy u00lN9vCh8P40D2zXoE2fDjUu40i9rfbYgsfDutH+j3dfkMbPhz+/vlj9dSt tvDhMD+fyhiQaZstfDjUS+tn5NsDbfhwSjeoeqdBzQhb+HBK31/7d+4zaMOH Q7132frZf7stfDjUy8fe9Y6/wxY+nNLNJp+ItxLa8OGUjlZoytFiO23hw2G9 Pl497BK04cNhva0QM7TdLlv4cFgfTxya/gfa8OGwHtQYum/6blv4cNgfvK3o lW2PLXw41Idb/IMPQhs+nNKtw+O8CtprCx8OP/9JgtAoaMOHw3zVtUDgyH22 8OGUzttioK/fflv4cErXOPXaZwu04cNhP7hnTLpKB2zhw2E/UrlB7YfQhg+H 9XNis0V9D9rCh8P6FrbM2+eQLXw4rCdDs05dCW34cHj/mn8tUPKwLXw4jIfq Pt+vQRs+nNLLW4fc6HzEFj4c1te9Ra7aR23hw2E+617v7QJow4fD+7nwUsaC x2zhw6GearG1/3low4dDvX4jWlTb47bw4ZSennrvwGgnbOHDod4Jiso6G9rw 4bBeLZ79OfdJW/hwSp9LeeTuKWjDh1N6YFT3xy1P2cKHw3gvsMb+DW34cHh/ U3QvP/O0LXw4pWPuO7M85xlb+HCov8sf8D8Jbfhw2M/drbm7xVlb+HBK91s5 qvsvaMOHw/p1tmX5meds4cNhf9kvqnCu87bw4bC/u5Kt0ilow4fD/OXt37fV BVv4cErvLn/58B9ow4dDvbSjfPbZF23hw6FeGDt8a95LtvDhUM++GdfgHLTh w+H7jNfGL/iyLXw4zE9pk/5WV2zhwyk9MmjZzwXQhg+H8fYgQTJ8Y8KHw/z2 vm2tq9CGD6f03n2rwrtes4UPh/V2wK00sa/bwodT+mvzGNtWQhs+HPaPyzO0 DbxhCx8O9fSgigXvQxs+HOrTTD0y9L9pCx8O+8kbK3MnvWULHw7v29nXjbZA Gz4cPm+p8suq37aFD6d06W57vF9DGz6c0uXn1JwUescWPhz2Sz9j5clw1xY+ nNKvL737cBDa8OHwfbfwutT0ni18OMynr6qd/wlt+HDYv6279Crsvi18OMyP UTPSF3hgCx9O6Vgf5g+4DG34cNhv/Hr7oetDW/hwmK/qTBkd95EtfDjUT3p0 kbXQhg+H/WPM67EqPbaFD4fn9WXkz+fQhg+HerjW7JijntjCh8Ofb5ukQPqn tvDhsJ8aFmPoIWjDh8N4ftviVbNntvDhUO/+LNb9L7Thw6Ee+Dwj2YLntvDh lC6avcfdYi9s4cMpHfDx5oHb0IYPp/T2sPOHQl7awodTumrXBo+Tv7KFD4f1 6+yAtDuhDR8Of94qOaR+pC18OKy37Zf/+gpt+HBKz6+7bdas17bw4ZS+kLJn zYJvbOHDod71fZ7lOrThw2F9XpHQv0+ULXw4zG8p/hZI+tYWPhz+/MX1HbZD Gz4c9ptZMu8PemcLH07p+gO75v4GbfhwGA8BEw6FvbeFD6d0upnDuxf+YAsf DvVe8galbkEbPhy+3+QJc/b/aAsfDvvxzxFF/T7ZwofD/JegUtu90IYPp3Sd Kxc3Nf1sCx9O6ckLa/tG+2ILHw77rVtXli6GNnw4pf9ENqwc+NUWPhzq32KR 8Z9CGz7cv3p43NdR32zhw2F/VUL/yvzdFj4c5pcj8dKchjZ8OKxHef+26PTD Fj6c0iW/Jzwa76ctfDjsN4fVLrcZ2vDhlJ5a4vCzOr9s4cMpvWd+uxVfoQ0f TunfPhVHzvltCx8O9Yp3++HF/9jCh1M66e8Lix5AGz4cnmeT4XeH/7WFD4f9 6cJRhTNFc4QPp/T1Ig+2noI2fDjUf8tnVO8c3RE+nNLb6q+NmSCGI3w47O/O ZHm8Ddrw4TDeByS800A5wodTuvGjzp9+Qxs+nNL/9S8VsMRyhA+n9Kwjk4eX 83KED4f9QbEWP15BGz4c3rcWuydPsh3hw2G927a4XD7HET6c0ot2pvC7CW34 cFjP3maLP8h1hA+H7+/WrQzpYjrCh8P4j5a94Qlow4fD+HuWaX0nb0f4cEpn TXDRP2EsR/hw2E/HzrFtB7Thw2G/3bhMu6axHeHDYb2cmLyoFccRPhzWq6xb sodDGz4c5qt9SXSNuI7w4bA/vlax+xdow4fD8/5b88i8eI7w4ZQeeypfgUAf R/hw2G8e+3r8JbThw+H7G7Go3+T4jvDhlK4+M1/lggkc4cPheU3eWewetOHD YT72yl9tZEJH+HCoz8avHRyQyBE+HN63XRkuXoY2fDilIzKtKN0/sSN8OLy/ HfNeSZvEET4c9g9pL488BW34cFgfn4wN6p7UET4c5rdqzSqmSOYIH07pbL/q NzoEbfhwSoeOD5nQPrkjfDilCy44dT9BCkf4cNiPX6xWaze04cMpffVY7Kct fR3hw6E+9PcOi+3nCB8O+8vhVTpsgzZ8OKwnU282bZrSET6c0qM/RHR3UjnC h8N6VvnVio3Qhg+ndM0y/X42SO0IH07p7yODu6o0jvDh8Lx2HfBaB234cPj+ x43YXc/fET6c0nFW7poSLa0jfDilz+xoFxoObfhwmA+7TF9YJ50jfDiln/cL vP4H2vDhlP4U2j/n6vSO8OGwPlctvap2Bkf4cKhP+88v9Qfa8OGwvz069eeq jI7w4ZQOepDpWu1MjvDhlK40rMXFP9CGD6d0xRYV3qzO7AgfDvV8oftZ6mZx hA+HendfwOhoWR3hw+F5rSvgtRba8OHw/h2KsSwomyN8OKzPO2a2VAGO8OHw /VX/FrgB2vDhMB8FZi/bKLsjfDj8+6CibZ0cjvDhsB+smDl8C7Thw+H9vPc9 TrOcjvDh8L7c2DY1di5H+HCYz342L7QT2vDh8D7Esf62zu0IHw77qWuLnyXI 4wgfDvONX6m3+6ENHw717ernyTrldYQPh9+n/NyWKfI5wodTuvvB5uePQxs+ HPYbT3TjXvkd4cP9W59KeKcr4AgfDvNTo2Y3L0AbPhzGY7W1JwcVdIQPh/1R xsy3Awo5wofD/LL9Zpzb0IYPh3rh8rHmYwo7wofDz6/2+VrBIo7w4ZTO8bd9 p2fQhg+n9Jfd2TPMKOoIHw71cuPAP4HFHOHDKd1/16ZvH6ANHw714oZBiZYU d4QPh/o06caaNUs4wofD5z1XeWO0ko7w4fB9bArKtRHa8OGw/i6+efE/7Qgf Du//wOvT45VyhA+H+iZDUL/90IYPh/l4YNPBXUo7wodDPRD8cUXqQEf4cPh5 Z3zfnYc2fDilb4y/23BIGUf4cNhPTS3xPFdZR/hwGH9Hysx4CG34cJgv435p NbWcI3w4pXvVr18vsLwjfLh//pZuwZ+gDR8OP29x+QXLKzjCh1N6U8iDT/Uq OsKHU/parNKd3EqO8OHwect2d3ZBGz4cxleyPoc7VHaED4fx17fe4pRVHOHD Yf/fIMni89CGD6d00017Dg2t6ggfDuO5V3U7XzVH+HBKl1l4pcMzaMOHw/qY sdbHsOqO8OGUTu51bl7lGo7w4TB/FqzW7g+04cMp/XfHjbqbajrCh1O6Q2iP 1q1qOcKHU5iX0s9KWtsRPhzGQ5wPr05BGz6c0jmPPGw2qI4jfDjUv2e+f8td 1xE+HPanmfWWp9CGD4f6996uSbPrOcKHw/zxucvEqkGO8OEwv/RovSF6fUf4 cEova774wzZow4f7V99mqd++gSN8OKWH7bAepGroCB8O71ehQmMvQxs+HJ53 /VP1Qhs5wodTemXGg2WLN3aED6f0uC1pgz5AGz4c1iufz2NXNnGED6d0ZPUS Dxs3dYQPp/TtkVbDBP85wodTutbxqp+PQxs+HH5+1jRbBjZzhA+H9eD40Gl5 mzvCh8P+O6LvzJfQhg+H+il+rD0LWzjCh1N636cSVr2WjvDhlH7fP0WX2K0c 4cNh/B5d+usQtOHDYT1/+2Btv9aO8OGUbuR7Y3CuNo7w4bC/bz+p13Now4dT 2v4be+KCto7w4VBP/K53sm47R/hwSicb3yNTnGBH+HD4/BfarToCbfhwmH8+ FKsyoL0jfDil8/l9SZCvgyN8OKVr95nzKxLa8OGwP8+ZK+ayjo7w4f6dV+4t 1LiTI3w4pfN2rjAuUWdH+HBKf6h5PdpZaMOHU/pgta6zR3ZxhA+H8TEzed0S XR3hw2F9anIz71dow4fDenB9W/6N3Rzhw2G+LrKtYXB3R/hw/+r5u0vS9nCE D4f6dk7+uHegDR8O+wfvw/Nm9HSED4f5ucL4atV7OcKHw3ifPCtdzN6O8OGw vvtH+h6GNnw4jL/CEwoO7OMIHw7vS7IRvQv2dYQPh88f/dqN99CGD6f0swJj mq7t5wgfTumJv5Y6bUMc4cNhvQgLuOLf3xE+HMZ/jSxH7kAbPpzShzovuj5r gCN8OHwfRcPi1h7oCB8O4z960uC4gxzhwyk9PXa65yehDR8O+501h0JHDnaE D4f1ItuvqqWGOMKHw3pw92qB39CGD4f6L2G9wJ1DHeHDYf+baniPXsMc4cPh farT8nju4Y7w4TC+vX+XiII2fDilvWfWuxU+whE+nNK5avSe3XakI3w47Ien thiQfpQjfDilV0X4D38IbfhweJ+S71q3YLQjfLh/9VmeX41CHeHDKZ0q4eTO ycc4wodD/dnulnUd2vDhlF7cL+n+6WMd4cPh+w2vOr/WOEf4cEr3aTp8oc94 R/hwSg//ue/oOWjDh8P4emH7TJjgCB9O6UITmg+qPNERPhzej9pXfbwnOcKH w3hZ0e74CWjDh1N67gf/JaMnO8KHw3y53FlcboojfDis39nTHPGa6ggfDt/3 j26xjkIbPhz2x0NUnxHTHOHDYf3NfdsuM90RPhy+/6F/d6kZjvDhlA551nva YWjDh8N+/kb5ycNnOsKHw37jfN9NgbMc4cMpvbCsz1cV5ggfDvNLRKLmR6AN H07ppwvGvx0x2xE+nNL3BgxaUnaOI3w4zC8X3vWz5zrCh8N8kPxVr+PQhg+H 7+d215mh8xzhw+H7nj3udsX5jvDhsB7e0GVjLXCED6f0ndSzLp+BNnw4PK+v 00dNXOgIHw7r+3PdtMYiR/hwSi/pv7hhgsWO8OGw3pfc2/8KtOHDKf324JyD M5c4wodTesBkHdBgqSN8OLzPRbft9l3mCB8O+6t6f7vcgzZ8ONTv3TNUXLzc ET4c1sMMOcq3WuEIHw7j10rTPtNKR/hw2G+vjL75FbThw+H5r7qZav0qR/hw Sj9ZuH5jt9WO8OHw92cd3TZ/uCN8OKX9ngYHfoc2fDilh3RuUmbvGkf4cPi+ 2rRrP3StI3w4/H6dp2wru84RPpzSdbLez+C93hE+nNL+xevvPgdt+HBKp6yq ek/b4AgfDs8j+vO69Tc6wodT+kUM70YpNznCh1O638/uIx9BGz6c0ntnZr66 crMjfDiltwzNXanTFkf4cEqfaz/9SZ6tjvDhsN+MXn/ZN2jDh8N8+23YmH3b HOHDKV03ut/0ERGO8OGw/l/IcqTSdkf4cFgv/LYkj7/DET6c0vnn7pt+Hdrw 4bAft2vnX7DTET6c0juT9vnZapcjfDilf4zN/Tzbbkf4cEoHpBzz7QO04cMp fXf8iJy79jjCh1M60Zys44fudYQPh/XeHha34j5H+HCYT6dPifDZ7wgfDutB zGYjbkAbPhyeZ9ZPfRYdcIQPh/3z/jpT2h10hA+H+WRK6IVchxzhwyndqv3M /N+hDR8O4y/JyAMHDzvCh8Pv37JRt7FHHOHDYf+XOk2F2kcd4cMpndb3Vhm/ Y47w4TAfZZ7c9im04cNhvfStuHH9cUf4cHgex2Ol7nvCET4c6nuv+1tKnXSE D/dvfjzZOdYpR/hw2A9MuVT9KrThw2H8zogWtPC0I3w41GdTGo4IPuMIHw77 p9bPr+c96wgfDn/+3bqaf6ANH07pvgm2vT9xzhE+HObn9WrHtPOO8OHwPq9a tKzpBUf4cEp/ezZ1e5aLjvDhUK9Vf/juE7Thw6G+OzO1xoFLjvDhlE5fbv21 cZcd4cOhPl1dZHjQFUf4cEr/97hEvXRXHeHDYX59dLD6W2jDh1N63qxTXXZf c4QPp3SaT/9FjL7uCB8O/z4yNF2dG47w4ZS2elTZnuamI3w4rIdDNnV7A234 cHjf4uyvteuWI3w4pWfFH9Bw9G1H+HBY78e8Da1zxxE+HOaPrmnu+d91hA+n 9JtjiRu+hTZ8OKXVuGu/9txzhA+H8bIv+NjY+47w4ZQ+0epaRP0HjvDhUI8N TXcu40NH+HD4/f3qx/4MbfhwSi8q2r/b4UeO8OHw97+c9nvKY0f4cPjvc67e 2OyJI3w4PA/fQ2NzPnWED6d0+V1Px/2BNnw4fN9+vlvPPnOED4f3sVawmv/c ET4c6oEu1/t1fOEIHw7rRWjHpMVeOsKHw++/KeedWK8c4cNhPrMyn7gNbfhw Sk8Ia3x7TaQjfDiMpzFXEg947QgfTukEH2f2qfLGET4c3q+P4dFSRjnCh1N6 cnjSTW+gDR8O31/hJ6H73jrCh8N+/GDS0EnvHOHDYb8UvHN9s/eO8OHw99e9 8Cv3B0f4cEoXX9eyu/roCB9O6YtzQuJdhTZ8OKWXVvC7suKTI3w41IePqx/o +9kRPhzqjzC/K5W+OMKHw34/bEy8lF8d4cMpvSfhgu5voQ0fTuk4JZr/PvjN ET6c0rsq39ow/bsjfDjUd919xrb94QgfDvNhpPf4Ij8d4cOh3nt7YVucX47w 4VAv7Ax2HkIbPhz2HyPvDNn62xE+nNLu9FxpQ/84wofDep2uU2Sjv47w4ZTW vWffyRnNFT4c5rvzez6r6K7w4ZTu1PNegRvQhg+H/d0ar0VrY7jCh1N6xt7C uYcqV/hw+Dyfhr6qa7nCh1O6ytynp7N6ucKHw/iO1vHqX2jDh8P73s3PuWq7 wofDeNF/moU7rvDhUE/tT/Z4sOsKHw7vX+keE+rGdIUPh/o/deJm2bxd4cMp nXidV6PosVzhw2E8l6ky6Dq04cP9u496d3JdbFf4cFj//34rPiKOK3w4pX3v drrVMK4rfDiloxeptzB3PFf4cEqf7rNzvOvjCh8O4+P7giX3oQ0fDu9r+rgP I+K7wodTuth/cStMTOAKHw7zX/yV11sndIUPh/3rivuTiidyhQ+H/Vno/q6J E7vCh1N6cMZqIW+gDR9O6RFRU9ceTeIKH07pMzVnOAuSusKHw/M61Hhc72Su 8OGUDox4V7B6clf4cP/60erHyZzCFT4c6vffc2NF93WFD4fPW/pQnlvQhg+H 5xd5adgWP1f4cErH73P15/iUrvDhMB5bXJzfJpUrfDjUfznOtdOpXeHDKX2y yeXGKdK4wofD+9fjRb9P0IYPp3T450QHzvm7wofD/r1Ds5yr07rCh0N92PTS 8eHpXOHDYb6v331M0/Su8OEwHp6X71k4gyt8OKVfhTUMTZTRFT4c1tvfm46+ hTZ8OOw/V9QNOJ3JFT4c6r1MVfesyOwKHw71R9JFvYZlcYUPh/UnVr36TbO6 wodDfTW/d6si2Vzhw2E9aRdzTpIAV/hw+H3cJN8/QBs+HNZbv2VDz2d3hQ+H ej1wd961OVzhw2H/k7plvDE5XeHDYf9fZ2miNrlc4cMp/XL08MDA3K7w4ZS+ 1CzWvDR5XOHDYf0MLZ3qD7Thw2G+WJXr1O28rvDhUL91ubtwZz5X+HB438bU WDgrvyt8OPy+q6ac6FXAFT4c5seBq3zrFHSFD6f0593zwvIUcoUPh/1Oit4l 4xd2hQ+H+a16MZ930IYPh/kv8Vfv80Vc4cPh82RYn3N9UVf4cPj3JYIHTSjm Ch9O6Zwpc33tWNwVPpzSuYd7z6lSwhU+nNL980RrG1DSFT6c0pnfJmsaW7vC h8N8PLjx4NfQhg+ndJHwS6fOlHKFD4f1s/Bwva60K3w41Cffez2YEOgKH07p 1Ns3h3cu4wofTulHutTC6mVd4cOhHm+XZV+ucq7w4ZSe9re7k6C8K3w4PJ/b Gfp/hDZ8OLz/lysmv1rBFT6c0jX2P3sYUdEVPhzGU1/ralglV/hwSne8E/4h pLIrfDjUP8cfFmlSxRU+HMan76Z1Jau6wofDfL4jTeW01Vzhw+H5Di2U0Ku6 K3w4pQ83iWa/gDZ8OPz9eYekO13DFT6c0jci93dYX9MVPpzSPt2P35tSyxU+ HPaXmxcM6FXbFT6c0s3mVy3boI4rfDil3/nfKVS8rit8ODzvvLWC/Ou5wofD fHh0+yKvIFf4cNDnEyV+BW34cHj/Knbbeq6+K3w4pTNlvzpoSwNX+HCoP3pX 6BnW0BU+nNJN01+ePrCRK3w4pTfnH/igRWNX+HDYT6ytFlShiSt8OIzH8dW/ Z2/qCh8OP+/26GMJ/3OFD6f0gkV/932HNnw4pQc93ffofjNX+HBKd9t2Nvex 5q7w4ZTenTLf2rUtXOHDYb7L/qPmtJau8OGUjvclU7qQVq7w4fB9jT2aunlr V/hw2F/8vVW+QhtX+HB4/h26zs3Z1hU+nNI/X0xIkbSdK3w4rGdTih79A234 cErHHDZ07rNgV/hw+D5vtp1/rr0rfDjs33Z8ORXRwRU+HObLUgXSL+zoCh8O 60NYjtWjO7nCh8Pzevq8QdfOrvDhUN9Vb1+gQRdX+HCof2LsK1G6qyt8OKVH Z4nsnq2bK3w4jMeP3y8l6u4KHw714+QPTf9AGz4c5u+8d5O86OEKHw7ric+h Hxd7usKHw3zYZLX3nl6u8OGwntWaW25Fb1f4cErPybpo/eQ+rvDhMN/7Hyjd v68rfDis/72UatPPFT4c9ittu7+tEeIKHw7vT6HEbrH+rvDh8L5m/1Ql0wBX +HD4+ROS7ksw0BU+nNIrFoxu9Afa8OGUXre2SoZXg1zhw6HeUV18rw12hQ+H 5/3+S/FDQ1zhw+H9PPZ6/PqhrvDhlPa6Wt+dO8wVPpzSY7oFbhw93BU+nNIl Pmwd0XOEK3w4PO8N20Y2H+kKHw6fR1XbUm2UK3w4pdNVHhWn2GhX+HBKt37S ZnqWUFf4cEo/z/mtfNIxrvDhlM4+uXRmr7Gu8OGUPhZcLf9HaMOHU7pquvRd Ho5zhQ+H/X6GM1fPj3eFD4fnd6ta8L4JrvDh8P1t3Jpl3URX+HD4fhPZSedN coUPp/TQvpVzj5vsCh8Oz7f6hL4hU1zhw+F9jXPldfBUV/hw+PxZM09sMM0V Phzq49RTG1ec7gofDu972xT1C89whQ+H32fwySFZZrrCh8P89GzlteSzXOHD 4X1Iva+Bd5grfDj8/esSef+ENnw41NeJtz6PnO0KH07pU/eWfbgzxxU+HD7v 9LdZz811hQ+ndJKD8ybvn+cKH07pmR+3pts03xU+HOaD3frJkgWu8OEwH62p cGn6Qlf4cHjeQVffjFrkCh9O6cb13hbot9gVPhzqo5IL13VY4gofTukCG97U bLrUFT6c0tf143Q1l7nCh1N6+7TQdGWWu8KHQ31S4VmNgitc4cNhf6e81mZd 6QofDvVouzf5Uq1yhQ+ndKnUqyLjr3aFD6f0xovFL3iFu8KHU7pQtu2PvkMb PpzSS276pYta4wof7t/5Sp8pj9a6wofDfPXlfPbr61zhwymd/0yOb6fXu8KH Uzry0Lx3Bza4wofD+J2WNmnERlf4cEon/H6iw5pNrvDhlI67MSxq0WZX+HBK z+4zZ+HMLa7w4ZR+7HN90PitrvDhsJ8rGTR+2DZX+HBKlz6R7kTfCFf4cJif e5TN02W7K3w4pWPHOnqq9Q5X+HD4fhqumdJ4pyt8OPw+uaKPrr3LFT4c1vum 58Mr7XaFD4d6cmuq36X2uMKHQ70W89vAwntd4cOhnsvXKnvufa7w4ZR+G7tj rCz7XeHDKX20S7Jk/gdc4cNhv1Oke+3kB13hwyn9p/KwvfEPucKHw3o6umY9 78Ou8OEw/i+8SKmOuMKHw5+PUzPRL2jDh8PPzzSt8OejrvDhMH+4OyZEHXOF D4f6d+EJnxfHXeHDod66efbQwxOu8OGULhd+Yentk67w4TAfWLe2XD3lCh8O z/fehw/nT7vCh1M6Ta70zU+dQX0VkuLZHeizZ/79z9X/B38tKr0= "]]}, Annotation[#, "Charting`Private`Tag#6"]& ], TagBox[{ Hue[0.08640786499873876, 0.6, 0.6], Directive[ PointSize[ NCache[ Rational[1, 360], 0.002777777777777778]], RGBColor[0.363898, 0.618501, 0.782349], AbsoluteThickness[2]], LineBox[CompressedData[" 1:eJws3HlYTWvcxvHKXmttTcqQoRCRqUmhgXhSGUpCiSQUoaTQIBIakTRQ5ogG okIUKSUJCRlCQoYMCUmKJjn3eZ79/vNen8sZHNVvr/Ve3/ce4uo9z01GSkrq oaKU1P//+/69//9HTLb8nrPFP0tE+r294lEOnxud3/m/jYdrfjSBP0sFe5yF RSOf+5wpFxP159Oq3sCbNctUBsALM+Wn9T4nIp1L2u7vuismcaGPL86A5yq5 HWorE5Myx4NDguDkTd03ucMyektiLsBbq2s9X9wRExN+2N+P8KMNP31nwj6v vngMOC8ijSG6cXm3xeRs9rmq2XCs9ZHiUfCHnX7TQuEyBX3+8C0xUVs68dJl uI/czyWy8Pzx0kO/wfPCn5ZvLhWTPXK3Y9QviMj1wlezvt4Uk1vvov7aw9Lt 3d47wf8uz1uzC+63ecbueyViYhjd78U12DPk1AxTeN2KmmlN8C2HQQOybojJ aZOUS5rZIjJn4pl/g+B3Sh5DneAE3xltMcVi0v+zbmwMHDr9Ny8Nz7vW8rcE dm87P3LDdTGJ3Je/phVuq/BbUlskJiXuwS+0LoqIhfLU0/Zwx5Tp013ga916 8bcKxWScikJOAmzS8HGjIez57fHQu/CPvlf+nr4mJqk3DsZ2wT53Ig4MgF8f XNKlfwl//3Rby6gCMVHxHua5CtasURS68sVktmX9iyPwqsobr7zhHarnpz+E D/qsvvXuqpgU/fTLEeWIiAH3t8QObr09UcMY7v0k6GlpnpjoHZOOWwv7jKhr N4TdfW93nYC/zjIed+aKmJy02uP5DN4Y7RWsBler21XL5orIBsPw99GXxaTX n34zpsAJ+zYvkIat79fk+MAdDdZvfXLFJCw5ReM0PHD/7y2fcsSkYJNH3Cv4 6dON2o5wi63eP6XLIuLUce9n+SUx0db87WkJT7f/VTYZXtmZX70JjtGpy7lw UUyOPQ6ekQVHVZ3OGQY/Pz099z3cmKRfdiBbTHpsUxjW94qIPH4W0igLz5j/ JM4aTi7bP2brBTHZPubQv23whLI1m3+eF5M86aVrL8H5w/+9WgH/fD7sZR18 XXe2XdU5MRmdVT9jYJ6IjDNyeG0Nu4adz50Lu8T2DizKEpMji/yHRcA/d0Vo GcCVepP2XoW/+6f/TMsUE3lBRuoHfDV9890BsOXr22s1roqImt+f3OgMMQm6 uOflAnic1sDLMnDuLruZUXDo0C93/c+KScPS/pevwx/OLmyqPyMmIya8GdYC x6u5ay+Fl8qn7h2VLyIjy/pueZIuJgffe0gtgQ/wrjXT4YdX9Lz2wgajLe0L TotJ95jfL2/BGbsKX+vBZm4FMztgxcDyzamnxGTzxJDLugUiUmLvPmYAnK08 Y/gKOHZtwo/oNDH5+llh30H4sJrN7W6wRuETqfvw0rw92QGpYrI4/pCX9DV8 vx6xv/A9RUziPZa+Gg/Xqx4vcYXvk+FWHnDQXo8vz5PFhOv79fIxeNXCS0Nt 4Mnfzw9/Ajff2uR946SYbCzx3ycUisgDwysVhvC5Q5OkJ8EdorXmmSfEpM5b xnsd/HJnwt2hsPq0O69SYK1Bum4Hk8TEUS3a6gXMqRv2UoTjmuyuKBThr/9y pjL0uJjcvdNfcyoc9HxHetsx3LPjb/b5w30ty+O84Yl+qdJnYe2YDXs+JuKe Wa/xfgOf7Bl41AnOGDL2da/rInJB633ho6O4Z39+W82Am0xSm6fDAx8UXNkC LzhSbFp4BPcsJUTzAqydMe7wODh684z4j7DqvY7uZw/jns1RlBlQLCIai3rv GQL/06z0ng0n5wRqHDyEe/b30OsQeM5k3fuK8LonS60vw6b2WpHhB8UkPX14 3le4csG6RZ0HcM+2fdVUv4H/3vRWUx94gMOFeHt4/dkb4+r3455pbZTZBSsX lk92gXfLmK67Bu8xV15clYB7ViVT8xPueSw2yhbuzLpjrVkiIiP0pj+8FY97 Fh6dtwjOWKw/YjK81sl+RAxcHWEbl7MP92zsgIQS2KLnUUVtuEZ4K9MKP3Pt czxlL+5ZTeo6rZu4B6+uTFWDbS+tqVkGv/0Q2rYvDvcscuysBPj7G58SOfj6 sj95ZbCNQURSaCzu2YRrI7rgdIsrsR0xYjJWITRBvxSfB5uFeB/YvXZGt1Xw eeP1Z75G457lKa4/Aq+ub3qyHK6OqaypgMf/2qX0ag/u2crDs0S3RGRTvsEy e3jWpGVXjeAfZ77fuBeFe9ZTc+Ra+OyoHCNL+Frd14QTcP+kHcXXduOeFV7o 9gzu9Hd1ngDrJGxcL3tbRLz6msufi8Q9W2P6ZjJcW6/5YAR83KybjQ+s6SSX nLQL96xv2dVT8MLH3yP7w0oN0SNfwU1Xy8P37sQ9u2m/X+mOiNzednKfHBx8 eIDIEv672/tS2A7cs3Vv12+Ce1nr1f2NEJOmaWlvMuF3I9/rbIRHD/S0eQ/H x4XsbAwXk+W/xuarlInIuZ+KLe7wkbI/I61hxdww39ow3LPj1/Zvg99bv+Od YXn/UNEl+KL60Ixnobhns2ZuqINdTlqsmAMHDe3xVu2uiKhPmaZ7NwT3rLXS Zi68xW2YggX848Hh/HB4Qdirv9eCcc9Sl426Cn+R9ZQ2gpcFah5ogItWP+yb vR33bO43kUa5iBQqCGZa8KMR2RsWwIM9FILStuGedW18uxve0PC2XB2eWmk6 +zp8RG6b9pGtuGdnuhU0w8/1P57oA1/cXjZq1D0RyX2qNCo2CPfMIeaAM6y2 8t8NWXiY9nxuLzzNIcs7fAvuWTdVn1vwjX6qulJwwou3b9vhAHVz6cBA3LNz abN17+MevNX41LJZTPgIz4Ll8IN7V1+vgycv1h99EH63kKv7ugn3TL/1wD24 T5sUtwo+Jy7kpB+IyJ8hZ8e9D8A9qwn1GQ+7z5De6AwPyZn5zh1Ofid1r2oj 7tnuHrbHYN3lpwzs4b0uTwseww1TmzIr/HHPDI+MFirw9f9TY2INd1N0OTgR HvHbo/qWH+7ZB01+HSy6vC9qKux79ZtPCvzqvMPcQl/cs9jsd1WwvtOFkSbw x5UBtgoPReSN9omeuT64Z6aTr5nB8ic0eujDDr1EY/xhE+0Jg7I24J59KTt4 Bp5o/WzKaPh2UQz/Bh7vK+2bth73LGG+b69H+PMaknN1KGzkqfp+Omxzv6HX 8XW4Z1Pf2W6BHX6e3aYKp/c7de08PFZc//eAN+5Zg+eYj3ByVFp0b3hAqf6h /o9FpLStZmycF+7ZkVZ+NixTHvtZAd69vtA3BO6/Je9c5FoxuTk97H0uPGCX Q6QAdw60mvMVdvdy2xjmKSbjm3sUDn4iIgWna/2l4bV3n46xh1VzHuzcukZM 0pKOHNoJv1UaltnhgXvm7yJcg68Yv6sNgPvajPD7CZ/M7Kb92x33TOP7++GV uB/1O3f6wDvbsucsgqeu8/rduBr3rCKgMBqOKbjg7wW3pU7WKoHVbOd0/7YK 92yL6PAfOOTU9Cx32GPeXUHrqYicsUxw+7wS92xkrN8y+GH6BF03+GXX/Np4 eJv9KLlaN9yzp6pzy+ADtzzalsGzzr4r/AtbBre21azAPQs+paX/TERk+Yfy zvC1BWsPr4SvPGsY+3K5mPzWNhAfgdf5zXN3hHVEbX4VcNqK1uznrmKyqrqw tttz/DyOqFF0gI+fD5trBH+fIh1U6SImVRFWRZ5wgP7Sv/NgJWcl7ROwb0hL zKNlYjLT4Nnhp3DdxeJxc+Dg7kfFslUiMsa6+OuDpWJy9Y2L/2T4w72fl2zg ppwRHzbAsoVzYu8tEZMxUd/nnvr/15NfBlnDy10vFr38/9dFsUF3ncXkqNEm baUXIrJ8xZqYmXCl4pQjFrCm9ZqLdxaLicJHUfdN8MvJe75Mhy3z7/pnwgtu PRh720lMtsbFfngHF6/WjpoG565ymKdSLSLRmWmtpYtwz0zVrlvB4WpGGy3h Eb3fa2+D80zfCKWOuGf1p45chGMOHTpjAR+6vrZ73f+/fmXF0psLcc/2G2xU e4mfn2GTNS1g2bVtH+bArm4a/0oW4J6ZF80Lhx9zPevN4cD+4dfz4IAY4XOJ A+7ZDyudBnhflPRvc/hbqdLRoa9wz3f8Vbk5H/fs6LPuC+A0ubaZFrDzhqMb d8PJyT+jb9rjns1w/VgEq7388NECfjBopF0z/ML04exSO9yzlu/XR77GfVlw ocwSnlJ+UccZvpYT7nBrHu7ZiU1H4+DWWquWafD5jVNkb8FHvbtSb8/FPbPh Atr///WPiatnwEOGlX/UqRGR1EpN07I5uGftsXbL4aiy/RpW8N6HDsUH4Np5 X1XLbcWkPE1N9x6s/W+I5iy4W9D7o1JvRGSSs9HU+7PFZJLdadnxsE7nmHWz Yd9RXgHusPea9nMVNmKS+c/gUyKcZ3JCei788Wmb3WO4Z/tAt8ezxGRQRlEx /1ZE7ht7VdvBDiHhuhPh3ZExLk+txSRmoXWiN2wctK3dAb6toyyXAvdMnpha ZSUmUtzzgCo4cU+xyyLY6OXRT/LvRCTrgaLeq5lisv6Cq70Z7NaqrrQETt8x 8oYfrJvYIv12hpi8d27QPQOX2kZyrvCAcZcSa2Cd5FcDPkwXEzvZzXK93uP9 ZHS92Up499spm6bDcpvPb66bhnuWy30OhMXDtUs94M6ocvvz8Jci5yHfLXHP lsfd+ACPfTMlxhv2Ml6g178Wz2t9Hyk2WeCe9Rh4zAbe2KWY5Au/+fheLgRu Gfln6h9z3LOC05ty4WqtHX82wXP2en2uhzWSCq51TsU9Wz1u/uAPeF7un5Cw DS6e3H7DDrbSUdwmA7f1vq63E070H7453ExM9L+GHyuATXZVRYhhj2Jr+Z/w /r/DUncTMUk+oLx5+Ed8nq8RP1WEX659/tkRfumxXWXvFDHpbZE4PxrWjI90 7wPPGrC85Abcsm3Yg4OTxSS8ceTYP/CE29YWavC1Ww3HxnzCferWVX7cFPfs 6CX5ZfDY+0ZuGrCOz+bN8bBxUVuPU5Nwz2aSujuwjc/ke6Ph44N5h79wRajo cNZE3LOW8pKxn0XEY/fMTfqw8r24sSvh3sPlPHJNcM9OLjh+GJb7Ns3TBA4J GKhQAb8MbN9WaIx7Nrt2c7c6fL6t00idCv8all5nCB9xK3p5ywj3rMPLwRNW bi3XsIZXPBp3Mwl2vzktqMIQ9+xU+9incOIq7To7+GnQ9ePdv+B9aWvQiqoJ uGf2EQqT4bZT45oWw9NGzwrcAEdsnxP3bjzumVTPL2lwftoDs5Xw5WfPHV7C 0nkZ3b6Owz3LSLzZo15EFBzqnnnDI0OX61vA1Wrb8psNcM8cRyUFwOcyvC5s gg/p/lDIhPulXrrSpY97xuUEvoN/pM5+FArLvtr8pc9XEbGzNekQw+bZZIEV nGnmNyF6LO7ZTr50K5w18G9IL/jSknv6F+G5YRVvD+rhno3bm/QZfqFSbzsI Hi63UFHtGz7v/K0eJuvinr0buGUOLDutwWUUvP9y7Zcw+KTmE9E5HdyzPekL 8uCuq7+vjIOFFd6l3+E7qQ5br2rjnpmMNxj6Hd8/uxrtCRyg1JHkABfL3ph0 Swv37NN1xd3whfI742fBXwoithTBMetkyOMxuGf7ZtX/gtclejothBe591w4 sgF/Pr9FO2tG455NqSpdDP9QLytdAZf3OWYQB6sW5/b+Ogr37NvyE6Xw8i3l vuvhSTdG9WiHp7aKPv0ZiXt28McWnR/4+axetnornOmVU+8Ky5e96hDBnywC Fx6AZ3v4J+0egXumanarHK5cMcahJ7zgJz9OqlFENi9tUzukiXt2+96JcfBK 6ZrmwfCdxL093GGppmev04bjnvkuDEqEO6vePdeGja0GfX0Ez13S+f7SMNwz 9Q8L+Z8iMnn0sH8T4TO/02+ZwDM/OmiVaOCe3fMe5/3/rxvt9bCCVZPHn0yG de89yXs0FPdsU0ePKtjXqv8ARzjKtjhIvgnfD4uX7X47BPds+I6vBC7KSFNY Df/tmOXoB1d++JL0Qx337HHP2+nw0nMjLDfCXqerxtXAfS87t3cNxj3beuxk z1/4vEnbdT0CfmO/Qmk6PH10+gFFuN+Y0VsD4chvedv2D8I9k278eg7eeygv YBC863mO4wd4/evUkLSBuGeZgbf7NYtI8IotiTpwe6jZeBvY9aVJWa4a7tki ITkYbm2o4abAa/TuK+XCnrNW2t1WxT3j922th3VOPLhgC796tfDboBYRaTzc Z0jVANyzi4MW2cFZn41OLINtdn24vQNOGT9B/0t/3LOlZ8YXwA4GcpXr4cLx 65Ib4aiYnIj2frhnchOUh//Gz1ebvlUorPu+Y6sj3Dk4eJA8vOpK8bc98KCL id0S+opJUvSORTfgfa4RbQPhqhU2d37DgTVGUqdUcM8m9pow5g/u4fPsvnrw TOUXyUth/78/p+T1wT37fEw5Hh4s0xwwFc6/tmLbHXj5/twb5b1xz/aN/t4J X1ljOHA+rOXRuGhsK96/DHx31vTCPSO5d9zggiQP0Wo4UWXLhMNw+op+cT97 4p59M0t5AGvoB+oEwoolQs9ubXj/zY99JYKnHbq/zRAemuNwJFpZTLZ57/u+ BhY9uuvRD75s6eiUBI8pqbc6qSQmjaqDyyphrymXJmrBI5s+TOjejufNtmGm uT3ExOXOmRTT9v+/X0xsCXzo2LqeG2DTjqb1dxXF5LHvhO1p8LGz1qn2sKx1 5/dq2Gzt1C81CrhnQ2449ejA909Lpak7HPhnR5k5PLldKvmXPO7ZfRvDANhw 7M1+W+Hvyb1SM+Dzc9SOi+Hhm1/0fAcP7iFM2CcnJkvmHN/ep1NEpmiEvB4I 79d0a5gJy1nsTjgtKyYVnaMXb4VvjFRfYgALTxrLsuFPOycbFnYXE5Kea/gZ Nlb7oD4TDti2JVX1L/76w4qqlWIxuTB/aq85cHlB/vCl8Jcx4uAw+JXJF1Iv iMlQmQcNV+DS+/GefvCiqn2Lv8P7dApOS8H7shzvDunC+4SKc8tuHvcsbLCR A7xqit+8vrDI6WNqJPzUVeb6SQ73bOzZXkVwu4nMZB3YT1gf/AvWCdlwL0+E e/Z6wo8R//B582vOGkv408XOxYvh9TOODHjUDfcs8sbdWHizqW31YnjBsp1G pXDEHo8zdTJiEjthdlobbNhcH+kL35Hv3VtHiiPe2g8CpWDp2hfBrvDcFuWg KGncs7zjP/bDU8WXovvBG2LcnMvhuqHZ51OkcM/cxpT/g7VkZGv14NqJP43G SXNk3PK84df+CUS15+W01bBHt8KAmbB93ZbeifCmpD6vnnYJJKpwasgjeFbr NVtXuDRe3MjJcESx7NKThr8C+evxwNkE1nr0Z1UgPMEsvtwLtqsIkxfDXn0X GSfDG0Ici+M7BXLq++BTz+HcdJ+IIfCbko+95btxJEb0yCmrQyD9Dp8NIXDG PG+zifCcdesbfeG/drMM77QLZNc0wyXp8IU7bqbz4WK1v+WvYeP1eXbv2wTS 3nTDuKeIIxaKlpu9YYOynaemwTeX8Rc6WwWy5vjsPoHwl1Edf3bBKX69Q8/B GmOG2PaFX1lXN9bCQzT9c1P+CKTP0KQl/TiOPH31R1sftml1uzcL9lJOySn6 LZCIB2NMgmGniAAbG7gw5eepHNi6a0NLdYtA/my+3Kce1pkUl7ka1p0bFDqI 54het0d+v5sFsnqE+c95cLGK3uwwOOmveOkOeLdJxoSe8IsnD+7lw0H65rpJ vwSifCbepPH/v/5Gk6EObLV90elhAnzuypyCJoGEOKirOMKjCvdusoLztT6F 7oHfZG/NrvopkF8yGT+LYQW7zR0rYa0X65f+hvutCLVvaRSI2znD+6PFHEk7 e+BaKJwY/tdkKXz0x6UJPeFnTiWn98EDf1cVJf0QiKL+LpU7cGS4tKMuPF1s G9YJh67QkilsEMi2mt5Net058tlxQf4s+Mql6qVu8FOt7WEvvwukMTLp/iE4 LSXF2QMe5bJy4gP4984b09q+CcTFUCtdRpYjiSeeT9kJH1ZoUjGEL+S+m9EX flx7OWwNvCO2xiXtq0DkrgY1HYez/5RHjofNY82XVcLdck6V3KwXyJaV3R+I 5TiyM85b3h6+NKlioikc4zDErfaLQL73TEhfD5+8f/X+Bnj4l0V90/7/668b T5OBlxSph1fDVm1HHsTVCWR/wqcmRXn8eU99s3IIXLEmY5k5fNpNuseFzwIR T93wYCMcriN1m8Ckn9GkDPjaqhfRDz8JZFPD3/S3cOSryJXL4As3S/r2UeCI 68Kesxs/CqT+8K7wmXBH2lrL7fDQ9ba/gmDL+MOzlGCn6X1csuF13/YvT/og kH0DXz74BH8JXBapB9/7lTRJVZEjDj1arl+vFYjo7soztnCSzzxhLmyapNUv DK7z83d+914gfv5N4VfgmNolJevhrFlXfn2Dx0Z2N5aBPw3d6jKkB/77DH0L 974TyOA284r5cPerR+004AUV3U0j///1N9tbL74VSGxqxZlCuNfGQZkW8J3A hH6/YBVbn/VP3whEep5TxAgljlydEGS5EjYZOaTZCTb/azzqT41ANnR9comF 9TecUtsJn63MqLgJW7iVDO4P157ZYNoG+6Tt1j/zWiBqwUZntZU50sJ12U+E 7Rd09XOFTez77bj3SiB7tG9G7IcbXaruOMOl3SKb78IyUpMG/HgpkK4Xtq7/ 4IR/JHA7POF8n4cGPTkiq//xqzLsHfHSdDXctVrTM7ka92zxibNHYWt/mc5x 8Fv9Vf0fwZzWxiO3XuCeddfewfXiyJbFIVYL4blvmpqN4UnVQ7rXV+Ge5Vxx 9YIVAuyeB8I3dm99eBJuFPfJUYDbXSwmP4c1l604efw57pmRbIZcb3julONj 4TWKD/sTOPVc8tmSZ7hnHxJ2+MIJtjG358Ovrzq1nIYHc1K/Pj/FPYsbsvw1 fCbll/ZmePaqzw+V+3DkuczqAHk4wjRz8jQ4pHnR42OVAinq5ZOxGb45++7E sfCfL0YDzsHfP128VPJEIHrXu3bUwpF7+5g6wKv332zpq8KRFSO+V9Y9FsgJ z8jls+AtgUZbAuEXU+c82g4rubXoK8I9+6tMyYH3Xx3SlvQI9+zHy4wv8I15 +Q8M4NDSEwMG9eXINtH1i7ce4p4dWbVzHtySpn3aEW5er/07Ag5Tlsn4VoF7 NuPX8ny4THVi0TbYbVDeox/wocRn73rCic1bpwzrh6+P9+NeaQ9wz+5aZC6E 56/Wmm8MK56QVd0DK7m+T713H/ds48OdxXDTuCZuGbzdZv/vFrglz9Hv1z3c M43FK0b3xz24q9IcAf9sG/J4CbxkyoiQAfCoh5+n7IOfNu0cnFUuENe0zMzb cGyh8T0z+PAWH9VOOH2L4c6ndwXyZJ7xLr0BHFkvbLdzh+VG/fu9AvYzVtb5 WyYQi383VxyCA7/X9Y2DtzyNfHwfDu0SKQ+Hc87OITKqHCmdvrx/3h3cs2CV rAlwTor0WBtYc+Er1TVwZ+PrBe9u457pnNx1HN4u/r3HDz4gWv3nCbz09vQn 3eGKam03sRq+H7s/GnHsFu7ZhV+PJ8ElGTG79WGyI4+sh09GBXfdKsU9c96W lQpHR6Rsd4KzDSzVqv//6zf+Vm68iXvWXS5ScSBHLpn6ZYfBGm8f/pkK98gd 5Nofdsrd77YRzitsVM8qEUh81OInZ+GH4780TIXvuQ41ewtntHH3nt8QCGdc l9V7EEde1llc8YRNe2SpzYQ13ydflIb9P/pEBsHRN9UL9xfjnuUbt16Arb3z no+BP8f9c/sEVxSvkSq+jnu2uvTJgMH4fj8y3sgBXjh5t5ktLP+697avRbhn veeeC4WvuwlPt8Nl9SoDr8DjVeRMVGDp4leR3+BfDwZmnS3EPTtwslVdnSOF 60zHmsEb1q5eOR+OfbWq5Nk13DNzncpd8NFfh1d4wrX9m80KYZsDlb1lYLXG vHNNsGV6z8oDBQKZf2vbwBFD8PWRszupDe85arnbCc44vm9bSb5Abm2Qa4uB /Wc8XuMId814tPImPLlOftWPqwIxHHygshUudDFbHw57tyyeqj2UI58OrI1U hU+XDz3vAr9ZG5N9IQ/37ETdwP2wcDvly3S4f0DW7rtwS8RZ3ZoruGezfdu6 4E1xJ8J84chhJqsMNPDzfDesTha+0f6vchUcpWLndOKyQDoelk49Ct9zlH1t CBuc2n3+Idxt0+m1D3IF4hk0dxA3DJ8XjmMU3OAUu75RxnCfN7H5HTm4Z6Ne t62FFzU+C9gL95FKXnUSXr2hw2IUPPvZ6qfP4C6rzsHXLwlkR4aOudxwjigv e959AVwU0nx+Cnz/QKRMw0WBtC68OsgXTqjqJRsO6+lujzoNS3dfr64Gu3PT 2l/B73okWV7Mxj17KbdaWZMjppXHNlnB1RcePbWE55iuKXh3Afds5wHzzXCs fjfFTbD1EucLWXDqkRVeSnDoOI3BtfC6ZXtenzovkALZL1F9R+Dz0z3QaQrc /Dar3RrOT9Sqe3ZOINqXfVdvh+U+Hwv1gt32mDy7BF/QfqjNw8eWS1l8gY8v KvyUmIV7ZnzrwsCRHGlzWJU1Hu6hFDV4HqwqXxZ2PxP37NPcPRHwgeXv3N3g 7QV9O67C46dnOf/NwD3b+3r1D7g5SXtZAvxzdfIzjVG4l07O67Xh0VPcLRbC lUsnxpWexT3ro5sdBf87VFrkDB/52jy4GHZqbutsOYN7Vnx1Twv8y/HZjGhY /uD2jlGj8f2UuzBZE7bwmua+BFZo3ipflC6QIAv553vh8/+mhS2AcwY8trgN P7qZJdt4WiANjQeyO+AdupeO74Q1bzur643hiJrWfPMh8NJEjegVcO9TMS15 p3DPfL50HISH7nHJnQc/nHnO/T48rvxO+Nc03DN1v+fSWnj/mV2yPAw2+21i OQHuL7KdMxDedE/qogf84IW7dW4q7tnJW+rH4RnXlOfbwvUBUdFP4C1HLdbW peCe2c7rFLQ5Eu8mFR8MLx7ez2MS/JM3LxsAx3e8fr4OHuYtq3ApWSD3HyVb psKtUfZLbWDutPvFF7CH7eDrn04KZPJW3SGKOhw5m7padzvsb98SPRUetk0n sz9Mezh4XbmX8cUTAuvh4KWbR1TOgmkPB/8OdAj6lCSwHk4X7y/X28Zth2kP B08w6tHRH6Y9HNzwJL7i4nGB9XCwd9jObBuY9nBwiUld8udjAuvh9PD8W3ch ORimPRzcZ2vtBVWY9nCwTsPmBzmJAuvh4Lmj/dtsYdrDwXuGPdGvPyqwHm4s 7ndFzOYwmPZwcILamYeDYNrDwRH/Bo/POyKwHg6u8vhxyg6mPRycNFdlVMNh gfVw+hwZfmrvlZ0w7eHg2iWuDhow7eHgXZ6hMoWHBNbDwe0lvwoWwrSHg20c L4T/OiiwHs4A90v96uJomPZw8G9F+amjYNrDwYH9UsffPCCwHg420w81XArT Hg5eNjdlevt+gfVw4/D1XMOvTIBpDwcr+J3aqwfTHg6+tyL8fnmCwHo4eIbe MZVVMO3hxnPk8P0fa2Vg2sPBigYBTxLjBdbDwRoLxk83hmkPB+/RG15WuU9g PRw8NtfScR1Me7gJHBn5Jv6PHEx7OPjaSaWUU3sF1sPB3q25S8xh2sPBjc/D R7yJE1gPBw8zDuzaDNMezhD//t4JtSow7eHgCS6PnmXHCqyHg1/206maDdMe Di42SP9cHyOwHg6+e4ZwO2DawxnheXxjk54GTHs4uDyuwKMoWmA9HBzWfDTb CaY9HPzhYJy4dY/Aejj4TsBBz3iY9nDGeN+IPlejB9MeDj7wpHLJ/SiB9XDw RHP+uztMezi46rnZLh6mPRw8PSrcIHm3wHo4E3z+OVV8nQLTHg4WmQ3MfhUp sB4OljFaG7EJpj0cPG7StdUqMO3hYK+Zco4Xdwmsh5vIkStO8xfMgWkPN/H/ 55dDy7/vFFgPB+/b/jQoEqY9HKwdJaSNgGkPB3+O1n51c4fAerhJeL4Jt1R3 hWkPB7estdnwL0JgPRz8xsL88VGY9nBwP/FwYgLTHs4Un7c5jfnPwwXWw8F3 rFIs/WDaw8Erbpm+7gnTHg4+qJkfcj5MYD0c3OQ+YMJsmPZwk/H9F+P452uo wHo4eEaC/61dMO3h4IWB3skjYNrDwTlkanRpiMB6OPjDh28Ry2Haw03B89Sq tXukYdrDwTfvFJ84HiywHg72F9eVmMK0h4M7NWt+vdwusB4Ofjjs5NjNMO3h CD5fZfSD+sG0h4OnF+9+lrtNYD0c/Mwl03Q+THs4OOpjfPavrQLr4eAXNmT8 Xpj2cGZ4PziaWaoH0x4O/v64enlFkMB6OHj3r9IeXjDt4WAPqbVl8jDt4eAf Hfdjz24RWA83FZ+XdZ/crGDaw8EbynJmfAkUWA8H65wwMt4J0x4O7u6z1nAE THs42HnqPPNbmwXWw5nj+aLnx8VuMO3h4OufNcJEMO3h4A2l8nnJmwTWw8Hv ziV2TIVpDwc7nq20fh8gsB7OgiP2BefSg2Haw8FBn7X6DIFpDwefH2sVfX2j wHo4uO0412cZTHs4ON7QOf2fv8B6OEv8ef2dbX0cpj0cnNRa1T4Zpj0cHKjd drnGT2A93P8+mRmyFaY93DTcC+fmRYNg2sPBZW7lpNBXYD0cLF2sN24JTHs4 eKz/0PFdPgLr4eBpUcfMj8G0h5vOkcWyyUsnw7SHg6//0d5Vs0FgPRz83cn0 +laY9nDw3skVosEw7eHgnafeORStF1gPN4Mjr49tyF0K0x4OLtfariEF0x4O LnIUH0taJ7AeDp6r013TDKY9HDz74vb8d94C6+FmcuTcT88lITDt4eDEpnJF DZj2cPCGoiP3SrwE1sPBuS7VB1bAtIeDh9SGr+Ng2sNZ4fPG5qhD2lqB9XCw 8VlVq+kw7eHgqbyMdZ2nwHo4WNvdxnEXTHs4+GhNh+9omPZw1hxxWy93rHyN wHo4eLfW5kpPmPZwMFGd1k8Rpj0c/HHGWvdzHgLr4WC54u+358C0h5vFEZ+Y UoMmd4H1cLDs9aaMfTDt4eAfS3wMxsO0h4O9AyxvP1stsB4O5vqvWh0A0x7O Bj8fNs9UBsC0h4PnDI17nL9KYD0c/Dkl4YgzTHs4eOH7d+v/rRRYDzcb7491 PvNPwLSHg/eXzJxmDtMeDr4a4mLx0U1gPRzsaZBnuwOmPRx8r3b26lEw7eFs OTL6pHp0+QqB9XAwF6RVvBamPRwsF7pOWgmmPRysUlI/O3u5wHo4WH/WoXR7 mPZwc/B5p71Z+Y+rwHo4ONN/d8QhmPZwcHfDcvEkmPZw8PqthgdrXATWw8HP Fj8YFwzTHm4ufv7f76nRgGkPB1sP9k24tUxgPRw8atg2R3eY9nDwMenM0fIw 7eHgiDsd4nNLBdbDzePIl13uzXNh2sPBXQ7N35qXCKyHg0eZHW46ANMe7v9f d3TkJsK0h4MnX9QdXuMssB7ODvd4ieq8YJj2cPBXrwFRw2Daw8HFLaOf3F4s sB4OruSsR6yBaQ8Hl18I2KkI0x7OHs//8tm/LzgJrIeD60e2rJ8P0x4OnjaA tLcuElgPBzf+io05CtMeDvYr+ziWwLSHm8+RmKxJ72odBdbDwSMu70vcAdMe Drb/U7dyDEx7ONgx1MS0YqHAejj4jHeEug9MezgHfD4+vKvUF6Y9HPwsn1PM XyCwHg4OtBzfbylMezi4PWSBbjeY9nAL8M/b5WF3ykFgPRzcw9szzBqmPRxc PcPpxo/5Auvh4Hqt8QrxMO3hYKuxrSuMYNrDLcT7pufJslf2Auvh4J7NYycG w7SHg/3epOQNh2kPB6tbtlnctRNYDwfLTNJ+7QXTHs4R9+fl5JBeMO3hYAUT rXFX5gmsh4P/eP9qWgzTHg4+HL+3UBqmPRx8p0g4kDZXYD3cIg6/z7lbrGHa w8GNuzy9GucIrIeDvR0Xrk2AaQ8Hh8X23GQC0x4Orp1+KO6NrcB6OCf8PB+s zw2DaQ8Hax0RfRkF0x4OXub+cUTFbIH1cLCX2m4fX5j2cPC3+7/K+8O0h1vM kSMHBo4tshFYDwe77+OTV8C0h4N9XmYMkYVpDwdLRSpmnpslsB4O3pk3ynI+ THs4Z3x9wzq/tFsLrIeDjfjwI0kw7eFgLcdix2kw7eHg8wfPDftmJbAeDu73 1qYzDqY93BKO1FkdfmsI0x4Ovt+899HrmQLr4eDUtvEVoTDt4WB/v+AXo2Da wy3lyMYwn8aKGQLr4WCxuWxvf5j2cPCV++YWajDt4eCpZoOCb0wXWA8HR189 cHc1THu4ZRzJcshS7wHTHg7+oL8sNGeawHo4ONHzbJMTTHs4eMOQaC8ZmPZw 8Ehv/s9pS4H1cC4cueTTM8oWpj0crG9zXvu3hcB6OPhH/5qXR2Haw8GurYf2 m8O0h4N1hffO9eYC6+Fc8X7qdmlsHEx7ONh8bI+eRjDt4eALkY1dNVMF1sPB JbEOreEw7eHgDtcpXVow7eGW489rSLpSpZnAejj4Rn2cbiBMezhY7+2fRUNh 2sPBYUNe7C0jAuvhYLUKg+frYNrDrcCvd+dH9oNpDwev/2kTXjRFYD0cfPtU 9x8rYdrDwftsDN0UYdrDwT1FTz/nTBZYD+eG77dvb/2dYdrDwQ0jHXtyMO3h 4MTqiVczTAXWw8EnNXZ42cO0h4N7axrrdk4SWA+3EvdENKczGaY9HOz3tuyp NUx7ONjrdUr+r4kC6+HgTwPfZB6BaQ+38v//+5J/hjlMe7hVHJnV4n75q4nA ejj4xOPcB/tg2sPB07c7NU2EaQ8HvxniMPSDscB6uNUcMXyZsiQKpj0cPOOh 5alxMO3h/v/14Yadr4wE1sPB87v8ncNh2sPBg7Z3K9eGaQ/njvfPimqLZ4YC 6+HgbUodd7fCtIeDv6x2dR4B0x4OTvur2FkxQWA9HCzf3JUWANMezgPPX+v1 lgyBaQ8H80dPDLk7XmA9HDz00JyfG2Daw8G/oyfeV4VpDwdfTF6Wc3OcwHq4 Nfh5+HstfS1Mezg4uGTuGRWY9nDwA9UBl4sMBNbDwZu0+zxcDdMeDo4abNai DNMezpMjpv2PaubrC6yHg7+ZDVuxAqY9HDyi+HmmAkx7ODi18FK3y2MF1sPB M13z3JbBtIdbi+fXyton3WHaw8GrJ+nPvqgnsB4ODi05WbkYpj0c3G2vwSoe pj0cfPLhe+68rsB6OC/8809nnXeEaQ8Hd5+asKobTHs4eMjt+NGZOgLr4eD2 ZWfbHGDaw8EjjJ9XSsG0h/PG72eTSsEZbYH1cPAp61Xn7GHaw8EdL25ndWkJ rIeDU2ZPuHoapj3cOnweV55/NA+mPRz8KH58S+cYgfVw8Ln8G8NOwbSHg/f7 OCybC9MeDk783HCqY7TAerj1+O8xj+xIhWkPB8+8oOk0B6Y9HPzb+cat9lEC 6+HgZ75Ok1Nh2sPBz4c0FtvCtIfbgOfPuK1z20cKrIeDqxpE31Ng2sPBe1YF x9vCtIeDn4xomt4+QmA9HOy9eL6QCtMezgc/L/rpj21h2sPBx599TW/XFFgP Bx/wV92TCtMeDj43ZcKWOTDt4eCwpSYbO4YLrIfz5cjbbppb02Daw8GXFv2J nQvTHg5W35txrnOYwHo4eG2VefUpmPZwsOLifCU7mPZwfhxJtla269IQWA8H Nz81P5EO0x4O/j1qboc9THs4+K6/oYsUTHs4+PLX5sdnhwqsh/PnyLgrO+Ys gGkPB7+Ra3ghA9MeDg5T0fTOGiKwHg5WEesoLYJpDwdfVhJd42Daw23E5/ey NL8L6gLr4WD/kb1MnGHaw8HpB2fIdodpDwf3eW/x6dJggfVwcNZ4/sEymPZw AXg/vxlZLA/THg7uef3h9SuDBNbDwYmOz8pXwLSHg5/eOPReCaY93Cb8/rX7 c9cGCqyHg5PK5xm4w7SHg2dUWKztA9MeDr7t8T27WE1gPRwc99BK5AXTHm4z nrcNnFwGwLSHg8+Xqt29pSqwHg6+eXXPZB+Y9nDwCcuMwsEw7eHg2EP+VvcG CKyHC8R9rK9/FwDTHg4+6SGED4dpDwdr2941eNxfYD0cfLh8bMNWmPZwsLj3 pEtjYNrDbeHI9cWfw6v6CayHg8dVj10eDtMeDhYV95+lD9MeDv5tmUje9BVY Dwf/TbxKomDawwXh86TLe5YxTHs4+OuR/OWfVATWw8GRGUci9sG0h4Oz3RRz CEx7OHjUX+Uf3/sIrIfbip+H0ynjjsC0h4Objt0MnwHTHg5O67PufUtvgfVw sKd5qlUyTHs4+M0S18I5MO3htuF55ViqaVcvgfVwsNhk7Z2zMO3h4DurLi9x hGkPB09fGiIlwLSHg38tuJd5qafAerjtHHHbtW+lK0x7ONhlzLPRSjDt4eAn fnvbrykLrIf730m3nq6BaQ8HJ39YV9Afpj1cML4/NsVk3VaS9HBw7EH1DD8l SQ8Hc5uH5mgoSXo4uNVhX9mjHpIeLoQj21ev/7Kth6SHg19+vtpbp4ekh4P9 Fb2sXylKejj4fZ9deyIVJT0c/MZQ9qWRoqSHC+WIQ9YPg88Kkh4OXnjR8GCC gqSHg4cFvxUsFCQ9HDxkXl1Ik7ykh4PfLrPpfkJe0sOFcWRgncIRW3lJDwcX Dh1p1CUn6eHgSuvDbzPkJD0cfOCYa7yTnKSHg70cttnJykl6uHA8P2U1DMyT lfRwcF5t1q9VspIeDr6rV1ipIivp4WDNxwOKS7tLejhYJCq54ttd0sNF4OdZ Jidfo7ukh4NbZX+UPRZLejh4jqN3bbBY0sPBmaPHiceKJT0cPKBgotFbQdLD 7cD7uVWYT4wg6eHgQb3lr04WJD0cfHT+I7kGXtLDwa2zHq9O5CU9HNzDSOHR LF7Sw+3kyGf77RadnKSHg7PfjSo5y0l6OPiumtjGiZP0cHCuRf/3spykh4OH HXQKuSqS9HC7OPJ9/n1tD5Gkh4NVrnl+6C+S9HDwPXmjtLJukh4OXhmm7bOp m6SHi+TIquXW1qO6SXo4OPBLjM4LGUkPB290aFPbJSPp4WCn+nAVYxlJDwfP +2ig+kVa0sPtxvvFDukxh6QlPRzcrPzdcqa0pIeDS282r2mTkvRw8O+3Konp UpIeDg49NfeFo5Skh4vC54FjsrqslKSHgwOMZH2u/uNZDwefCQ976AHTHg6u CFEyVoVpDwfnrs/IKO/iWQ+3B9//8Q5jtsC0h4OfaynkaMG0h4ODgx7MfP2X Zz0cfO/OwS97YNrDwY5zPeInw7SHi8Z/n6OZ1Y9OnvVwcNxwNbkkmPZw8Jw/ rc/mwLSHgzf1fJYpDdMeDg6+eiEmu4NnPVwMvp8NIrcsh2kPB5cVOfv2hmkP B99IGb2xtJ1nPRwsq/kjzB+mPRz8aUd64giY9nCx+HlQXFhc1cazHg62/Nf6 YxdMezhY41jkqIkw7eHgOXpyXt9aedbDwe/bA64lwrSHi8P7nPnjvrYw7eFg 99l9gqRg2sPBS1zJ9wt/eNbDwfk3565eDtMeDl6TP72hN0x7uL14/4hS33br N896ONhwa/WAAJj2cHD7M5/iUTDt4WDH1/UbXrbwrIfbxxHlKlPdPTDt4WBB cc3vyTDt4WDrW+vuNDbzrIeD+82wST0J0x4OfljdFWUP0x4uHs/rt0K38TDt 4eBVc6u3XPnFsx4OfnNTKtwDpj0cHLC65YAaTHu4+P9/vnJzHjTxrIdLwNfH ZWrNdpj2cPCPaQeUDWDaw8FlWy/afvzJsx4O9pubcPAATHs4uFOY+G0mTHu4 /fj++nrSqrORZz0cHGNZfjELpj0cHLQ0e4QLTHs4WD7UIa0XTHs4uG97ju6t Hzzr4Q7g+UixoiQApj0cXCWb5DoGpj0c3Nd4hHxNA896OPhtrev1WJj2cPCb +XO3mcO0hzuI54UXjTN+f+dZDwdz+VMGpsO0h4MXWkzqdIJpDwebFH/4qAjT Hg4eFWRYXfyNZz3cIbzvlei/8IVpDwd3vq18PwKmPRycra72p/orz3o4uE8F rxIN0x4O3mS0b4oZTHu4w/j3pxf5NNfzrIf7316R2adg2sPBMyt/diyCaQ8H DxvZbKsI0x7uCJ7PL8dkFX/hWQ8Hz39wo68fTHs4eF3+7t0jYdrDwTL36rq/ quNZDwc/t6naGwPTHu4ofl6jF2qaw7SHg+e8XnXz92ee9XDw0h2itWdg2sPB O15qqS+BaQ8Hu49881oZpj1cIu5VQf+00k886+HglM/VAZtg2sPBPVrVHbRh 2sPB803rTd995FkPB3/kx+slwLSHO4af55R/WjNh2sPBoW4zxv39wLMeDp5+ WGHaBZj2cPCNvTaubjDt4WCT4/yu/jDt4Y7jfigZXr1fy7MeDpaZ8LolGKY9 HHzO5c/ECTDt4WClD6FR9e951sPBkxSDPx+DaQ+XhJ+Xsd9n2cG0h4NHHL9V IMC0h4M/n5YzLHjHsx4O9k+6mr8Opj0cXPj8kdVwmPZwJ/D8kmT74cVbnvVw 8G8b/Z3RMO3h4OixARPMYdrDwbrHBv/484ZnPRy8/5NmdgZMe7iTHDnrHLXN BaY9HBzsMHuBCkx7ONhu2Brj8hqe9XDwrgHvhm+HaQ8HZ0dlqY2HaQ+XzJHd Dx4NrH/Nsx4ObjWYOeo4THs4uLtyryn2MO3h/v/1PO2l3WHaw6VwZHTogV2F r3jWw8HaxbMLfWDaw8F5d+b+HQnTHg7Objg2reYlz3o4WHPnuMP7YNrDpXJk Vr1S6wyY9nBwhIf+sq5qnvVwsMuSA48vwrSHg+NVJ9u6w7SHg6Vbhz0bBNMe Lg3PDzOtVlW+4FkPB79emSETCdMeDq5NnXl6Ckx7OHi2s/rCliqe9XBwZa1O z7Mw7eFO4fs71ufZMpj2cPCLvG8pKjDt4eCEyweD7j3nWQ8H1731WxYC0x4O dtoTYmME0x7uNN7Xel+zaHjGsx4OPvxAY1oKTHs42LpXztxFMO3h4HoT71VK MO3h4MeJc3bcesqzHi6dI3viF1zYAtMeDi7fGPJRH6Y9HOyRVKHxpZJnPRy8 fpWp53GY9nBwT827hfNh2sOdwfv2eF9VeZj2cHDBD+OQG0941sPBfzP7/wqA aQ8Hz7ir7KUL0x4OTj6m/uvjY571cGc5MjncIuQoTHs42L8qUNUOpj0cXNF0 s7A7THs4uENnkOf1Rzzr4TLw9fgcrrERpj0c7BLQ/kEbpj0c/Gji5vMfHvKs h4O37+kWcQSmPRzcdCfebR5Me7hMfD7N1LLtDtMeDlbwvDP1egXPejg4Yfcq shGmPRx8QiSeoQPTHg7ebXDa8eMDnvVwWfh+8J3mdxSmPRw8cfi7w3Yw24fD ++4J/7uyMNuH48j9aZzoxn1esg/HEYMNu6dvgtk+HD4vg4UEPZjtw3Gk6+HG b5/v8ZJ9OI4cLKq2OQ6zfTiOFJ/RyXOA2T4cR7Y2rtdRhNk+HP7+hpOZpeW8 ZB+OI8dE1ycEwWwfDj8PMbfLxsFsHw6f/z8ur/x2l5fsw+HrGxKjkAKzfTh8 vp2aVegEs304jly89j2gF8z24Tjybth60/IyXrIPh+etSU/lQmG2D4fPl+X9 PpjAbB8O/70dRrea7vCSfTiOTHUdn30GZvtw+P20yZ12hdk+HO7zkPxTA2C2 D8eRW8ZmFx7f5iX7cPh6phy9GQmzfTh8fa6Xv5sKs304joz7eU/ccYuX7MPh 83L/MeOLMNuHw9dXeYrvGpjtw3HE+2bGFQ2Y7cPh/VzpE/+qlJfsw+H+Lfyy JB5m+3Acaey8dH0WzPbhOKLjMl2Lg9k+HD7vPh87ce0mL9mHw+//Z566P8z2 4fD9Xbs/XQdm+3AcaRs0btLnEl6yD4d7IcRWHYfZPhzet6TSty6E2T4cR/55 Bukow2wfDvf3vFxd2Q1esg/HERvdeWdDYLYPx5FLs2wDJsJsHw7vI57Sts3F vGQfDr/f5pW6mTDbh8O9mL61/0qY7cPh877MUmEwzPbh8Pt5ly9bdZ2X7MNx 5GpTjXIczPbh8PtxzRxqBbN9OPx87R9u2g1m+3Acafhl6VJQxEv24Tii9VY+ xg9m+3B4/i4OuKUDs304vD937hDqCnnJPhx+vlqN5p2A2T4c7qdqZNoimO3D 4Xnk3iZRb5jtw3GkaB3vef8aL9mHw/Oit87rCJjtw+H5XK9xAYHZPhxHnvW3 etVWwEv24fB5uM/E4yLM9uE48qHbdem1MNuHw+/vSdVJTZjtw3Gkv0eozdt8 XrIPh3uvWyh9GGb7cPg82r2jyA5m+3B4Pvv0OkIBZvtweP5KL1pw+yov2Yfj SM3EMfrBMNuHw/O4MFhlIsz24Thi5XeoW0seL9mHw/Pv94PtWTDbh8Pz00vV jtUw24fjyJNUdU4DZvtw+HpfSe33+gov2YfD80tg+vgDMNuH48iURaMXz4XZ Phw+zws1o+Rgtg+H99GeiaWll3nJPhy+X4p2i7fDbB8Ozzv6P+1NYLYPh69X ZfmZ5lxesg+He6I8QPYczPbh8DxqX73BHWb7cLivYrmPGjDbh8Pz+6Ezy2py eMk+HO7/+ssfD8JsHw7vg126vnYw24fjyNiMnvKKMNuH48idj86Zdy7xkn04 jgzop7QwFGb7cHi+PDdCfjLM9uFw7/snl7Ve5CX7cPh6F2+PvQizfTiOvOpT tMwLZvtwuPehi01GwWwfDn/+GxcM/JDNS/bh8Pm0JKv7cZjtw3Fk7eml/xxh tg/HkVPF7l29YbYPh8+DfuX8wwu8ZB+OI1tUQ/rthtk+HEeuGe0xmAazfTj8 fNXUL5CG2T4c3l+3HAovOM9L9uFwD4MPFGyE2T4cnsecajv1YbYPx5HczYHT Gs7xkn04jtjOXnIoHWb7cPjnW0a2rIDZPhxHFj36u0gdZvtweP9YdrnsZRYv 2YfD5+3yHLMDMNuHw/OA1e8b82C2D8eRzIgAG0WY7cPh+3OHybuyTF6yD4ef hyKTreEw24fDz3fixmFmMNuHw/P7vh9POjN4yT4cnl96nYi6ArN9OI4MiYmc 7QuzfTh8Xvqf6a8Hs304jnia/vv+9Swv2YfjiJf9jvJTMNuH48h4HbPs5TDb h8P7iemYk4Nhtg+H3/8v8yMvz/CSfTjc75u7Eg/AbB8O939ox2k7mO3D4f0k eP+1HjDbh8M/327Ry/J0XrIPh89LeUuZnTDbh+OIz+D5+hYw24fD+7L0rjVS MNuHw/P4sDeZBad5yT4cns+65rcFwGwfjiN8t28242G2D8eRuWnHz/48xUv2 4TgyyNm7ZxbM9uHw+znqGOIBs304vG9ULe7QhNk+HEeMd2wMqk3jJftwHNk7 8LQ4CWb7cPh8Vv5+dDHM9uHwefTcwqQ/zPbhODL8U+bbp6m8ZB+OI3EXNWP3 wmwfDs+jOZkzbGG2D4evp6uZrDzM9uFwn8e+rbyTwkv24fD+dXDn6XCY7cPh fbKHcfhUmO3DceSMXKPHv2Resg/Hkc1chmMBzPbhOCLvu2buJpjtw3Hk+wOt eRNgtg+H54s9DU6/TvKSfTiO5Iw853UeZvtwuG9910auhdk+HH7/jzXPjYbZ Phz+fB5Xv/p8gpfsw+F5KmZHr1SY7cPhXoaMsXOF2T4cPj+Glx4ZDLN9ODyf /Jj3/VUSL9mHw/ON05Pph2G2D4fPh3cWZxfAbB8O9/Fvat8+MNuH48hpzZao x8d5yT4cRw5V6cnFwmwfDu/PexbstYHZPhxHVheuGioHs304jgz7vDT/zjFe sg+HP+/gyc4RMNuHw/txdxmxBcz24TgS3nY6Xxpm+3AcCbs3NqAokZfsw+Hn seuwaRDM9uE48q17rdxEmO3DcSR1jbi29Sgv2YfjiOHx7iW5MNuHw/OG+sez vjDbh+OIr+ehRH2Y7cNx5HnXsIONR3jJPhxHQuwjjmTBbB8Oz5/1+ac8YbYP xxFF05sFo2G2D4d7czexuu4wL9mHw/1SnC59Cmb7cBwZurNQzw1m+3AcWX5J xl0DZvtw+LxR7nnm3SFesg+H91m1r7+Ow2wfDs/z9lHTlsBsHw4/70bNJ9Rg tg+H51/LIfzLg7xkH44jZ9uVfQ7BbB8Oz6/Pb9YtgNk+HEfeLDJapQKzfTjc w25rGioP8JJ9OI6ozHPaug9m+3AcEUqFvvNgtg+H+//K64oSzPbh8HnbL8a1 Yj8v2YfjiFHbyj7RMNuHw+d1V/PDWTDbh8N9OWOYIAezfTiO2AVqu95N4CX7 cHgf/lVpuAtm+3D4fN6npTIDZvtwHIl5rf+Xh9k+HEduzv30rTSel+zDcWTk BsuPYTDbh8P75fXZn8xhtg+He1so1SgDs304/Lw3OMrc2MdL9uE48vXxwoHB MNuHw+fP9w5CYLYPx5GWYrO1//bykn04jox5PPJkIcz24Tiy5sS5N0Ew24fD 53125XBTmO3DceTprv2+nXG8ZB8O33/pv8rzYbYPh6///voxgTDbh+PIlyeb 4k1gtg+HP8+Px7n2WF6yD4fP3zlO2/Jgtg+H59WDZ6Q3wWwfDp/3U6OijGC2 D8cRyyddg1tjeMk+HEfmV0gVXIbZPhxH5Apil22E2T4c3m8GZSoYwmwfDj+/ W+xLfkfzkn043Dun8OBcmO3D4b/HbPIMf5jtw3Hk8qWgvhNgtg/HkXSTqT9a 9vCSfTiOyC6KrMiB2T4cR1Ycsr/iB7N9OI6s23Y8fTzM9uE40mufe3JLFC/Z h+OIq9OF1ByY7cPhfXap33k/mO3DcWTCiEsl42G2D4fnOWPPNy27eck+HEcG Dz7aLRdm+3C4l0un6vnDbB8O73Mhzm4TYLYPx5GlSt9O/o7kJftweD7f+60u F2b7cPjvi3U23AizfTg8P8WbRhvCbB8On2+au7//2cVL9uE48rrCYv4VmO3D cWTVAPfSAJjtw3EkOOa3qTHM9uHwPnnla2HbTl6yD4fnP/XpM67CbB+OI6Vz hOrNMNuHw/1+Mtp3Isz24fA+YHBepXMHL9mHw73tSCgugNk+HD7fc6t9g2C2 D8cRv4YtepNhtg+H7yfdwOauCF6yD4fnOa7yehHM9uHw/d4enrAdZvtwHOl2 NGaDGcz24fD3+/5YIAOzfTh8viunWJaE85J9ONyXv2cnhsFsH44jDrc4E0uY 7cNxxLT1HOFhtg+H+6uebns7jJfsw+Hn9e6PlTthtg+H5/PwkIiZMNuHw+d3 zdIsWZjtw3Fko0tETXkoL9mHw9cvsVllD8z24fB+o56+YDbM9uE4MjngZFIP mO3DcUTK4M3PhyG8ZB8O729vnK33wmwfDvdbbmCmHcz24f7//2dV7dsHZvtw /3/9Fux6FsxL9uHwfj2iottBmO3DcWRDfXCEI8z24fB+3rZWWRVm+3D4fv4Q l/JqOy/Zh8Pnz8RvU47BbB8O/77owNqlMNuHw/OK5+SYITDbh8Pnz2oD89pt vGQfDu9TSo7/UmC2D4f36z+ZJSthtg/HkT0ZerEjYbYPh7//xpsV9Vt5yT4c Pt/K8swyYLYPh+ddu2uaXjDbh+NIeVNdLz2Y7cNxJM1oYvemIF6yD4d7dDmb vwSzfTj8fErPlveH2T4cRzadlhtgBLN9OHw+kXrd9i28ZB8O71uL6mwKYLYP h+fP3SLfrTDbh8Pnt5vpSQKzfTg83wXGVcnAbB8O98j1n0ppIC/Zh+NIYEa4 8w6Y7cNx5ErD0IyZMNuH48jLgqcy8jDbh+OI1tmjLg8285J9OI5ozPa/Ewuz fTj8fJu4GNrBbB+OI/dEi7P6wGwfjiMLp7ppV23iJftweP7fGXjpMMz24fDv W5No7gyzfTi8L4SUVQ+G2T4cfr5cuza9D+Al+3AcyTphMiQVZvtw+Lx4uuXh Kpjtw+H3l1CyYzTM9uE4st5fYfr3jbxkH44jM5UcFc/DbB/u/+e1lNcbYLYP xxGdsh+XxsNsHw7vmypG8a3+vGQfDs/fAVsC82G2D4f3yx35Hlthtg/HEb2X v1zMYLYPh/d92WEuIpjtw+H575zV6tt+vGQfDs87y1ZujITZPhxHgnL9om1g tg+H90GrjZlKMNuHw9cz173yiS8v2YfDvy/OutsBmO3D4XnPT9VkEcz24fA+ 1/k8YCDM9uE4Elu0reitDy/Zh8PP30JlxRSY7cNxpNJl94pVMNuH48gAv283 RsNsHw7PW1oGoxo28JJ9OPw8aCw5cAFm+3B4/2heo+AHs304/PuNnXYbwWwf Dp830aOVO9fzkn04PC9FVx0rgtk+HEeKKpePC4XZPhxHpv29+2gazPbh8Hmd LL9RFmb7cBwZtWLEsAfreMk+HN4Hq/u/iIPZPhy+PsnvE+bDbB8O923x9kX9 YbYPx5HuST81X3vzkn04fD/Kj+9Igtk+HN5vpsx8vgJm+3B4H3yqlT8SZvtw HDHwrEn75sVL9uE4YnZi8eHzMNuHw/tdz7QEX5jtw3FEd0neQSOY7cNxxHFo QnLnWl6yD4ef37+Guddhtg+Hvz466WEYzPbh8M/3ud80A2b7cBzJsL6mpgCz fTh8PuZ6zX7kyUv24fD8Yfd2RwLM9uFwT4uVyhxhtg/HkU9JXcqDYLYPh8+D uNOu79fwkn04PO/oK+SnwWwfjiMHh49RXQOzfTh8XspKh+rCbB8O79/Be5p+ efCSfTh8fmhVuF+B2T4c7sHZm3VbYLYPh69Hkqe3Gcz24fC8f7b0LwezfTjc d+8H++6685J9ONzr6PCxMTDbh+PI9vQvz+xgtg+HnzfXttB+MNuHw/uK80Wj 16v/a+qsw7LK2rdt7P3sbWHM2D12YGAgKrpEEAQVFURRsVGxFRtbsbu7u5PX 7sYccwzGFrsD87tmr/v6Hd/7zxzn6wQ8sffaa133ebnED4fXq3KWT8vA2g+H 69HifHvag7UfDr9v8cujSoC1Hw7fr5GFm7zt4BI/HF7nwLzldoG1Hw7vc6G9 mQeCtR8O35O4T7+rgbUfDp/TZZfepQRrPxx+7/G1X5xu7xI/nEu9ztzy5SSw 9sO5VFBi+k8NwdoPh+v46qZmNrD2w2Hd8sE7991Il/jh8Ne+u6suB2s/nEs9 unK6bQew9sNhXbe16/SSYO2Hc6lq21edftfOJX44l9oypLvrf2Dth3Opo/vO BA0Caz8crlvpd8ytAdZ+OJcKyFf8lQus/XC4bs90r32urUv8cC61NtP+jdPA 2g/nUodqXM3aGKz9cPhen+49PhdY++Fc6ny9hcaDNi7xw7lUs5jao9eAtR/O pb58Gpi+K1j74fA9b196qQdY++Fcak7vyEpfW7vED4fnltM5bx4Aaz+cS6VN 02DoSLD2w+E56lHKUrXB2g+H7/UPj0duYO2Hc6llP+8su9rKJX44/B5TknWY D9Z+OHwvIhaWawXWfjiXquK2xSoM1n44vL51PR++aOkSPxze52PlTm4Daz8c nrtzrdjaD6z9cPheJhu13Bus/XAudSnHtQUpwdoP51K5s8xaeKaFS/xw+H0W HV05Baz9cPjeNG2+sxFY++Hw+UhqFZ8TrP1w+PkKX3x2P8IlfjiXqjxhVfq1 YO2Hw+f86oOq3cDaD4fXZ3Nsz/Jg7YfDOv34xE3fmrvED4fP8dHPbw+DtR/O pZqEHa0yBqz9cC51rsTrSXXB2g/nUvfe9H/6B1j74bDuDW4dcKuZS/xwLuX7 ddXWpWDth/svt+CXrwNY++HwPb1VbY47WPvh8Dp2m5r5Y1OX+OHwe6f0WrAX rP1wuI77eRYdDtZ+OHwOHo7b799U8nBga1LpJm5NJQ8Hvvum8Per4ZKHA5fZ 123VgnDJw6XDOmyx2bhNuOThwL/8n6cvFi55OHBAx5yX3jSRPBx42+Y5c+Ka SB4OnCM+ov3gJpKHc8PP2bVLVd8mkocDd6h1NHuaJpKHAydztfh1ubHk4cBm RLXncxtLHg4c+KP13ZaNJQ+XHp+DmaduFG4seTjwnRtd/3kVJnk48LG+IQ92 hkkeDlygQL/3MWGShwMfnXwjVc0wycNlcKm5naOLpg6TPBz4Qufa9S43kjwc +ECNJjFzG0keDvx2yeItLRtJHg6czyvni8KNJA+XEf+ew+fcX4dKHg7cJHFb v12hkocDn2p35vSgUMnDgc1nGfP7hkoeDny46PhhaUIlD5cJv++NMk//DpE8 HLjxeqPR/BDJw4FHhhpnW4dIHg58dnypWsVCJA/3B36f5CPOvG0oeThwm24/ Q3Y3lDwceGzsksdDG0oeDtznR/sh/g0lDweeOLZhnvQNJQ/3J65H/7Y6cb2B 5OHAR+OmRi9uIHk48KLj94q2byB5OHDuQ8GP3RtIHg48v/mdtZ/qSx4uM74f IbHRB+pLHg78qGltv9j6kocDNypWJE/d+pKHA7v1zf3rz/qShwM3+1r88Z1g ycNlcak9HepdWRkseTjwzZjRp7sESx4OPPvl5ePlgyUPBzZ6lT79o57k4cCt jy/6+3g9ycNlxfdhYc5HE+tJHg78ZNuaH6H1JA8HHnlQ5cpdT/Jw4J8DH/s8 rit5OPC4pTN7bKorebhsLjU5sc6qPnUlDwdekTbdfe+6kocDTz15pYCrruTh wPUuLel6oY7k4cDWo+4HZ9eRPFx2l8qy3ydLyzqShwPbf2TtU6SO5OHAc1e8 uPUmSPJw4Liih/x3B0keDjw0Yuq+YUGSh8uB69PPiIq1gyQPB449Vnh3xiDJ w4E/dn6mbgVKHg7cZ/vKS8sDJQ+XE9//kMYdOgdKHg5cLHUys3yg5OHAWWcu WvejtuThwBM2lWp0orbk4cAt/thuTa4tebhc+P9HFD4SVlvycOBeu8cPz1tb 8nDgJr3uBiQGSB4O/LRr7qzbAiQPB37esfbLAQGSh8uN9zd/q9M+AZKHAw9s 1GpDmgDJw4FnHQuYddVf8nBgv+LZRi/ylzwcOCjg/OD2/pKHy+NSC+60H1Ta X/Jw4KarHw7/WkvycOC77XwmH6kleTjw+hvDl42vJXk4cMzBpftCakkeLq9L Vfpn0Z1ctSQPB/7+tJ/xxE/ycOD0G9zLbfGTPBz43YMDHfv7SR4OXK9+kVU1 /CQPlw8/586Oian9JA8HLnxxmMdVX8nDgd+36TZyka/k4cC3ypS53d5X8nDg Ed+Oe5XxlTxcftxfhpdYklRT8nDgmWPbpDlWU/Jw4CqXOw6ZWFPycOAceby/ NqopeThwfNmE/nlrSh7uL1ynLgYme+YjeTjw993DJ2/3kTwceMX24QUG+Uge DtxlaO1Dfj6ShwM/fnCjdXofycMVwOdmaYk0/9SQPBw41+Ca+5bXkDwc+FWV PL261JA8HHjOsr2lK9aQPFxBl1rcK+vH30rycOC90eUOnVGShwNfiko3bYaS PBz4e/aVURFK8nDgkbU/BxRRkocrhOvZgRSl31WXPBw4vurpnPuqSx4OnHmi X/rY6pKHA1/uOSBVcHXJw4Gr72yTOnt1ycMVxn8/e7JMD6tJHg5cJKp+vk3V JA8HzhbVsEK/apKHA6+9ZzSoUU3ycGC3Oe2j01STPFwRl9oa0nfhNW/Jw4GL JnicW+IteTiw+jU/RSdvycOBP8Zsql7eW/Jw4B55o0b+qip5uKJYJ247d/50 VcnDgaOSrueZUVXycOCKR0b3jagqeThw58u3rhapKnk4cMkPl73eV5E8XDG8 Xm86rdpfRfJw4EtTV2YdU0XycMX+ux8PntqgiuThwJmffkyfq4rk4cBNyqSa /aSy5OGK43pfa89f2ypLHg48833KuJjKkocD/y9ZYnCtypKHA9ep0u5thsqS hwO36dpvzm0vycOVwPesTT6/1V6ShwMHPI5I6uEleThwmaOldlbxkjwc+OTx aX1cXpKHK4n3bU+s9+VKkocD1+mcKu3CSpKHA99Zk/N++0qShwO3qLJvf9lK kocDL37/ZPEPT8nDueN6P3/RmFOekocDxyRL6DvdU/Jw4DXvVneJ8JQ8HHhz lS8di3pKHg7cYOP5zh8qSh6uFO7LGYv1OVhR8nDgHl527LiKkocDd3wftSC0 ouThwB9S192dt6Lk4cDnG2y9/byC5OFKu1TCrOlmXAXJw4F9V7+vMLyC5OHA QQ0vdqlTQfJw4F5RRdZnrSB5OHDUvqRXD8pLHq4MPm/Z/CptLi95OPCgYHvc gPKShwO/Ketzz7e85OHACVPeeWcoL3k48DuvzMtvl5M8XFmX+p1sY9o15SQP B84Yt3Nwr3KShwO3LV7qk3c5ycOBW5bOGp2qnOThwCtmd/ty1UPycPjrr7Ll Riz1kDzc//dX/v/8+/jP8d/Dfy//O/zv8ufgz8Wfkz83fw/+Xvw9+XvzdeDr wteJrxtfR76ufJ35uvN94PvC94nvG99Hvq98n/m+83PAzwU/J/zc8HPEzxU/ Z/zc8XPIzyU/p/zc8nPMzzU/5/zc83vA7wW/J/ze8HvE7xW/Z/ze8XvI7yW/ p/ze8nvM7zW/5/ze8zrA6wKvE7xu8DrC6wqvM7zu8DrE6xKvU7xu8TrG6xqv c7zu8TrI6yKvk7xu8jrK6yqvs7zu8jrM6zKv07xu8zrO6zqv87zu8z7A+wLv E7xv8D7C+wrvM7zv8D7E+xLvU7xv8T7G+xrvc7zv8T7I+yLvk7xv8j7K+yrv s7zv8j7M+zLv07xv8z7O+zrv87zvcx3AdQHXCVw3cB3BdQXXGVx3cB3CdQnX KVy3cB3DdQ3XOVz3cB3EdRHXSVw3cR3FdRXXWVx3cR3GdRnXaVy3cR3HdR3X eVz3cR3IdSHXiVw3ch3JdSXXmVx3ch3KdSnXqVy3ch3LdS3XuVz3ch3MdTHX yVw3cx3NdTXX2Vx3cx3OdTnX6Vy3cx3PdT3X+Vz38zmAzwV8TuBzA58j+FzB 5ww+d/A5hM8lfE7hcwufY/hcw+ccPvfwOYjPRXxO4nMTn6P4XMXnLD538TmM z2V8TuNzG5/j+FzH5zw+9/E5kM+FfE7kcyOfI/lcyedMPnfyOZTPpXxO5XMr n2P5XMvnXD738jmYz8V8TuZzM5+j+VzN52w+d/M5nM/lfE7nczuf4/lcz+d8 PvdzH4D7Atwn4L4B9xG4r8B9Bu47cB+C+xLcp+C+BfcxuK/BfQ7ue3AfhPsi 3Cfhvgn3Ubivwn0W7rtwH4b7Mtyn4b4N93G4r8N9Hu77cB+I+0LcJ+K+EfeR uK/EfSbuO3EfivtS3KfivhX3sbivxX0u7ntxH4z7Ytwn474Z99G4r8Z9Nu67 cR+O+3Lcp+O+HffxuK/HfT7u+3EfkPuC3CfkviH3EbmvyH1G7jtyH5L7ktyn 5L4l9zG5r8l9Tu57ch+U+6LcJ+W+KfdRua/KfVbuu3Iflvuy3Kflvi33cbmv y31e7vtyH5j7wtwn5r4x95G5r8x9Zu47cx+a+9Lcp+a+Nfexua/NfW7ue3Mf nPvi3Cfnvjn30bmvzn127rtzH5778tyn57499/G5r899fu778xyA5wI8J+C5 Ac8ReK7AcwaeO/AcgucSPKfguQXPMXiuwXMOnnvwHITnIjwn4bkJz1F4rsJz Fp678ByG5zI8p+G5Dc9xeK7Dcx6e+/AciOdCPCfiuRHPkXiuxHMmnjvxHIrn Ujyn4rkVz7F4rsVzLp578RyM52I8J+O5Gc/ReK7Gczaeu/EcjudyPKfjuR3P 8Xiux3M+nvvxHJDngjwn5LkhzxF5rshzRp478hyS55I8p+S5Jc8xea7Jc06e e/IclOeiPCfluSnPUXmuynNWnrvyHJbnsjyn5bktz3F5rstzXp778hyY58I8 J+a5Mc+Rea7Mc2aeO/McmufSPKfmuTXPsXmuzXNunnvzHJzn4jwn57k5z9F5 rs5zdp678xye5/I8p+e5Pc/xea7Pc36e+zMHwFwAcwLMDTBHwFwBcwbMHTCH wFwCcwrMLTDHwFwDcw7MPTAHwVwEcxLMTTBHwVwFcxbMXTCHwVwGcxrMbTDH wVwHcx7MfTAHwlwIcyLMjTBHwlwJcybMnTCHwlwKcyrMrTDHwlwLcy7MvTAH w1wMczLMzTBHw1wNczbM3TCHw1wOczrM7TDHw1wPcz7M/TAHxFwQc0LMDTFH xFwRc0bMHTGHxFwSc0rMLTHHxFwTc07MPTEHxVwUc1LMTTFHxVwVc1bMXTGH xVwWc1rMbTHHxVwXc17MfTEHxlwYc2LMjTFHxlwZc2bMnTGHxlwac2rMrTHH xlwbc27MvTEHx1wcc3LMzTFHx1wdc3bM3TGHx1wec3rM7THHx1wfc37M/TEH yFwgc4LMDTJHyFwhc4bMHTKHyFwic4rMLTLHyFwjc47MPTIHyVwkc5LMTTJH yVwlc5bMXTKHyVwmc5rMbTLHyVwnc57MfTIHylwoc6LMjTJHylwpc6bMnTKH ylwqc6rMrTLHylwrc67MvTIHy1wsc7LMzTJHy1wtc7bM3TKHy1wuc7rM7TLH y1wvc77M/TIHzFwwc8LMDTNHzFwxc8bMHTOHzFwyc8rMLTPHzFwzc87MPTMH zVw0c9LMTTNHzVw1c9bMXTOHzVw2c9rMbTPHzVw3c97MfTMHzlw4c+LMjTNH zlw5c+bMnTOHzlw6c+rMrTPHzlw7c+7MvTMHz1w8c/LMzTNHz1w9c/bM3TOH z1w+c/rM7TPHz1w/c/7M/XMOgHMBnBPg3ADnCDhXwDkDzh1wDoFzCZxT4NwC 5xg418A5B849cA6CcxGck+DcBOcoOFfBOQvOXXAOg3MZnNPg3AbnODjXwTkP zn1wDoRzIZwT4dwI50g4V8I5E86dcA6FcymcU+HcCudYONfCORfOvXAOhnMx nJPh3AznaDhXwzkbzt1wDodzOZzT4dwO53g418M5H879cA6Ic0GcE+LcEOeI OFfEOSPOHXEOiXNJnFPi3BLnmDjXxDknzj1xDopzUZyT4twU56g4V8U5K85d cQ6Lc1mc0+LcFue4ONfFOS/OfXEOjHNhnBPj3BjnyDhXxjkzzp1xDo1zaZxT 49wa59g418Y5N869cQ6Oc3Gck+PcHOfoOFfHOTvO3XEOj3N5nNPj3B7n+DjX xzk/zv1xDpBzgZwT5Nwg5wg5V8g5Q84dcg6Rc4mcU+TcIucYOdfIOUfOPXIO knORnJPk3CTnKDlXyTlLzl1yDpNzmZzT5Nwm5zg518k5T859cg6Uc6GcE+Xc KOdIOVfKOVPOnXIOlXOpnFPl3CrnWDnXyjlXzr1yDpZzsZyT5dws52g5V8s5 W87dcg6Xc7mc0+XcLud4OdfLOV/O/XIOmHPBnBPm3DDniDlXzDljzh1zDplz yZxT5twy55g518w5Z849cw6ac9Gck+bcNOeoOVfNOWvOXXMOm3PZnNPm3Dbn uDnXzTlvzn1zDpxz4ZwT59w458g5V845c86dcw6dc+mcU+fcOufYOdfOOXfO vXMOnnPxnJPn3Dzn6DlXzzl7zt1zDp9z+ZzT59w+5/g51885f8790wNALwA9 AfQG0CNArwA9A/QO0ENALwE9BfQW0GNArwE9B/Qe0INALwI9CfQm0KNArwI9 C/Qu0MNALwM9DfQ20ONArwM9D/Q+0ANBLwQ9EfRG0CNBrwQ9E/RO0ENBLwU9 FfRW0GNBrwU9F/Re0INBLwY9GfRm0KNBrwY9G/Ru0MNBLwc9HfR20ONBrwc9 H/R+0ANCLwg9IfSG0CNCrwg9I/SO0ENCLwk9JfSW0GNCrwk9J/Se0INCLwo9 KfSm0KNCrwo9K/Su0MNCLws9LfS20ONCrws9L/S+0ANDLww9MfTG0CNDrww9 M/TO0ENDLw09NfTW0GNDrw09N/Te0INDLw49OfTm0KNDrw49O/Tu0MNDLw89 PfT20ONDrw89P/T+0ANELxA9QfQG0SNErxA9Q/QO0UNELxE9RfQW0WNErxE9 R/Qe0YNELxI9SfQm0aNErxI9S/Qu0cNELxM9TfQ20eNErxM9T/Q+0QNFLxQ9 UfRG0SNFrxQ9U/RO0UNFLxU9VfRW0WNFrxU9V/Re0YNFLxY9WfRm0aNFrxY9 W/Ru0cNFLxc9XfR20eNFrxc9X/R+0QNGLxg9YfSG0SNGrxg9Y/SO0UNGLxk9 ZfSW0WNGrxk9Z/Se0YNGLxo9afSm0aNGrxo9a/Su0cNGLxs9bfS20eNGrxs9 b/S+0QNHLxw9cfTG0SNHrxw9c/TO0UNHLx09dfTW0WNHrx09d/Te0YNHLx49 efTm0aNHrx49e/Tu0cNHLx89ffT20eNHrx89f/T+0QNILyA9gfQG0iNIryA9 g/QO0kNILyE9hfQW0mNIryE9h/Qe0oNILyI9ifQm0qNIryI9i/Qu0sNILyM9 jfQ20uNIryM9j/Q+0gNJLyQ9kfRG0iNJryQ9k/RO0kNJLyU9lfRW0mNJryU9 l/Re0oNJLyY9mfRm0qNJryY9m/Ru0sNJLyc9nfR20uNJryc9n/R+0gNKLyg9 ofSG0iNKryg9o/SO0kNKLyk9pfSW0mNKryk9p/Se0oNKLyo9qfSm0qNKryo9 q/Su0sNKLys9rfS20uNKrys9r/S+0gNLLyw9sfTG0iNLryw9s/TO0kNLLy09 tfTW0mNLry09t/Te0oNLLy49ufTm0qNLry49u/Tu0sNLLy89vfT20uNLry89 v/T+0gNMLzA9wfQG0yNMrzA9w/QO00NMLzE9xfQW02NMrzE9x/Qe04NMLzI9 yfQm06NMrzI9y/Qu08NMLzM9zfQ20+NMrzM9z/Q+0wNNLzQ90fRG0yNNrzQ9 0/RO00NNLzU91fRW02NNrzU91/Re04NNLzY92fRm06NNrzY92/Ru08NNLzc9 3fR20+NNrzc93/R+0wNOLzg94fSG0yNOrzg94/SO00NOLzk95fSW/5/HXLzm 9JzTe04POr3o9KTTm06POr3q9KzTu04PO73s9LTT206PO73u9LzT+04PPL3w 9MTTG0+PPL3y9MzTO08PPb309NTTW0+PPb329NzTe08PPr349OTTm0+PPr36 9OzTu08PP7389PTT20+PP73+9PzT+88eAPYCsCeAvQHsEWCvAHsG2DvAHgL2 ErCngL0F7DFgrwF7Dth7wB4E9iKwJ4G9CexRYK8CexbYu8AeBvYysKeBvQ3s cWCvA3se2PvAHgj2QrAngr0R7JFgrwR7Jtg7wR4K9lKwp4K9FeyxYK8Fey7Y e8EeDPZisCeDvRns0WCvBns22LvBHg72crCng70d7PFgrwd7Ptj7wR4Q9oKw J4S9IewRYa8Ie0bYO8IeEvaSsKeEvSXsMWGvCXtO2HvCHhT2orAnhb0p7FFh rwp7Vti7wh4W9rKwp4W9LexxYa8Le17Y+8IeGPbCsCeGvTHskWGvDHtm2DvD Hhr20rCnhr017LFhrw17bth7wx4c9uKwJ4e9OezRYa8Oe3bYu8MeHvbysKeH vT3s8WGvD3t+2PvDHiD2ArEniL1B7BFirxB7htg7xB4i9hKxp4i9RewxYq8R e47Ye8QeJPYisSeJvUnsUWKvEnuW2LvEHib2MrGnib1N7HFirxN7ntj7xB4o 9kKxJ4q9UeyRYq8Ue6bYO8UeKvZSsaeKvVXssWKvFXuu2HvFHiz2YrEni71Z 7NFirxZ7tti7xR4u9nKxp4u9XezxYq8Xe77Y+8UeMPaCsSeMvWHsEWOv2P/1 jEnvGHvI2EvGnjL2lrHHjL1m7Dlj7xl70NiLxp409qaxR429auxZY+8ae9jY y8aeNva2sceNvW7seWPvG3vg2AvHnjj2xrFHjr1y7Jlj7xx76NhLx5469tax x469duy5Y+8de/DYi8eePPbmsUePvXrs2WPvHnv42MvHnj729rHHj71+7Plj 7x97ANkLyJ5A9gayR5C9guwZZO8gewjZS8ieQvYWsseQvYbsOWTvIXsQ2YvI nkT2JrJHkb2K7Flk7yJ7GNnLyJ5G9jayx5G9jux5ZO8jeyDZC8meSPZGskeS vZLsmWTvJHso2UvJnkr2VrLHkr2W7Llk7yV7MNmLyZ5M9mayR5O9muzZZO8m ezjZy8meTvZ2sseTvZ7s+WTvJ3tA2QvKnlD2hrJHlL2i7Bll7yh7SNlLyp5S 9payx5S9puw5Ze8pe1DZi8qeVPamskeVvarsWWXvKntY2cvKnlb2trLHlb2u 7Hll7yt7YNkLy55Y9sayR5a9suyZZe8se2jZS8ueWvbWsseWvbbsuWXvLXtw 2YvLnlz25rJHl7267Nll7y57eNnLy55e9vayx5e9vuz5Ze8ve4DZC8yeYPYG s0eYvcLsGWbvMHuI2UvMnmL2FrPHmL3G7Dlm7zF7kNmLzJ5k9iazR5m9yuxZ Zu8ye5jZy8yeZvY2s8eZvc7seWbvM3ug2QvNnmj2RrNHmr3S7Jlm7zR7qNlL zZ5q9lazx5q91uy5Zu81e7DZi82ebPZms0ebvdrs2WbvNnu42cvNnm72drPH m73e7Plm7zd7wNkLzp5w9oazR5y94uwZZ+84e8jZS86ecvaWs8ecvebsOWfv OXvQ2YvOnnT2prNHnb3q7Fln7zp72NnLzp529razx5297ux5Z+87e+DZC8+e ePbGs0eevfLsmWfvPHvo2UvPnnr21rPHnr327Lln772ThwMXitxZdhrYycOB S1sPIp6DnTxca1O1+Tpvdk1fS+fhwG+yJ9xeCHbycGCPulvdP4OdPBx4Z3Sm icF+ls7DgYt2d31ZC3bycK1M1Sv/5G4palk6Dwde1GXD+2ZgJw8HfuTRauQu sJOHA28O25wvvb+l83DgyXvnnO0IdvJwLU3lUyPP8KNgJw8H3n2+pm+uAEvn 4cB2zdR/9gU7eThwv1HRby+CnTwcuG+f4f8Uq23pPFwLXE+SKlwcCXbycODz H6dfvgt28nDgxMD59zwDLZ2HA2e7V/fHNLCTh4vA/XvuloIvwU4eDlwy/Eh4 rSBL5+HAlVyxC5aCnTwceP2oH8++gZ08HHjsnmJ+jepYOg/X3FTJxrtt2gJ2 8nDg6Nsb86eua+k8HDhqhmtFO7CThwMvmJO77CGwk4cDvzz/IT57PUvn4Zrh +5RrQnRvsJOHA7eKelzkItjJw4FLLjCeFQu2dB4O3GXu87hRYCcPB37oP2/a v2AnD9cUn9+pmQZUrm/pPBy4e3iTrrPATh4O/HZcl25vwU4eDjw8VYNBQQ0s nYcDnz5kzVkNdvJw4Vhfzpx+MHlDS+fhwF+6f3jfHOzk4cDpKpcsvxvs5OHA XrerjfgjxNJ5OHCKqu53u4GdPFwTrD/8knzPgp08HLjPvyv3FAq1dB4OnOlj 2SrDwU4eDlyhy/Izd8BOHg4cWPZru0qNLJ2Ha2yq5yUrpJsJdvJw4FsBzY6+ ATt5OHD67l1GBYVZOg8HXj+uU8gasJOHA38b0bh0ysaWzsOF4fndr0K2lmAn Dwe+vs902wd28nDgR5fOZsjaxNJ5OPD67qPzRYOdPFwjU4WPrOx9Eezk4cCh XxLblwi3dB4OXOR/MxaNATt5OPCUzVXvPwQ7eThwnzOPy6qmls7DheL9+jB1 ykKwk4cD18qhvn0FO3k48POin3o2ambpPBx4UNrtn7eBnTwcOH5b/7FuzS2d hwvB860ZVKQz2MnDgY98Kn7lFNjJw4FfdMsxsWCEpfNw4H9a5Gw4HOzk4cDV dpQulAB28nANTfUrPNys0sLSeThwsRrz388BO3m4//487OPLj2AnDwd+Ni7q Y4OWls7DgUef/m5vATt5uAamWpx8U/G0rSydhwMXKzg0PArs5OHAQXl7zzoJ dvJw4PAHkxIKtLZ0Hg58vfmF8sPBTh6uPq7/QzznJoCdPBw4lWe8XbWNpfNw 4E19J4yeB3bycOA57gMzfgE7eTiwR51560LbWjoPF4z157Hn9baDnTwcOM3I HskztLN0Hg5sDi55pCvYycOBiy/PNzke7OThwOce1utYLNLSebh6+D6X2xM8 Buzk4cB7R7T2fQx28nDg2cdq16rZ3tJ5OHDaxOhGy8BOHg7c5MH9nr/BTh6u rqmerpy1IKKDpfNw4Pp/Tft7H9jJw4Ej6l7PkqOjpfNwYDN7h479wU4erg6u F/39Tl0HO3k48JsW0eUqRFk6DwdOffj9xhlgJw8Hjp5yotx7sJOHA6c58upU /U6WzsMFmepxQNeoLWAnDwdWOWtlc+ts6TwceELJgVe7gJ08HDiyZ5rF8WAn DwdemPC9d/Euls7DBeL5Nqpu+Diwk4cD+7hSBCWCnTwc2GtDzkD/rpbOw4Hn 110Ythrs5OHA+R/G9jC7WToPV9tUca1vzWkHdvJw4F6HFpw7BnbycOBF7+Pd CnS3dB4OvOVdlxYjwE4eDlxvx7B998FOHi7AVA1KpSpco4el83DgQ+H24qVg Jw8Hji85rECynpbOw4HvLu4V1xLs5OHAY9fcDzsEdvJw/qaaXu2ikbeXpfNw 4FfNvA8PATt5OPDhL+7jEsBOHg7cPPWKltWiLZ2HA9eauLjmYrCTh6tlqrJ9 /6rwC+zk4cDJj5Qp36K3pfNw4DOR8eog2MnDgeMjPjbN08fSeThwzPJNI4aA nTycH9g96X8JYCcPB1769ea3an0tnYcDv/pZL2gJ2MnDgWd6Rqz7DXbycL6m SlpiZm7Vz9J5OPDWsoGTD4OdPBx48NOSmfP3t3QeDhy6f8u64WAnDwcO33A1 6AHYycPVNNX9LYu++wywdB4O3OtE2j0rwE4eDnz4aYFRxkBL5+HA2zI9bh4J dvJw4AifhjVPgp08nA+uF9FdPYvEWDoPBy61rJLXWLCThwP3OrMr4BnYycOB tyY+iQwcZOk8HPjN9/NTN4CdPFwNU3VK1vVM2sGWzsOBJ3w4kb4b2MnDgV/9 favtRbCThwO3WLjpRJkhls7Dgf+pqypMBzt5OIXnpcczt38AO3k48PXWm7wb DbV0Hg7sf2TC9Tiwk4cDL0nhMTjbMEvn4cCXCi4vOxDs5OGqm+pH4YQPt8FO Hg7c10485j3c0nk48PHTR5YtATt5OPDCDl0nJR9h6Twc+NGjl6Pbgp08XDVT 7VI+k0+AnTwcuElM9xVFRlo6DwcOmNX35Diwk4cDl50S/uUF2MnDgd9H5ahY b5Sl83DepppbeN+IrWAnDwdud9L7bqZYS+fhwKcDV/r1ATt5OHDHXW/33QA7 eThwNruQqjza0nm4qnhe8q3590Kwk4cDf+pat9dvsJOHAx+P9cvXZoyl83Dg p5Pd7xwHO3m4KrgeTbRWFxlr6TwceMawa4PHg508HDio+7y2r8BOHg68u1mj xvXHWToPB+5WO034DrCTh6tsqvJVD3TMMt7SeThwikpdRw8AO3k4sFEj9/Y7 YCcPB57d7OKL6hMsnYcD+0+MLbcC7OThvEx180aNca6Jls7DgavUdL2KAjt5 OPCcK1dbnAc7eThwzclbEspMsnQeDny6/9wuM8FOHq4S3t+50+yvYCcPBx71 ceH2ZpMtnYcDx0/b3+kQ2MnDgVP3e1+mwBRL5+HAZ9crcwzYycN5Yv1Rbt3T 52AnDwe+na3UzXpTLZ2HA1dsffn6drCThwMX+HPWwyzTLJ2HAxf0ivk1EOzk 4SpivXQjtsi/YCcPB+7+Na5FzemWzsOBDyzPsHIN2MnDgYv+O/NLmhmWzsOB y8b5hfcAO3m4CqaaVKbQmatgJw8HLtC4gr/XTEvn4cBu5fpfWQR28nDg+eff dE0xy9J5OHBAmcVZOoCdPFx53P/bxZ6PBzt5OHC6Pmuml5lt6TwcuGBnV/tZ YCcPB27VYKX/N7CThytnqhoeIz1bzrF0Hg4ck21VheNgJw8H/uyW1qfYXEvn 4cDn8u1tPhns5OHAdcO3xX4AO3k4D6x/j33Y32SepfNw4HFdRqY4CHbycOCH LdqEFZhviR8Oz6drpu8eC9Z+OFzvG2Qp9hqs/XD4vHV6syZkgSV+OKzvfuet sAes/XCmmpVr/aU8Cy3xw5mq8MUpA0eBtR8Or3fBKx7PwdoPh/tp8b5JwYss 8cPh+vt64IVdYO2HM1XmIQ+35VxsiR8O68XEbSuGg7UfDs/flRNXPAVrPxw+ D6PGbq+7xBI/nKleX5l5cQdY++HweauU/nv2pZb44fD9PJxUfhhY++Hw+saE DX4C1n44U7UcWORqnWWW+OFM1SO+m9cOsPbD4f0cWmpT9uWW+OFMtWFVx9LD wNoPh/tBcN7DT8DaD2eqrxNDW9ZdYYkfDv9899TpdoK1H85U71w1z+RYaYkf DvfTyGQzh4O1Hw7r/4W+XRPB2g+Hz9+BjI2CV1nihzPVhX+iguLA2g9nquxG cP3cqy3xw+HnqXes7Siw9sPhehR/OvYFWPvhTPXXpNZxDddY4ocz1Z9rpnza A9Z+OFPlKtmoZv61lvjhTDWm9M4lY8HaD/ff/tLm1G/B2g+H++XvWqMar7PE D4fvw8chaQ+BtR/OVFZckxWF11vihzPVh/DrAZPB2g9nqmYfk358Ams/nKl+ zztxKGKDJX44PO+0rDLtBFj74bDebRbR032jJX44U31c6t5qFlj74f6bZ90c 8ROs/XC4Pra9HxW5yRI/nKlypj0z6jxY++GwfgnrsLnCZkv8cLi/Nj34ZBFY ++GwvnC/5O7aYokfDuvjp4tHdgNrP5yp9i0qmXgdrP1wWG9ExTSrvtUSPxw+ T60m3V0D1n44U61a0K5bhm2W+OFMNdUjpdsAsPbDYb3v3Xn/fbD2w5nK++ri AYHbLfHDYX2UfqnfDrD2w2H9l6pnvlw7LPHD4ft584/UsWDthzPV+TnjU7wG az+cqTK2upGq8U5L/HB4vgv8kfcwWPvhcL/t9d232C5L/HCmavr2ev/pYO2H w/f136n7voO1H85Uf4SXSBcZZ4kfzlQpB6ztegGs/XC4foWnvuv5P0v8cFjv ZAlptgys/XC4/50dlZh6tyV+OFMNmLZsVG+w9sPhfj56Q+kEsPbD4fN0auUz /z2W+OFw/+86Zfs2sPbDmerJnK7jc+61xA9nqoOta/SMBWs/HJ5/E9N2eAPW fjisjwL+7hy+zxI/nKk2Lpkx9BhY++FwfUgTstx9vyV+OFP5rct0dQ5Y++Fw PZ5z9c8UByzxw2E99WF+uy5g7YfD+3unw7HrYO2Hw8/Tw7tsjYOW+OHwfbiQ e/MGsPbD4fObJU3lLIcs8cNhvRtpXRsG1n44PD/e/XPoC7D2w2F9s6BCpbDD lvjhTHXxSOdkR8DaD/ff+mXPjRJHLPHDmWry8XwHZ4O1Hw7X7wcrdiQ/aokf DvfvRN/dXcDaD4fXI8k8dwOs/XBYb1Z49trnmCV+OFPtOfg232aw9sOZKn1c njbZj1vihzPVTu8+20eBtR8O1/N+nzO+BWs/HH6e0SuHNTthiR/OVMsnDv91 Eqz9cPj7N06Z4HHSEj8c1gepLhdZDNZ+OLw/p/yvpDpliR/OVMPsz5P6gLUf Duvht3cb3wdrPxzWsyuTl6172hI/nKlO+LfNvges/XCmGvnLyFjojCV+ONyf XyVmnQbWfjhT9fHKWOonWPvhTNXTGhYSddYSP5yp1g3yHHsNrP1weP8Pep2r EW+JH85U196PzbsZrP1weD6oXmREjnOW+OFMFXg2y8fRYO2Hw+d/T3ifD2Dt h8N6uvx7s9V5S/xwpsrQ5sGqc2DthzNVo44lG3ldsMQPh+tl97//WA3WfjhT zVt0/X6mi5b44fC8mLPKoaFg7YfDejBjio0vwdoPh//+ave14Zcs8cOZaqhx eMdJsPbDmepow30Xyl22xA+H7/Pe/ElLwdoPh58v8pOH29+W+OFwf4upNCgG rP1wWP8XeXU1Eaz9cKYaPz2zd9gVS/xweJ56smPnMbD2w+HzXu9slbJXLfHD mWrEx6Z/LwZrP5ypbqTo2D/tNUv8cKZav/KD+0Cw9sOZKq+Z7MNTsPbD4XoZ POVUo+uW+OFwfd6yYsMxsPbD4fvRoPqSsjcs8cOBW7VbvgSs/XD4PNqZd6W7 aYkfDve//iE3YsDaD2eqqrfyp3oO1n44/P7NRwQ2+ccSPxzen5L9FpwEaz8c vq99U/wof8sSPxyuzx0Ld1kB1n44rMc9Hr/IeNsSPxx+/t8qZhhY++HwvJGs ao43YO2Hw8/X+ubpiDuW+OFMVTk025hzYO2Hw/tr/gqtctcSP5ypoldP8FgP 1n44U/lGHsubPcESP5ypPHqtyTUWrP1weN746VXsC1j74Uy1t+Jgv/b/WuKH M1WW4Oie18DaD4f7Rb88m3zvWeKHM9Xaf4d93QHWfjjcP/cuDClw3xI/HP7c s/fB6WDth8P6fnwqrxQPLPHDmWrKwxbHeoK1H85UiX36RtwHaz8c1rfRDa0G Dy3xw5kqLP2nw4fB2g9nqmcxrcaXeWSJHw7365ez2y4Faz8crvcz59fJ8NgS P5ypvq/u6jcMrP1wpmrTJFO9t2Dth8Pn98749q2eWOKHw/NKh38mXwJrP5yp YkslO6WeWuKHw+8XmTz9NrD2w2H96/Nv+/yJkocDByYtuDAtUfJwaUw19rBX rRTPJA8HXn5+7/lezyQPB54Slj/y4TPJw/3390/rnjb0ueThwCl3rTl2/Lnk 4VKbavuX+PEVXkgeDjxmakLr1S8kDwfeFnc/IOtLycOBFy27UX3sS8nDgT+P PVor6aXk4VKZavXKlRGdXkkeDnyt5LBRt19JHg78NLzxvjqvJQ8HHtmuZIqD ryUPZ+P1i00eXvqN5OHAuT/fPLT0jeThwAvf7KyY6a3k4cCrN8w5MPKt5OHA 2dqNDP30VvJwFr6PIQO/t38neTjwv9uHbL/5TvJw4GIHpw8IfC95OPCRLbvr 738vebj/+Oh7z1IfJA/nMtVgj5qll36QPBx4QuWNFTN9lDwc+EiWMvVGfZQ8 HLhMyst9Pn+UPBy4VNVpmzp+kjycie/7r16fbn2SPBy42ej+det+ljwcuFvG lbsOfZY8HPjanS/uHl8kDwfOX7hv3Movkocz8HxbIn9w1q+ShwM/K/b9y7iv kocDH2/l2vbjq+ThwL5ufgO7J0keDuzVc0/IgyTJw6XE+3860rvRN8nDgX+G 1PE8/U3ycOCNDbvXqPJd8nDgKcblZpu/Sx4OHLcuenT+H5KHS2GqXiPCj8z8 IXk4cMjFUWntn5KHA5e8/KVDzE/Jw4Hdzuy88vqn5OHAdb4eCG7zS/JwybFe XJr5zrVfkocDd0p5sH/t35KHA5dvu6fQgd+ShwOXTJH6YZlktvjhcL34a/vW lWDthzOVj71zcrbktvjh8Pz6KePgiWDth8Pzp/uFmGQpbPHDmcrz4/PxvcHa D2eo0ZM6rU8Eaz+coQZ6B99qntIWP5yhegYsyHEZrP1whkr3oX5nP8MWP5yh So3odW4PWPvhDPWtcopqpUxb/HCGutYmxeHlYO2HM1SH6n0aZnXZ4ocz1Jws EZ8mgLUfzlAzSu1fm8yyxQ9nqBPnZ3bpA9Z+OEPdqfxMPQdrP5yh4vfvK9TS tsUPZ6ij891yXgVrP5yhvHI9ylc7lS1+OEM9GVvN8yBY++Hw9xfN16Jcalv8 cIZK4zth1lqw9sMZqnqBEXdzp7HFD2eovOmtijPA2g9nqK31cy2x09rihzOU Z9nj2YaAtR/OUNW+JVvxAaz9cIaa/umqd1Q6W/xwhqrR1edZAlj74Qy1eEPQ qlA3W/xwhvL+/r7nWbD2wxnq6+rKwSq9LX44QyUmFfSOA2s/nKG6Vd9ZpWQG W/xwhipx7HngcrD2wxnKuHy2U7aMtvjhDPXXrrAFk8HaD2eo9/um3jEy2eKH M1QBj5hSMWDthzPUunbZpr0Daz+cofYv7WR0/MMWP5yhbpTrPTYBrP1whtrd 2TN3oz9t8cMZqu3suKPxYO2Hw+uZ4mN/n8y2+OEM1ffnu+p7wNoPh/fvxvas ZbLY4oczVExCpWRrwNoPh89Lm9FJubPa4oczVJ4di1LOAms/nKF+5B2eJ202 W/xwhgpJ8ggcCdZ+OENNnLJr9Dew9sMZKqxcmqs9s9vihzPUygoVPZ6BtR/O UJufVlrWKoctfjhDvZ2fOf9NsPbD4fuw7MK24Jy2+OEM1aVO+5BTYO2Hw/v3 OsGsnssWP5yh2tyufCYOrP1whhrebtCiUrlt8cPh+3d31YjVYO2Hw+dn3p7+ efLY4ocz1PiXe4bOBms/nKH8i6+b45bXFj/cf5+XcYdHg7UfzlBZ/xfx7RdY ++EM1XJLEb9++Wzxwxnq6qNnS9+AtR/OUIc2rk7XMb8tfjhDbWreasI9sPbD Gap3YPYc4X/Z4oczVOlzV/ZcBms/HD7/laZ3Cixgix/OULUfh5U8BtZ+OPx5 8YK/qxS0xQ9nqAYtfjzYCdZ+OLx/N+/fcC9kix/OUMneX7+7Gqz9cIZqnzzh Y97CtvjhcP1qmZRrHlj74fD7tCsRlqmILX44Q9Xr1HfpBLD2wxkq7Zk7342i tvjhDNXvVquOQ8DaD2con6/Gky9g7YfD53dQfO+exWzxwxkq55G4P1+AtR/O UG/ynTnRrrgtfjhDbflsjE0Aaz+coXos6tKsSQlb/HCGmtIjhfobrP1whtoW f7pCnZK2+OEMdST10aonwdoPZ6hP496GKndb/HCGOr0qbMhesPbDGerX3s+7 y5eyxQ9nqOWFrxhbwNoPZ6jUtV63LlbaFj+coS71Dby0Aqz9cIb6J8vz4Dxl bPHD4f0YdfHeXLD2w+Hzn/vniD/K2uKHw+ehRp+Kk8HaD4fvV3Dl77aHLX44 vB6r6l0eCdZ+OENlW7Vz9y+w9sPh9dnYbduAcrb44Qx1K9fQfR/B2g+H+01Y 4vXu5W3xwxkq+Z6NKV+AtR/OUPtWX6jRvoItfjjcz4bVn3YfrP1whkpaU/59 84q2+OEM9XHI4HY3wdoPZ6hFHdwTQzxt8cMZKup4rcEXwdoPZ6iMX+MLBFWy xQ9nqAWRh26fBGs/HK4XPQqs8vGyxQ9nqNsx34YeBGs/HO4nL2t1qVzZFj+c of4slKZTHFj74QzVaULtAR5VbPHDGeriSGP+ZrD2wxmqbnS1c8Wr2uKHw/Xw UFL6NWDthzNU2fOVIgt42+KHw/U05a/4JWDthzNUxVNBvrmq2eKHw+dnaMEL c8HaD2eowjPHR2WubosfDj9/p2FZpoO1H85QvTrb19yULX44Q83+WXDVBLD2 wxmq8ribo+0atvjh8Hr2LTQwFqz9cIYKLOU2NIWPLX44XH+yz5o1FKz9cLi/ LN1/4AdY++Hw/pcc82VATVv8cPh5i37x+QLWfjh8P3+5Le3ta4sfzlAbs152 ew/Wfji8Hv9Wn9LdzxY/nKGeHYrI/wqs/XCGsgu5n+hUyxY/HN6fgVsHJoK1 Hw6fp+LPa7T3t8UPh+v5ijs5HoG1Hw7rkeDxZpsAW/xwuN4t+pT8Hlj74QwV +TVfhha1bfHD4ftywa3MHbD2w+H1mXSkddNAW/xwhsq0osqqm2Dth8P7O3jo t7AgW/xwhpowfkrra2DthzPUea9ut0Lq2OKHwz//LXfk32DthzPUnsrLkjeo a4sfzlDdO3/bchGs/XD4fX6U6FGvni1+OENVjajkcx6s/XCGcv+dv3CdYFv8 cIZ62PBFzniw9sPhfnlmdoHA+rb44Qy16mph7zNg7YfD/ebxoo4BDWzxwxlq Yfdfq06BtR8Of/4w8FOthrb44Qx1YFds2Emw9sMZ6nXjbWf8Qmzxw+F65H2p 3gmw9sMZKtftR499Q23xwxlqxYp3k4+DtR/OUKvTJNX2bWSLHw7XlzE/sxwH az8c1gsTk3+uGWaLH85Q/adYT4+BtR/OUH+bmZ7XbGyLHw7358gCv4+BtR8O n/eC1Qr7NrHFD4fXe3e7lsfB2g+H6/m8eet9w23xw+HPvf+1ToC1H85Qsbkq 9fNraosfzlCTN63+egKs/XC43nd0n1irmS1+OEM1Pnmh7Cmw9sPh+1lt0jP/ 5rb44fD9Deq84zRY++Fwf2rXeUrtCFv8cLjeG1MHnwVrP5yhHq24PTiohS1+ OPz5wfpTz4G1Hw5/fu7dzrotbfHDYf0YdOTFBbD2w2G9ueNI+fqtbPHD4f4/ 4tOUy2Dth8Pr6dHyZ8PWtvjhDPWqevLBV8HaD4frU5EEt7A2tvjh8H61+7r9 Blj74XB/7NMwKrytLX44rB+vvy57G6z9cPh5XZfSRrSzxQ9nKL/hX5MSwNoP h+eJk52SWkXa4ocz1NDQYmkegrUfDve7dRVLR7a3xQ9nqPV+syKfgrUfzlAj 1vhvjupgix8On7fg+qlegrUfDu/v/m19u3W0xQ+H9UGPbp/fgrUfDve752PH RkfZ4ofD/XdTSvfPYO2Hw+/jdf9h/062+OEMdS9DwU3fwdoPh/XErgtjh3S2 xQ+H9fXah32Td7HFD4f7U7fIfqPA2g9nqBzjwsZbXW3xwxkq+6A9W8aDtR/O UCnipz5N180WPxyuX0kJZaeBtR8O35+Jqyf/2d0WPxyun/bzn3PA2g+H+9u7 DUNz9rDFD4f70fnXfywBaz8cfr/8u/b+1dMWP5yhKvRO3ns1WPvhDFUl6Hr1 4r1s8cPh++NeMc9msPbDYf21rEB6j2hb/HCG+td9WaY4sPbDGcqj2bailXvb 4ofD89/WsAYHwdoPh+eZ/82Y6NPHFj+coYp87nTrJFj74Qz1x5eEykF9bfHD 4fri837TRbD2w+H63XZNudB+tvjh8HrcT3buJlj74fB6ByTvF9HfFj+cob7k 31D+AVj74QyVOSmZ2WGALX44Q91vYia+AGs/nKEunNt7t8dAW/xweL3uFXjy Caz9cPi+5KuZPCbGFj8cnkez5SydbJAtfjhD1Qrb3D0WrP1w+Dy2/3009WBb /HCGiruWodhUsPbD4fnL4/GyzENs8cNhvZJmqPsCsPbD4X7++l58vqG2+OHw feyUbvBqsPbDGepgOqtGyWG2+OGw/u94Ket2sPbD4X6aukvySsNt8cPh+jTq zs8DYO2HM9SgyILpfEfY4oczVL7qtUqfBWs/nKFaL/dtV3+kLX44Q+3I99fG 62DthzPUg6D7rohRtvjhDOUWN6r3Q7D2w+F6/s7tU1SsLX44Q82cNmLsW7D2 w+H1L/qgVL/Rtvjh8P4HlUn8CdZ+OEP9nNB956gxtvjhDHVq6PIZacba4ofD 8+/e+NjpYO2HM1STv1+Nzz7OFj8crrfN0qxYCtZ+ONwfnxe+UGS8LX44PH9n rZl2C1j74fD80rdNRMUJtvjh8P1cOubIAbD2wxlqQ7Fdlfwm2uKHw/Vj/auj 58DaD2eoAfvKtQqdZIsfDt+vD+My3AFrP5yhOj5/f6XtZFv8cIba6tVz/Quw 9sNhvTzQmhk9xRY/HJ7ffXdP/Q7Wfjh8n8uNXjpyqi1+OFyv/40+lmaaLX44 XJ8ejUyaAdZ+OENdu7PbJ9d0W/xwhrreJvOSlWDthzOUb6aFbu4zbPHDYT03 OnjaLrD2w2G91tyjSLWZtvjh8H0t43/pJFj74bCeWTx1YvAsW/xwhppUM2Pz m2Dth8N6/GB8tdazbfHD4fl4w9Hyz8HaD4f747qv3tFzbPHD4fmvcY+mP8Da D2co79CS42Pn2uKHM1T9aqXPu82zxQ+H7/+umAJzwdoPh/Vp0z8n5Z9vix8O 1+dz31NtAGs/HNZLG8vPL7/AFj8cvg8LjngfBGs/HD5PlVd99F9oix8Oz3cl Hxy8DNZ+OFwPMsUsbLbIFj8c/n1Tek16DNZ+OKyX/eKndV9six/OUINvjFmX BNZ+OPy+z9ZfHbnEFj+cocx8nn+4LbXFD2eoknlKR84Faz8c/v6xs87+tcwW P5yhvhtda24Caz8crleeuy96LrfFD4fnpZMDuh8Faz+coTo02flX3RW2+OHw 80zv9OwGWPvhDPU855JjbVba4ofD+m5B6LZXYO2HM1TLPZO2919lix/OUPNz 1T2VcrUtfjhDTe06681ksPbDGepYaFSJHGts8cPhehATP3AVWPvh8Hkad/Bu mbW2+OEMVa64X+h+sPbDYT3gapPgv84WP5yhip7JOugKWPvhcP3IFeXecr0t fjisfzY0ef8crP1whhr517OzfTfY4oczVPmSuf+XYqMtfjhcj/t8iZsM1n44 Q+1dN/Bsjk22+OHwfeq77t1qsPbDGerduNEly222xQ+H6+HUP2MOgbUfDv/+ SmF3g7bY4ocz1OHS9UJugrUfDs8nhX7fabfVFj8cnu/OdB74Dqz9cPj8npld Ysg2W/xwWM9eH/E29XZb/HCGervU48wcsPbDYT1/c+2ugjts8cNhfVMqcdc2 sPbDGco/9MOZajtt8cMZqtn3c+/iwdoPh+vBtX7u4bts8cMZKvfsz4OegLUf Dp+v10H3ouNs8cMZataMgY2T/88WPxzuR56xDyaDtR8Oz3eTuw3PtdsWP5yh XtTxKr8erP1whooukvjNc48tfjg8T18ZfO0EWPvh8P6bP4+F7LXFD2eoudEd T94Haz8cPr9Xj97pvs8WPxyu5wlu1i+w9sPh8+of7Ddxvy1+OPz3To+ek+OA LX44XJ+z7v65Fqz9cFjPvH7cz/OgLX44/PMp/3CdBGs/HK6HGX3Whh6yxQ9n qKSLfVo8BGs/HNYXSVuL9jpsix8Onzf/z67kR2zxw+H16h2QNAWs/XC4XlVZ /zvPUVv8cIY6GZYnx2aw9sMZqsuINQHex2zxwxkq28CACefA2g+H+8G3lA+a HbfFD4fP18E7dV6AtR/OUA1jr8UPPGGLHw7rmzTvWqQ+aYsfzlBn0nm45oO1 Hw7f16AFR4qdssUPh8/XiNLT9oC1H85Ql3u96137tC1+OEMNufWwyz9g7YfD 53VAqgFRZ2zxwxmqQYbIeUlg7YfD/bNF0vlxZ23xwxlqYOEzWXLE2+KHw/qv 6I3o9WDth8Pzc6HCjyufs8UPh9//3u5O8eBBn+sP+o/Pn/vvf7b6f7g23TY= "]]}, Annotation[#, "Charting`Private`Tag#7"]& ], TagBox[{ Hue[0.3224758424985268, 0.6, 0.6], Directive[ PointSize[ NCache[ Rational[1, 360], 0.002777777777777778]], RGBColor[1, 0.75, 0], AbsoluteThickness[2]], LineBox[CompressedData[" 1:eJx1nXlYTm3ftgtd60oKDcpMyhyi2bREZlJIhhQZojvKkBSSWaIyl2SIDCEk lJQGZUxoUJI5M8k89h3WtY73/bZv277nn3vbH253ruFca53n/juO1lPnOk+v paam9lWppvbvnzdv/PufUtQqDDA3T1OIu2L3pv7j/jta9/7HbU53EILAS3xe HJ0OntNg4KQO4DP9jxtFg78kfk4pua4U3zWevyYfPHStRas1YNMqm8+1LipE vY11wi3Ak3P/TrEG1z/vqXh6TSnuiMm55f3v12tGrYkE35oX2nsvWHP8dR0R rBwyKqEQ/Dnt9p73V5Wi2LJRY810hfi2taftbvDiL/fX9Aa3Dl52fxj41PV9 n/3A964br/l5RSm+3jdzajzYp2ak7RGwcYBZQRl4TMNaX8aBJ4781Lt+hkI0 /GGXogBvMUlJ6A8ec+L76uQ8pXjj57LGAeDL7e0mTgPXuT1g7TGwhcdfGz1w 70N1vzwCrxs+oGVWrlJcuLRgqsElhZjyvK6OH/jE6O0FQ8BlbZw0WoErO0zq swysW2OgceuyUmypZnzsNHjPXFftZeBxxS8avwAX+xi2MANHHDu+tmmmQjSu drIuz1GKV1fM/+II1viiGL8BrD7e1nMV2Giu5Uo7sF3XmoLzmf9ev/LkV9lK cZ7G5T7vwHsSflbtBCfcDz3WOkshnnEPtxgMfnpqVBMXcM85Ucu/ZSnFZusa rQsF9ykwLIoHj5lc/iUdXL5Ms7sLeKPFfs9P4KHzfXZogC/X9brdLhs/b7y9 RnKmUvz7yKzvJPBT3XVB08BW5z4diwC/Otnrpx547saUJpfBAYHuIdmXlOIh z+B1P8A2sz40mA9+ZOvw1SxHIT73f3PYGGzUQGvaVLDzbuchdzKUolNlwe3t 4FnFbapDwOvTtve9Du7YbHKcOThr86TjNeDjXmpuj9OV4k8v46YWlxVi87Oa LSPBPfq+XOcFzvgb8EoE/2dw4msM+F2vEWlVF5XigTfzp90GG3qv3rEX/CDT 9o5GrkLMWdkqaBTYYGdNXztwREjzmWrgkXMuH58DNncPmngyTSmuGbChaRzY 19DW1QOc0cRpfQnY7OBYtwbgb1WNvmnlKUT32gWzL11Qit3yyqeJYH2zQ8t9 wV67999ZAJ7TvCy2FXjffC/xCPjIrZmXC1KVYumQLicegA36On5eDtZt9bmp 7hX8vDPDO5mDh35NWT8Q3KV/O+/HKUpx5Y3gb4Hgd/kGSZHgC/sdpieC/2pM qG0P/hygdfcpuPWz6onV55ViZ8fbotFV/LzTH6btB0833XFiOFhndYu2o8Gx vyY1CwFf6Zu4oza4+LZxaDJ4QWREwzPnlGL9wy+/vQLb+2dumQYetOzE9BbX 8H6/FlsYgJePWXDXGbzgtfapy2eV4vmOdv3Wgg/PazfcH/xRTS3xAjgmOOxD W3CHksvNqsDV2r12lSQrxanHN4SaXFeIbk0sHdeBo1c6fXcFJ+zz17IF3x1v OGMjOH1vza1XZ7CedXtwNxO8Sf9WTDR4gCKu31dwx59P/YaBl5R7JXa8ge/r yN6Ov5OUYvLpLs3dwQvql1kcB79b9zl0C/iEbYrxZHBb99TveeCCa6VG9cGT LZfP+A12uWRneOk01jOtgYXdbirEEsP7zf3Atx5r2U8H/85P6WwMVp6/nRgF Xvu0qP/dU0qx36YdzfPBjqO7eK4CL57mtqFWPl6/ZlmhluDTdm1+WIE9e0Wk Vp7Eetbg1Qxv8M1TO6p3gNu8OFG4B5wYWNJ9CHjixQX2hWCnbSODfiYqxa1b 7E4qb+H9U/t9PQF8Y5Zai97gCSkVJm5gDTF3gx84I+PLah1w70ZhPw6CyxqK HzJOKEX/t04zy8CeJ9I8/MAnsgyLdAoUosnW2WXG4Bc7H9j3B9dkDp5UeBzr 2dy4k4vA76xcKleDXR1mtTgG/v0xMsAaHNG0a9gjsFP1T91Xx7Ceffz8Q/+2 QjS1jkiOBqtfSZ05BHw9Y5THcLBd7PKipeAjG3rq/U3AerZgYP/T4J7RjvmJ 4ISh9U5Vgg3fbIicAn7W6k6LpncU4rOlHybpgZt92xHmCPZ0Xtzt8lGlOPam 28+V4Nle7estAm+Ma+N1/t/vz/j1oT04d/GrorfgQtfq+2VHsJ45JvZvfRfr Tw+tgjCwdduFp8aCwxwdbvQBz/1t1zIUnHt8T0HVYaV4+I7axnTwpJGNH+wH Pzqc+7ManGF+6uMYcOPgMK92hfh8uc7QEcBOY52LJ4KbZFv3SDmkFEM7GQ2I AHvOM/HwBmepV5zKARvN7LStOfhXSVzLH/9+//5hd27FYz07MWujWRH+eyar DFeA/1vV9dcU8Nv3d6dZgA9M+OK1Hfy6ll1q5UGsZ90uFF8Db5qSbBgFbiSE DKgBt6vnsHQYeOSDgad7FOP1rPPy9Z8DSnFtUr1WXuDSobs9ToIz1t/ZGAP+ +9izYir4u/vOXwXgjtftphmAu1lNnqVRohCbKltX58UpxVn1TEpswXHRBusC wfuevBowB3xklWFbM3DZ+cTT+8FdrpjeeLgf61n4wlYl4AEz+wZuBg+b3nOT 1j2F2GiaZzcH8Mqe6r/7gisvRbz/tk8ppjXMm7UArLk898xR8OcXYSWHwe/i aq90A5ulOzs8AOt3HTS+AXj6VqOkhqX480wirLP3Yj2bXdFqIDhu9YPm/uBi 8cCmQHCwS5d6HcD1DWf/PgFeHRVSq3wP1rN3XWc/BR9yKlYLBy/P/lJiWIbX N6STYA9OibrgMBz8n9lygy+xWM/mhiQtB3uMu9vpMLjjwEGtk8E6tU2GTgRP baYd/gpc3MPPVwe8q/rO7+b3sf6+S4nN3I317MrO2c7gmO5/CheA6+2ZfG8N OFew02sPHrDQZOAF8FTfuePvxyjFpcNeJ30A9/SNObQJnNz6ZGuTcoVopXXp Tz/w+28Lw13BwxxKJ37ZhfUsv+efMPA64xeZh8HuB9S9M8F6h152nQTeEZh3 7wu4XUn5wfrgglEbB3Z8gNfzXFab7GisZ+1Gn5kM7jcs6og/uN8fI+Mt4E47 3a07ghffrQjPA0/fr3/zQRTWsyMH/vwC75hzbnYk+E3wbO9uFXi91Qc1cAC3 celWOg382T3r4vedSnFS568Do8AVm9rPPwbeWivtzE1wny0B3TzAN++FGNd6 qBA7zzv1RQ+skTgowgp8t9udrLwdSrHPau2/s8H+haU7gsD+E+967wH/NzVv QVdwonlU6V2w6aOo8U+3Yz0T3AcpH2F9Gz1q4A5wqwqT5F7g2pmv7IaBXc+8 NvYDz+s63bpmm1KMDD0ZcRBscyCzZxL4qof/31JwV9O/g2aCa1n3+k/nMV7v 840nNQXbadcqswdv9tQLuLVVKc5/mjdoEdjY7PWuleCElI3JCeAuTXfnWYOf hY9u8wisbtHp15stWM9mNI7Uf6IQfyzdYrUXPLbXw7+DwRtqChePAW/SPfjf UnD/jPc5SnDuy9llp8CZ2Q8NL25WijXp3QZXgtP1Ds3zA1tv+5rc5KlCrHO2 f5Ep2Nc7rY0jOODUmb5lkVjP+q2IXAluqP3j1CbwY8PBNefAD2/V79wf3Pi9 ts/bf/+++vfj3yKUonPO3bJWzxTixUMnrY+BQ6OjBo8Fu163ueoBzvZ1P7se 3Ht++FQD8K+Bpibp4Mr4pNrXwpWiRfM3kdXg5z4Hji0D//fpZE3b57ifvOXh 1gN88Kq/z0RwTOELg5ebsJ7t6XU//N+vr7QpjgE38q81JAcc99wp1gk8cviV s9/BZeo95ijAa403mZhVKsTdj8ocLmzEevZ99OYpYMPQwaa+4O/5jdW2g9cp guqZgs0PPvS5Bh402e9XaRjWs6CD9/+CL0V1rN4E3u/kPaTHC4W4MPNgVX9w WTvzczPBNQ8ef/2+QSnq/f1qEgPW+v6gzgnwsMK0zQVgN6OoJp7gVUdXqGm8 VIj5g3RtjMBpywfPsQWPDB/sdjNUKX5x0Sn3AT/+Zhe6AmxmVjhkP/hA6Mt0 a/CM2tHnisF5o0b9erse61mpu6nWK4UYPtqv735wSaLplr7giTFDN4wD11/z Rm0BOMbifkU98OBJp+YcBpeZGttlrcN61n1ReTn4zOIWuxeBU5S9hzZ8rRAf 2N4SzMAfK2qddwC38O0R+GQt1rPkK6aB4HFth37eAfbcsGnLCfCyGbr+I8C7 poxRfwrebbehpha40LrJXMM3uL4eS4o4vwbrmc6j8mHgSXmhHeaAHZ4dHLoc HLy1/rU24KWp3ufPgPe16DevdLVSPBth3vYV2Na3hXE4+P2Mb1uav1WIRVvi SweA2/W+qO4MNtp6b+fPVVjP9FbOXQO+GJTkfhK889XgB6ngyLFWXWaACzJ0 hn0AB3X2qNMMrLm98Hybd3g/tbo9ub0S69l/0W1dweF/DuStBQfae2wNA1dp p5/pDT5t1LZWJrhwUOCRTyuwnr1/M/cLOOzsvYNHwG0un3rQ4b1CDJl+74g7 eNKuRcMmg7t6BCQbgLf69U7ZDO50+tyV6yFYzwbVbpcHbjZz29MQsKLF1a2/ wFmhDRQ24D6fN9Xq9kEhfmzfvtv75Upx0bUxvtPAW0bcn3IAnLi3ScVO8JE6 HXZNAL/0fzTsJnjwhAblDcCtRsSnqFfh/Z8QYZIXrBTHt/mvnRW4suHhBUvB kT/Mt80GLwlzudEDfO3Wt1p7wDeLozu9Xob1LP6i713wxD/zN+8F91yyskL4 iNe33mO1ceD5zkOG9wLvb/jYXxt8rH39VF9wvtH8z9lLsZ79LWx3ENyk6/bF geDmRdHbSsH+U4YozMFjEzxq61QrxBdpG6JfLMF6FtLWzx68duQkq1hw7ri3 Ff7/uE1q6Rhwjdnp4QngLkMOrNIC29QJSH0ILrnR2DorCOtZWe/2+p9wPbnQ +GMA+MjJ2tsHg+uZxJ3uCn685mrtpeB03eSgykCl2MQt3O8UOG3byOG7wc49 xj58Ds5PnWMyBrxBs+mIJp9xfQnXr6MFzn74KHUkOMO475vMxUrxd3J8+5Xg mJB3pQFgi7D/tp8Dh6a2KOgK9pnavc5bcPr92zcrA7Ce2Xz3a/VFIa74pHF3 N7hCJ/3hGLBtg9SHY8CNnq8csR48Tnz3SQvseGHIhYtg782x9bMXYT2LrN+h GqxvcLN7IPjSzKLtbb/i71eyyM0c/L33rjoTwS1f7A5/6Y/1TH/KvHCw+Zg+ V/eAZ71u+ygbbGvmWncceP+ltyO+gweHvHbWAd/ffvpC528Kcbn75/2XF2I9 8wnoMAXcvGTBzyXg4f377NgG9vk2e7wFeFXjOhrXwEW3ijLeLFCKFz9cnfcX fGfuGbM48JfL4Y+6f1eInyo14iaAu8SMHTkT/HDA1Za64BnzmqbtAjtH/Ym7 Ol8p7hn8uEMBuMXnfV1DwCUtDu2o8wPfl+nJWTbgBl/+07AFL/xt5VY1D+vZ 9e7zfcANrpnWHAKH7Pv+aB/YtGL5YXdwyqL0kcXgqsGDxhuCq0esSqv7E8+z TQIa3vLDemYytGNfsME03dtrwJ4/6++cD3axNNjZB7yroEjjMLj1nuAZX32x nsXvml/+j0+P6nUCrL10yuMGv3B/Gby28Qyww+h2jg7g4kZt/jYHL+vwLm0x eHio8euiuVjPak53PAFe8nrVg43gD0UBO5+AgwYPuecAbnesj8LwN74fyXPK /sxRih4r6iwYBj5l//lpMnin67XHweCV6qWffcC3u0Q4ngFPqN1Muy1YU8Pl 4ktw6vi0zhU+StH+ftNOzf8oxF6NUkZvBweeerzTCRw+tOGKkeCktYcUa8AB ypxzCvAbN58FqeDbUwo+p/+nFE0sejx5Dw71srRdBJ5U94djm79Yb7pUr+oK 3vYo/eI48JBcjXsvvLGenV3VKQwc3W9u971gxcahUZfAz0+bbXUF9/FsIHwB r+os/mkAXmRbvKBDDe6nLx30uTpbKZ6sH/PEDbxnhdvzEPDL51NGbQaLq2ZM swO3TmuXngsOvpfxunoW1rPN7zr9Arfb7BWQAN7slRTVVU0Q9XPctaeBr/VZ LEwD9wo5cKQZuLZB34U7wYfKLUcUeWE9e1Pn6Q3wwle63zeCF2ReG6WuLoj3 U+2ODgQf2xGRbgk2mXbMs2amEvcpLp1ng09+n2FyHtx8QLPoWPDnDbPe+oJd mjwR7oKXmidd6ADeVHVooVBLEN/+tt/8ZIZSzMv1edoT/F3dyHcXuCamh5Mv 2GeM+dgxYJv5P9IPgLsoN/XTBvsOyehcCu5ubmaZOx3rWcvV0dq1BXHdU+1u weDHX4Yq7cFOPbp2twE3udHA3x98xSKi58dpSnH0/uKnR8E9f3cdfhS8ISDG 6SFYJ1Z7mic4Z+TUDL06gpjapf3KZuDfJu3NBoMLspYdKfJUipa/3kUvAX+e 06BkE9jndpLyFPjxoHKtweD4Q4v9n4O9pj4epA6uWNr3WWMNQZx7t8WG1KlK 0XCMhvNI8MfELUXzwY4dr2esANfU69vODLxOLdLsHDirpuXyyilYz4pddr0B L9xt+WgP+MexZpqtFILo/WvZoPFg85VP/MeA63X9lawLnj3+8LN14OIRRzrd 8MB61nWO80XwRJ91h1eD72tYXPoIHhC3o3NfsF75D7O2Al4vjeJz392xnp3O 2DUBPPaI/dDT4NXrVmuGg3seLH/qDb44ediibLB6/bhVpuCvFg2ffwNf/L21 88PJWM+0Spw7KwUxatWp+zvBMx/HXPIAF6d9i3QG7zk3tcs28PULMxzrge9t bB9zFfxkxx+9XDesZ9Pea/4F75554WEweIjdmUXdNQVxS789p23BIQ0Cn88A +/U6HPZpklJMrew7ehf4+5win+Pg6jSNzFvgWlWmLjPBnbZc71KnriAGFu90 aA32nBUZYwOebmvW6/5EpRjTd1xdH3B51ye228CFBs0D9oHr3T7bxxGs/fbJ 8yKwrcXRoZpgh6zDo+tqCWKG7wW37AlYz3bOyewD1op9tWgp+Owci67zwfvv 9oiyBn8Y8DPmELh1h6jMj+OVYvuml+qWg63OGn1MAHt8XB3QoB6+f5tPtZsB jsobVjkA7FQ8dXor8O3dDccsBptEdTpa5qoU6y4oyTwObvep7tetYPuhu7s+ AS/6XTPYERzUynN3I21BdLipGacJTvraXmsYuGxpuzo545Ti2xvvA4LBm9u6 /rcMbBJ3pjIJ/Phh9H0bsNviwDEvwY5Z750+uWA9cxSzmukIYlCl863j4HxT RTcnsNH03NFeYMXv67tXgz+4DH5oDO57J1IrFfy4sMTvwVisZ4fHLX4PfvJt vtZO8MllzV8Y1xfE3/eaHnMGvxzzdMw4sGNk/mhtcOtOR7I2gBvabah1ZYxS nKA+t9sl8Ma3o86vAG8usYj9DDbNarGwN/j68Z9aHRoI4sjCTzbfR2M9W3Vp sRt4W69btZPAvSaseREJjtE/WeQDXtBt+NhccBP/bSfag48rdLN/gh8ELtv0 1BnrWXlJt64NBTGv1+yFseAWSbtjPcEFReM8x4Nd1nvW2wlWeAx01QeHu3cI vAHe9MVizC0nrGeWH16o6Qri3pPG40LBavWSx1qCNyToTHEA2zwJzJ4FTlb7 7qcG9jsvmseCt197sP7CKKxnmxR77oDT22Qc9gc/mXajnqAniIVtd+Wbg5v0 3BzYE7z5ve+vt45Yzxq6vpwLvrqtb9fD4A0vmrscALtbK2Z7gnMuPs2+B3Z6 n53QAvxnyxFzbX1BTCxa9Ll0JNaz2XP39APvU7YesA08R7TU9gd77k+PHgWO b/Qr8Ch4SLrjdy3ww7eXXlaALyy6OylvBNaz7DUuegaCaPl68JUV4FFRw3MG gYebJ9r1Aa+bq9t9CfiIl8aZH8OVYqbDvT0nwZrHhlokg380jdV+DrY3XHbB F9y92jOocSNB7JMbO6QzePaVDq9GgH8VJlS8GKYU42I/uKwAh7sfCIwD31+Q nHMWbLpibXN3sP6woO5vwH9cx+Q1AQ9v3W9vS0NBnKNWN6B4KNazbwqdMeCn Ww913Qy+ePNG0Drwg+6d348Af43b/CoN/Onr9iRNcNdA13EfwXf+VAZfHoL1 bFSLy6ZGgth7WtPRIeC9bZ91nwCuO6iHWW/wvd9H9m4Ct8820/kxWCk2vDtX Jxsc/UXz6xnwkCOWS76BA37lPvMFrwj+9apTY1wPPnqWdQanjs0c5wEe8vVh 8ctBSvFTp7WXt4JLTe3KDoA71RrR4ypYN9bvmQd42j3dfX/Ai5as/tIMHHPi nk73JoJ4oGKBdulApVi0KnbJDPDgJ306bwNrT5z2Ohrc8eATJyfwQPOOrrfA pg7uy7TBy4Sqy7WbCmKnR0mnrjooxXMPknvYgPttffhmNfhDUtC+/8Crgh93 tge3D+1Xfx+43aXzC/4OwHrmISwtAvstmJadCo6yuvlas5kgXkp9arQIfKfe Ftc+4NWnLBf2ANd96po7Dzxs0fh7H/orxf4pLSwOgRM7jrQ/Bg4Kf7bvPnj6 a90kL/CZ6UfrN2guiNZF8R1NwW97+i4dAK5dV/PIY3ulaKpr9SYAnHHIpkss 2O3lL9fj4IU3LVIngLenZ+Y+BjtE/x5uCM7futaiUQv8+WbhlXf7KUXBe8T+ oeBW8W/WRID79tNrEAwuadOwywhwgGHp0iSweu7f+5rgk+9i37wAd8TzfK6o FF9lTxvfrCXuD750Gb4S3Dq6Y94ocKPsuToieIJvlcVqsHuPhSW/+2I9G3h2 fwr45Iw+h1LA15stafAeXGvptaX+4Nqf+i0zbiWI07YbTewB7nVVeOsC/nGn Xd+qPkpx4Z6b4zeAfzp/63AcfHzhlrwM8DmrNU1ngyuHjbf8DN4ae1evHbiF ccu49q1xfUuo0H3WWymO+/6sgRs4cUm80T5weP7RZZHgNhYdTSeDrxzwfXsZ bFztZdMUrBZkNeEneFnJFOd7vZSirdPvvC7GgthcQ3/+NrBfuyxLT/CfXcui ncFH/6yN2wE2u7j3Sn3wk7sjGt4Al6xf/OdGT6XY9KhesFobvJ9tlLah4NHL S99agPceHRY0CBzmsmfCLHBQv/45dcA5nadf2Q0eqPleL8sO61mtTlZ3wNva DJsdDLYsrYpTmOD6cXp8Xi/wnMSzDXuCFxcbdfppqxQPrV4SPBe8//TabefA Dyfav4sDL/I6qFgINuqunHgP/K2x37Lu4FHK/Cv1THH9f/Xq9wcbpbi+YotV P7DXd50Vx8GZZ8YfWAjOmfVQ2xv8M7Sl7lHwQfcJe9uDu095Hlxh+u/6vMy2 0lopelsnvNNtK4hpU4eXxoHjtP0mDgJrJWcGTwGXP7W6GgTWa1TRuSVYP/W3 1UnwtsN7H5VbKcUREVkHnoG9w5W7osGrZ6zTbdxOEFe+05/kCk7vNXL5CPCj 5zltGoG/6uq/DwHH7jKsvmuJ9exV6cSz4Nfm9fIiwTMz9lx9Da57Y99+R/De bdOtW7YXRNeNJau0wfe8Ox0cDXaIOuZz3QLrmf1H3XXgcXqt3NaDhxqdW54G 7tDSfPQg8Ir3S95XgX0eVThqgC/k2E8y7SCIrwLbj87ugfUsWnltPDhQV9st BNzZL996E1j3+gafvuBpg7YezAKnXolb9ae7UtzdfILeN3B41zH7L4CLPrUM 6dQRr3ebmNzFYJ1rz9+7g/dfDfxoDR64N2HSVvA6hw/GX82VYrC/37Ur4NcX vk84Az433NrmD9jJaXvUPHCV8Z+D5p3wfeyYV9EN3P5Hlt4McJ53aMcP3ZTi lFvrQqLBY+0eLjkOjjo48kM++HVqTpE3+E6Qvlvtzvh86tpZdgTXdS67Zg1u NKPPrpddsZ6132vzH7isrEA4BF7yd3r8XrD69qrA6eAzhZ30izr/uz+O+dwG /O7oxxBNM3w+FhQueNIF61nIuQ+9wWZPt//aC548bqnbPHCy2dN17uDtZv2v x4N/LD7frAX4Vm1N2/vgU+8MzpWbYT0ry4+v30UQT5z4OW4XWDy5VX8A+O6T 6TXjwQFrJqwIADc76XLcCHxqUquqY+CdvW5MKemM9ax7pdtjsM+Jy822g401 j1036Iqft5N9xRjwhId+tkPBpvfFeD3wlmTrQ8vAl55cWnCnE9azDX/0k/79 +qzMIZHgOlOzV7wAP9/az3QUuJfN+qqm3QTxcJgo1Acv1HGcPArcadHFDzc7 Yj17pn9jFbh/0LmKMHBlapltCrgkw6xwGLhl5N5D78AvvFsW1AWPmznDwNhc ENfEb7hztYNSjOjdeaUL+OF2v/vrwFf0qqtCwd2nFbweBFZ/fW5yBrjQ8pCa ALa9tPTGJ3C3Hl+a5bZXivO297dr310Qc1em9F0NPvqf5uFJ4C6On7wGgJ/a 3zKIBOtd3LezNrhp420rL4Otv2TnZ7VTimM+TPj4Azyv5XitFeCwy63cu/TA eu/pMbIf+PKuyhtTwV9f3duhBv7jd8xuB3hiWeaLjLZK0WrwvMPXwTpuTfoE g+e0sGmkZiGIztGPo/uAD33+s9ICvCK10d8/pljPrmV/9ALrVJ6feRFstG+9 +27wYoe8kiXgUYscb94GT1bvN7IXeP0Ig54KS0H0tTe9/stEKWa1uX/YDjzP fP7IC+CfP/Y2mgu2/9bhXiC4R8GMVXHg22mDvezA3vGdq0vA7RLy//5ooxQP LKl2r2cliB5vUnelgMudz98UwYnx9fouBht0WNZzIXiSIvulDXhETf8jR8C5 PR7s/G6sFNcUaRpWgKe4TnA8D05PuLVK1xqf99229QLA30K2VQ8Ee5oF3rIG d3Wd6BEEbmneNOpba6Xo1aV1fiI46U7TWefAe+u86PkMrN4rqO8icGnZsSNG Nnje3m7TzBrc8NQ8wxHgc9qja762wnq21mZ1CHj4tasvz4JXuP2tTgZ/+brr nj/4Qo8cj9fgvxev5FuBP2uG5rewxfPsEMfrX1tiPXvk2Gs0uDCnS/5Z8PSz BkfXguPHzyjxB+8Ou2+YBq7s/qXSClw8dd/qKvDIoLLfX1tgPbOd+cnEThAT 3AwanwMPqm82ZTz4WZ2DPReBg59X528EV+9aN80afP7C+V5Z4BcjMrZ8a471 LHLZ0a/glw6Dr54Dd/AaYNSpJz7vicYaAeApfequcQcbJI8YZAOO1i/4tAX8 Y8WV8O/NsJ693jblCnjCgM0V58FamRNv/QbfNDnaY3Ez2Yfrhedtx/rhts1k Hw686+Olqh9NZR8OvN4y3TW1qezDgRMGKfICm8o+XG+8H2N29uzZVPbhwHvX zD/7q4nsw4GTtHZYpzWRfThwYP1aGUuayD4ceHh60vDeTWQfrg/ubwYkPPrT WPbhwIX5LwLTG8s+HPjAeq+mwY1lHw58cl/nrL6NZR8OnNa/x1y1xrIP1xfP QzFBxplGsg8HHlZapzzESPbhwJfa5u+yN5J9OHCT08VTahvJPhx43eHmXXIM ZR9OxPOt9X611YayDwe+tsGz1MFQ9uHAs+96nFcYyj4c+GzPqN15jWQfDjyk Wmv9ukayD9cP65/J+cAhjWQfDmyqvnte3UayDwfWS07xvW4g+3DgLXO0F4YZ yD4c+PjEHcEjDGQfzh7rx1GXCB0D2YcDD1g/9NAtfdmHA/dtOy8nQl/24cB3 Em+8cNKXfTjw/DHjG+rpyz5cf1xv7A37FerJPhzY+IjGom16sg8HXne2TZKL nuzDgY9H+X4x1JN9OLBfyJvepbqyDzdAEPNjtoRF68o+HPh2E6/HE3VlHw4c 29GrV3Nd2YcDz/21eXdFQ9mHA29Oe1Fnb0PZh3PA9Wz39HlTGso+HDjwplal cUPZhwMPXVLq/qyB7MOBV5TefHiwgezDDRTECv2X02c2kH04sPnkdtXtG8g+ HHjq89BVr+vLPhzYp6xh82P1ZR8OPMPnwgWf+rIPN0gQ/fPXeHStL/tw4Ptm 87U+6sg+HPjlheC00zqyDwfWPJIwf4GO7MOBL5p+7WalI/twgwUxaurkz9+0 ZR8OPDji6cUUbdmHA4c9XLUxSFv24Qb/2w/u59lbW/bhwP3jjfrW1JN9uCG4 nw3WbJ1ZT/bhwAF99DRX1pN9OPBbPctvA+rJPhx4gPmcN4p6sg8HLs27+PyK luzDDcX3RbNNZaiW7MOBw9rufjtcS/bhwNecOv3Q0ZJ9OPCqtBtat+vKPhx4 +c7lJlvqyj7cMKw/hgP7j60r+3DgXO9mXoZ1ZR8OrJlXa0uppuzDgUMmfs/e pSn7cGCPib9/umnKPtxwPI9/17ZppSn7cODIGZ2DnihlHw6cXOySc0Ap+3Dg yqAwvZlK2YcD56674dVBKftwI3B/3a1RzhtB9uHASw54mZ4QZB8OXGOUHeYr yD4ceP0lk5/dBdmHG4nra36YzxeF7MOB/yz4WXlOIftw4H4v/5sRqJB9OHD/ iU/f9FLIPhx4hrrbohoN2YdzFEQTnVJllobsw4HrJbvsXaUh+3DgnA5FvQdp yD4cWNg7+rGmhuzDgeOH3Q69UUf24UbhfstjhF14HdmHA8fr5n1wqiP7cOBG 23sn6NeRfThwTYuT/5XUln048J7HzS2ia8s+nBM+r7pr1N1qyz4cePrzF4Ut a8s+HHhhuP2JJ7VkHw5cz2HbxoO1ZB8OXGT3cJ5XLdmHc8b7d7Dl5E61ZB8O 3Ch1rON7ddmHAzseXz7wlLrsw4HFM3v6L1CXfThwTe3TA63VZR9utCCm3D7r +FNN9uHASc7HJ19Uk304sEPa1vnL1WQfDvyg/3+b+qvJPhxYvWWPRIWa7MON wfVl5cuiqzWCyocDe8dvqLURLPlw4LbpTS1HgSUfDjxBbaePHljy4cDf9tck FP8VVD7cWEGsU+5UFQWWfLix/17fjXZuYMmHA/96dTq0FVjy4cBTOl169PSP oPLhwF3Kz/Q6BJZ8OBdBvNc9InY2WPLhwC+nOym6gCUfDlyT8G3+x9+CyocD 3+m54sUZsOTDjRPEzsOrPALAkg8H/qDX71FPsOTDgfWuzZ9e80tQ+XDguINr q7LAkg8HznkQFLIGLPlwroJ47Iij0VCw5MOBE8RaydpgyYcDm5ZtHnf7p6Dy 4cBbj6upbQNLPhx4bfXQE65gyYcbj//eI9+pzcCSDwc+mOjX7NEPQeXDgSfv GF4eB5Z8OPCZW2r7Z4IlH+7fvx+x0acTWPLhJuDzo1vd58N3QeXDgU+FmTVK Aks+HNjKpu8nf7Dkw4Fbj2hbbAeWfDhwRe0n6X+/CSofbqIgvtnqdzwLLPlw 4Ac2hfvWgCUfDjylvWbMULDkw4GtY+rH6IAlHw5sebNy352vgsqHm4T7ic8b j28HSz4ceOHQOhkTwJIPB76tHFLcAiz5cOBQr4mfnnwRVD4cuHK/XaNDYMmH cxPE3h+f9/EGSz4cWG3jJJ+uYMmHA59O3L3v02dB5cOBqzYfvn8OLPlw4Nm+ S5ouAUs+3GTcz4YYTRHBkg8HHqC+5FgdsOTDgee1j/9z5ZOg8uHAgebbx2wE Sz6cO9hl2CknsOTDgQ/eztFrBJZ8OPDAB+pLyqoFlQ8HvpCk/joWLPlw4MXh 2W6eYMmH8xBE7YSBJe3Akg8HNugX6vL2o6Dy4cBDwzbePwmWfDjwojzHGQvB kg8HDjYr+GoLlny4Kfj+/tDe+LdKUPlwU/7tFyg7ZIMlHw5cdCL92lqw5MOB 7+p0mzccLPlw4MmZE1s2BEs+3FTcL6j3u1P0QVD5cODLWg9Do8GSDwc+3sRy iDtY8uHAdrPttU3Akg8HbmelKHn5XlD5cJ5Yf1OD44+DJR8OvLL7iaB5YMmH A98ri3CxBks+HHj8h7bWv98JKh8O3O3Y3OaZYMmHmyaIMSNma64BSz4cuLp+ o19DwZIPB47tOq+6Pljy4cCtXi39UPhWUPlwYJ3FNtVRYMmHmy6I+s32/ZwM lnw48Fedc0oTsOTDgTdsWtzs1RtB5cOBL5W8sDwBlnw4cFQ79bHzwZIPNwP3 bxdyFtuAJR8OnHzL/MCf14LKhwN77x9UmAWWfDjwcV+NuuvAkg8Hfr9otsMI sOTDzcTn+svCNbpgyYcDb2/X7mbJK0Hlw4FHDFvaeDdY8uHAsbGLvKeCJR/O SxC93A2y24ElHw68+/rYVu9eCiofDjyotc3K02DJhwOvjr3wZhFY8uHAYSEP x/cGSz7cLLxvyribtcCSDwe2macx6MoLQeXDgZN+a+RuBEs+HDi+Mm7oaLDk w4FPz6koNAJLPtxsQYy4e2ZaRaWg8uHA2mPa/owDSz7cP+7afdsssOTDgdfF lVh2BUs+HDi8yqD883NB5cN54/s49u3aVLDkw4FfNphguxws+XDg3KmTqxzA kg8Hdgj9fkwLLPlw4Ke57ebefiaofLj/8D65vrHaAZZ8OHDJUvs6bmDJhwNv WdS5xBgs+XBgm9WHE18+FVQ+HPhkZfLGE2DJh/PB8/H90X4LwJIP5/Pv/CRk gh1Y8uHA3iv6DFEDSz4cuCZpfe/cJ4LKhwPbBU61DgNLPtwcfA8Mrlg5gyUf DuyXm9LTCCz5cOA1N60GVjwWVD4c2N+7j8sBsOTDgRWPb3nPBks+3Fy8j3Nf r+kGlnw4cLDLxkNfHwkqHw488d65m2lgyYcDZ1jO+rECLPlwvvicJu7tOAQs +XDgT2vdptQHSz4ceEZN7O6ih4LKhwMfGDft4S6w5MOBre8cazsVLPlwfoKY enLR/PZgyYcDP7bIufy+QlD5cOBFeyObJ4MlHw7savkwMAgs+XDgIMtjD/qB JR9uniC+fvLNQQmWfDhwTnBmUv4DQeXDgfuNVLbbBpZ8OPDxiOt7JoIlHw7s tb5uC2Ow5MPNx/sSmLPvZbmg8uHA2Ye+d0wESz4ceItzfMpCsOTDgQ3Sb4zo BZZ8OHAjM+8XtcCSD7cAn8sny9dcvS+ofDiwfWvtThFgyYcDL+pcv8gFLPlw YHHQmlXNwZIPB75/xs/2WZmg8uEWYn06X/DpKFjy4cCPt+1P8gNLPhy4W0Rl gA1Y8uHAjd/s6l9TKqh8OPDA15l6uWDJh/PH9f32uFdhYMmHAy9+NilnNFjy 4cB9ZhYcaAKWfDhwzu5ToY/vCSofDtzqRs3Cw2DJh1uEv69V6oy5YMmHA7do /WiSFVjy4cDjC3xd/5QIKh8OHLPOe3wOWPLhwLM23XLfAJZ8uAD8/rYx3s5g yYcDN95WsKQxWPLhwL4t/9vyqFhQ+XBgy7pzEg+BJR9uMf796KKCOWDJhwM/ 0d//zRIs+XDgN+l32vwpElQ+HPjggxljc8CSDwd2OesWtgEs+XCBgui26ewV Z7Dkw4E7JvjWbQKWfDjwQOcNTo8LBZUPBx51VSP2MFjy4cC/xj78MBcs+XBB gtiwj+Ega7Dkw4H98o7F/b0rqHy4f79us0cjFyz5cOBfRe/+2wiWfDjwqBc7 SseAJR9uCdb/0zHDmoElHw7ceemvrKd3BJUPB56yKalvAljy4cCTO+dkzgNL Phz41O7OQ+zAkg+3FM+T7d8WqYMlHw78S7+W19XbgsqHAwce9qmJAEs+HNij Y5cYV7Dkw4HjH9v3aQWWfLhleP0MEp6/KBBUPhw4od6MzYlgyYcD39CZP2AR WPLhwLqet3/1AUs+HPjZqOXnFWDJhwsWxPSWwYH5twSVDwe2NLzZbztY8uHA Vctm6UwGSz4cODF29CNTsOTDgR3SQ8+9yxdUPtxyXE9NdbYmgyUfDny22YOF S8GSDweOf/N1kgNY8uHAO8smDNEGSz5cCP4e5sqeRTcFlQ8H3m3713w3WPLh wPPtenWZDpZ8OPCdJZldzcCSDwd2HrLR6ssNQeXDrcD37GWs/UWw5MOBV8V9 Gb0aLPlw4NtZEbNHgCUfDhwUPneNAVjy4f79fufIQw+uCyofbiXuw8d+uXkQ LPlwYOtH0T98wJIPBx7XO6SjFVjy4cA5yYc8/l4TVD4c+ONm7ZhcsOTDrcLn vsXp8k1gyYcDp+zbajwOLPlw4IMzzvi0BEs+HLjqbIP0F1cFlQ8HXlx+WO8k WPLhVuM5tfWSOQFgyYcDt7+1Pl8ESz4cOKDb7R6aYMmHA7uGO8XeviKofDiw vlVdnWiw5MOtwX3D3J8rpoIlHw58dlXrPx3Bkg8H3pu5bMmnPEHlw63597zR UD0NLPlw4Pz790JXgSUfbi3e75GFjUeAJR8OnKBX+4QBWPLhwOr+0wZV5Aoq Hw585NK35/FgyYcD5/ZJWz8XLPlw6/C563mquw1Y8uHA7rWKH6mBJR8OHFHR YevVy4LKhwPvb3ps+Gaw5MOB22pMqjsRLPlw63GdqbS52QYs+XBgi3r2297m CCofDjw8039qMljy4cCfnIotloElHy4U60hdj3qDwJIPB/5pqfeqPljy4cA7 Wn+4di9bUPlw4J6NP53aB5Z8OHCvWS1iZ4MlH24DvjeTfcN7gCUfDtxgwMvV v7MElQ8H/jFzdchlsOTDgWc3GrRiE1jy4cBtYjqvGweWfLgw/DwOlltagSUf DvzAwyPuVaag8uHA+bbHz58GSz4c+GnzpneDwJIPBx4+4Uj1ALDkw23E81mv cYY6YMmHA9s0NOlXcklQ+XDglW3r++4FSz4cOPGq4YFZYMmHA7sO7v2gO1jy 4Tbhdaxa1vR3hqDy4cBVOuWTL4MlHw68vHr0oU1gyYcD33z5/PM4sOTDgcv7 Rg5qDZZ8uHBBvO4wds/rdEHlw4GvDTb/nQSWfDiw8Q6TyUvBkg8H7hLc5fJA sOTDgT0dR5o3AEs+XASuey4r95deFFQ+HHjJkxtGcWDJhwOftu+49T+w5MOB ky9H61uBJR8OPDW1eXRNmqDy4SLxesw9bXIVLPlw4EMWrmc2gyUfDjzLVWfI pDRB5cOBO3UsfGIKlny4zYJo++NwyIcLgsqHA3/WDzNNAUs+HPjujSX5K8CS Dwee4hu4ZDhY8uHA9o6rujYCSz7cFlzvUqJePEwVVD4c+P2flANHwJIPB57t 82zGfLDkw4Gjxhl16Q2WfDjw+npjfyrAkg+3FdfH8qjrBSmCyocDOxtW7osG Sz4c+Iy27dJpYMmHA7+qv9mtC1jy4cDec6rsv58XVD7cNrwPi0ebZYElHw6c uCK1WRhY8uHAt0tNGrqAJR8OXKsgsm4rsOTDgTueVdN8fU5Q+XDb8T174Fvv DFjy4cDTtz/WXwaWfDjwqe7OxoPBkg+3/d9zYJaFLljy4cAl47sNLz8rqHy4 HVin18Z4xYMlH27Hv/shjVBfsOTDgfVPeJ+0A0s+HHjq0Jv364AlHw48sk7H ereSBZUPtxPXQbOQflFgyYcDexndCfIESz4cOLhRswtmYMmHA2sGTq75dkZQ +XDgLtt2Ds4CSz5cFNbx1Kvbw8CSDwee2fPjKxew5MOBe3rr2LcGSz4cuGtM qz1vkgSVDwcubdVO/SxY8uGiBfHFsNZey8GSDwdu4qtTOBQs+XDgIY/eDTAA Sz4ceOqH9NSHpwWVD7cLf5+q5ZZHwZIPB55n1SN5AVjy4cAn9Yts+4IlHw7s WTE9WxMs+XDgyspnToWnBJUPF4PPUYjT81iw5MOB29dKWDoLLPlwYCGtqokF WPLhwFW1jC/+PSmofDjwkY59pl0FSz7cblz/1g5osBUs+XDguv9ZZE4GSz4c +LCZ9qIOYMmHA6u1yjf/nCiofDjwgB3+H9PBkg8Xi9f9hcbZ9WDJhwNfnB4U PAYs+XDgjOnFI1qCJR8OPLBXo9avTwgqHw5c1dvuxxmw5MPtwecto19xMFjy 4cCrDTqfHwqWfDhwo23fYw3Akg8HbrglPvTRcUHlw4GDp1kGJYAlH24vnj8m H/D1B0s+HLhPcfXsfmDJhwNrtW41ux5Y8uHA/bd2mlNyTFD5cGDX1fqL9oMl H24f1p8hZat8wJIPBx5jvWSHDVjy4cDhcT9O1AZLPhx4xDOn6/kJgsqHA/s4 rnobBZZ8uP24f7WL0J0Olny4/f/8+AW9u4ElHw7c6I25z6+jgsqHA7edlLsv Fyz5cHGCaBVvfj8SLPlw4EMt5zd2A0s+HPhDi9BJ7cGSDweO+rnwwKcjgsqH AztoWn1MB0s+3AF8XvZdtQ8FSz4cOLJJt6ixYMmHAz+85vW5FVjy4cDFT/zG vD0sqHy4/4slH+7g/7Lkw/1fLPlw4I9T0us0AUs+HPjyyuIlzw8JKh8OHNw3 7cdJsOTDxf8vSz7c/8WSDwf+vthmox5Y8uHi//ef/P/5+/5/f87/+9/hz8Gf iz8nf27+Pf5/f8//93X4f18nvo58Xfk683Xn+8D3he8T3ze+j3xf+T7zfefn gJ8Lfk74ueHniJ8rfs74uePnkJ9Lfk75ueXnmJ9rfs75uef3gN8Lfk/4veH3 iN8rfs/4veP3kN9Lfk/5veX3mN9rfs/5vec6wHWB6wTXDa4jXFe4znDd4TrE dYnrFNctrmNc17jOcd3jOsh1kesk102uo1xXuc5y3eU6zHWZ6zTXba7jXNe5 znPd53WA1wVeJ3jd4HWE1xVeZ3jd4XWI1yVep3jd4nWM1zVe53jd43WQ10Ve J3nd5HWU11VeZ3nd5XWY12Vep3nd5nWc13Ve53nd530A7wt4n8D7Bt5H8L6C 9xm87+B9CO9LeJ/C+xbex/C+hvc5vO/hfRDvi3ifxPsm3kfxvor3Wbzv4n0Y 78t4n8b7Nt7H8b6O93m87+N9IO8LeZ/I+0beR/K+kveZvO/kfSjvS3mfyvtW 3sfyvpb3ubzv5X0w74t5n8z7Zt5H876a99m87+Z9OO/LeZ/O+3bex/O+nvf5 vO/ncwCfC/icwOcGPkfwuYLPGXzu4HMIn0v4nMLnFj7H8LmGzzl87uFzEJ+L +JzE5yY+R/G5is9ZfO7icxify/icxuc2PsfxuY7PeXzu43Mgnwv5nMjnRj5H 8rmSz5l87uRzKJ9L+ZzK51Y+x/K5ls+5fO7lczCfi/mczOdmPkfzuZrP2Xzu 5nM4n8v5nM7ndj7H87mez/l87uc+APcFuE/AfQPuI3BfgfsM3HfgPgT3JbhP wX0L7mNwX4P7HNz34D4I90W4T8J9E+6jcF+F+yzcd+E+DPdluE/DfRvu43Bf h/s83PfhPhD3hbhPxH0j7iNxX4n7TNx34j4U96W4T8V9K+5jcV+L+1zc9+I+ GPfFuE/GfTPuo3Ffjfts3HfjPhz35bhPx3077uNxX4/7fNz34z4g9wW5T8h9 Q+4jcl+R+4zcd+Q+JPcluU/JfUvuY3Jfk/uc3PfkPij3RblPyn1T7qNyX5X7 rNx35T4s92W5T8t9W+7jcl+X+7zc9+U+MPeFuU/MfWPuI3NfmfvM3HfmPjT3 pblPzX1r7mNzX5v73Nz35j4498W5T859c+6jc1+d++zcd+c+PPfluU/PfXvu 43Nfn/v83PfnOQDPBXhOwHMDniPwXIHnDDx34DkEzyV4TsFzC55j8FyD5xw8 9+A5CM9FeE7CcxOeo/BchecsPHfhOQzPZXhOw3MbnuPwXIfnPDz34TkQz4V4 TsRzI54j8VyJ50w8d+I5FM+leE7FcyueY/Fci+dcPPfiORjPxXhOxnMznqPx XI3nbDx34zkcz+V4TsdzO57j8VyP53w89+M5IM8FeU7Ic0OeI/JckeeMPHfk OSTPJXlOyXNLnmPyXJPnnDz35Dkoz0V5TspzU56j8lyV56w8d+U5LM9leU7L c1ue4/Jcl+e8PPflOTDPhXlOzHNjniPzXJnnzDx35jk0z6V5Ts1za55j81yb 59w89+Y5OM/FeU7Oc3Oeo/NcnefsPHfnOTzP5XlOz3N7nuPzXJ/n/Dz3pwdA L4CeAL0BegT0CugZ0Dugh0AvgZ4CvQV6DPQa6DnQe6AHQS+CngS9CXoU9Cro WdC7oIdBL4OeBr0Nehz0Ouh50PugB0IvhJ4IvRF6JPRK6JnQO6GHQi+Fngq9 FXos9FroudB7oQdDL4aeDL0ZejT0aujZ0Luhh0Mvh54OvR16PPR66PnQ+6EH RC+InhC9IXpE9IroGdE7oodEL4meEr2l//GYZK+JnhO9J3pQ9KLoSdGbokdF r4qeFb0relj0suhp0duix0Wvi54XvS96YPTC6InRG6NHRq+Mnhm9M3po9NLo qdFbo8dGr42eG703enD04ujJ0ZujR0evjp4dvTt6ePTy6OnR26PHR6+Pnh+9 P3qA9ALpCdIbpEdIr5CeIb1Deoj0Eukp0lukx0ivkZ4jvUd6kPQi6UnSm6RH Sa+SniW9S3qY9DLpadLbpMdJr5OeJ71PeqD0QumJ0hulR0qvlJ4pvVN6qPRS 6anSW6XHSq+Vniu9V3qw9GLpydKbpUdLr5aeLb1berj0cunp0tv9H49X9nrp +dL7pQdML5ieML1hesT0iukZ0zumh0wvmZ4yvWV6zPSa6TnTe6YHTS+anjS9 aXrU9KrpWdO7podNL5ueNr1tetz0uul50/umB04vnJ44vXF65PTK6ZnTO6eH Ti+dnjq9dXrs9NrpudN7pwdPL56ePL15evT06unZ07unh08vn54+vX16/PT6 6fnT++ccAOcCOCfAuQHOEXCugHMGnDvgHALnEjinwLkFzjFwroFzDpx74BwE 5yI4J8G5Cc5RcK6Ccxacu+AcBucyOKfBuQ3OcXCug3MenPvgHAjnQjgnwrkR zpFwroRzJpw74RwK51I4p8K5Fc6xcK6Fcy6ce+EcDOdiOCfDuRnO0XCuhnM2 nLvhHA7ncjinw7kdzvFwrodzPpz74RwQ54I4J8S5Ic4Rca6Ic0acO+IcEueS OKfEuSXOMXGuiXNOnHviHBTnojgnxbkpzlFxropzVpy74hwW57I4p8W5Lc5x ca6Lc16c++IcGOfCOCfGuTHOkXGujHNmnDvjHBrn0jinxrk1zrFxro1zbpx7 4xwc5+I4J8e5Oc7Rca6Oc3acu+McHufyOKfHuT3O8XGuj3N+nPvjHCDnAjkn yLlBzhFyrpBzhpw75Bwi5xI5p8i5Rc4xcq6Rc46ce+QcJOciOSfJuUnOUXKu knOWnLvkHCbnMjmnyblNznFyrpNznpz75Bwo50I5J8q5Uc6Rcq6Uc6acO+Uc KudSOafKuVXOsXKulXOunHvlHCznYjkny7lZztFyrpZztpy75Rwu53I5p8u5 Xc7xcq6Xc76c++UcMOeCOSfMuWHOEXOumHPGnDvmHDLnkjmnzLllzjFzrplz zpx75hw056I5J825ac5Rc66ac9acu+YcNueyOafNuW3OcXOum3PenPvmHDjn wjknzrlxzpFzrpxz5pw75xw659I5p865dc6xc66dc+6ce+ccPOfiOSfPuXnO 0XOunnP2nLvnHD7n8jmnz7l9zvFzrp9z/pz7Zw4AcwGYE8DcAOYIMFeAOQPM HWAOAXMJmFPA3ALmGDDXgDkHzD1gDgJzEZiTwNwE5igwV4E5C8xdYA4DcxmY 08DcBuY4MNeBOQ/MfWAOBHMhmBPB3AjmSDBXgjkTzJ1gDgVzKZhTwdwK5lgw 14I5F8y9YA4GczGYk8HcDOZoMFeDORvM3WAOB3M5mNPB3A7meDDXgzkfzP1g DghzQZgTwtwQ5ogwV4Q5I8wdYQ4Jc0mYU8LcEuaYMNeEOSfMPWEOCnNRmJPC 3BTmqDBXhTkrzF1hDgtzWZjTwtwW5rgw14U5L8x9YQ4Mc2GYE8PcGObIMFeG OTPMnWEODXNpmFPD3Brm2DDXhjk3zL1hDg5zcZiTw9wc5ugwV4c5O8zdYQ4P c3mY08PcHub4MNeHOT/M/WEOEHOBmBPE3CDmCDFXiDlDzB1iDhFziZhTxNwi 5hgx14g5R8w9Yg4Sc5GYk8TcJOYoMVeJOUvMXWIOE3OZmNPE3CbmODHXiTlP zH1iDhRzoZgTxdwo5kgxV4o5U8ydYg4Vc6mYU8XcKuZYMdeKOVfMvWIOFnOx mJPF3CzmaDFXizlbzN1iDhdzuZjTxdwu5ngx14s5X8z9Yg4Yc8GYE8bcMOaI MVeMOWPMHWMOGXPJmFPG3DLmmDHXjDlnzD1jDhpz0ZiTxtw05qgxV405a8xd Yw4bc9mY08bcNua4MdeNOW/MfWMOHHPhmBPH3DjmyDFXjjlzzJ1jDh1z6ZhT x9w65tgx1445d8y9Yw4ec/GYk8fcPOboMVePOXvM3WMOH3P5mNPH3D7m+DHX jzl/zP1jDiBzAZkTyNxA5ggyV5A5g8wdZA4hcwmZU8jcQuYYMteQOYfMPWQO InMRmZPI3ETmKDJXkTmLzF1kDiNzGZnTyNxG5jgy15E5j8x9ZA4kcyGZE8nc SOZIMleSOZPMnWQOJXMpmVPJ3ErmWDLXkjmXzL1kDiZzMZmTydxM5mgyV5M5 m8zdZA4nczmZ08ncTuZ4MteTOZ/M/WQOKHNBmRPK3FDmiDJXlDmjzB1lDilz SZlTytxS5pgy15Q5p8w9ZQ4qc1GZk8rcVOaoMleVOavMXWUOK3NZmdPK3Fbm uDLXlTmvzH1lDixzYZkTy9xY5sgyV5Y5s8ydZQ4tc2mZU8vcWubYMteWObfM vWUOLnNxmZPL3Fzm6DJXlzm7zN1lDi9zeZnTy9xe5vgy15c5v8z9ZQ4wc4GZ E8zcYOYIM1eYOcPMHWYOMXOJmVPM3GLmGDPXmDnHzD1mDjJzkZmTzNxk5igz V5k5y8xdZg4zc5mZ08zcZuY4M9eZOc/MfWYONHOhmRPN3GjmSDNXmjnTzJ1m DjVzqZlTzdxq5lgz15o518y9Zg42c7GZk83cbOZoM1ebOdvM3WYON3O5mdPN 3G7meDPXmznfzP1mDjhzwZkTztxw5ogzV5w548wdZw45c8mZU87ccuaYM9ec OefMPWcOOnPRmZPO3HTmqDNXnTnrzF1nDjtz2ZnTztx25rgz150578x9Zw48 c+GZE8/ceObIM1eeOfPMnWcOPXPpmVPP3Hrm2DPXnjn3zL1nDj5z8ZmTz9x8 5ugzV585+8zdZw4/c/mZ08/cfub4M9efOf/M/WcPAHsB2BPA3gD2CLBXgD0D 7B1gDwF7CdhTwN4C9hiw14A9B+w9YA8CexHYk8DeBPYosFeBPQvsXWAPA3sZ 2NPA3gb2OLDXgT0P7H1gDwR7IdgTwd4I9kiwV4I9E+ydYA8FeynYU8HeCvZY sNeCPRfsvWAPBnsx2JPB3gz2aLBXgz0b7N1gDwd7OdjTwd4O9niw14M9H+z9 YA8Ie0HYE8LeEPaIsFeEPSPsHWEPCXtJ2FPC3hL2mLDXhD0n7D1hDwp7UdiT wt4U9qiwV4U9K+xdYQ8Le1nY08LeFva4sNeFPS/sfWEPDHth2BPD3hj2yLBX hj0z7J1hDw17adhTw94a9tiw14Y9N+y9YQ8Oe3HYk8PeHPbosFeHPTvs3WEP D3t52NPD3h72+LDXhz0/7P1hDxB7gdgTxN4g9gixV4g9Q+wdYg8Re4nYU8Te IvYYsdfof3qO5N4j9iCxF4k9SexNYo8Se5XYs8TeJfYwsZeJPU3sbWKPE3ud 2PPE3if2QLEXij1R7I1ijxR7pdgzxd4p9lCxl4o9VeytYo8Ve63Yc8XeK/Zg sReLPVnszWKPFnu12LPF3i32cLGXiz1d7O1ijxd7vdjzxd4v9oCxF4w9YewN Y48Ye8XYM8beMfaQsZeMPWXsLWOPGXvN2HPG3jP2oLEXjT1p7E1jjxp71diz xt419rCxl409bextY48be93Y88bet//pgZN74dgTx9449sixV449c+ydYw8d e+nYU8feOvbYsdeOPXfsvWMPHnvx2JPH3jz26LFXjz177N1jDx97+djTx94+ 9vix1489f+z9Yw8gewHZE8jeQPYIsleQPYPsHWQPIXsJ2VPI3kL2GLLXkD2H 7D1kDyJ7EdmTyN5E9iiyV5E9i+xdZA8jexnZ08jeRvY4steRPY/sfWQPJHsh 2RPJ3kj2SLJXkj2T7J1kDyV7KdlTyd5K9liy15I9l+y9ZA8mezHZk8neTPZo sleTPZvs3WQPJ3s52dPJ3k72eLLXkz2f7P1kDyh7QdkTyt5Q9oiyV5Q9o+wd ZQ8pe0nZU8reUvaYsteUPafsPWUPKntR2ZPK3lT2qLJXlT2r7F1lDyt7WdnT yt5W9riy15U9r+x9ZQ8se2HZE8veWPbIsleWPbPsnWUPLXtp2VPL3lr22LLX lj237L1lDy57cdmTy95c9uiyV5c9u+zdZQ8ve3nZ08veXvb4steXPb/s/WUP MHuB2RPM3mD2CLNXmD3D7B1mDzF7idlTzN5i9hiz15g9x+w9Zg8ye5HZk8ze ZPYos1eZPcvsXWYPM3uZ2dPM3mb2OLPXmT3P7H1mDzR7odkTzd5o9kizV5o9 0+ydZg81e6nZU83eavZYs9eaPdfsvWYPNnux2ZPN3mz2aLNXmz3b7N1mDzd7 udnTzd5u9niz15s93+z9Zg84e8HZE87ecPaIs1ecPePsHWcPOXvJ2VPO3nL2 mLPXnD3n7D1nDzp70dmTzt509qizV5096+xdZw87e9nZ087edva4s9edPe/s fWcPPHvh2RPP3nj2yLNXnj3z7J1nDz176dlTz9569tiz15499+y9l3w4cOnQ 3R4nwZIPBzas8/L1H7Dkw4Hb1XNYOuygUuXDFSnETVOSDaPAkg8Hfl3LLrUS LPlw4Lfv706ziFeqfDjwJJNVhivAkg8HbrJ/2J1bYMmHK8T1cmanbc0PKVU+ HNhznomHN1jy4cBNsq17pIAlHw68wHWGjnBYzl0GZ5if+jjmsOzD3cV/b2Tj B/sPyz4cOPf4noKqw7IPBw5zdLjR54jsw4Gde2gVhB2RfThwoWv1/bIjsg93 RyE+y/j1of1R2YcDz/ZqX2/RUdmHA3s6L+52+ajsw/37/Us/TNJLkH04sOGb DZFTEmQf7ja+H9GO+YkJsg8HPrKhp97fBNmHA1/PGOUx/Jjsw4FNrSOSo4/J PhzYqfqn7qtjsg9XoBB/f4wMsD4u+3Dgd1YulauPyz4cuCZz8KTC47IPBzbZ OrvM+ITsw4E9T6R5+J2QfbhbuJ41FD9knJB9OHBGxpfVOomyDweekFJh4pYo +3BgHbXf1xMSZR8O7LRtZNDPRNmHy1eIiYEl3YeclH048M1TO6p3nJR9OLBn r4jUypOyDwe2b5YVanlK9uHAjqO7eK46JftwN3G//LSo/91Tsg8H/p2f0tn4 tOzDgUsM7zf3Oy37cGCXS3aGl07LPtwNhVhwrdSofpLsw4FP2KYYT06SfTjw gvplFseTZB8OnDKyt+PvJNmHA3f8+dRv2BnZh7uO74P+rZjoM7IPB07fW3Pr 1RnZhwMn7PPXsk2WfTiwWxNLx3XJsg8HrtbutaskWfbhrmE9DA770Pas7MOB D89rN9z/rOzDgRe81j51+azsw4EDXostDM7JPhzY3j9zy7Rzsg93Fb8/MqLh mXOyDwe+0jdxR+3zsg8H1lndou3o87IPBzab/jBt/3nZhwO3flY9sfq87MNd wfqhMaG2fYrsw4Hf5RskRabIPhy4S/923o9TZB8ObDgzvJN5quzDgQ36On5e nir7cHn4/N+aebkgVfbhwHOal8W2uiD7cGB9s0PLfS/IPhzYvXbB7EsXZB8O bHZwrFuDNNmHy1WIvoa2rh5psg8HNncPmngyTfbhwBEhzWeqXZR9OHDOylZB oy7KPhzY0Hv1jr0XZR/uMv5+vUakVV2UfThwxt+AV2K67MOBm5/VbBmZLvtw 4ONeam6P02UfLgefl2aT48wzZB8OPKu4TXVIhuzDgZ13Ow+5kyH7cODn/m8O G1+SfTiwzawPDeZfkn24bLzfge4h2ZdkHw786mSvn3qZsg8Hfqq7LmhapuzD gYvj7TWSM2UfDjx0vs8OjSzZh8tSiOXLNLu7ZMk+HLhPgWFRfJbsw4F7zola /i1L9uHAZ9zDLQZnyz4ceE/Cz6qd2bIPl4nr3fjy5FfZsg8HNpprudIuR/bh wBpfFOM35Mg+HNi42sm6PEf24cDFPoYtzC7LPtwl/PlzXbWXXZZ9OLBujYHG rcuyDwcua+Ok0SpX9uHAKc/r6vjlyj4ceN3wAS2zcmUfLkMhWnj8tdHLk304 8OX2dhOn5ck+HHjMie+rk/NkHw5s+MMuRXFF9uH+/XrDWl/GXZF9uHSF6FMz 0vbIFdmHA9+7brzm5xXZhwO3Dl52f9hV2YcDv23tabv7quzDgT+n3d7z/qrs w1389/pd1xGvyT4cWK9m1JrIa7IPB65/3lPx9Jrsw/379Y11wi2uyz4ceOha i1Zrrss+XJpC/JL4OaXkuuzDgec0GDipww3ZhwO3Od1BCLoh+3DgXbF7U2+A tQoDzP/xzRv//qcU/w/WYo8I "]]}, Annotation[#, "Charting`Private`Tag#8"]& ]}}, {{}, {}}}, { DisplayFunction -> Identity, DisplayFunction -> Identity, AspectRatio -> 1, Axes -> {True, True}, AxesLabel -> {None, None}, AxesOrigin -> {1.9000000000000041`, 1.9000000000000041`}, DisplayFunction :> Identity, Frame -> {{True, True}, {True, True}}, FrameLabel -> {{ FormBox[ TagBox[ SubscriptBox["\[Omega]", "2"], HoldForm], TraditionalForm], None}, { FormBox[ TagBox[ SubscriptBox["\[Omega]", "1"], HoldForm], TraditionalForm], None}}, FrameStyle -> GrayLevel[0], FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}}, GridLines -> {None, None}, GridLinesStyle -> Directive[ GrayLevel[0.5, 0.4]], LabelStyle -> {FontFamily -> "Times", GrayLevel[0], FontSize -> 12}, Method -> { "AxisPadding" -> Scaled[0.02], "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "DefaultPlotStyle" -> { Directive[ RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[2]], Directive[ RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[2]], Directive[ RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[2]], Directive[ RGBColor[0.922526, 0.385626, 0.209179], AbsoluteThickness[2]], Directive[ RGBColor[0.528488, 0.470624, 0.701351], AbsoluteThickness[2]], Directive[ RGBColor[0.772079, 0.431554, 0.102387], AbsoluteThickness[2]], Directive[ RGBColor[0.363898, 0.618501, 0.782349], AbsoluteThickness[2]], Directive[ RGBColor[1, 0.75, 0], AbsoluteThickness[2]], Directive[ RGBColor[0.647624, 0.37816, 0.614037], AbsoluteThickness[2]], Directive[ RGBColor[0.571589, 0.586483, 0.], AbsoluteThickness[2]], Directive[ RGBColor[0.915, 0.3325, 0.2125], AbsoluteThickness[2]], Directive[ RGBColor[0.40082222609352647`, 0.5220066643438841, 0.85], AbsoluteThickness[2]], Directive[ RGBColor[ 0.9728288904374106, 0.621644452187053, 0.07336199581899142], AbsoluteThickness[2]], Directive[ RGBColor[0.736782672705901, 0.358, 0.5030266573755369], AbsoluteThickness[2]], Directive[ RGBColor[0.28026441037696703`, 0.715, 0.4292089322474965], AbsoluteThickness[2]]}, "DomainPadding" -> Scaled[0.02], "PointSizeFunction" -> "SmallPointSize", "RangePadding" -> Scaled[0.05], "OptimizePlotMarkers" -> True, "IncludeHighlighting" -> "CurrentSet", "HighlightStyle" -> Automatic, "OptimizePlotMarkers" -> True, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& )}}, PlotRange -> {{1.9, 3.1}, {1.9, 3.1}}, PlotRangeClipping -> True, PlotRangePadding -> {{0, 0}, {0, 0}}, Ticks -> {Automatic, Automatic}}], FormBox[ FormBox[ TemplateBox[{ "0.`", "0.2`", "0.4`", "0.6000000000000001`", "0.8`", "1.`", "1.2000000000000002`", "1.4`"}, "LineLegend", DisplayFunction -> (FormBox[ StyleBox[ StyleBox[ PaneBox[ TagBox[ GridBox[{{ StyleBox["\[Epsilon]", {FontFamily -> "Times", GrayLevel[0], FontSize -> 12}, Background -> Automatic, StripOnInput -> False]}, { TagBox[ GridBox[{{ TagBox[ GridBox[{{ GraphicsBox[{{ Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[2]], { LineBox[{{0, 12.5}, {20, 12.5}}]}}, { Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[2]], {}}}, AspectRatio -> Full, ImageSize -> {20, 12.5}, PlotRangePadding -> None, ImagePadding -> Automatic, BaselinePosition -> (Scaled[0.116] -> Baseline)], #}, { GraphicsBox[{{ Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[2]], { LineBox[{{0, 12.5}, {20, 12.5}}]}}, { Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[2]], {}}}, AspectRatio -> Full, ImageSize -> {20, 12.5}, PlotRangePadding -> None, ImagePadding -> Automatic, BaselinePosition -> (Scaled[0.116] -> Baseline)], #2}, { GraphicsBox[{{ Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[2]], { LineBox[{{0, 12.5}, {20, 12.5}}]}}, { Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[2]], {}}}, AspectRatio -> Full, ImageSize -> {20, 12.5}, PlotRangePadding -> None, ImagePadding -> Automatic, BaselinePosition -> (Scaled[0.116] -> Baseline)], #3}, { GraphicsBox[{{ Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], RGBColor[0.922526, 0.385626, 0.209179], AbsoluteThickness[2]], { LineBox[{{0, 12.5}, {20, 12.5}}]}}, { Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], RGBColor[0.922526, 0.385626, 0.209179], AbsoluteThickness[2]], {}}}, AspectRatio -> Full, ImageSize -> {20, 12.5}, PlotRangePadding -> None, ImagePadding -> Automatic, BaselinePosition -> (Scaled[0.116] -> Baseline)], #4}, { GraphicsBox[{{ Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], RGBColor[0.528488, 0.470624, 0.701351], AbsoluteThickness[2]], { LineBox[{{0, 12.5}, {20, 12.5}}]}}, { Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], RGBColor[0.528488, 0.470624, 0.701351], AbsoluteThickness[2]], {}}}, AspectRatio -> Full, ImageSize -> {20, 12.5}, PlotRangePadding -> None, ImagePadding -> Automatic, BaselinePosition -> (Scaled[0.116] -> Baseline)], #5}, { GraphicsBox[{{ Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], RGBColor[0.772079, 0.431554, 0.102387], AbsoluteThickness[2]], { LineBox[{{0, 12.5}, {20, 12.5}}]}}, { Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], RGBColor[0.772079, 0.431554, 0.102387], AbsoluteThickness[2]], {}}}, AspectRatio -> Full, ImageSize -> {20, 12.5}, PlotRangePadding -> None, ImagePadding -> Automatic, BaselinePosition -> (Scaled[0.116] -> Baseline)], #6}, { GraphicsBox[{{ Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], RGBColor[0.363898, 0.618501, 0.782349], AbsoluteThickness[2]], { LineBox[{{0, 12.5}, {20, 12.5}}]}}, { Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], RGBColor[0.363898, 0.618501, 0.782349], AbsoluteThickness[2]], {}}}, AspectRatio -> Full, ImageSize -> {20, 12.5}, PlotRangePadding -> None, ImagePadding -> Automatic, BaselinePosition -> (Scaled[0.116] -> Baseline)], #7}, { GraphicsBox[{{ Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], RGBColor[1, 0.75, 0], AbsoluteThickness[2]], { LineBox[{{0, 12.5}, {20, 12.5}}]}}, { Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], RGBColor[1, 0.75, 0], AbsoluteThickness[2]], {}}}, AspectRatio -> Full, ImageSize -> {20, 12.5}, PlotRangePadding -> None, ImagePadding -> Automatic, BaselinePosition -> (Scaled[0.116] -> Baseline)], #8}}, GridBoxAlignment -> { "Columns" -> {Center, Left}, "Rows" -> {{Baseline}}}, AutoDelete -> False, GridBoxDividers -> { "Columns" -> {{False}}, "Rows" -> {{False}}}, GridBoxItemSize -> { "Columns" -> {{All}}, "Rows" -> {{All}}}, GridBoxSpacings -> { "Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}], "Grid"]}}, GridBoxAlignment -> {"Columns" -> {{Center}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Grid"], Alignment -> Left, AppearanceElements -> None, ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction -> "ResizeToFit"], LineIndent -> 0, StripOnInput -> False], { FontFamily -> "Times", GrayLevel[0], FontSize -> 12}, Background -> Automatic, StripOnInput -> False], TraditionalForm]& ), InterpretationFunction :> (RowBox[{"LineLegend", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Directive", "[", RowBox[{ RowBox[{"PointSize", "[", FractionBox["1", "360"], "]"}], ",", TemplateBox[<| "color" -> RGBColor[0.368417, 0.506779, 0.709798]|>, "RGBColorSwatchTemplate"], ",", RowBox[{"AbsoluteThickness", "[", "2", "]"}]}], "]"}], ",", RowBox[{"Directive", "[", RowBox[{ RowBox[{"PointSize", "[", FractionBox["1", "360"], "]"}], ",", TemplateBox[<| "color" -> RGBColor[0.880722, 0.611041, 0.142051]|>, "RGBColorSwatchTemplate"], ",", RowBox[{"AbsoluteThickness", "[", "2", "]"}]}], "]"}], ",", RowBox[{"Directive", "[", RowBox[{ RowBox[{"PointSize", "[", FractionBox["1", "360"], "]"}], ",", TemplateBox[<| "color" -> RGBColor[0.560181, 0.691569, 0.194885]|>, "RGBColorSwatchTemplate"], ",", RowBox[{"AbsoluteThickness", "[", "2", "]"}]}], "]"}], ",", RowBox[{"Directive", "[", RowBox[{ RowBox[{"PointSize", "[", FractionBox["1", "360"], "]"}], ",", TemplateBox[<| "color" -> RGBColor[0.922526, 0.385626, 0.209179]|>, "RGBColorSwatchTemplate"], ",", RowBox[{"AbsoluteThickness", "[", "2", "]"}]}], "]"}], ",", RowBox[{"Directive", "[", RowBox[{ RowBox[{"PointSize", "[", FractionBox["1", "360"], "]"}], ",", TemplateBox[<| "color" -> RGBColor[0.528488, 0.470624, 0.701351]|>, "RGBColorSwatchTemplate"], ",", RowBox[{"AbsoluteThickness", "[", "2", "]"}]}], "]"}], ",", RowBox[{"Directive", "[", RowBox[{ RowBox[{"PointSize", "[", FractionBox["1", "360"], "]"}], ",", TemplateBox[<| "color" -> RGBColor[0.772079, 0.431554, 0.102387]|>, "RGBColorSwatchTemplate"], ",", RowBox[{"AbsoluteThickness", "[", "2", "]"}]}], "]"}], ",", RowBox[{"Directive", "[", RowBox[{ RowBox[{"PointSize", "[", FractionBox["1", "360"], "]"}], ",", TemplateBox[<| "color" -> RGBColor[0.363898, 0.618501, 0.782349]|>, "RGBColorSwatchTemplate"], ",", RowBox[{"AbsoluteThickness", "[", "2", "]"}]}], "]"}], ",", RowBox[{"Directive", "[", RowBox[{ RowBox[{"PointSize", "[", FractionBox["1", "360"], "]"}], ",", TemplateBox[<|"color" -> RGBColor[1, 0.75, 0]|>, "RGBColorSwatchTemplate"], ",", RowBox[{"AbsoluteThickness", "[", "2", "]"}]}], "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{#, ",", #2, ",", #3, ",", #4, ",", #5, ",", #6, ",", #7, ",", #8}], "}"}], ",", RowBox[{"LegendMarkers", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"False", ",", "Automatic"}], "}"}], ",", RowBox[{"{", RowBox[{"False", ",", "Automatic"}], "}"}], ",", RowBox[{"{", RowBox[{"False", ",", "Automatic"}], "}"}], ",", RowBox[{"{", RowBox[{"False", ",", "Automatic"}], "}"}], ",", RowBox[{"{", RowBox[{"False", ",", "Automatic"}], "}"}], ",", RowBox[{"{", RowBox[{"False", ",", "Automatic"}], "}"}], ",", RowBox[{"{", RowBox[{"False", ",", "Automatic"}], "}"}], ",", RowBox[{"{", RowBox[{"False", ",", "Automatic"}], "}"}], ",", RowBox[{"{", RowBox[{"False", ",", "Automatic"}], "}"}]}], "}"}]}], ",", RowBox[{"Joined", "\[Rule]", RowBox[{"{", RowBox[{ "True", ",", "True", ",", "True", ",", "True", ",", "True", ",", "True", ",", "True", ",", "True", ",", "True"}], "}"}]}], ",", RowBox[{"LegendLabel", "\[Rule]", "\[Epsilon]"}], ",", RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ), Editable -> True], TraditionalForm], TraditionalForm]}, "Legended", DisplayFunction->(GridBox[{{ TagBox[ ItemBox[ PaneBox[ TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline}, BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"], "SkipImageSizeLevel"], ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}}, GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}}, AutoDelete -> False, GridBoxItemSize -> Automatic, BaselinePosition -> {1, 1}]& ), Editable->True, InterpretationFunction->(RowBox[{"Legended", "[", RowBox[{#, ",", RowBox[{"Placed", "[", RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output", CellChangeTimes->{ 3.909045677015095*^9, 3.909046340411375*^9, {3.909047439726328*^9, 3.909047526046637*^9}, 3.909047564404361*^9, 3.9155360776765347`*^9, 3.9155368604895*^9, 3.915772759432945*^9, 3.9163812145378447`*^9, 3.916386519150815*^9, 3.916388170780579*^9}, CellLabel-> "Out[243]=",ExpressionUUID->"ccc0c10d-374b-4561-9b69-130306acddb0"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Two-sphere", "Section", CellChangeTimes->{{3.9155323567472897`*^9, 3.915532358033332*^9}},ExpressionUUID->"3e089f73-01c1-4198-8f45-\ 28504d7853b6"], Cell[BoxData[ RowBox[{ RowBox[{"p0RSBrules", "=", RowBox[{"{", "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{ RowBox[{"p0RSBmat", "[", RowBox[{"n_", ",", RowBox[{"{", RowBox[{ "adt_", ",", "a0tu_", ",", "a0tl_", ",", "ad_", ",", "a0_"}], "}"}]}], "]"}], RowBox[{"p0RSBmat", "[", RowBox[{"n_", ",", RowBox[{"{", RowBox[{ "bdt_", ",", "b0tu_", ",", "b0tl_", ",", "bd_", ",", "b0_"}], "}"}]}], "]"}]}], ":>", RowBox[{"p0RSBmat", "[", RowBox[{"n", ",", RowBox[{"{", "\[IndentingNewLine]", RowBox[{ RowBox[{"adt", " ", "bdt"}], ",", "\[IndentingNewLine]", RowBox[{"a0tu", " ", "b0tu"}], ",", "\[IndentingNewLine]", RowBox[{"a0tl", " ", "b0tl"}], ",", "\[IndentingNewLine]", RowBox[{"ad", " ", "bd"}], ",", "\[IndentingNewLine]", RowBox[{"a0", " ", "b0"}]}], "\[IndentingNewLine]", "}"}]}], "]"}]}], ",", "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"p0RSBmat", "[", RowBox[{"n_", ",", RowBox[{"{", RowBox[{ "adt_", ",", "a0tu_", ",", "a0tl_", ",", "ad_", ",", "a0_"}], "}"}]}], "]"}], ".", RowBox[{"p0RSBmat", "[", RowBox[{"n_", ",", RowBox[{"{", RowBox[{ "bdt_", ",", "b0tu_", ",", "b0tl_", ",", "bd_", ",", "b0_"}], "}"}]}], "]"}]}], ":>", RowBox[{"p0RSBmat", "[", RowBox[{"n", ",", RowBox[{"{", "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"adt", " ", "bdt"}], "+", RowBox[{ RowBox[{"(", RowBox[{"n", "-", "1"}], ")"}], "a0tu", " ", "b0tl"}]}], ",", "\[IndentingNewLine]", RowBox[{ RowBox[{"a0tu", " ", "bd"}], "+", RowBox[{"adt", " ", "b0tu"}], "+", RowBox[{ RowBox[{"(", RowBox[{"n", "-", "2"}], ")"}], "a0tu", " ", "b0"}]}], ",", "\[IndentingNewLine]", RowBox[{ RowBox[{"a0tl", " ", "bdt"}], "+", RowBox[{"ad", " ", "b0tl"}], "+", RowBox[{ RowBox[{"(", RowBox[{"n", "-", "2"}], ")"}], "b0tl", " ", "a0"}]}], ",", "\[IndentingNewLine]", RowBox[{ RowBox[{"ad", " ", "bd"}], "+", RowBox[{"a0tl", " ", "b0tu"}], "+", RowBox[{ RowBox[{"(", RowBox[{"n", "-", "2"}], ")"}], "a0", " ", "b0"}]}], ",", "\[IndentingNewLine]", RowBox[{ RowBox[{"a0", " ", "bd"}], "+", RowBox[{"ad", " ", "b0"}], "+", RowBox[{"a0tl", " ", "b0tu"}], "+", RowBox[{ RowBox[{"(", RowBox[{"n", "-", "3"}], ")"}], "a0", " ", "b0"}]}]}], "\[IndentingNewLine]", "}"}]}], "]"}]}], ",", "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"p0RSBmat", "[", RowBox[{"n_", ",", RowBox[{"{", RowBox[{ "adt_", ",", "a0tu_", ",", "a0tl_", ",", "ad_", ",", "a0_"}], "}"}]}], "]"}], "+", RowBox[{"p0RSBmat", "[", RowBox[{"n_", ",", RowBox[{"{", RowBox[{ "bdt_", ",", "b0tu_", ",", "b0tl_", ",", "bd_", ",", "b0_"}], "}"}]}], "]"}]}], ":>", RowBox[{"p0RSBmat", "[", RowBox[{"n", ",", RowBox[{"{", "\[IndentingNewLine]", RowBox[{ RowBox[{"adt", "+", "bdt"}], ",", "\[IndentingNewLine]", RowBox[{"a0tu", "+", "b0tu"}], ",", "\[IndentingNewLine]", RowBox[{"a0tl", "+", "b0tl"}], ",", "\[IndentingNewLine]", RowBox[{"ad", "+", "bd"}], ",", "\[IndentingNewLine]", RowBox[{"a0", "+", "b0"}]}], "\[IndentingNewLine]", "}"}]}], "]"}]}], ",", "\[IndentingNewLine]", RowBox[{ RowBox[{"const_", " ", RowBox[{"p0RSBmat", "[", RowBox[{"n_", ",", RowBox[{"{", RowBox[{ "adt_", ",", "a0tu_", ",", "a0tl_", ",", "ad_", ",", "a0_"}], "}"}]}], "]"}]}], ":>", RowBox[{"p0RSBmat", "[", RowBox[{"n", ",", RowBox[{"const", RowBox[{"{", "\[IndentingNewLine]", RowBox[{ "adt", ",", "\[IndentingNewLine]", "a0tu", ",", "\[IndentingNewLine]", "a0tl", ",", "\[IndentingNewLine]", "ad", ",", "\[IndentingNewLine]", "a0"}], "\[IndentingNewLine]", "}"}]}]}], "]"}]}], ",", "\[IndentingNewLine]", RowBox[{ RowBox[{"-", RowBox[{"p0RSBmat", "[", RowBox[{"n_", ",", RowBox[{"{", RowBox[{ "adt_", ",", "a0tu_", ",", "a0tl_", ",", "ad_", ",", "a0_"}], "}"}]}], "]"}]}], ":>", RowBox[{"p0RSBmat", "[", RowBox[{"n", ",", RowBox[{"{", RowBox[{ RowBox[{"-", "adt"}], ",", RowBox[{"-", "a0tu"}], ",", RowBox[{"-", "a0tl"}], ",", RowBox[{"-", "ad"}], ",", RowBox[{"-", "a0"}]}], "}"}]}], "]"}]}], ",", "\[IndentingNewLine]", RowBox[{ RowBox[{"logDet", "[", RowBox[{"p0RSBmat", "[", RowBox[{"n_", ",", RowBox[{"{", RowBox[{ "adt_", ",", "a0tu_", ",", "a0tl_", ",", "ad_", ",", "a0_"}], "}"}]}], "]"}], "]"}], ":>", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{"n", "-", "2"}], ")"}], RowBox[{"Log", "[", RowBox[{"ad", "-", "a0"}], "]"}]}], "+", RowBox[{"Log", "[", RowBox[{ RowBox[{"adt", " ", "ad"}], "+", RowBox[{ RowBox[{"(", RowBox[{"n", "-", "2"}], ")"}], "adt", " ", "a0"}], "-", RowBox[{ RowBox[{"(", RowBox[{"n", "-", "1"}], ")"}], "a0tu", " ", "a0tl"}]}], "]"}]}]}], ",", "\[IndentingNewLine]", RowBox[{ SuperscriptBox[ RowBox[{"p0RSBmat", "[", RowBox[{"n_", ",", RowBox[{"{", RowBox[{ "adt_", ",", "a0tu_", ",", "a0tl_", ",", "ad_", ",", "a0_"}], "}"}]}], "]"}], "2"], ":>", RowBox[{"p0RSBmat", "[", RowBox[{"n", ",", RowBox[{"{", RowBox[{ SuperscriptBox["adt", "2"], ",", SuperscriptBox["a0tu", "2"], ",", SuperscriptBox["a0tl", "2"], ",", SuperscriptBox["ad", "2"], ",", SuperscriptBox["a0", "2"]}], "}"}]}], "]"}]}], ",", "\[IndentingNewLine]", RowBox[{ RowBox[{"sumDiag", "[", RowBox[{"p0RSBmat", "[", RowBox[{"n_", ",", RowBox[{"{", RowBox[{ "adt_", ",", "a0tu_", ",", "a0tl_", ",", "ad_", ",", "a0_"}], "}"}]}], "]"}], "]"}], ":>", RowBox[{"adt", "+", RowBox[{ RowBox[{"(", RowBox[{"n", "-", "1"}], ")"}], "ad"}]}]}], ",", "\[IndentingNewLine]", RowBox[{ RowBox[{"sum", "[", RowBox[{"p0RSBmat", "[", RowBox[{"n_", ",", RowBox[{"{", RowBox[{ "adt_", ",", "a0tu_", ",", "a0tl_", ",", "ad_", ",", "a0_"}], "}"}]}], "]"}], "]"}], ":>", RowBox[{"adt", "+", RowBox[{ RowBox[{"(", RowBox[{"n", "-", "1"}], ")"}], RowBox[{"(", RowBox[{"ad", "+", "a0tu", "+", "a0tl"}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{ SuperscriptBox["n", "2"], "-", "1", "-", RowBox[{"3", RowBox[{"(", RowBox[{"n", "-", "1"}], ")"}]}]}], ")"}], "a0"}]}]}]}], "\[IndentingNewLine]", "}"}]}], ";"}]], "Input", CellChangeTimes->{{3.9060154869143467`*^9, 3.9060156486206284`*^9}, { 3.906015706414013*^9, 3.906015879409375*^9}, {3.9060159104259157`*^9, 3.90601616215897*^9}, {3.9060164087157993`*^9, 3.9060164195478573`*^9}, { 3.906016724777636*^9, 3.906016759546612*^9}, {3.906017868966701*^9, 3.906017993144882*^9}, {3.916298349295138*^9, 3.91629838447995*^9}, { 3.916304012705944*^9, 3.9163040560749063`*^9}, {3.916305680970009*^9, 3.916305737162888*^9}, {3.916306025874814*^9, 3.916306032537112*^9}}, CellLabel-> "In[142]:=",ExpressionUUID->"32615cc9-ab89-4fec-9507-d4081e5ab9af"], Cell[BoxData[ RowBox[{ RowBox[{"sum", "[", RowBox[{"p0RSBmat", "[", RowBox[{"n_", ",", RowBox[{"{", RowBox[{"adt_", ",", "a0tu_", ",", "a0tl_", ",", "ad_", ",", "a0_"}], "}"}]}], "]"}], "]"}], ":>", RowBox[{"adt", "+", RowBox[{ RowBox[{"(", RowBox[{"n", "-", "1"}], ")"}], RowBox[{"(", RowBox[{"ad", "+", "a0tu", "+", "a0tl"}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{ SuperscriptBox["n", "2"], "-", "1", "-", RowBox[{"3", RowBox[{"(", RowBox[{"n", "-", "1"}], ")"}]}]}], ")"}], "a0"}]}]}]], "Input",Expres\ sionUUID->"b5146e99-78bb-48d4-9374-7b833d3a6574"], Cell[BoxData[ RowBox[{ RowBox[{"matForm", "[", RowBox[{"p0RSBmat", "[", RowBox[{"n_", ",", RowBox[{"{", RowBox[{"adt_", ",", "a0tu_", ",", "a0tl_", ",", "ad_", ",", "a0_"}], "}"}]}], "]"}], "]"}], ":=", RowBox[{"With", "[", RowBox[{ RowBox[{"{", RowBox[{"a", "=", RowBox[{"Unique", "[", "a", "]"}]}], "}"}], ",", RowBox[{ RowBox[{"Array", "[", RowBox[{"a", ",", RowBox[{"{", RowBox[{"n", ",", "n"}], "}"}]}], "]"}], "/.", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"a", "[", RowBox[{"1", ",", "1"}], "]"}], ":>", "adt"}], ",", RowBox[{ RowBox[{"a", "[", RowBox[{"i_", ",", "i_"}], "]"}], ":>", "ad"}], ",", RowBox[{ RowBox[{"a", "[", RowBox[{"i_", ",", "j_"}], "]"}], ":>", RowBox[{"a0tu", "/;", RowBox[{"(", RowBox[{ RowBox[{"i", "==", "1"}], "&&", RowBox[{"j", "!=", "1"}]}], ")"}]}]}], ",", RowBox[{ RowBox[{"a", "[", RowBox[{"i_", ",", "j_"}], "]"}], ":>", RowBox[{"a0tl", "/;", RowBox[{"(", RowBox[{ RowBox[{"i", "!=", "1"}], "&&", RowBox[{"j", "==", "1"}]}], ")"}]}]}], ",", RowBox[{ RowBox[{"a", "[", RowBox[{"_", ",", "_"}], "]"}], ":>", "a0"}]}], "}"}]}]}], "]"}]}]], "Input", CellChangeTimes->{{3.90601619406374*^9, 3.906016261000745*^9}}, CellLabel->"In[8]:=",ExpressionUUID->"ae37dedd-da6c-42ec-ae9b-796780482b37"], Cell[BoxData[{ RowBox[{ RowBox[{"A", "=", RowBox[{"p0RSBmat", "[", RowBox[{"7", ",", RowBox[{"{", RowBox[{"adt", ",", "a0tu", ",", "a0tl", ",", "ad", ",", "a0"}], "}"}]}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"B", "=", RowBox[{"p0RSBmat", "[", RowBox[{"7", ",", RowBox[{"{", RowBox[{"bdt", ",", "b0tu", ",", "b0tl", ",", "bd", ",", "b0"}], "}"}]}], "]"}]}], ";"}]}], "Input", CellChangeTimes->{{3.906016273153998*^9, 3.906016296681038*^9}, { 3.906016335065982*^9, 3.906016335785755*^9}, {3.906016425291695*^9, 3.906016427035625*^9}}, CellLabel->"In[9]:=",ExpressionUUID->"3d84f495-773b-4ce0-a779-44c19e0915c3"], Cell[BoxData[ RowBox[{ RowBox[{"id", "[", "n_", "]"}], ":=", RowBox[{"p0RSBmat", "[", RowBox[{"n", ",", RowBox[{"{", RowBox[{"1", ",", "0", ",", "0", ",", "1", ",", "0"}], "}"}]}], "]"}]}]], "Input", CellChangeTimes->{{3.916303142184292*^9, 3.9163031607199087`*^9}}, CellLabel->"In[72]:=",ExpressionUUID->"618a42f8-b051-4cdf-8473-21e9de937b82"], Cell[BoxData[ RowBox[{ RowBox[{"corner", "[", "n_", "]"}], ":=", RowBox[{"p0RSBmat", "[", RowBox[{"n", ",", RowBox[{"{", RowBox[{"1", ",", "0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "]"}]}]], "Input", CellChangeTimes->{{3.916303208929206*^9, 3.916303222257146*^9}}, CellLabel->"In[75]:=",ExpressionUUID->"9a83e28a-4231-4cff-9a04-fac75f5e1b4d"], Cell[BoxData[ RowBox[{ RowBox[{"lineTop", "[", "n_", "]"}], ":=", RowBox[{"p0RSBmat", "[", RowBox[{"n", ",", RowBox[{"{", RowBox[{"1", ",", "1", ",", "0", ",", "0", ",", "0"}], "}"}]}], "]"}]}]], "Input", CellChangeTimes->{{3.916303427533416*^9, 3.916303446237496*^9}, { 3.916303596128808*^9, 3.916303599784398*^9}}, CellLabel-> "In[101]:=",ExpressionUUID->"43300cae-9f4f-47cf-9813-49db8b5d69a9"], Cell[BoxData[ RowBox[{ RowBox[{"lineBottom", "[", "n_", "]"}], ":=", RowBox[{"p0RSBmat", "[", RowBox[{"n", ",", RowBox[{"{", RowBox[{"1", ",", "0", ",", "1", ",", "0", ",", "0"}], "}"}]}], "]"}]}]], "Input", CellChangeTimes->{{3.916303610984568*^9, 3.9163036158725*^9}}, CellLabel-> "In[104]:=",ExpressionUUID->"e7afa4f7-6f52-45c9-9d8a-53932a27bcf7"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"lineTop", "[", "4", "]"}], "//", "matForm"}]], "Input", CellChangeTimes->{{3.916303161920828*^9, 3.916303170176252*^9}, { 3.916303224914093*^9, 3.916303226809374*^9}, {3.9163034500461063`*^9, 3.91630345216578*^9}, {3.916303603512663*^9, 3.916303603976437*^9}}, CellLabel-> "In[103]:=",ExpressionUUID->"c1a6934f-6252-4ba2-8a31-abb6a974a91c"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "1", ",", "1", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}]], "Output", CellChangeTimes->{{3.916303164634424*^9, 3.91630317055126*^9}, 3.9163032271085043`*^9, 3.91630345237505*^9, {3.9163036013289824`*^9, 3.91630360419517*^9}}, CellLabel-> "Out[103]=",ExpressionUUID->"bafdc24d-ce74-44fa-81b1-b5eed3c1c110"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"corner", "[", "4", "]"}], "//", "matForm"}]], "Input",ExpressionUUI\ D->"c7e4db28-e1d9-4e45-8d64-b45ae3f3b02a"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"matForm", "[", "A", "]"}], "//", "MatrixForm"}]], "Input", CellChangeTimes->{{3.90601650742142*^9, 3.906016511901194*^9}}, CellLabel->"In[11]:=",ExpressionUUID->"90f8e6cf-a2cb-4fc4-af6b-a2643f1c18bc"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"adt", "a0tu", "a0tu", "a0tu", "a0tu", "a0tu", "a0tu"}, {"a0tl", "ad", "a0", "a0", "a0", "a0", "a0"}, {"a0tl", "a0", "ad", "a0", "a0", "a0", "a0"}, {"a0tl", "a0", "a0", "ad", "a0", "a0", "a0"}, {"a0tl", "a0", "a0", "a0", "ad", "a0", "a0"}, {"a0tl", "a0", "a0", "a0", "a0", "ad", "a0"}, {"a0tl", "a0", "a0", "a0", "a0", "a0", "ad"} }, GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[BoxForm`e$]]]], "Output", CellChangeTimes->{3.9060165121210833`*^9, 3.906186585845617*^9, 3.906188367634499*^9, 3.906445737287404*^9, 3.906526380957107*^9, 3.907146520679757*^9, 3.907328401870837*^9, 3.90852775810122*^9, 3.90853517690338*^9, 3.9086033051904783`*^9, 3.908611419200552*^9, 3.908621322305964*^9, 3.908959013422355*^9, 3.909041244953446*^9, 3.915532039997315*^9, 3.915532490361631*^9, 3.9157715661300697`*^9, 3.916298086103642*^9}, CellLabel-> "Out[11]//MatrixForm=",ExpressionUUID->"761ce714-4f2f-4e7a-9a77-\ 4aeb97c7b9e3"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{ RowBox[{"matForm", "[", "A", "]"}], ".", RowBox[{"matForm", "[", "B", "]"}]}], "-", RowBox[{"matForm", "[", RowBox[{ RowBox[{"A", ".", "B"}], "/.", "p0RSBrules"}], "]"}]}], "//", "MatrixForm"}]], "Input", CellChangeTimes->{{3.90601630021717*^9, 3.9060163020008*^9}, { 3.906016344778521*^9, 3.906016369306422*^9}}, CellLabel->"In[12]:=",ExpressionUUID->"8fc542b7-ffb8-43ab-82fe-a6e3bc6c4dc1"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"0", "0", "0", "0", "0", "0", "0"}, {"0", "0", "0", "0", "0", "0", "0"}, {"0", "0", "0", "0", "0", "0", "0"}, {"0", "0", "0", "0", "0", "0", "0"}, {"0", "0", "0", "0", "0", "0", "0"}, {"0", "0", "0", "0", "0", "0", "0"}, {"0", "0", "0", "0", "0", "0", "0"} }, GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[BoxForm`e$]]]], "Output", CellChangeTimes->{{3.906016302200728*^9, 3.9060163698749247`*^9}, { 3.906016412112354*^9, 3.906016427752605*^9}, 3.906186586394137*^9, 3.906188367784443*^9, 3.906445737488733*^9, 3.906526381171613*^9, 3.9071465208390102`*^9, 3.907328401969231*^9, 3.90852775852439*^9, 3.908535176947983*^9, 3.9086033052426033`*^9, 3.908611419390637*^9, 3.908621322502807*^9, 3.9089590134471207`*^9, 3.909041245152533*^9, 3.915532040420734*^9, 3.915532490902354*^9, 3.9157715661819*^9, 3.91629808635922*^9}, CellLabel-> "Out[12]//MatrixForm=",ExpressionUUID->"ba200cb0-9e0e-423b-9f5f-\ 963ad56ef299"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{ RowBox[{"logDet", "[", "A", "]"}], "-", RowBox[{"Log", "[", RowBox[{"Det", "[", RowBox[{"matForm", "[", "A", "]"}], "]"}], "]"}]}], "/.", "p0RSBrules"}], "//", RowBox[{ RowBox[{"FullSimplify", "[", RowBox[{"#", ",", RowBox[{"Assumptions", "->", RowBox[{"{", RowBox[{ RowBox[{"ad", ">", "a0"}], ",", RowBox[{"a0", ">", "0"}], ",", RowBox[{"ad", ">", "0"}], ",", RowBox[{"ad", ">", "0"}]}], "}"}]}]}], "]"}], "&"}]}]], "Input", CellChangeTimes->{{3.906016432156065*^9, 3.906016492940791*^9}}, CellLabel->"In[13]:=",ExpressionUUID->"d97a16cb-8f13-463e-9235-10cf798e882c"], Cell[BoxData["0"], "Output", CellChangeTimes->{{3.906016435385942*^9, 3.906016493093434*^9}, 3.9061865868641443`*^9, 3.906188367909843*^9, 3.906445737894533*^9, 3.906526381387528*^9, 3.907146521410756*^9, 3.907328402072982*^9, 3.908527759253859*^9, 3.908535176992972*^9, 3.908603305293064*^9, 3.908611419701027*^9, 3.908621322735462*^9, 3.908959013614911*^9, 3.909041245371322*^9, 3.915532041003538*^9, 3.915532491323807*^9, 3.9157715663195257`*^9, 3.916298087124516*^9}, CellLabel->"Out[13]=",ExpressionUUID->"ab9cfbb0-fc67-419d-ba7f-6c7524f65677"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"\[ScriptCapitalS]twin", "=", RowBox[{"With", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Q11", "=", RowBox[{"p0RSBmat", "[", RowBox[{"n", ",", RowBox[{"{", RowBox[{ "q11d1", ",", "q111", ",", "q111", ",", "q11d0", ",", "q110"}], "}"}]}], "]"}]}], ",", RowBox[{"Q22", "=", RowBox[{"p0RSBmat", "[", RowBox[{"n", ",", RowBox[{"{", RowBox[{ "q22d1", ",", "q221", ",", "q221", ",", "q22d0", ",", "q220"}], "}"}]}], "]"}]}], ",", RowBox[{"Q12", "=", RowBox[{"p0RSBmat", "[", RowBox[{"n", ",", RowBox[{"{", RowBox[{ "q12d1", ",", "q121", ",", "q121", ",", "q12d0", ",", "q120"}], "}"}]}], "]"}]}]}], "}"}], ",", "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{ RowBox[{"-", "\[Beta]"}], RowBox[{"(", RowBox[{ RowBox[{"\[Omega]1", " ", RowBox[{"sumDiag", "[", "Q11", "]"}]}], "+", RowBox[{"\[Omega]2", " ", RowBox[{"sumDiag", "[", "Q22", "]"}]}]}], ")"}]}], "+", RowBox[{"\[Lambda]", RowBox[{"(", RowBox[{ RowBox[{"\[Omega]1", " ", "q11d1"}], "+", RowBox[{"\[Omega]2", " ", "q22d1"}]}], ")"}]}], "+", RowBox[{ SuperscriptBox["\[Sigma]1", "2"], RowBox[{"(", RowBox[{ RowBox[{ SuperscriptBox["\[Beta]", "2"], RowBox[{"sum", "[", SuperscriptBox["Q11", "2"], "]"}]}], "+", RowBox[{ SuperscriptBox["\[Lambda]", "2"], SuperscriptBox["q11d1", "2"]}], "-", RowBox[{"2", " ", "\[Beta]", " ", "\[Lambda]", RowBox[{"(", RowBox[{ SuperscriptBox["q11d1", "2"], "+", RowBox[{ RowBox[{"(", RowBox[{"n", "-", "1"}], ")"}], SuperscriptBox["q111", "2"]}]}], ")"}]}]}], ")"}]}], "+", RowBox[{ SuperscriptBox["\[Sigma]2", "2"], RowBox[{"(", RowBox[{ RowBox[{ SuperscriptBox["\[Beta]", "2"], RowBox[{"sum", "[", SuperscriptBox["Q22", "2"], "]"}]}], "+", RowBox[{ SuperscriptBox["\[Lambda]", "2"], SuperscriptBox["q22d1", "2"]}], "-", RowBox[{"2", " ", "\[Beta]", " ", "\[Lambda]", RowBox[{"(", RowBox[{ SuperscriptBox["q22d1", "2"], "+", RowBox[{ RowBox[{"(", RowBox[{"n", "-", "1"}], ")"}], SuperscriptBox["q221", "2"]}]}], ")"}]}]}], ")"}]}], "+", RowBox[{ SuperscriptBox["\[Sigma]12", "2"], RowBox[{"(", RowBox[{ RowBox[{ SuperscriptBox["\[Beta]", "2"], RowBox[{"sum", "[", RowBox[{"Q11", " ", "Q22"}], "]"}]}], "+", RowBox[{ SuperscriptBox["\[Lambda]", "2"], "q11d1", " ", "q22d1"}], "-", RowBox[{"2", " ", "\[Beta]", " ", "\[Lambda]", RowBox[{"(", RowBox[{ RowBox[{"q11d1", " ", "q22d1"}], "+", RowBox[{ RowBox[{"(", RowBox[{"n", "-", "1"}], ")"}], "q111", " ", "q221"}]}], ")"}]}]}], ")"}]}], "+", RowBox[{ FractionBox["1", "2"], RowBox[{"logDet", "[", RowBox[{"Q11", ".", "Q22"}], "]"}]}]}], "//.", "p0RSBrules"}]}], "\[IndentingNewLine]", "]"}]}], ";"}]], "Input", CellChangeTimes->{{3.905848963495986*^9, 3.905849056640668*^9}, { 3.905849098609572*^9, 3.905849153378747*^9}, {3.905849229244924*^9, 3.905849299413603*^9}, {3.9058497801426687`*^9, 3.905849929641574*^9}, { 3.905850661167429*^9, 3.905850663479553*^9}, {3.9058506988640537`*^9, 3.905850823299843*^9}, {3.906016526231467*^9, 3.906016610960813*^9}, { 3.906016648120619*^9, 3.906016668361017*^9}, {3.906018022634241*^9, 3.906018040601918*^9}, {3.906018074803009*^9, 3.906018131963895*^9}, { 3.9162982057078943`*^9, 3.916298272949469*^9}, {3.916303258595335*^9, 3.9163032644194717`*^9}, {3.916303356613431*^9, 3.916303356757037*^9}}, CellLabel->"In[88]:=",ExpressionUUID->"1be6ad59-07a8-4e68-a148-615473405a94"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"\[ScriptCapitalS]twin2", "/.", RowBox[{"n", "->", "0"}]}]], "Input", CellChangeTimes->{{3.916304984013535*^9, 3.916305003547409*^9}}, CellLabel-> "In[137]:=",ExpressionUUID->"31ecc6b1-3013-4df7-a379-762ad87db2ba"], Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"2", " ", SuperscriptBox["q110", "2"]}], "-", RowBox[{"2", " ", SuperscriptBox["q111", "2"]}], "-", SuperscriptBox["q11d0", "2"], "+", SuperscriptBox["q11d1", "2"]}], ")"}], " ", SuperscriptBox["\[Beta]", "2"]}], "-", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", SuperscriptBox["q111", "2"]}], "+", RowBox[{"2", " ", SuperscriptBox["q11d1", "2"]}]}], ")"}], " ", "\[Beta]", " ", "\[Lambda]"}], "+", RowBox[{ SuperscriptBox["q11d1", "2"], " ", SuperscriptBox["\[Lambda]", "2"]}]}], ")"}], " ", SuperscriptBox["\[Sigma]1", "2"]}], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"2", " ", "q110", " ", "q220"}], "-", RowBox[{"2", " ", "q111", " ", "q221"}], "-", RowBox[{"q11d0", " ", "q22d0"}], "+", RowBox[{"q11d1", " ", "q22d1"}]}], ")"}], " ", SuperscriptBox["\[Beta]", "2"]}], "-", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", "q111", " ", "q221"}], "+", RowBox[{"2", " ", "q11d1", " ", "q22d1"}]}], ")"}], " ", "\[Beta]", " ", "\[Lambda]"}], "+", RowBox[{"q11d1", " ", "q22d1", " ", SuperscriptBox["\[Lambda]", "2"]}]}], ")"}], " ", SuperscriptBox["\[Sigma]12", "2"]}], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"2", " ", SuperscriptBox["q220", "2"]}], "-", RowBox[{"2", " ", SuperscriptBox["q221", "2"]}], "-", SuperscriptBox["q22d0", "2"], "+", SuperscriptBox["q22d1", "2"]}], ")"}], " ", SuperscriptBox["\[Beta]", "2"]}], "-", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", SuperscriptBox["q221", "2"]}], "+", RowBox[{"2", " ", SuperscriptBox["q22d1", "2"]}]}], ")"}], " ", "\[Beta]", " ", "\[Lambda]"}], "+", RowBox[{ SuperscriptBox["q22d1", "2"], " ", SuperscriptBox["\[Lambda]", "2"]}]}], ")"}], " ", SuperscriptBox["\[Sigma]2", "2"]}], "+", RowBox[{"\[Lambda]", " ", RowBox[{"(", RowBox[{ RowBox[{"q11d1", " ", "\[Omega]1"}], "+", RowBox[{"q22d1", " ", "\[Omega]2"}]}], ")"}]}], "-", RowBox[{"\[Beta]", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "q11d0"}], "+", "q11d1"}], ")"}], " ", "\[Omega]1"}], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "q22d0"}], "+", "q22d1"}], ")"}], " ", "\[Omega]2"}]}], ")"}]}], "+", RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", RowBox[{"Log", "[", RowBox[{ RowBox[{"q110", " ", "q220"}], "-", RowBox[{"q11d0", " ", "q220"}], "-", RowBox[{"q110", " ", "q22d0"}], "+", RowBox[{"q11d0", " ", "q22d0"}]}], "]"}]}], "+", RowBox[{"Log", "[", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", "q111", " ", "q220"}], "+", RowBox[{"q11d1", " ", "q221"}], "+", RowBox[{"q111", " ", "q22d0"}]}], ")"}], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", "q110", " ", "q221"}], "+", RowBox[{"q11d0", " ", "q221"}], "+", RowBox[{"q111", " ", "q22d1"}]}], ")"}]}], "-", RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "3"}], " ", "q110", " ", "q220"}], "+", RowBox[{"q11d0", " ", "q220"}], "+", RowBox[{"q111", " ", "q221"}], "+", RowBox[{"q110", " ", "q22d0"}]}], ")"}], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "q111"}], " ", "q221"}], "+", RowBox[{"q11d1", " ", "q22d1"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", "q110", " ", "q220"}], "+", RowBox[{"q111", " ", "q221"}], "+", RowBox[{"q11d0", " ", "q22d0"}]}], ")"}], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "q111"}], " ", "q221"}], "+", RowBox[{"q11d1", " ", "q22d1"}]}], ")"}]}]}], "]"}]}], ")"}]}]}]], "Output", CellChangeTimes->{{3.916304986518355*^9, 3.916305003774634*^9}}, CellLabel-> "Out[137]=",ExpressionUUID->"c29d260e-8842-437a-a5aa-1328cb436e45"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"\[ScriptCapitalS]twin2", "=", RowBox[{"With", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Q11", "=", RowBox[{"p0RSBmat", "[", RowBox[{"n", ",", RowBox[{"{", RowBox[{ "q11d1", ",", "q111", ",", "q111", ",", "q11d0", ",", "q110"}], "}"}]}], "]"}]}], ",", RowBox[{"Q22", "=", RowBox[{"p0RSBmat", "[", RowBox[{"n", ",", RowBox[{"{", RowBox[{ "q22d1", ",", "q221", ",", "q221", ",", "q22d0", ",", "q220"}], "}"}]}], "]"}]}], ",", RowBox[{"Q12", "=", RowBox[{"p0RSBmat", "[", RowBox[{"n", ",", RowBox[{"{", RowBox[{ "q12d1", ",", "q121", ",", "q121", ",", "q12d0", ",", "q120"}], "}"}]}], "]"}]}]}], "}"}], ",", "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"-", "\[Beta]"}], RowBox[{"(", RowBox[{ RowBox[{"\[Omega]1", " ", RowBox[{"sum", "[", RowBox[{ RowBox[{"id", "[", "n", "]"}], " ", "Q11"}], "]"}]}], "+", RowBox[{"\[Omega]2", " ", RowBox[{"sum", "[", RowBox[{ RowBox[{"id", "[", "n", "]"}], " ", "Q22"}], "]"}]}]}], ")"}]}], "+", RowBox[{"\[Lambda]", RowBox[{"(", RowBox[{ RowBox[{"\[Omega]1", " ", RowBox[{"sum", "[", RowBox[{ RowBox[{"corner", "[", "n", "]"}], "Q11"}], "]"}]}], "+", RowBox[{"\[Omega]2", " ", RowBox[{"sum", "[", RowBox[{ RowBox[{"corner", "[", "n", "]"}], "Q22"}], "]"}]}]}], ")"}]}], "+", RowBox[{ SuperscriptBox["\[Sigma]1", "2"], RowBox[{"(", RowBox[{ RowBox[{ SuperscriptBox["\[Beta]", "2"], RowBox[{"sum", "[", SuperscriptBox["Q11", "2"], "]"}]}], "+", RowBox[{ SuperscriptBox["\[Lambda]", "2"], RowBox[{"sum", "[", RowBox[{ RowBox[{"corner", "[", "n", "]"}], SuperscriptBox["Q11", "2"]}], "]"}]}], "-", RowBox[{"\[Beta]", " ", "\[Lambda]", " ", RowBox[{"(", RowBox[{ RowBox[{"sum", "[", RowBox[{ RowBox[{"lineTop", "[", "n", "]"}], SuperscriptBox["Q11", "2"]}], "]"}], "+", RowBox[{"sum", "[", RowBox[{ RowBox[{"lineBottom", "[", "n", "]"}], SuperscriptBox["Q11", "2"]}], "]"}]}], ")"}]}]}], ")"}]}], "+", RowBox[{ SuperscriptBox["\[Sigma]2", "2"], RowBox[{"(", RowBox[{ RowBox[{ SuperscriptBox["\[Beta]", "2"], RowBox[{"sum", "[", SuperscriptBox["Q22", "2"], "]"}]}], "+", RowBox[{ SuperscriptBox["\[Lambda]", "2"], RowBox[{"sum", "[", RowBox[{ RowBox[{"corner", "[", "n", "]"}], SuperscriptBox["Q22", "2"]}], "]"}]}], "-", RowBox[{"\[Beta]", " ", "\[Lambda]", " ", RowBox[{"(", RowBox[{ RowBox[{"sum", "[", RowBox[{ RowBox[{"lineTop", "[", "n", "]"}], SuperscriptBox["Q22", "2"]}], "]"}], "+", RowBox[{"sum", "[", RowBox[{ RowBox[{"lineBottom", "[", "n", "]"}], SuperscriptBox["Q22", "2"]}], "]"}]}], ")"}]}]}], ")"}]}], "+", RowBox[{ SuperscriptBox["\[Sigma]12", "2"], RowBox[{"(", RowBox[{ RowBox[{ SuperscriptBox["\[Beta]", "2"], RowBox[{"sum", "[", RowBox[{"Q11", " ", "Q22"}], "]"}]}], "+", RowBox[{ SuperscriptBox["\[Lambda]", "2"], RowBox[{"sum", "[", RowBox[{ RowBox[{"corner", "[", "n", "]"}], "Q11", " ", "Q22"}], "]"}]}], "-", RowBox[{"\[Beta]", " ", "\[Lambda]", RowBox[{"(", RowBox[{ RowBox[{"sum", "[", RowBox[{ RowBox[{"lineTop", "[", "n", "]"}], "Q11", " ", "Q22"}], "]"}], "+", RowBox[{"sum", "[", RowBox[{ RowBox[{"lineBottom", "[", "n", "]"}], "Q11", " ", "Q22"}], "]"}]}], ")"}]}]}], ")"}]}], "+", RowBox[{ FractionBox["1", "2"], RowBox[{"logDet", "[", "Q11", "]"}]}], "+", RowBox[{ FractionBox["1", "2"], RowBox[{"logDet", "[", "Q22", "]"}]}]}]}], "\[IndentingNewLine]", "]"}]}], ";"}]], "Input", CellChangeTimes->{{3.9163030331990423`*^9, 3.9163030459032707`*^9}, { 3.916303183587496*^9, 3.9163031939544497`*^9}, {3.9163032334434023`*^9, 3.916303256435604*^9}, {3.91630328881266*^9, 3.9163032892379*^9}, { 3.9163033800945187`*^9, 3.916303413625928*^9}, {3.91630346014445*^9, 3.916303481112104*^9}, {3.916303620411435*^9, 3.916303706988596*^9}, { 3.916305620361405*^9, 3.9163056338095617`*^9}}, CellLabel-> "In[143]:=",ExpressionUUID->"95097ec5-8784-4805-b556-6daf94695fcf"], Cell[CellGroupData[{ Cell[BoxData["\[ScriptCapitalS]twin2"], "Input", CellChangeTimes->{{3.916305623145124*^9, 3.916305636919092*^9}}, CellLabel-> "In[144]:=",ExpressionUUID->"54fb42a2-4e37-42ef-bcb5-a2ee989bb8c3"], Cell[BoxData[ RowBox[{ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"logDet", "[", RowBox[{"p0RSBmat", "[", RowBox[{"n", ",", RowBox[{"{", RowBox[{"q11d1", ",", "q111", ",", "q111", ",", "q11d0", ",", "q110"}], "}"}]}], "]"}], "]"}]}], "+", RowBox[{ FractionBox["1", "2"], " ", RowBox[{"logDet", "[", RowBox[{"p0RSBmat", "[", RowBox[{"n", ",", RowBox[{"{", RowBox[{"q22d1", ",", "q221", ",", "q221", ",", "q22d0", ",", "q220"}], "}"}]}], "]"}], "]"}]}], "+", RowBox[{ SuperscriptBox["\[Sigma]1", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{ SuperscriptBox["\[Beta]", "2"], " ", RowBox[{"sum", "[", SuperscriptBox[ RowBox[{"p0RSBmat", "[", RowBox[{"n", ",", RowBox[{"{", RowBox[{ "q11d1", ",", "q111", ",", "q111", ",", "q11d0", ",", "q110"}], "}"}]}], "]"}], "2"], "]"}]}], "+", RowBox[{ SuperscriptBox["\[Lambda]", "2"], " ", RowBox[{"sum", "[", RowBox[{ RowBox[{"p0RSBmat", "[", RowBox[{"n", ",", RowBox[{"{", RowBox[{"1", ",", "0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "]"}], " ", SuperscriptBox[ RowBox[{"p0RSBmat", "[", RowBox[{"n", ",", RowBox[{"{", RowBox[{ "q11d1", ",", "q111", ",", "q111", ",", "q11d0", ",", "q110"}], "}"}]}], "]"}], "2"]}], "]"}]}], "-", RowBox[{"\[Beta]", " ", "\[Lambda]", " ", RowBox[{"(", RowBox[{ RowBox[{"sum", "[", RowBox[{ RowBox[{"p0RSBmat", "[", RowBox[{"n", ",", RowBox[{"{", RowBox[{"1", ",", "0", ",", "1", ",", "0", ",", "0"}], "}"}]}], "]"}], " ", SuperscriptBox[ RowBox[{"p0RSBmat", "[", RowBox[{"n", ",", RowBox[{"{", RowBox[{ "q11d1", ",", "q111", ",", "q111", ",", "q11d0", ",", "q110"}], "}"}]}], "]"}], "2"]}], "]"}], "+", RowBox[{"sum", "[", RowBox[{ RowBox[{"p0RSBmat", "[", RowBox[{"n", ",", RowBox[{"{", RowBox[{"1", ",", "1", ",", "0", ",", "0", ",", "0"}], "}"}]}], "]"}], " ", SuperscriptBox[ RowBox[{"p0RSBmat", "[", RowBox[{"n", ",", RowBox[{"{", RowBox[{ "q11d1", ",", "q111", ",", "q111", ",", "q11d0", ",", "q110"}], "}"}]}], "]"}], "2"]}], "]"}]}], ")"}]}]}], ")"}]}], "+", RowBox[{"\[Lambda]", " ", RowBox[{"(", RowBox[{ RowBox[{"\[Omega]1", " ", RowBox[{"sum", "[", RowBox[{ RowBox[{"p0RSBmat", "[", RowBox[{"n", ",", RowBox[{"{", RowBox[{"1", ",", "0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "]"}], " ", RowBox[{"p0RSBmat", "[", RowBox[{"n", ",", RowBox[{"{", RowBox[{ "q11d1", ",", "q111", ",", "q111", ",", "q11d0", ",", "q110"}], "}"}]}], "]"}]}], "]"}]}], "+", RowBox[{"\[Omega]2", " ", RowBox[{"sum", "[", RowBox[{ RowBox[{"p0RSBmat", "[", RowBox[{"n", ",", RowBox[{"{", RowBox[{"1", ",", "0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "]"}], " ", RowBox[{"p0RSBmat", "[", RowBox[{"n", ",", RowBox[{"{", RowBox[{ "q22d1", ",", "q221", ",", "q221", ",", "q22d0", ",", "q220"}], "}"}]}], "]"}]}], "]"}]}]}], ")"}]}], "-", RowBox[{"\[Beta]", " ", RowBox[{"(", RowBox[{ RowBox[{"\[Omega]1", " ", RowBox[{"sum", "[", RowBox[{ RowBox[{"p0RSBmat", "[", RowBox[{"n", ",", RowBox[{"{", RowBox[{"1", ",", "0", ",", "0", ",", "1", ",", "0"}], "}"}]}], "]"}], " ", RowBox[{"p0RSBmat", "[", RowBox[{"n", ",", RowBox[{"{", RowBox[{ "q11d1", ",", "q111", ",", "q111", ",", "q11d0", ",", "q110"}], "}"}]}], "]"}]}], "]"}]}], "+", RowBox[{"\[Omega]2", " ", RowBox[{"sum", "[", RowBox[{ RowBox[{"p0RSBmat", "[", RowBox[{"n", ",", RowBox[{"{", RowBox[{"1", ",", "0", ",", "0", ",", "1", ",", "0"}], "}"}]}], "]"}], " ", RowBox[{"p0RSBmat", "[", RowBox[{"n", ",", RowBox[{"{", RowBox[{ "q22d1", ",", "q221", ",", "q221", ",", "q22d0", ",", "q220"}], "}"}]}], "]"}]}], "]"}]}]}], ")"}]}], "+", RowBox[{ SuperscriptBox["\[Sigma]12", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{ SuperscriptBox["\[Beta]", "2"], " ", RowBox[{"sum", "[", RowBox[{ RowBox[{"p0RSBmat", "[", RowBox[{"n", ",", RowBox[{"{", RowBox[{ "q11d1", ",", "q111", ",", "q111", ",", "q11d0", ",", "q110"}], "}"}]}], "]"}], " ", RowBox[{"p0RSBmat", "[", RowBox[{"n", ",", RowBox[{"{", RowBox[{ "q22d1", ",", "q221", ",", "q221", ",", "q22d0", ",", "q220"}], "}"}]}], "]"}]}], "]"}]}], "+", RowBox[{ SuperscriptBox["\[Lambda]", "2"], " ", RowBox[{"sum", "[", RowBox[{ RowBox[{"p0RSBmat", "[", RowBox[{"n", ",", RowBox[{"{", RowBox[{"1", ",", "0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "]"}], " ", RowBox[{"p0RSBmat", "[", RowBox[{"n", ",", RowBox[{"{", RowBox[{ "q11d1", ",", "q111", ",", "q111", ",", "q11d0", ",", "q110"}], "}"}]}], "]"}], " ", RowBox[{"p0RSBmat", "[", RowBox[{"n", ",", RowBox[{"{", RowBox[{ "q22d1", ",", "q221", ",", "q221", ",", "q22d0", ",", "q220"}], "}"}]}], "]"}]}], "]"}]}], "-", RowBox[{"\[Beta]", " ", "\[Lambda]", " ", RowBox[{"(", RowBox[{ RowBox[{"sum", "[", RowBox[{ RowBox[{"p0RSBmat", "[", RowBox[{"n", ",", RowBox[{"{", RowBox[{"1", ",", "0", ",", "1", ",", "0", ",", "0"}], "}"}]}], "]"}], " ", RowBox[{"p0RSBmat", "[", RowBox[{"n", ",", RowBox[{"{", RowBox[{ "q11d1", ",", "q111", ",", "q111", ",", "q11d0", ",", "q110"}], "}"}]}], "]"}], " ", RowBox[{"p0RSBmat", "[", RowBox[{"n", ",", RowBox[{"{", RowBox[{ "q22d1", ",", "q221", ",", "q221", ",", "q22d0", ",", "q220"}], "}"}]}], "]"}]}], "]"}], "+", RowBox[{"sum", "[", RowBox[{ RowBox[{"p0RSBmat", "[", RowBox[{"n", ",", RowBox[{"{", RowBox[{"1", ",", "1", ",", "0", ",", "0", ",", "0"}], "}"}]}], "]"}], " ", RowBox[{"p0RSBmat", "[", RowBox[{"n", ",", RowBox[{"{", RowBox[{ "q11d1", ",", "q111", ",", "q111", ",", "q11d0", ",", "q110"}], "}"}]}], "]"}], " ", RowBox[{"p0RSBmat", "[", RowBox[{"n", ",", RowBox[{"{", RowBox[{ "q22d1", ",", "q221", ",", "q221", ",", "q22d0", ",", "q220"}], "}"}]}], "]"}]}], "]"}]}], ")"}]}]}], ")"}]}], "+", RowBox[{ SuperscriptBox["\[Sigma]2", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{ SuperscriptBox["\[Beta]", "2"], " ", RowBox[{"sum", "[", SuperscriptBox[ RowBox[{"p0RSBmat", "[", RowBox[{"n", ",", RowBox[{"{", RowBox[{ "q22d1", ",", "q221", ",", "q221", ",", "q22d0", ",", "q220"}], "}"}]}], "]"}], "2"], "]"}]}], "+", RowBox[{ SuperscriptBox["\[Lambda]", "2"], " ", RowBox[{"sum", "[", RowBox[{ RowBox[{"p0RSBmat", "[", RowBox[{"n", ",", RowBox[{"{", RowBox[{"1", ",", "0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "]"}], " ", SuperscriptBox[ RowBox[{"p0RSBmat", "[", RowBox[{"n", ",", RowBox[{"{", RowBox[{ "q22d1", ",", "q221", ",", "q221", ",", "q22d0", ",", "q220"}], "}"}]}], "]"}], "2"]}], "]"}]}], "-", RowBox[{"\[Beta]", " ", "\[Lambda]", " ", RowBox[{"(", RowBox[{ RowBox[{"sum", "[", RowBox[{ RowBox[{"p0RSBmat", "[", RowBox[{"n", ",", RowBox[{"{", RowBox[{"1", ",", "0", ",", "1", ",", "0", ",", "0"}], "}"}]}], "]"}], " ", SuperscriptBox[ RowBox[{"p0RSBmat", "[", RowBox[{"n", ",", RowBox[{"{", RowBox[{ "q22d1", ",", "q221", ",", "q221", ",", "q22d0", ",", "q220"}], "}"}]}], "]"}], "2"]}], "]"}], "+", RowBox[{"sum", "[", RowBox[{ RowBox[{"p0RSBmat", "[", RowBox[{"n", ",", RowBox[{"{", RowBox[{"1", ",", "1", ",", "0", ",", "0", ",", "0"}], "}"}]}], "]"}], " ", SuperscriptBox[ RowBox[{"p0RSBmat", "[", RowBox[{"n", ",", RowBox[{"{", RowBox[{ "q22d1", ",", "q221", ",", "q221", ",", "q22d0", ",", "q220"}], "}"}]}], "]"}], "2"]}], "]"}]}], ")"}]}]}], ")"}]}]}]], "Output",\ CellChangeTimes->{3.916306037027356*^9}, CellLabel-> "Out[144]=",ExpressionUUID->"75df506e-ff6a-4923-b1da-38da451a259d"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"eqs", "=", RowBox[{ RowBox[{"With", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Q11", "=", RowBox[{"p0RSBmat", "[", RowBox[{"n", ",", RowBox[{"{", RowBox[{ "q11d1", ",", "q111", ",", "q111", ",", "q11d0", ",", "q110"}], "}"}]}], "]"}]}], ",", RowBox[{"Q22", "=", RowBox[{"p0RSBmat", "[", RowBox[{"n", ",", RowBox[{"{", RowBox[{ "q22d1", ",", "q221", ",", "q221", ",", "q22d0", ",", "q220"}], "}"}]}], "]"}]}], ",", RowBox[{"Q12", "=", RowBox[{"p0RSBmat", "[", RowBox[{"n", ",", RowBox[{"{", RowBox[{ "q12d1", ",", "q121", ",", "q121", ",", "q12d0", ",", "q120"}], "}"}]}], "]"}]}]}], "}"}], ",", "\[IndentingNewLine]", RowBox[{ RowBox[{"{", "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[Beta]"}], RowBox[{"(", RowBox[{"\[Omega]1", " ", RowBox[{"id", "[", "n", "]"}]}], ")"}]}], "+", RowBox[{"\[Lambda]", RowBox[{"(", RowBox[{"\[Omega]1", " ", RowBox[{"corner", "[", "n", "]"}]}], ")"}]}], "+", RowBox[{ SuperscriptBox["\[Sigma]1", "2"], RowBox[{"(", RowBox[{ RowBox[{ SuperscriptBox["\[Beta]", "2"], "2", " ", "Q11"}], "+", RowBox[{ SuperscriptBox["\[Lambda]", "2"], "2", RowBox[{"corner", "[", "n", "]"}], "Q11"}], "-", RowBox[{"\[Beta]", " ", "\[Lambda]", " ", RowBox[{"(", RowBox[{ RowBox[{"2", RowBox[{"lineTop", "[", "n", "]"}], "Q11"}], "+", RowBox[{"2", RowBox[{"lineBottom", "[", "n", "]"}], "Q11"}]}], ")"}]}]}], ")"}]}], "+", RowBox[{ SuperscriptBox["\[Sigma]12", "2"], RowBox[{"(", RowBox[{ RowBox[{ SuperscriptBox["\[Beta]", "2"], "Q22"}], "+", RowBox[{ SuperscriptBox["\[Lambda]", "2"], RowBox[{"corner", "[", "n", "]"}], "Q22"}], "-", RowBox[{"\[Beta]", " ", "\[Lambda]", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"lineTop", "[", "n", "]"}], "Q22"}], "+", RowBox[{ RowBox[{"lineBottom", "[", "n", "]"}], " ", "Q22"}]}], ")"}]}]}], ")"}]}]}], ")"}], ".", "Q11"}], "+", RowBox[{ FractionBox["1", "2"], RowBox[{"id", "[", "n", "]"}]}]}], ",", "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[Beta]"}], RowBox[{"(", RowBox[{"\[Omega]2", " ", RowBox[{"id", "[", "n", "]"}]}], ")"}]}], "+", RowBox[{"\[Lambda]", RowBox[{"(", RowBox[{"\[Omega]2", " ", RowBox[{"corner", "[", "n", "]"}]}], ")"}]}], "+", RowBox[{ SuperscriptBox["\[Sigma]2", "2"], RowBox[{"(", RowBox[{ RowBox[{ SuperscriptBox["\[Beta]", "2"], "2", " ", "Q22"}], "+", RowBox[{ SuperscriptBox["\[Lambda]", "2"], "2", RowBox[{"corner", "[", "n", "]"}], "Q22"}], "-", RowBox[{"\[Beta]", " ", "\[Lambda]", " ", RowBox[{"(", RowBox[{ RowBox[{"2", RowBox[{"lineTop", "[", "n", "]"}], "Q22"}], "+", RowBox[{"2", RowBox[{"lineBottom", "[", "n", "]"}], "Q22"}]}], ")"}]}]}], ")"}]}], "+", RowBox[{ SuperscriptBox["\[Sigma]12", "2"], RowBox[{"(", RowBox[{ RowBox[{ SuperscriptBox["\[Beta]", "2"], "Q11"}], "+", RowBox[{ SuperscriptBox["\[Lambda]", "2"], RowBox[{"corner", "[", "n", "]"}], "Q11"}], "-", RowBox[{"\[Beta]", " ", "\[Lambda]", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"lineTop", "[", "n", "]"}], "Q11"}], "+", RowBox[{ RowBox[{"lineBottom", "[", "n", "]"}], " ", "Q11"}]}], ")"}]}]}], ")"}]}]}], ")"}], ".", "Q22"}], "+", RowBox[{ FractionBox["1", "2"], RowBox[{"id", "[", "n", "]"}]}]}]}], "\[IndentingNewLine]", "}"}], "//.", "p0RSBrules"}]}], "\[IndentingNewLine]", "]"}], "//", "Simplify"}]}]], "Input", CellChangeTimes->{{3.9163037237409077`*^9, 3.916303878855262*^9}, { 3.916303920768105*^9, 3.9163039930510597`*^9}, {3.916304067940049*^9, 3.916304079811782*^9}}, CellLabel-> "In[119]:=",ExpressionUUID->"f0db1c0b-165f-4f87-9592-b5d10a026867"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"p0RSBmat", "[", RowBox[{"n", ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "2"], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "n"}], ")"}], " ", "q111", " ", "\[Beta]", " ", RowBox[{"(", RowBox[{"\[Beta]", "-", "\[Lambda]"}], ")"}], " ", RowBox[{"(", RowBox[{ RowBox[{"2", " ", "q111", " ", SuperscriptBox["\[Sigma]1", "2"]}], "+", RowBox[{"q221", " ", SuperscriptBox["\[Sigma]12", "2"]}]}], ")"}]}], "+", RowBox[{"q11d1", " ", RowBox[{"(", RowBox[{"\[Beta]", "-", "\[Lambda]"}], ")"}], " ", RowBox[{"(", RowBox[{ RowBox[{"2", " ", "q11d1", " ", RowBox[{"(", RowBox[{"\[Beta]", "-", "\[Lambda]"}], ")"}], " ", SuperscriptBox["\[Sigma]1", "2"]}], "+", RowBox[{"q22d1", " ", RowBox[{"(", RowBox[{"\[Beta]", "-", "\[Lambda]"}], ")"}], " ", SuperscriptBox["\[Sigma]12", "2"]}], "-", "\[Omega]1"}], ")"}]}]}], ",", RowBox[{ RowBox[{"(", RowBox[{"\[Beta]", "-", "\[Lambda]"}], ")"}], " ", RowBox[{"(", RowBox[{ RowBox[{"q11d0", " ", "q221", " ", "\[Beta]", " ", SuperscriptBox["\[Sigma]12", "2"]}], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "2"}], "+", "n"}], ")"}], " ", "q110", " ", "\[Beta]", " ", RowBox[{"(", RowBox[{ RowBox[{"2", " ", "q111", " ", SuperscriptBox["\[Sigma]1", "2"]}], "+", RowBox[{"q221", " ", SuperscriptBox["\[Sigma]12", "2"]}]}], ")"}]}], "+", RowBox[{"q111", " ", RowBox[{"(", RowBox[{ RowBox[{"2", " ", "q11d0", " ", "\[Beta]", " ", SuperscriptBox["\[Sigma]1", "2"]}], "+", RowBox[{"2", " ", "q11d1", " ", RowBox[{"(", RowBox[{"\[Beta]", "-", "\[Lambda]"}], ")"}], " ", SuperscriptBox["\[Sigma]1", "2"]}], "+", RowBox[{"q22d1", " ", "\[Beta]", " ", SuperscriptBox["\[Sigma]12", "2"]}], "-", RowBox[{"q22d1", " ", "\[Lambda]", " ", SuperscriptBox["\[Sigma]12", "2"]}], "-", "\[Omega]1"}], ")"}]}]}], ")"}]}], ",", RowBox[{"\[Beta]", " ", RowBox[{"(", RowBox[{ RowBox[{"2", " ", "q111", " ", "q11d1", " ", RowBox[{"(", RowBox[{"\[Beta]", "-", "\[Lambda]"}], ")"}], " ", SuperscriptBox["\[Sigma]1", "2"]}], "+", RowBox[{"q11d1", " ", "q221", " ", RowBox[{"(", RowBox[{"\[Beta]", "-", "\[Lambda]"}], ")"}], " ", SuperscriptBox["\[Sigma]12", "2"]}], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "2"}], "+", "n"}], ")"}], " ", "q111", " ", "\[Beta]", " ", RowBox[{"(", RowBox[{ RowBox[{"2", " ", "q110", " ", SuperscriptBox["\[Sigma]1", "2"]}], "+", RowBox[{"q220", " ", SuperscriptBox["\[Sigma]12", "2"]}]}], ")"}]}], "+", RowBox[{"q111", " ", RowBox[{"(", RowBox[{ RowBox[{"2", " ", "q11d0", " ", "\[Beta]", " ", SuperscriptBox["\[Sigma]1", "2"]}], "+", RowBox[{"q22d0", " ", "\[Beta]", " ", SuperscriptBox["\[Sigma]12", "2"]}], "-", "\[Omega]1"}], ")"}]}]}], ")"}]}], ",", RowBox[{ FractionBox["1", "2"], "+", RowBox[{"2", " ", SuperscriptBox["q111", "2"], " ", "\[Beta]", " ", RowBox[{"(", RowBox[{"\[Beta]", "-", "\[Lambda]"}], ")"}], " ", SuperscriptBox["\[Sigma]1", "2"]}], "+", RowBox[{"q111", " ", "q221", " ", "\[Beta]", " ", RowBox[{"(", RowBox[{"\[Beta]", "-", "\[Lambda]"}], ")"}], " ", SuperscriptBox["\[Sigma]12", "2"]}], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "2"}], "+", "n"}], ")"}], " ", "q110", " ", SuperscriptBox["\[Beta]", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"2", " ", "q110", " ", SuperscriptBox["\[Sigma]1", "2"]}], "+", RowBox[{"q220", " ", SuperscriptBox["\[Sigma]12", "2"]}]}], ")"}]}], "+", RowBox[{"q11d0", " ", "\[Beta]", " ", RowBox[{"(", RowBox[{ RowBox[{"2", " ", "q11d0", " ", "\[Beta]", " ", SuperscriptBox["\[Sigma]1", "2"]}], "+", RowBox[{"q22d0", " ", "\[Beta]", " ", SuperscriptBox["\[Sigma]12", "2"]}], "-", "\[Omega]1"}], ")"}]}]}], ",", RowBox[{"\[Beta]", " ", RowBox[{"(", RowBox[{ RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "+", "n"}], ")"}], " ", SuperscriptBox["q110", "2"], " ", "\[Beta]", " ", SuperscriptBox["\[Sigma]1", "2"]}], "+", RowBox[{"2", " ", SuperscriptBox["q111", "2"], " ", RowBox[{"(", RowBox[{"\[Beta]", "-", "\[Lambda]"}], ")"}], " ", SuperscriptBox["\[Sigma]1", "2"]}], "+", RowBox[{"q11d0", " ", "q220", " ", "\[Beta]", " ", SuperscriptBox["\[Sigma]12", "2"]}], "+", RowBox[{"q111", " ", "q221", " ", RowBox[{"(", RowBox[{"\[Beta]", "-", "\[Lambda]"}], ")"}], " ", SuperscriptBox["\[Sigma]12", "2"]}], "+", RowBox[{"q110", " ", RowBox[{"(", RowBox[{ RowBox[{"4", " ", "q11d0", " ", "\[Beta]", " ", SuperscriptBox["\[Sigma]1", "2"]}], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "+", "n"}], ")"}], " ", "q220", " ", "\[Beta]", " ", SuperscriptBox["\[Sigma]12", "2"]}], "+", RowBox[{"q22d0", " ", "\[Beta]", " ", SuperscriptBox["\[Sigma]12", "2"]}], "-", "\[Omega]1"}], ")"}]}]}], ")"}]}]}], "}"}]}], "]"}], ",", RowBox[{"p0RSBmat", "[", RowBox[{"n", ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "2"], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "n"}], ")"}], " ", "q221", " ", "\[Beta]", " ", RowBox[{"(", RowBox[{"\[Beta]", "-", "\[Lambda]"}], ")"}], " ", RowBox[{"(", RowBox[{ RowBox[{"q111", " ", SuperscriptBox["\[Sigma]12", "2"]}], "+", RowBox[{"2", " ", "q221", " ", SuperscriptBox["\[Sigma]2", "2"]}]}], ")"}]}], "+", RowBox[{"q22d1", " ", RowBox[{"(", RowBox[{"\[Beta]", "-", "\[Lambda]"}], ")"}], " ", RowBox[{"(", RowBox[{ RowBox[{"q11d1", " ", RowBox[{"(", RowBox[{"\[Beta]", "-", "\[Lambda]"}], ")"}], " ", SuperscriptBox["\[Sigma]12", "2"]}], "+", RowBox[{"2", " ", "q22d1", " ", RowBox[{"(", RowBox[{"\[Beta]", "-", "\[Lambda]"}], ")"}], " ", SuperscriptBox["\[Sigma]2", "2"]}], "-", "\[Omega]2"}], ")"}]}]}], ",", RowBox[{ RowBox[{"(", RowBox[{"\[Beta]", "-", "\[Lambda]"}], ")"}], " ", RowBox[{"(", RowBox[{ RowBox[{"q111", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "2"}], "+", "n"}], ")"}], " ", "q220"}], "+", "q22d0"}], ")"}], " ", "\[Beta]", " ", SuperscriptBox["\[Sigma]12", "2"]}], "+", RowBox[{"q221", " ", RowBox[{"(", RowBox[{ RowBox[{"q11d1", " ", RowBox[{"(", RowBox[{"\[Beta]", "-", "\[Lambda]"}], ")"}], " ", SuperscriptBox["\[Sigma]12", "2"]}], "+", RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "2"}], "+", "n"}], ")"}], " ", "q220", " ", "\[Beta]", " ", SuperscriptBox["\[Sigma]2", "2"]}], "+", RowBox[{"2", " ", "q22d0", " ", "\[Beta]", " ", SuperscriptBox["\[Sigma]2", "2"]}], "+", RowBox[{"2", " ", "q22d1", " ", "\[Beta]", " ", SuperscriptBox["\[Sigma]2", "2"]}], "-", RowBox[{"2", " ", "q22d1", " ", "\[Lambda]", " ", SuperscriptBox["\[Sigma]2", "2"]}], "-", "\[Omega]2"}], ")"}]}]}], ")"}]}], ",", RowBox[{"\[Beta]", " ", RowBox[{"(", RowBox[{ RowBox[{"q111", " ", "q22d1", " ", RowBox[{"(", RowBox[{"\[Beta]", "-", "\[Lambda]"}], ")"}], " ", SuperscriptBox["\[Sigma]12", "2"]}], "+", RowBox[{"2", " ", "q221", " ", "q22d1", " ", RowBox[{"(", RowBox[{"\[Beta]", "-", "\[Lambda]"}], ")"}], " ", SuperscriptBox["\[Sigma]2", "2"]}], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "2"}], "+", "n"}], ")"}], " ", "q221", " ", "\[Beta]", " ", RowBox[{"(", RowBox[{ RowBox[{"q110", " ", SuperscriptBox["\[Sigma]12", "2"]}], "+", RowBox[{"2", " ", "q220", " ", SuperscriptBox["\[Sigma]2", "2"]}]}], ")"}]}], "+", RowBox[{"q221", " ", RowBox[{"(", RowBox[{ RowBox[{"q11d0", " ", "\[Beta]", " ", SuperscriptBox["\[Sigma]12", "2"]}], "+", RowBox[{"2", " ", "q22d0", " ", "\[Beta]", " ", SuperscriptBox["\[Sigma]2", "2"]}], "-", "\[Omega]2"}], ")"}]}]}], ")"}]}], ",", RowBox[{ FractionBox["1", "2"], "+", RowBox[{"q111", " ", "q221", " ", "\[Beta]", " ", RowBox[{"(", RowBox[{"\[Beta]", "-", "\[Lambda]"}], ")"}], " ", SuperscriptBox["\[Sigma]12", "2"]}], "+", RowBox[{"2", " ", SuperscriptBox["q221", "2"], " ", "\[Beta]", " ", RowBox[{"(", RowBox[{"\[Beta]", "-", "\[Lambda]"}], ")"}], " ", SuperscriptBox["\[Sigma]2", "2"]}], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "2"}], "+", "n"}], ")"}], " ", "q220", " ", SuperscriptBox["\[Beta]", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"q110", " ", SuperscriptBox["\[Sigma]12", "2"]}], "+", RowBox[{"2", " ", "q220", " ", SuperscriptBox["\[Sigma]2", "2"]}]}], ")"}]}], "+", RowBox[{"q22d0", " ", "\[Beta]", " ", RowBox[{"(", RowBox[{ RowBox[{"q11d0", " ", "\[Beta]", " ", SuperscriptBox["\[Sigma]12", "2"]}], "+", RowBox[{"2", " ", "q22d0", " ", "\[Beta]", " ", SuperscriptBox["\[Sigma]2", "2"]}], "-", "\[Omega]2"}], ")"}]}]}], ",", RowBox[{"\[Beta]", " ", RowBox[{"(", RowBox[{ RowBox[{"q11d0", " ", "q220", " ", "\[Beta]", " ", SuperscriptBox["\[Sigma]12", "2"]}], "+", RowBox[{"q111", " ", "q221", " ", "\[Beta]", " ", SuperscriptBox["\[Sigma]12", "2"]}], "+", RowBox[{"q110", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "+", "n"}], ")"}], " ", "q220"}], "+", "q22d0"}], ")"}], " ", "\[Beta]", " ", SuperscriptBox["\[Sigma]12", "2"]}], "-", RowBox[{"q111", " ", "q221", " ", "\[Lambda]", " ", SuperscriptBox["\[Sigma]12", "2"]}], "-", RowBox[{"6", " ", SuperscriptBox["q220", "2"], " ", "\[Beta]", " ", SuperscriptBox["\[Sigma]2", "2"]}], "+", RowBox[{"2", " ", "n", " ", SuperscriptBox["q220", "2"], " ", "\[Beta]", " ", SuperscriptBox["\[Sigma]2", "2"]}], "+", RowBox[{"2", " ", SuperscriptBox["q221", "2"], " ", "\[Beta]", " ", SuperscriptBox["\[Sigma]2", "2"]}], "+", RowBox[{"4", " ", "q220", " ", "q22d0", " ", "\[Beta]", " ", SuperscriptBox["\[Sigma]2", "2"]}], "-", RowBox[{"2", " ", SuperscriptBox["q221", "2"], " ", "\[Lambda]", " ", SuperscriptBox["\[Sigma]2", "2"]}], "-", RowBox[{"q220", " ", "\[Omega]2"}]}], ")"}]}]}], "}"}]}], "]"}]}], "}"}]], "Output", CellChangeTimes->{ 3.916303993371069*^9, {3.916304044794738*^9, 3.9163040803307133`*^9}}, CellLabel-> "Out[119]=",ExpressionUUID->"94abb570-dead-4d27-9ab4-47b0a6832b02"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"eqs2", "=", RowBox[{"Flatten", "[", RowBox[{"Limit", "[", RowBox[{ RowBox[{"eqs", "[", RowBox[{"[", RowBox[{"All", ",", "2"}], "]"}], "]"}], ",", RowBox[{"n", "->", "0"}]}], "]"}], "]"}]}]], "Input", CellChangeTimes->{{3.916304081138425*^9, 3.91630409377801*^9}, { 3.916304127010668*^9, 3.916304132834882*^9}}, CellLabel-> "In[122]:=",ExpressionUUID->"dca0231b-2ccb-4ad8-ba7d-c5644fabf4cd"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "2"], "-", RowBox[{"q111", " ", "\[Beta]", " ", RowBox[{"(", RowBox[{"\[Beta]", "-", "\[Lambda]"}], ")"}], " ", RowBox[{"(", RowBox[{ RowBox[{"2", " ", "q111", " ", SuperscriptBox["\[Sigma]1", "2"]}], "+", RowBox[{"q221", " ", SuperscriptBox["\[Sigma]12", "2"]}]}], ")"}]}], "+", RowBox[{"q11d1", " ", RowBox[{"(", RowBox[{"\[Beta]", "-", "\[Lambda]"}], ")"}], " ", RowBox[{"(", RowBox[{ RowBox[{"2", " ", "q11d1", " ", RowBox[{"(", RowBox[{"\[Beta]", "-", "\[Lambda]"}], ")"}], " ", SuperscriptBox["\[Sigma]1", "2"]}], "+", RowBox[{"q22d1", " ", RowBox[{"(", RowBox[{"\[Beta]", "-", "\[Lambda]"}], ")"}], " ", SuperscriptBox["\[Sigma]12", "2"]}], "-", "\[Omega]1"}], ")"}]}]}], ",", RowBox[{ RowBox[{"(", RowBox[{"\[Beta]", "-", "\[Lambda]"}], ")"}], " ", RowBox[{"(", RowBox[{ RowBox[{"q11d0", " ", "q221", " ", "\[Beta]", " ", SuperscriptBox["\[Sigma]12", "2"]}], "-", RowBox[{"2", " ", "q110", " ", "\[Beta]", " ", RowBox[{"(", RowBox[{ RowBox[{"2", " ", "q111", " ", SuperscriptBox["\[Sigma]1", "2"]}], "+", RowBox[{"q221", " ", SuperscriptBox["\[Sigma]12", "2"]}]}], ")"}]}], "+", RowBox[{"q111", " ", RowBox[{"(", RowBox[{ RowBox[{"2", " ", "q11d0", " ", "\[Beta]", " ", SuperscriptBox["\[Sigma]1", "2"]}], "+", RowBox[{"2", " ", "q11d1", " ", RowBox[{"(", RowBox[{"\[Beta]", "-", "\[Lambda]"}], ")"}], " ", SuperscriptBox["\[Sigma]1", "2"]}], "+", RowBox[{"q22d1", " ", "\[Beta]", " ", SuperscriptBox["\[Sigma]12", "2"]}], "-", RowBox[{"q22d1", " ", "\[Lambda]", " ", SuperscriptBox["\[Sigma]12", "2"]}], "-", "\[Omega]1"}], ")"}]}]}], ")"}]}], ",", RowBox[{"\[Beta]", " ", RowBox[{"(", RowBox[{ RowBox[{"2", " ", "q111", " ", "q11d1", " ", RowBox[{"(", RowBox[{"\[Beta]", "-", "\[Lambda]"}], ")"}], " ", SuperscriptBox["\[Sigma]1", "2"]}], "+", RowBox[{"q11d1", " ", "q221", " ", RowBox[{"(", RowBox[{"\[Beta]", "-", "\[Lambda]"}], ")"}], " ", SuperscriptBox["\[Sigma]12", "2"]}], "-", RowBox[{"2", " ", "q111", " ", "\[Beta]", " ", RowBox[{"(", RowBox[{ RowBox[{"2", " ", "q110", " ", SuperscriptBox["\[Sigma]1", "2"]}], "+", RowBox[{"q220", " ", SuperscriptBox["\[Sigma]12", "2"]}]}], ")"}]}], "+", RowBox[{"q111", " ", RowBox[{"(", RowBox[{ RowBox[{"2", " ", "q11d0", " ", "\[Beta]", " ", SuperscriptBox["\[Sigma]1", "2"]}], "+", RowBox[{"q22d0", " ", "\[Beta]", " ", SuperscriptBox["\[Sigma]12", "2"]}], "-", "\[Omega]1"}], ")"}]}]}], ")"}]}], ",", RowBox[{ FractionBox["1", "2"], "+", RowBox[{"2", " ", SuperscriptBox["q111", "2"], " ", "\[Beta]", " ", RowBox[{"(", RowBox[{"\[Beta]", "-", "\[Lambda]"}], ")"}], " ", SuperscriptBox["\[Sigma]1", "2"]}], "+", RowBox[{"q111", " ", "q221", " ", "\[Beta]", " ", RowBox[{"(", RowBox[{"\[Beta]", "-", "\[Lambda]"}], ")"}], " ", SuperscriptBox["\[Sigma]12", "2"]}], "-", RowBox[{"2", " ", "q110", " ", SuperscriptBox["\[Beta]", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"2", " ", "q110", " ", SuperscriptBox["\[Sigma]1", "2"]}], "+", RowBox[{"q220", " ", SuperscriptBox["\[Sigma]12", "2"]}]}], ")"}]}], "+", RowBox[{"q11d0", " ", "\[Beta]", " ", RowBox[{"(", RowBox[{ RowBox[{"2", " ", "q11d0", " ", "\[Beta]", " ", SuperscriptBox["\[Sigma]1", "2"]}], "+", RowBox[{"q22d0", " ", "\[Beta]", " ", SuperscriptBox["\[Sigma]12", "2"]}], "-", "\[Omega]1"}], ")"}]}]}], ",", RowBox[{"\[Beta]", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "6"}], " ", SuperscriptBox["q110", "2"], " ", "\[Beta]", " ", SuperscriptBox["\[Sigma]1", "2"]}], "+", RowBox[{"2", " ", SuperscriptBox["q111", "2"], " ", RowBox[{"(", RowBox[{"\[Beta]", "-", "\[Lambda]"}], ")"}], " ", SuperscriptBox["\[Sigma]1", "2"]}], "+", RowBox[{"q11d0", " ", "q220", " ", "\[Beta]", " ", SuperscriptBox["\[Sigma]12", "2"]}], "+", RowBox[{"q111", " ", "q221", " ", RowBox[{"(", RowBox[{"\[Beta]", "-", "\[Lambda]"}], ")"}], " ", SuperscriptBox["\[Sigma]12", "2"]}], "+", RowBox[{"q110", " ", RowBox[{"(", RowBox[{ RowBox[{"4", " ", "q11d0", " ", "\[Beta]", " ", SuperscriptBox["\[Sigma]1", "2"]}], "-", RowBox[{"3", " ", "q220", " ", "\[Beta]", " ", SuperscriptBox["\[Sigma]12", "2"]}], "+", RowBox[{"q22d0", " ", "\[Beta]", " ", SuperscriptBox["\[Sigma]12", "2"]}], "-", "\[Omega]1"}], ")"}]}]}], ")"}]}], ",", RowBox[{ FractionBox["1", "2"], "-", RowBox[{"q221", " ", "\[Beta]", " ", RowBox[{"(", RowBox[{"\[Beta]", "-", "\[Lambda]"}], ")"}], " ", RowBox[{"(", RowBox[{ RowBox[{"q111", " ", SuperscriptBox["\[Sigma]12", "2"]}], "+", RowBox[{"2", " ", "q221", " ", SuperscriptBox["\[Sigma]2", "2"]}]}], ")"}]}], "+", RowBox[{"q22d1", " ", RowBox[{"(", RowBox[{"\[Beta]", "-", "\[Lambda]"}], ")"}], " ", RowBox[{"(", RowBox[{ RowBox[{"q11d1", " ", RowBox[{"(", RowBox[{"\[Beta]", "-", "\[Lambda]"}], ")"}], " ", SuperscriptBox["\[Sigma]12", "2"]}], "+", RowBox[{"2", " ", "q22d1", " ", RowBox[{"(", RowBox[{"\[Beta]", "-", "\[Lambda]"}], ")"}], " ", SuperscriptBox["\[Sigma]2", "2"]}], "-", "\[Omega]2"}], ")"}]}]}], ",", RowBox[{ RowBox[{"(", RowBox[{"\[Beta]", "-", "\[Lambda]"}], ")"}], " ", RowBox[{"(", RowBox[{ RowBox[{"q111", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", "q220"}], "+", "q22d0"}], ")"}], " ", "\[Beta]", " ", SuperscriptBox["\[Sigma]12", "2"]}], "+", RowBox[{"q221", " ", RowBox[{"(", RowBox[{ RowBox[{"q11d1", " ", RowBox[{"(", RowBox[{"\[Beta]", "-", "\[Lambda]"}], ")"}], " ", SuperscriptBox["\[Sigma]12", "2"]}], "-", RowBox[{"4", " ", "q220", " ", "\[Beta]", " ", SuperscriptBox["\[Sigma]2", "2"]}], "+", RowBox[{"2", " ", "q22d0", " ", "\[Beta]", " ", SuperscriptBox["\[Sigma]2", "2"]}], "+", RowBox[{"2", " ", "q22d1", " ", "\[Beta]", " ", SuperscriptBox["\[Sigma]2", "2"]}], "-", RowBox[{"2", " ", "q22d1", " ", "\[Lambda]", " ", SuperscriptBox["\[Sigma]2", "2"]}], "-", "\[Omega]2"}], ")"}]}]}], ")"}]}], ",", RowBox[{"\[Beta]", " ", RowBox[{"(", RowBox[{ RowBox[{"q111", " ", "q22d1", " ", RowBox[{"(", RowBox[{"\[Beta]", "-", "\[Lambda]"}], ")"}], " ", SuperscriptBox["\[Sigma]12", "2"]}], "+", RowBox[{"2", " ", "q221", " ", "q22d1", " ", RowBox[{"(", RowBox[{"\[Beta]", "-", "\[Lambda]"}], ")"}], " ", SuperscriptBox["\[Sigma]2", "2"]}], "-", RowBox[{"2", " ", "q221", " ", "\[Beta]", " ", RowBox[{"(", RowBox[{ RowBox[{"q110", " ", SuperscriptBox["\[Sigma]12", "2"]}], "+", RowBox[{"2", " ", "q220", " ", SuperscriptBox["\[Sigma]2", "2"]}]}], ")"}]}], "+", RowBox[{"q221", " ", RowBox[{"(", RowBox[{ RowBox[{"q11d0", " ", "\[Beta]", " ", SuperscriptBox["\[Sigma]12", "2"]}], "+", RowBox[{"2", " ", "q22d0", " ", "\[Beta]", " ", SuperscriptBox["\[Sigma]2", "2"]}], "-", "\[Omega]2"}], ")"}]}]}], ")"}]}], ",", RowBox[{ FractionBox["1", "2"], "+", RowBox[{"q111", " ", "q221", " ", "\[Beta]", " ", RowBox[{"(", RowBox[{"\[Beta]", "-", "\[Lambda]"}], ")"}], " ", SuperscriptBox["\[Sigma]12", "2"]}], "+", RowBox[{"2", " ", SuperscriptBox["q221", "2"], " ", "\[Beta]", " ", RowBox[{"(", RowBox[{"\[Beta]", "-", "\[Lambda]"}], ")"}], " ", SuperscriptBox["\[Sigma]2", "2"]}], "-", RowBox[{"2", " ", "q220", " ", SuperscriptBox["\[Beta]", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"q110", " ", SuperscriptBox["\[Sigma]12", "2"]}], "+", RowBox[{"2", " ", "q220", " ", SuperscriptBox["\[Sigma]2", "2"]}]}], ")"}]}], "+", RowBox[{"q22d0", " ", "\[Beta]", " ", RowBox[{"(", RowBox[{ RowBox[{"q11d0", " ", "\[Beta]", " ", SuperscriptBox["\[Sigma]12", "2"]}], "+", RowBox[{"2", " ", "q22d0", " ", "\[Beta]", " ", SuperscriptBox["\[Sigma]2", "2"]}], "-", "\[Omega]2"}], ")"}]}]}], ",", RowBox[{"\[Beta]", " ", RowBox[{"(", RowBox[{ RowBox[{"q11d0", " ", "q220", " ", "\[Beta]", " ", SuperscriptBox["\[Sigma]12", "2"]}], "+", RowBox[{"q111", " ", "q221", " ", "\[Beta]", " ", SuperscriptBox["\[Sigma]12", "2"]}], "+", RowBox[{"q110", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "3"}], " ", "q220"}], "+", "q22d0"}], ")"}], " ", "\[Beta]", " ", SuperscriptBox["\[Sigma]12", "2"]}], "-", RowBox[{"q111", " ", "q221", " ", "\[Lambda]", " ", SuperscriptBox["\[Sigma]12", "2"]}], "-", RowBox[{"6", " ", SuperscriptBox["q220", "2"], " ", "\[Beta]", " ", SuperscriptBox["\[Sigma]2", "2"]}], "+", RowBox[{"2", " ", SuperscriptBox["q221", "2"], " ", "\[Beta]", " ", SuperscriptBox["\[Sigma]2", "2"]}], "+", RowBox[{"4", " ", "q220", " ", "q22d0", " ", "\[Beta]", " ", SuperscriptBox["\[Sigma]2", "2"]}], "-", RowBox[{"2", " ", SuperscriptBox["q221", "2"], " ", "\[Lambda]", " ", SuperscriptBox["\[Sigma]2", "2"]}], "-", RowBox[{"q220", " ", "\[Omega]2"}]}], ")"}]}]}], "}"}]], "Output", CellChangeTimes->{{3.9163040852045593`*^9, 3.916304093991681*^9}, 3.916304133060424*^9}, CellLabel-> "Out[122]=",ExpressionUUID->"93fcca29-6cfb-44b9-a537-5fa298b15766"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData["\[ScriptCapitalS]twin"], "Input", CellChangeTimes->{{3.916298304193592*^9, 3.916298305516719*^9}}, CellLabel->"In[19]:=",ExpressionUUID->"b5c3d02d-a185-4dd1-b953-b06af4d48aed"], Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "-", RowBox[{"3", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "n"}], ")"}]}], "+", SuperscriptBox["n", "2"]}], ")"}], " ", SuperscriptBox["q110", "2"]}], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "n"}], ")"}], " ", RowBox[{"(", RowBox[{ RowBox[{"2", " ", SuperscriptBox["q111", "2"]}], "+", SuperscriptBox["q11d0", "2"]}], ")"}]}], "+", SuperscriptBox["q11d1", "2"]}], ")"}], " ", SuperscriptBox["\[Beta]", "2"]}], "-", RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "n"}], ")"}], " ", SuperscriptBox["q111", "2"]}], "+", SuperscriptBox["q11d1", "2"]}], ")"}], " ", "\[Beta]", " ", "\[Lambda]"}], "+", RowBox[{ SuperscriptBox["q11d1", "2"], " ", SuperscriptBox["\[Lambda]", "2"]}]}], ")"}], " ", SuperscriptBox["\[Sigma]1", "2"]}], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "-", RowBox[{"3", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "n"}], ")"}]}], "+", SuperscriptBox["n", "2"]}], ")"}], " ", "q110", " ", "q220"}], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "n"}], ")"}], " ", RowBox[{"(", RowBox[{ RowBox[{"2", " ", "q111", " ", "q221"}], "+", RowBox[{"q11d0", " ", "q22d0"}]}], ")"}]}], "+", RowBox[{"q11d1", " ", "q22d1"}]}], ")"}], " ", SuperscriptBox["\[Beta]", "2"]}], "-", RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "n"}], ")"}], " ", "q111", " ", "q221"}], "+", RowBox[{"q11d1", " ", "q22d1"}]}], ")"}], " ", "\[Beta]", " ", "\[Lambda]"}], "+", RowBox[{"q11d1", " ", "q22d1", " ", SuperscriptBox["\[Lambda]", "2"]}]}], ")"}], " ", SuperscriptBox["\[Sigma]12", "2"]}], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "-", RowBox[{"3", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "n"}], ")"}]}], "+", SuperscriptBox["n", "2"]}], ")"}], " ", SuperscriptBox["q220", "2"]}], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "n"}], ")"}], " ", RowBox[{"(", RowBox[{ RowBox[{"2", " ", SuperscriptBox["q221", "2"]}], "+", SuperscriptBox["q22d0", "2"]}], ")"}]}], "+", SuperscriptBox["q22d1", "2"]}], ")"}], " ", SuperscriptBox["\[Beta]", "2"]}], "-", RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "n"}], ")"}], " ", SuperscriptBox["q221", "2"]}], "+", SuperscriptBox["q22d1", "2"]}], ")"}], " ", "\[Beta]", " ", "\[Lambda]"}], "+", RowBox[{ SuperscriptBox["q22d1", "2"], " ", SuperscriptBox["\[Lambda]", "2"]}]}], ")"}], " ", SuperscriptBox["\[Sigma]2", "2"]}], "+", RowBox[{"\[Lambda]", " ", RowBox[{"(", RowBox[{ RowBox[{"2", " ", "q12d1", " ", "\[Epsilon]"}], "+", RowBox[{"q11d1", " ", "\[Omega]1"}], "+", RowBox[{"q22d1", " ", "\[Omega]2"}]}], ")"}]}], "-", RowBox[{"\[Beta]", " ", RowBox[{"(", RowBox[{ RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "n"}], ")"}], " ", "q12d0"}], "+", "q12d1"}], ")"}], " ", "\[Epsilon]"}], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "n"}], ")"}], " ", "q11d0"}], "+", "q11d1"}], ")"}], " ", "\[Omega]1"}], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "n"}], ")"}], " ", "q22d0"}], "+", "q22d1"}], ")"}], " ", "\[Omega]2"}]}], ")"}]}], "+", RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "2"}], "+", "n"}], ")"}], " ", RowBox[{"Log", "[", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "+", "n"}], ")"}], " ", SuperscriptBox["q120", "2"]}], "-", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "2"}], "+", "n"}], ")"}], " ", SuperscriptBox["q120", "2"]}], "+", RowBox[{"2", " ", "q120", " ", "q12d0"}], "-", SuperscriptBox["q12d0", "2"], "-", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "+", "n"}], ")"}], " ", "q110", " ", "q220"}], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "2"}], "+", "n"}], ")"}], " ", "q110", " ", "q220"}], "-", RowBox[{"q11d0", " ", "q220"}], "-", RowBox[{"q110", " ", "q22d0"}], "+", RowBox[{"q11d0", " ", "q22d0"}]}], "]"}]}], "+", RowBox[{"Log", "[", RowBox[{ RowBox[{"-", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "n"}], ")"}], " ", RowBox[{"(", RowBox[{ RowBox[{"-", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "2"}], "+", "n"}], ")"}], " ", "q120", " ", "q121"}], ")"}]}], "-", RowBox[{"q121", " ", "q12d0"}], "-", RowBox[{"q121", " ", "q12d1"}], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "2"}], "+", "n"}], ")"}], " ", "q111", " ", "q220"}], "+", RowBox[{"q11d1", " ", "q221"}], "+", RowBox[{"q111", " ", "q22d0"}]}], ")"}], " ", RowBox[{"(", RowBox[{ RowBox[{"-", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "2"}], "+", "n"}], ")"}], " ", "q120", " ", "q121"}], ")"}]}], "-", RowBox[{"q121", " ", "q12d0"}], "-", RowBox[{"q121", " ", "q12d1"}], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "2"}], "+", "n"}], ")"}], " ", "q110", " ", "q221"}], "+", RowBox[{"q11d0", " ", "q221"}], "+", RowBox[{"q111", " ", "q22d1"}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "2"}], "+", "n"}], ")"}], " ", RowBox[{"(", RowBox[{ RowBox[{"-", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "+", "n"}], ")"}], " ", SuperscriptBox["q120", "2"]}], ")"}]}], "-", SuperscriptBox["q121", "2"], "-", RowBox[{"2", " ", "q120", " ", "q12d0"}], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "+", "n"}], ")"}], " ", "q110", " ", "q220"}], "+", RowBox[{"q11d0", " ", "q220"}], "+", RowBox[{"q111", " ", "q221"}], "+", RowBox[{"q110", " ", "q22d0"}]}], ")"}], " ", RowBox[{"(", RowBox[{ RowBox[{"-", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "n"}], ")"}], " ", SuperscriptBox["q121", "2"]}], ")"}]}], "-", SuperscriptBox["q12d1", "2"], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "n"}], ")"}], " ", "q111", " ", "q221"}], "+", RowBox[{"q11d1", " ", "q22d1"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "2"}], "+", "n"}], ")"}], " ", SuperscriptBox["q120", "2"]}], ")"}]}], "-", SuperscriptBox["q121", "2"], "-", SuperscriptBox["q12d0", "2"], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "2"}], "+", "n"}], ")"}], " ", "q110", " ", "q220"}], "+", RowBox[{"q111", " ", "q221"}], "+", RowBox[{"q11d0", " ", "q22d0"}]}], ")"}], " ", RowBox[{"(", RowBox[{ RowBox[{"-", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "n"}], ")"}], " ", SuperscriptBox["q121", "2"]}], ")"}]}], "-", SuperscriptBox["q12d1", "2"], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "n"}], ")"}], " ", "q111", " ", "q221"}], "+", RowBox[{"q11d1", " ", "q22d1"}]}], ")"}]}]}], "]"}]}], ")"}]}]}]], "Output", CellChangeTimes->{3.916298305720996*^9, 3.916298388003971*^9}, CellLabel->"Out[19]=",ExpressionUUID->"a298f61a-4c39-4526-8144-4a1ce684b3a3"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"e1", "=", RowBox[{ RowBox[{"FullSimplify", "[", RowBox[{ RowBox[{"Limit", "[", RowBox[{"\[ScriptCapitalS]twin", ",", RowBox[{"n", "->", "0"}]}], "]"}], ",", RowBox[{"Assumptions", "->", RowBox[{"{", RowBox[{ RowBox[{"0", "<", "q11d0", "<", "1"}], ",", RowBox[{"0", "<", "q11d1", "<", "1"}], ",", RowBox[{"0", "<", "q110", "<", "1"}], ",", RowBox[{"0", "<", "q220", "<", "1"}]}], "}"}]}]}], "]"}], "/.", RowBox[{"{", RowBox[{ RowBox[{"q22d0", "->", RowBox[{"1", "-", "q11d0"}]}], ",", RowBox[{"q22d1", "->", RowBox[{"1", "-", "q11d1"}]}]}], "}"}]}]}]], "Input", CellChangeTimes->{{3.905850825091011*^9, 3.905850839218413*^9}, { 3.905851002581938*^9, 3.905851024062209*^9}, {3.905853123574729*^9, 3.905853141726667*^9}, {3.906014604394625*^9, 3.906014632601555*^9}, { 3.916298308773786*^9, 3.916298309445065*^9}, {3.9162984048152246`*^9, 3.916298451319799*^9}}, CellLabel-> "In[145]:=",ExpressionUUID->"85b738a2-9ed8-4758-a6c3-13831de84fcb"], Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"2", " ", SuperscriptBox["q110", "2"]}], "-", RowBox[{"2", " ", SuperscriptBox["q111", "2"]}], "-", SuperscriptBox["q11d0", "2"], "+", SuperscriptBox["q11d1", "2"]}], ")"}], " ", SuperscriptBox["\[Beta]", "2"]}], "+", RowBox[{"2", " ", RowBox[{"(", RowBox[{"q111", "-", "q11d1"}], ")"}], " ", RowBox[{"(", RowBox[{"q111", "+", "q11d1"}], ")"}], " ", "\[Beta]", " ", "\[Lambda]"}], "+", RowBox[{ SuperscriptBox["q11d1", "2"], " ", SuperscriptBox["\[Lambda]", "2"]}]}], ")"}], " ", SuperscriptBox["\[Sigma]1", "2"]}], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"1", "-", "q11d0"}], ")"}], " ", "q11d0"}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"1", "-", "q11d1"}], ")"}], " ", "q11d1"}], "+", RowBox[{"2", " ", "q110", " ", "q220"}], "-", RowBox[{"2", " ", "q111", " ", "q221"}]}], ")"}], " ", SuperscriptBox["\[Beta]", "2"]}], "+", RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"-", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"1", "-", "q11d1"}], ")"}], " ", "q11d1"}], ")"}]}], "+", RowBox[{"q111", " ", "q221"}]}], ")"}], " ", "\[Beta]", " ", "\[Lambda]"}], "+", RowBox[{ RowBox[{"(", RowBox[{"1", "-", "q11d1"}], ")"}], " ", "q11d1", " ", SuperscriptBox["\[Lambda]", "2"]}]}], ")"}], " ", SuperscriptBox["\[Sigma]12", "2"]}], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", RowBox[{"1", "-", "q11d0"}], ")"}], "2"]}], "+", SuperscriptBox[ RowBox[{"(", RowBox[{"1", "-", "q11d1"}], ")"}], "2"], "+", RowBox[{"2", " ", SuperscriptBox["q220", "2"]}], "-", RowBox[{"2", " ", SuperscriptBox["q221", "2"]}]}], ")"}], " ", SuperscriptBox["\[Beta]", "2"]}], "+", RowBox[{"2", " ", RowBox[{"(", RowBox[{"1", "-", "q11d1", "+", "q221"}], ")"}], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "q11d1", "+", "q221"}], ")"}], " ", "\[Beta]", " ", "\[Lambda]"}], "+", RowBox[{ SuperscriptBox[ RowBox[{"(", RowBox[{"1", "-", "q11d1"}], ")"}], "2"], " ", SuperscriptBox["\[Lambda]", "2"]}]}], ")"}], " ", SuperscriptBox["\[Sigma]2", "2"]}], "+", RowBox[{"\[Lambda]", " ", RowBox[{"(", RowBox[{ RowBox[{"q11d1", " ", "\[Omega]1"}], "+", RowBox[{ RowBox[{"(", RowBox[{"1", "-", "q11d1"}], ")"}], " ", "\[Omega]2"}]}], ")"}]}], "+", RowBox[{"\[Beta]", " ", RowBox[{"(", RowBox[{ RowBox[{"q11d0", " ", "\[Omega]1"}], "-", RowBox[{"q11d1", " ", "\[Omega]1"}], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "q11d0"}], "+", "q11d1"}], ")"}], " ", "\[Omega]2"}]}], ")"}]}], "+", RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", RowBox[{"Log", "[", RowBox[{ RowBox[{"(", RowBox[{"q110", "-", "q11d0"}], ")"}], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "q11d0", "+", "q220"}], ")"}]}], "]"}]}], "+", RowBox[{"Log", "[", RowBox[{ RowBox[{"(", RowBox[{ SuperscriptBox["q111", "2"], "-", RowBox[{"2", " ", "q110", " ", "q11d1"}], "+", RowBox[{"q11d0", " ", "q11d1"}]}], ")"}], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{"1", "-", "q11d0"}], ")"}], " ", RowBox[{"(", RowBox[{"1", "-", "q11d1"}], ")"}]}], "-", RowBox[{"2", " ", RowBox[{"(", RowBox[{"1", "-", "q11d1"}], ")"}], " ", "q220"}], "+", SuperscriptBox["q221", "2"]}], ")"}]}], "]"}]}], ")"}]}]}]], "Output",\ CellChangeTimes->{{3.905850829877305*^9, 3.905850839465863*^9}, { 3.905851005629496*^9, 3.905851024399541*^9}, {3.90585312526083*^9, 3.90585314326528*^9}, 3.9058615885407877`*^9, 3.905912499053171*^9, 3.905931598682398*^9, 3.906014581119566*^9, {3.906014625989239*^9, 3.906014632954865*^9}, 3.906016701530336*^9, 3.906016767211265*^9, 3.906018142729081*^9, 3.906186592965066*^9, 3.906188369691762*^9, 3.906445739624508*^9, 3.906526383503549*^9, 3.907146523319407*^9, 3.9073284035521383`*^9, 3.908527761322122*^9, 3.908535178552448*^9, 3.908603306888613*^9, 3.908611423684043*^9, 3.90862132459629*^9, 3.9089590151457157`*^9, 3.909041247694905*^9, 3.915532043468378*^9, 3.915532493400175*^9, 3.9157715677141747`*^9, 3.916298299829978*^9, 3.9162984003956337`*^9, {3.916298433084412*^9, 3.9162984516433153`*^9}, 3.916306067326783*^9}, CellLabel-> "Out[145]=",ExpressionUUID->"7780f5a5-3b9f-4878-bca1-49d638b2ede5"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"e2", "=", RowBox[{"FullSimplify", "[", RowBox[{ RowBox[{"e1", "/.", RowBox[{"{", RowBox[{ RowBox[{"\[Epsilon]", "->", "0"}], ",", RowBox[{"q120", "->", "0"}], ",", RowBox[{"q121", "->", "0"}], ",", RowBox[{"q12d0", "->", "0"}], ",", RowBox[{"q12d1", "->", "0"}]}], "}"}]}], ",", RowBox[{"Assumptions", "->", RowBox[{"{", RowBox[{ RowBox[{ SuperscriptBox["q111", "2"], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", "q110"}], "+", "q11d0"}], ")"}], " ", "q11d1"}]}], ">", "0"}], "}"}]}]}], "]"}]}]], "Input", CellChangeTimes->{{3.906186860286684*^9, 3.906186879686674*^9}, { 3.906186913895919*^9, 3.906186964896375*^9}}, CellLabel-> "In[146]:=",ExpressionUUID->"54f4b878-a43b-49d6-b99e-acf114036072"], Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"2", " ", SuperscriptBox["q110", "2"]}], "-", RowBox[{"2", " ", SuperscriptBox["q111", "2"]}], "-", SuperscriptBox["q11d0", "2"], "+", SuperscriptBox["q11d1", "2"]}], ")"}], " ", SuperscriptBox["\[Beta]", "2"]}], "+", RowBox[{"2", " ", RowBox[{"(", RowBox[{"q111", "-", "q11d1"}], ")"}], " ", RowBox[{"(", RowBox[{"q111", "+", "q11d1"}], ")"}], " ", "\[Beta]", " ", "\[Lambda]"}], "+", RowBox[{ SuperscriptBox["q11d1", "2"], " ", SuperscriptBox["\[Lambda]", "2"]}]}], ")"}], " ", SuperscriptBox["\[Sigma]1", "2"]}], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "q11d0"}], ")"}], " ", "q11d0"}], "+", "q11d1", "-", SuperscriptBox["q11d1", "2"], "+", RowBox[{"2", " ", "q110", " ", "q220"}], "-", RowBox[{"2", " ", "q111", " ", "q221"}]}], ")"}], " ", SuperscriptBox["\[Beta]", "2"]}], "+", RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "q11d1"}], ")"}], " ", "q11d1"}], "+", RowBox[{"q111", " ", "q221"}]}], ")"}], " ", "\[Beta]", " ", "\[Lambda]"}], "-", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "q11d1"}], ")"}], " ", "q11d1", " ", SuperscriptBox["\[Lambda]", "2"]}]}], ")"}], " ", SuperscriptBox["\[Sigma]12", "2"]}], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "2"}], "+", "q11d0"}], ")"}], " ", "q11d0"}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "2"}], "+", "q11d1"}], ")"}], " ", "q11d1"}], "+", RowBox[{"2", " ", RowBox[{"(", RowBox[{"q220", "-", "q221"}], ")"}], " ", RowBox[{"(", RowBox[{"q220", "+", "q221"}], ")"}]}]}], ")"}], " ", SuperscriptBox["\[Beta]", "2"]}], "+", RowBox[{"2", " ", RowBox[{"(", RowBox[{"1", "-", "q11d1", "+", "q221"}], ")"}], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "q11d1", "+", "q221"}], ")"}], " ", "\[Beta]", " ", "\[Lambda]"}], "+", RowBox[{ SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "q11d1"}], ")"}], "2"], " ", SuperscriptBox["\[Lambda]", "2"]}]}], ")"}], " ", SuperscriptBox["\[Sigma]2", "2"]}], "+", RowBox[{ RowBox[{"(", RowBox[{"q11d0", "-", "q11d1"}], ")"}], " ", "\[Beta]", " ", RowBox[{"(", RowBox[{"\[Omega]1", "-", "\[Omega]2"}], ")"}]}], "+", RowBox[{"\[Lambda]", " ", RowBox[{"(", RowBox[{ RowBox[{"q11d1", " ", RowBox[{"(", RowBox[{"\[Omega]1", "-", "\[Omega]2"}], ")"}]}], "+", "\[Omega]2"}], ")"}]}], "+", RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"Log", "[", RowBox[{ SuperscriptBox["q111", "2"], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", "q110"}], "+", "q11d0"}], ")"}], " ", "q11d1"}]}], "]"}], "-", RowBox[{"2", " ", RowBox[{"Log", "[", RowBox[{ RowBox[{"(", RowBox[{"q110", "-", "q11d0"}], ")"}], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "q11d0", "+", "q220"}], ")"}]}], "]"}]}], "+", RowBox[{"Log", "[", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "q11d1"}], ")"}], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "q11d0", "+", RowBox[{"2", " ", "q220"}]}], ")"}]}], "+", SuperscriptBox["q221", "2"]}], "]"}]}], ")"}]}]}]], "Output", CellChangeTimes->{ 3.906186880315091*^9, {3.906186921002465*^9, 3.906186965149336*^9}, 3.906188370518162*^9, 3.906445740478343*^9, 3.9065263844885607`*^9, 3.907146524270124*^9, 3.907328404486239*^9, 3.908527762345582*^9, 3.908535179422303*^9, 3.90860330775679*^9, 3.908613742673404*^9, 3.908621325654201*^9, 3.9089590159595833`*^9, 3.909041248490795*^9, 3.915532082121131*^9, 3.915532494340509*^9, 3.9157715685543637`*^9, 3.916298453127364*^9, 3.9163060680762053`*^9}, CellLabel-> "Out[146]=",ExpressionUUID->"8ab0a219-d516-4630-ab17-d2c9ecd07701"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"rules2", "=", RowBox[{"{", RowBox[{ RowBox[{"q110", "->", RowBox[{"q11d", "-", RowBox[{"y110", "/", "\[Beta]"}], "-", RowBox[{"z110", "/", SuperscriptBox["\[Beta]", "2"]}]}]}], ",", RowBox[{"q111", "->", RowBox[{"q11d", "-", RowBox[{"y111", "/", "\[Beta]"}], "-", RowBox[{"z111", "/", SuperscriptBox["\[Beta]", "2"]}]}]}], ",", RowBox[{"q11d0", "->", RowBox[{"q11d", "-", " ", RowBox[{"y11d0", "/", "\[Beta]"}], "-", RowBox[{"z11d0", "/", SuperscriptBox["\[Beta]", "2"]}]}]}], ",", RowBox[{"q11d1", "->", RowBox[{"q11d", "-", RowBox[{"y11d1", "/", "\[Beta]"}], "-", RowBox[{"z11d1", "/", SuperscriptBox["\[Beta]", "2"]}]}]}], ",", RowBox[{"q220", "->", RowBox[{"q22d", "-", RowBox[{"y220", "/", "\[Beta]"}], "-", RowBox[{"z220", "/", SuperscriptBox["\[Beta]", "2"]}]}]}], ",", RowBox[{"q221", "->", RowBox[{"q22d", "-", RowBox[{"y221", "/", "\[Beta]"}], "-", RowBox[{"z221", "/", SuperscriptBox["\[Beta]", "2"]}]}]}], ",", RowBox[{"q12d1", "->", RowBox[{"q12", "-", RowBox[{"y12d1", "/", "\[Beta]"}], "-", RowBox[{"z12d1", "/", SuperscriptBox["\[Beta]", "2"]}]}]}], ",", RowBox[{"q12d0", "->", RowBox[{"q12", "-", RowBox[{"y12d0", "/", "\[Beta]"}], "-", RowBox[{"z12d0", "/", SuperscriptBox["\[Beta]", "2"]}]}]}], ",", RowBox[{"q121", "->", RowBox[{"q12", "-", RowBox[{"y121", "/", "\[Beta]"}], "-", RowBox[{"z121", "/", SuperscriptBox["\[Beta]", "2"]}]}]}], ",", RowBox[{"q120", "->", RowBox[{"q12", "-", RowBox[{"y120", "/", "\[Beta]"}], "-", RowBox[{"z120", "/", SuperscriptBox["\[Beta]", "2"]}]}]}], ",", RowBox[{"q22d", "->", RowBox[{"1", "-", "q11d"}]}], ",", RowBox[{"\[Lambda]", "->", RowBox[{"\[Lambda]0", "-", RowBox[{"\[Lambda]1", "/", "\[Beta]"}], "-", RowBox[{"\[Lambda]2", "/", SuperscriptBox["\[Beta]", "2"]}]}]}]}], "}"}]}], ";"}]], "Input", CellChangeTimes->{{3.905861542929487*^9, 3.905861546187963*^9}, { 3.9058616088771887`*^9, 3.905861619740603*^9}, {3.9058616556854*^9, 3.905861699276464*^9}, {3.905861855312809*^9, 3.905861857476181*^9}, { 3.905912367239668*^9, 3.905912369548286*^9}, {3.905912613884484*^9, 3.905912616896575*^9}, {3.90591332909175*^9, 3.9059133499069*^9}, { 3.905913476003109*^9, 3.905913478780634*^9}, 3.905913510172113*^9, { 3.905913658453998*^9, 3.905913661681223*^9}, {3.905918897671769*^9, 3.905918933808075*^9}, {3.9059194397219048`*^9, 3.905919487154225*^9}, { 3.905919971332117*^9, 3.905919981516094*^9}, {3.905921624987239*^9, 3.905921647467622*^9}, {3.905921807702829*^9, 3.905921811630349*^9}, { 3.905922272815454*^9, 3.9059222846000423`*^9}, {3.905931570960396*^9, 3.905931578736177*^9}, {3.905931954887074*^9, 3.905931975071704*^9}, { 3.906014772838179*^9, 3.90601477479656*^9}, {3.906014805045081*^9, 3.906014807781166*^9}, {3.906014900111161*^9, 3.906014903118968*^9}, { 3.906015113442898*^9, 3.906015153147285*^9}, {3.906016827027356*^9, 3.906016885852555*^9}, 3.906190615589766*^9, {3.906192507465321*^9, 3.9061925793946037`*^9}, {3.906195398887929*^9, 3.906195399407722*^9}, { 3.906195767951429*^9, 3.9061957720793056`*^9}, {3.906195840496765*^9, 3.906195919154381*^9}, {3.906213868718033*^9, 3.906213885938034*^9}, { 3.906449467308639*^9, 3.906449467504347*^9}, {3.906458374848988*^9, 3.90645838768067*^9}, 3.907244382872212*^9, 3.908959048467206*^9}, CellLabel->"In[24]:=",ExpressionUUID->"19946ab1-9943-42ba-8c04-694cc1f0098d"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"stest2", "=", RowBox[{"Solve", "[", RowBox[{ RowBox[{"0", "==", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"2", " ", "y120"}], "-", RowBox[{"2", " ", "y121"}], "-", "y12d0", "+", "y12d1"}], ",", RowBox[{ RowBox[{"2", " ", "y110"}], "-", RowBox[{"2", " ", "y111"}], "-", "y11d0", "+", "y11d1"}], ",", RowBox[{"y11d0", "-", "y11d1", "+", RowBox[{"2", " ", "y220"}], "-", RowBox[{"2", " ", "y221"}]}]}], "}"}]}], ",", RowBox[{"{", RowBox[{"y110", ",", "y120", ",", "y220"}], "}"}]}], "]"}]}]], "Input", CellChangeTimes->{{3.906209108534292*^9, 3.906209142918777*^9}, { 3.906209281514675*^9, 3.906209401810359*^9}, {3.906209557442634*^9, 3.90620956311773*^9}, {3.906210598464419*^9, 3.906210622697938*^9}, { 3.90621490877896*^9, 3.906214961058323*^9}, {3.906215011570169*^9, 3.906215011869331*^9}, {3.90621511367527*^9, 3.906215113937558*^9}, { 3.906449850271374*^9, 3.906449864831753*^9}, {3.906452288389834*^9, 3.906452349678601*^9}, {3.906452536307121*^9, 3.906452536562147*^9}, { 3.90724443620947*^9, 3.907244488412445*^9}}, CellLabel->"In[25]:=",ExpressionUUID->"623df1f0-acb4-43e6-b11b-11cede6c62f1"], Cell[BoxData[ RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"y110", "\[Rule]", RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"2", " ", "y111"}], "+", "y11d0", "-", "y11d1"}], ")"}]}]}], ",", RowBox[{"y120", "\[Rule]", RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"2", " ", "y121"}], "+", "y12d0", "-", "y12d1"}], ")"}]}]}], ",", RowBox[{"y220", "\[Rule]", RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "y11d0"}], "+", "y11d1", "+", RowBox[{"2", " ", "y221"}]}], ")"}]}]}]}], "}"}], "}"}]], "Output", CellChangeTimes->{{3.906209114847683*^9, 3.906209134528015*^9}, { 3.9062092861324043`*^9, 3.906209307644665*^9}, {3.906209348694558*^9, 3.906209402069257*^9}, 3.906209567919038*^9, {3.906210599059472*^9, 3.906210623077407*^9}, {3.906214910275611*^9, 3.906214961402548*^9}, 3.906215012221205*^9, 3.906215114141577*^9, 3.906449865837833*^9, { 3.906452290224807*^9, 3.906452324323553*^9}, 3.9064523548160133`*^9, 3.906452536825111*^9, 3.906452992821587*^9, 3.906535913473673*^9, { 3.907244450027872*^9, 3.9072444889943857`*^9}, 3.907329066028408*^9, 3.908528771220576*^9, 3.908535928499719*^9, 3.908604043703294*^9, 3.908611456149561*^9, 3.9086144305920887`*^9, 3.908621428030292*^9, 3.9089591306410522`*^9, 3.909041335868808*^9, 3.915532186836844*^9, 3.915532553880711*^9, 3.915771627638197*^9, 3.916298567913457*^9}, CellLabel->"Out[25]=",ExpressionUUID->"f98a2dfe-f238-4006-aca1-8b523c40cf8d"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"e3", "=", RowBox[{"Limit", "[", RowBox[{ RowBox[{ RowBox[{"e2", "//.", "rules2"}], "/.", RowBox[{"stest2", "[", RowBox[{"[", "1", "]"}], "]"}]}], ",", RowBox[{"\[Beta]", "->", "\[Infinity]"}]}], "]"}]}]], "Input", CellChangeTimes->{{3.916298569082382*^9, 3.9162985829299507`*^9}, 3.916298817983197*^9, {3.916298915120405*^9, 3.916298916200206*^9}}, CellLabel->"In[31]:=",ExpressionUUID->"2dd75e13-4f61-4be7-b65b-acbf57a3d45b"], Cell[BoxData[ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"4", " ", "y111", " ", "y11d0", " ", SuperscriptBox["\[Sigma]1", "2"]}], "-", RowBox[{ SuperscriptBox["y11d0", "2"], " ", SuperscriptBox["\[Sigma]1", "2"]}], "-", RowBox[{"4", " ", "y111", " ", "y11d1", " ", SuperscriptBox["\[Sigma]1", "2"]}], "-", RowBox[{"2", " ", "y11d0", " ", "y11d1", " ", SuperscriptBox["\[Sigma]1", "2"]}], "+", RowBox[{"3", " ", SuperscriptBox["y11d1", "2"], " ", SuperscriptBox["\[Sigma]1", "2"]}], "-", RowBox[{"8", " ", "q11d", " ", "z110", " ", SuperscriptBox["\[Sigma]1", "2"]}], "+", RowBox[{"8", " ", "q11d", " ", "z111", " ", SuperscriptBox["\[Sigma]1", "2"]}], "+", RowBox[{"4", " ", "q11d", " ", "z11d0", " ", SuperscriptBox["\[Sigma]1", "2"]}], "-", RowBox[{"4", " ", "q11d", " ", "z11d1", " ", SuperscriptBox["\[Sigma]1", "2"]}], "-", RowBox[{"8", " ", "q11d", " ", "y111", " ", "\[Lambda]0", " ", SuperscriptBox["\[Sigma]1", "2"]}], "+", RowBox[{"8", " ", "q11d", " ", "y11d1", " ", "\[Lambda]0", " ", SuperscriptBox["\[Sigma]1", "2"]}], "+", RowBox[{"2", " ", SuperscriptBox["q11d", "2"], " ", SuperscriptBox["\[Lambda]0", "2"], " ", SuperscriptBox["\[Sigma]1", "2"]}], "-", RowBox[{"2", " ", "y111", " ", "y11d0", " ", SuperscriptBox["\[Sigma]12", "2"]}], "+", RowBox[{ SuperscriptBox["y11d0", "2"], " ", SuperscriptBox["\[Sigma]12", "2"]}], "+", RowBox[{"2", " ", "y111", " ", "y11d1", " ", SuperscriptBox["\[Sigma]12", "2"]}], "+", RowBox[{"2", " ", "y11d0", " ", "y11d1", " ", SuperscriptBox["\[Sigma]12", "2"]}], "-", RowBox[{"3", " ", SuperscriptBox["y11d1", "2"], " ", SuperscriptBox["\[Sigma]12", "2"]}], "+", RowBox[{"2", " ", "y11d0", " ", "y221", " ", SuperscriptBox["\[Sigma]12", "2"]}], "-", RowBox[{"2", " ", "y11d1", " ", "y221", " ", SuperscriptBox["\[Sigma]12", "2"]}], "-", RowBox[{"4", " ", "z110", " ", SuperscriptBox["\[Sigma]12", "2"]}], "+", RowBox[{"4", " ", "q11d", " ", "z110", " ", SuperscriptBox["\[Sigma]12", "2"]}], "+", RowBox[{"4", " ", "z111", " ", SuperscriptBox["\[Sigma]12", "2"]}], "-", RowBox[{"4", " ", "q11d", " ", "z111", " ", SuperscriptBox["\[Sigma]12", "2"]}], "+", RowBox[{"2", " ", "z11d0", " ", SuperscriptBox["\[Sigma]12", "2"]}], "-", RowBox[{"4", " ", "q11d", " ", "z11d0", " ", SuperscriptBox["\[Sigma]12", "2"]}], "-", RowBox[{"2", " ", "z11d1", " ", SuperscriptBox["\[Sigma]12", "2"]}], "+", RowBox[{"4", " ", "q11d", " ", "z11d1", " ", SuperscriptBox["\[Sigma]12", "2"]}], "-", RowBox[{"4", " ", "q11d", " ", "z220", " ", SuperscriptBox["\[Sigma]12", "2"]}], "+", RowBox[{"4", " ", "q11d", " ", "z221", " ", SuperscriptBox["\[Sigma]12", "2"]}], "-", RowBox[{"4", " ", "y111", " ", "\[Lambda]0", " ", SuperscriptBox["\[Sigma]12", "2"]}], "+", RowBox[{"4", " ", "q11d", " ", "y111", " ", "\[Lambda]0", " ", SuperscriptBox["\[Sigma]12", "2"]}], "+", RowBox[{"4", " ", "y11d1", " ", "\[Lambda]0", " ", SuperscriptBox["\[Sigma]12", "2"]}], "-", RowBox[{"8", " ", "q11d", " ", "y11d1", " ", "\[Lambda]0", " ", SuperscriptBox["\[Sigma]12", "2"]}], "-", RowBox[{"4", " ", "q11d", " ", "y221", " ", "\[Lambda]0", " ", SuperscriptBox["\[Sigma]12", "2"]}], "+", RowBox[{"2", " ", "q11d", " ", SuperscriptBox["\[Lambda]0", "2"], " ", SuperscriptBox["\[Sigma]12", "2"]}], "-", RowBox[{"2", " ", SuperscriptBox["q11d", "2"], " ", SuperscriptBox["\[Lambda]0", "2"], " ", SuperscriptBox["\[Sigma]12", "2"]}], "-", RowBox[{ SuperscriptBox["y11d0", "2"], " ", SuperscriptBox["\[Sigma]2", "2"]}], "-", RowBox[{"2", " ", "y11d0", " ", "y11d1", " ", SuperscriptBox["\[Sigma]2", "2"]}], "+", RowBox[{"3", " ", SuperscriptBox["y11d1", "2"], " ", SuperscriptBox["\[Sigma]2", "2"]}], "-", RowBox[{"4", " ", "y11d0", " ", "y221", " ", SuperscriptBox["\[Sigma]2", "2"]}], "+", RowBox[{"4", " ", "y11d1", " ", "y221", " ", SuperscriptBox["\[Sigma]2", "2"]}], "-", RowBox[{"4", " ", "z11d0", " ", SuperscriptBox["\[Sigma]2", "2"]}], "+", RowBox[{"4", " ", "q11d", " ", "z11d0", " ", SuperscriptBox["\[Sigma]2", "2"]}], "+", RowBox[{"4", " ", "z11d1", " ", SuperscriptBox["\[Sigma]2", "2"]}], "-", RowBox[{"4", " ", "q11d", " ", "z11d1", " ", SuperscriptBox["\[Sigma]2", "2"]}], "-", RowBox[{"8", " ", "z220", " ", SuperscriptBox["\[Sigma]2", "2"]}], "+", RowBox[{"8", " ", "q11d", " ", "z220", " ", SuperscriptBox["\[Sigma]2", "2"]}], "+", RowBox[{"8", " ", "z221", " ", SuperscriptBox["\[Sigma]2", "2"]}], "-", RowBox[{"8", " ", "q11d", " ", "z221", " ", SuperscriptBox["\[Sigma]2", "2"]}], "-", RowBox[{"8", " ", "y11d1", " ", "\[Lambda]0", " ", SuperscriptBox["\[Sigma]2", "2"]}], "+", RowBox[{"8", " ", "q11d", " ", "y11d1", " ", "\[Lambda]0", " ", SuperscriptBox["\[Sigma]2", "2"]}], "-", RowBox[{"8", " ", "y221", " ", "\[Lambda]0", " ", SuperscriptBox["\[Sigma]2", "2"]}], "+", RowBox[{"8", " ", "q11d", " ", "y221", " ", "\[Lambda]0", " ", SuperscriptBox["\[Sigma]2", "2"]}], "+", RowBox[{"2", " ", SuperscriptBox["\[Lambda]0", "2"], " ", SuperscriptBox["\[Sigma]2", "2"]}], "-", RowBox[{"4", " ", "q11d", " ", SuperscriptBox["\[Lambda]0", "2"], " ", SuperscriptBox["\[Sigma]2", "2"]}], "+", RowBox[{"2", " ", SuperscriptBox["q11d", "2"], " ", SuperscriptBox["\[Lambda]0", "2"], " ", SuperscriptBox["\[Sigma]2", "2"]}], "-", RowBox[{"2", " ", "y11d0", " ", "\[Omega]1"}], "+", RowBox[{"2", " ", "y11d1", " ", "\[Omega]1"}], "+", RowBox[{"2", " ", "q11d", " ", "\[Lambda]0", " ", "\[Omega]1"}], "+", RowBox[{"2", " ", "y11d0", " ", "\[Omega]2"}], "-", RowBox[{"2", " ", "y11d1", " ", "\[Omega]2"}], "+", RowBox[{"2", " ", "\[Lambda]0", " ", "\[Omega]2"}], "-", RowBox[{"2", " ", "q11d", " ", "\[Lambda]0", " ", "\[Omega]2"}], "-", RowBox[{"4", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[{"Floor", "[", RowBox[{"-", FractionBox[ RowBox[{ RowBox[{"-", "\[Pi]"}], "+", RowBox[{"Arg", "[", RowBox[{ RowBox[{"2", " ", "y111"}], "-", "y11d0", "-", "y11d1"}], "]"}], "+", RowBox[{"Arg", "[", RowBox[{"y11d0", "+", "y11d1", "+", RowBox[{"2", " ", "y221"}]}], "]"}]}], RowBox[{"2", " ", "\[Pi]"}]]}], "]"}]}], "+", RowBox[{"Log", "[", "16", "]"}], "-", RowBox[{"2", " ", RowBox[{"Log", "[", RowBox[{ RowBox[{"2", " ", "y111"}], "-", "y11d0", "-", "y11d1"}], "]"}]}], "-", RowBox[{"2", " ", RowBox[{"Log", "[", RowBox[{"y11d0", "+", "y11d1", "+", RowBox[{"2", " ", "y221"}]}], "]"}]}], "+", RowBox[{"Log", "[", RowBox[{ SuperscriptBox["y111", "2"], "-", RowBox[{"2", " ", "y111", " ", "y11d1"}], "+", SuperscriptBox["y11d1", "2"], "+", RowBox[{"q11d", " ", RowBox[{"(", RowBox[{ RowBox[{"2", " ", "z110"}], "-", RowBox[{"2", " ", "z111"}], "-", "z11d0", "+", "z11d1"}], ")"}]}]}], "]"}], "+", RowBox[{"Log", "[", RowBox[{ SuperscriptBox["y11d1", "2"], "+", RowBox[{"2", " ", "y11d1", " ", "y221"}], "+", SuperscriptBox["y221", "2"], "-", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ", RowBox[{"(", RowBox[{"z11d0", "-", "z11d1", "+", RowBox[{"2", " ", "z220"}], "-", RowBox[{"2", " ", "z221"}]}], ")"}]}]}], "]"}]}], ")"}]}]], "Output",\ CellChangeTimes->{{3.91629857167759*^9, 3.916298576072043*^9}, 3.9162986288507338`*^9, 3.916298913386046*^9, 3.916299048042665*^9}, CellLabel->"Out[31]=",ExpressionUUID->"c4f58aa5-4d98-4810-9646-4e8d42c22b4d"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"e4", "=", RowBox[{ RowBox[{ RowBox[{"Simplify", "[", RowBox[{"e3", ",", RowBox[{"Assumptions", "->", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{ RowBox[{"2", " ", "y111"}], "-", "y11d0", "-", "y11d1"}], ">", "0"}], ",", RowBox[{ RowBox[{"y11d0", "+", "y11d1", "+", RowBox[{"2", " ", "y221"}]}], ">", "0"}]}], "}"}]}]}], "]"}], "//.", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{ RowBox[{"a_", " ", RowBox[{"Log", "[", "x_", "]"}]}], "+", RowBox[{"b_", " ", RowBox[{"Log", "[", "y_", "]"}]}]}], ":>", RowBox[{"Log", "[", RowBox[{ SuperscriptBox["x", "a"], SuperscriptBox["y", "b"]}], "]"}]}], ",", RowBox[{ RowBox[{ RowBox[{"Log", "[", "x_", "]"}], "+", RowBox[{"Log", "[", "y_", "]"}]}], ":>", RowBox[{"Log", "[", RowBox[{"x", " ", "y"}], "]"}]}]}], "}"}]}], "//", "FullSimplify"}]}]], "Input", CellChangeTimes->{{3.916299067891621*^9, 3.916299312352315*^9}}, CellLabel->"In[49]:=",ExpressionUUID->"785da43f-dcbf-49db-b834-5c4280942ceb"], Cell[BoxData[ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"3", " ", SuperscriptBox["y11d1", "2"], " ", SuperscriptBox["\[Sigma]1", "2"]}], "-", RowBox[{"8", " ", "q11d", " ", "z110", " ", SuperscriptBox["\[Sigma]1", "2"]}], "+", RowBox[{"8", " ", "q11d", " ", "z111", " ", SuperscriptBox["\[Sigma]1", "2"]}], "+", RowBox[{"4", " ", "q11d", " ", "z11d0", " ", SuperscriptBox["\[Sigma]1", "2"]}], "-", RowBox[{"4", " ", "q11d", " ", "z11d1", " ", SuperscriptBox["\[Sigma]1", "2"]}], "+", RowBox[{"8", " ", "q11d", " ", "y11d1", " ", "\[Lambda]0", " ", SuperscriptBox["\[Sigma]1", "2"]}], "+", RowBox[{"2", " ", SuperscriptBox["q11d", "2"], " ", SuperscriptBox["\[Lambda]0", "2"], " ", SuperscriptBox["\[Sigma]1", "2"]}], "+", RowBox[{"4", " ", "y111", " ", RowBox[{"(", RowBox[{"y11d0", "-", "y11d1", "-", RowBox[{"2", " ", "q11d", " ", "\[Lambda]0"}]}], ")"}], " ", SuperscriptBox["\[Sigma]1", "2"]}], "-", RowBox[{"3", " ", SuperscriptBox["y11d1", "2"], " ", SuperscriptBox["\[Sigma]12", "2"]}], "-", RowBox[{"2", " ", "y11d1", " ", "y221", " ", SuperscriptBox["\[Sigma]12", "2"]}], "-", RowBox[{"4", " ", "z110", " ", SuperscriptBox["\[Sigma]12", "2"]}], "+", RowBox[{"4", " ", "q11d", " ", "z110", " ", SuperscriptBox["\[Sigma]12", "2"]}], "+", RowBox[{"4", " ", "z111", " ", SuperscriptBox["\[Sigma]12", "2"]}], "-", RowBox[{"4", " ", "q11d", " ", "z111", " ", SuperscriptBox["\[Sigma]12", "2"]}], "+", RowBox[{"2", " ", "z11d0", " ", SuperscriptBox["\[Sigma]12", "2"]}], "-", RowBox[{"4", " ", "q11d", " ", "z11d0", " ", SuperscriptBox["\[Sigma]12", "2"]}], "-", RowBox[{"2", " ", "z11d1", " ", SuperscriptBox["\[Sigma]12", "2"]}], "+", RowBox[{"4", " ", "q11d", " ", "z11d1", " ", SuperscriptBox["\[Sigma]12", "2"]}], "-", RowBox[{"4", " ", "q11d", " ", "z220", " ", SuperscriptBox["\[Sigma]12", "2"]}], "+", RowBox[{"4", " ", "q11d", " ", "z221", " ", SuperscriptBox["\[Sigma]12", "2"]}], "+", RowBox[{"4", " ", "y11d1", " ", "\[Lambda]0", " ", SuperscriptBox["\[Sigma]12", "2"]}], "-", RowBox[{"8", " ", "q11d", " ", "y11d1", " ", "\[Lambda]0", " ", SuperscriptBox["\[Sigma]12", "2"]}], "-", RowBox[{"4", " ", "q11d", " ", "y221", " ", "\[Lambda]0", " ", SuperscriptBox["\[Sigma]12", "2"]}], "+", RowBox[{"2", " ", "q11d", " ", SuperscriptBox["\[Lambda]0", "2"], " ", SuperscriptBox["\[Sigma]12", "2"]}], "-", RowBox[{"2", " ", SuperscriptBox["q11d", "2"], " ", SuperscriptBox["\[Lambda]0", "2"], " ", SuperscriptBox["\[Sigma]12", "2"]}], "+", RowBox[{"2", " ", "y111", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "y11d0"}], "+", "y11d1", "+", RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ", "\[Lambda]0"}]}], ")"}], " ", SuperscriptBox["\[Sigma]12", "2"]}], "+", RowBox[{"3", " ", SuperscriptBox["y11d1", "2"], " ", SuperscriptBox["\[Sigma]2", "2"]}], "+", RowBox[{"4", " ", "y11d1", " ", "y221", " ", SuperscriptBox["\[Sigma]2", "2"]}], "-", RowBox[{"4", " ", "z11d0", " ", SuperscriptBox["\[Sigma]2", "2"]}], "+", RowBox[{"4", " ", "q11d", " ", "z11d0", " ", SuperscriptBox["\[Sigma]2", "2"]}], "+", RowBox[{"4", " ", "z11d1", " ", SuperscriptBox["\[Sigma]2", "2"]}], "-", RowBox[{"4", " ", "q11d", " ", "z11d1", " ", SuperscriptBox["\[Sigma]2", "2"]}], "-", RowBox[{"8", " ", "z220", " ", SuperscriptBox["\[Sigma]2", "2"]}], "+", RowBox[{"8", " ", "q11d", " ", "z220", " ", SuperscriptBox["\[Sigma]2", "2"]}], "+", RowBox[{"8", " ", "z221", " ", SuperscriptBox["\[Sigma]2", "2"]}], "-", RowBox[{"8", " ", "q11d", " ", "z221", " ", SuperscriptBox["\[Sigma]2", "2"]}], "-", RowBox[{"8", " ", "y11d1", " ", "\[Lambda]0", " ", SuperscriptBox["\[Sigma]2", "2"]}], "+", RowBox[{"8", " ", "q11d", " ", "y11d1", " ", "\[Lambda]0", " ", SuperscriptBox["\[Sigma]2", "2"]}], "-", RowBox[{"8", " ", "y221", " ", "\[Lambda]0", " ", SuperscriptBox["\[Sigma]2", "2"]}], "+", RowBox[{"8", " ", "q11d", " ", "y221", " ", "\[Lambda]0", " ", SuperscriptBox["\[Sigma]2", "2"]}], "+", RowBox[{"2", " ", SuperscriptBox["\[Lambda]0", "2"], " ", SuperscriptBox["\[Sigma]2", "2"]}], "-", RowBox[{"4", " ", "q11d", " ", SuperscriptBox["\[Lambda]0", "2"], " ", SuperscriptBox["\[Sigma]2", "2"]}], "+", RowBox[{"2", " ", SuperscriptBox["q11d", "2"], " ", SuperscriptBox["\[Lambda]0", "2"], " ", SuperscriptBox["\[Sigma]2", "2"]}], "-", RowBox[{ SuperscriptBox["y11d0", "2"], " ", RowBox[{"(", RowBox[{ SuperscriptBox["\[Sigma]1", "2"], "-", SuperscriptBox["\[Sigma]12", "2"], "+", SuperscriptBox["\[Sigma]2", "2"]}], ")"}]}], "+", RowBox[{"2", " ", "y11d1", " ", "\[Omega]1"}], "+", RowBox[{"2", " ", "q11d", " ", "\[Lambda]0", " ", "\[Omega]1"}], "-", RowBox[{"2", " ", "y11d0", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "y221"}], " ", SuperscriptBox["\[Sigma]12", "2"]}], "+", RowBox[{"2", " ", "y221", " ", SuperscriptBox["\[Sigma]2", "2"]}], "+", RowBox[{"y11d1", " ", RowBox[{"(", RowBox[{ SuperscriptBox["\[Sigma]1", "2"], "-", SuperscriptBox["\[Sigma]12", "2"], "+", SuperscriptBox["\[Sigma]2", "2"]}], ")"}]}], "+", "\[Omega]1", "-", "\[Omega]2"}], ")"}]}], "-", RowBox[{"2", " ", RowBox[{"(", RowBox[{"y11d1", "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ", "\[Lambda]0"}]}], ")"}], " ", "\[Omega]2"}], "+", RowBox[{"Log", "[", FractionBox[ RowBox[{"16", " ", RowBox[{"(", RowBox[{ SuperscriptBox[ RowBox[{"(", RowBox[{"y111", "-", "y11d1"}], ")"}], "2"], "+", RowBox[{"q11d", " ", RowBox[{"(", RowBox[{ RowBox[{"2", " ", "z110"}], "-", RowBox[{"2", " ", "z111"}], "-", "z11d0", "+", "z11d1"}], ")"}]}]}], ")"}], " ", RowBox[{"(", RowBox[{ SuperscriptBox[ RowBox[{"(", RowBox[{"y11d1", "+", "y221"}], ")"}], "2"], "-", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ", RowBox[{"(", RowBox[{"z11d0", "-", "z11d1", "+", RowBox[{"2", " ", "z220"}], "-", RowBox[{"2", " ", "z221"}]}], ")"}]}]}], ")"}]}], RowBox[{ SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", "y111"}], "+", "y11d0", "+", "y11d1"}], ")"}], "2"], " ", SuperscriptBox[ RowBox[{"(", RowBox[{"y11d0", "+", "y11d1", "+", RowBox[{"2", " ", "y221"}]}], ")"}], "2"]}]], "]"}]}], ")"}]}]], "Output", CellChangeTimes->{{3.9162992809993143`*^9, 3.916299314952043*^9}}, CellLabel->"Out[49]=",ExpressionUUID->"ef9ef3d0-78d5-4ee8-9f3f-0ea8bcf8e2ee"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"e5", "=", RowBox[{"Solve", "[", RowBox[{ RowBox[{"0", "==", RowBox[{"D", "[", RowBox[{ RowBox[{"e4", "/.", RowBox[{"\[Sigma]12", "->", "0"}]}], ",", RowBox[{"{", RowBox[{"{", RowBox[{ "\[Lambda]0", ",", "y111", ",", "y11d1", ",", "y221", ",", "q11d", ",", "z110", ",", "z111", ",", "z11d0", ",", "z11d1", ",", "z220", ",", "z221"}], "}"}], "}"}]}], "]"}]}], ",", RowBox[{"{", RowBox[{ "\[Lambda]0", ",", "y111", ",", "y11d1", ",", "y221", ",", "q11d", ",", "z110", ",", "z111", ",", "z11d0", ",", "z11d1", ",", "z220", ",", "z221"}], "}"}]}], "]"}]}], ";"}]], "Input", CellChangeTimes->{{3.916299357672659*^9, 3.9162993963854647`*^9}, { 3.9162994291231127`*^9, 3.916299436346179*^9}, {3.9162994947078943`*^9, 3.916299497532009*^9}, {3.916300237985333*^9, 3.916300239561335*^9}}, CellLabel->"In[56]:=",ExpressionUUID->"aff1542a-e458-46e1-bc4e-b34eedfeafcd"], Cell[BoxData["$Aborted"], "Output", CellChangeTimes->{3.916299421589814*^9, 3.9163002362939377`*^9, 3.9163005755503674`*^9}, CellLabel->"Out[56]=",ExpressionUUID->"540af864-3347-4186-9e31-aa1340e04ef2"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"rules", "=", RowBox[{"{", RowBox[{ RowBox[{"q110", "->", RowBox[{"q11d", "-", RowBox[{"y11", "/", "\[Beta]"}], "-", RowBox[{"z110", "/", SuperscriptBox["\[Beta]", "2"]}]}]}], ",", RowBox[{"q111", "->", RowBox[{"q11d", "-", RowBox[{"y11", "/", "\[Beta]"}], "-", RowBox[{"z111", "/", SuperscriptBox["\[Beta]", "2"]}]}]}], ",", RowBox[{"q11d0", "->", RowBox[{"q11d", "-", " ", RowBox[{"y11d", "/", "\[Beta]"}], "-", " ", RowBox[{"z11d0", "/", SuperscriptBox["\[Beta]", "2"]}]}]}], ",", RowBox[{"q11d1", "->", RowBox[{"q11d", "-", " ", RowBox[{"y11d", "/", "\[Beta]"}], "-", " ", RowBox[{"z11d1", "/", SuperscriptBox["\[Beta]", "2"]}]}]}], ",", RowBox[{"q220", "->", RowBox[{"q22d", "-", RowBox[{"y22", "/", "\[Beta]"}], "-", RowBox[{"z220", "/", SuperscriptBox["\[Beta]", "2"]}]}]}], ",", RowBox[{"q221", "->", RowBox[{"q22d", "-", RowBox[{"y22", "/", "\[Beta]"}], "-", RowBox[{"z221", "/", SuperscriptBox["\[Beta]", "2"]}]}]}], ",", RowBox[{"q22d", "->", RowBox[{"1", "-", "q11d"}]}]}], "}"}]}], ";"}]], "Input", CellChangeTimes->{{3.905861542929487*^9, 3.905861546187963*^9}, { 3.9058616088771887`*^9, 3.905861619740603*^9}, {3.9058616556854*^9, 3.905861699276464*^9}, {3.905861855312809*^9, 3.905861857476181*^9}, { 3.905912367239668*^9, 3.905912369548286*^9}, {3.905912613884484*^9, 3.905912616896575*^9}, {3.90591332909175*^9, 3.9059133499069*^9}, { 3.905913476003109*^9, 3.905913478780634*^9}, 3.905913510172113*^9, { 3.905913658453998*^9, 3.905913661681223*^9}, {3.905918897671769*^9, 3.905918933808075*^9}, {3.9059194397219048`*^9, 3.905919487154225*^9}, { 3.905919971332117*^9, 3.905919981516094*^9}, {3.905921624987239*^9, 3.905921647467622*^9}, {3.905921807702829*^9, 3.905921811630349*^9}, { 3.905922272815454*^9, 3.9059222846000423`*^9}, {3.905931570960396*^9, 3.905931578736177*^9}, {3.905931954887074*^9, 3.905931975071704*^9}, { 3.906014772838179*^9, 3.90601477479656*^9}, {3.906014805045081*^9, 3.906014807781166*^9}, {3.906014900111161*^9, 3.906014903118968*^9}, { 3.906015113442898*^9, 3.906015153147285*^9}, {3.906016827027356*^9, 3.906016885852555*^9}, 3.906187789048245*^9, {3.906189215794698*^9, 3.906189222514817*^9}, {3.90619067192666*^9, 3.906190680838689*^9}}, CellLabel->"In[57]:=",ExpressionUUID->"b1a9bc1c-abed-43f0-a0e6-669043a8612a"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"e3", "=", RowBox[{ RowBox[{"Limit", "[", RowBox[{ RowBox[{ RowBox[{"e2", "/.", RowBox[{"{", RowBox[{ RowBox[{"q22d0", "->", RowBox[{"1", "-", "q11d0"}]}], ",", RowBox[{"q22d1", "->", RowBox[{"1", "-", "q11d1"}]}]}], "}"}]}], "//.", "rules"}], ",", RowBox[{"\[Beta]", "->", "\[Infinity]"}]}], "]"}], "//", "Simplify"}]}]], "Input", CellChangeTimes->{{3.916298569082382*^9, 3.9162985829299507`*^9}, 3.916298817983197*^9, {3.916298915120405*^9, 3.916298916200206*^9}, { 3.916300766923294*^9, 3.916300771427061*^9}, {3.9163041453558598`*^9, 3.9163041673552217`*^9}, {3.9163042081327744`*^9, 3.916304243700819*^9}, { 3.916304301534183*^9, 3.916304302949992*^9}, {3.916306091096696*^9, 3.916306093975955*^9}}, CellLabel-> "In[147]:=",ExpressionUUID->"d0e2a3ad-c754-4c6f-892c-e1eb7382819e"], Cell[BoxData[ TemplateBox[{ RowBox[{ RowBox[{"q11d", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "4"}], " ", "z110"}], "+", RowBox[{"4", " ", "z111"}], "+", RowBox[{"2", " ", "z11d0"}], "-", RowBox[{"2", " ", "z11d1"}], "-", RowBox[{"4", " ", "y11", " ", "\[Lambda]"}], "+", RowBox[{"4", " ", "y11d", " ", "\[Lambda]"}], "+", RowBox[{"q11d", " ", SuperscriptBox["\[Lambda]", "2"]}]}], ")"}], " ", SuperscriptBox["\[Sigma]1", "2"]}], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ", "z110"}], "-", RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ", "z111"}], "+", "z11d0", "-", RowBox[{"2", " ", "q11d", " ", "z11d0"}], "-", "z11d1", "+", RowBox[{"2", " ", "q11d", " ", "z11d1"}], "-", RowBox[{"2", " ", "q11d", " ", "z220"}], "+", RowBox[{"2", " ", "q11d", " ", "z221"}], "-", RowBox[{"2", " ", "y11", " ", "\[Lambda]"}], "+", RowBox[{"2", " ", "q11d", " ", "y11", " ", "\[Lambda]"}], "+", RowBox[{"2", " ", "y11d", " ", "\[Lambda]"}], "-", RowBox[{"4", " ", "q11d", " ", "y11d", " ", "\[Lambda]"}], "-", RowBox[{"2", " ", "q11d", " ", "y22", " ", "\[Lambda]"}], "+", RowBox[{"q11d", " ", SuperscriptBox["\[Lambda]", "2"]}], "-", RowBox[{ SuperscriptBox["q11d", "2"], " ", SuperscriptBox["\[Lambda]", "2"]}]}], ")"}], " ", SuperscriptBox["\[Sigma]12", "2"]}], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ", RowBox[{"(", RowBox[{ RowBox[{"2", " ", "z11d0"}], "-", RowBox[{"2", " ", "z11d1"}], "+", RowBox[{"4", " ", "z220"}], "-", RowBox[{"4", " ", "z221"}], "+", RowBox[{"4", " ", "y11d", " ", "\[Lambda]"}], "+", RowBox[{"4", " ", "y22", " ", "\[Lambda]"}], "-", SuperscriptBox["\[Lambda]", "2"], "+", RowBox[{"q11d", " ", SuperscriptBox["\[Lambda]", "2"]}]}], ")"}], " ", SuperscriptBox["\[Sigma]2", "2"]}], "+", RowBox[{"\[Lambda]", " ", RowBox[{"(", RowBox[{ RowBox[{"q11d", " ", RowBox[{"(", RowBox[{"\[Omega]1", "-", "\[Omega]2"}], ")"}]}], "+", "\[Omega]2"}], ")"}]}], "+", RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", RowBox[{"Log", "[", RowBox[{ RowBox[{"(", RowBox[{"y11", "-", "y11d"}], ")"}], " ", RowBox[{"(", RowBox[{"y11d", "+", "y22"}], ")"}]}], "]"}]}], "+", RowBox[{"Log", "[", RowBox[{ SuperscriptBox["y11", "2"], "-", RowBox[{"2", " ", "y11", " ", "y11d"}], "+", SuperscriptBox["y11d", "2"], "+", RowBox[{"q11d", " ", RowBox[{"(", RowBox[{ RowBox[{"2", " ", "z110"}], "-", RowBox[{"2", " ", "z111"}], "-", "z11d0", "+", "z11d1"}], ")"}]}]}], "]"}], "+", RowBox[{"Log", "[", RowBox[{ SuperscriptBox["y11d", "2"], "+", RowBox[{"2", " ", "y11d", " ", "y22"}], "+", SuperscriptBox["y22", "2"], "-", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ", RowBox[{"(", RowBox[{"z11d0", "-", "z11d1", "+", RowBox[{"2", " ", "z220"}], "-", RowBox[{"2", " ", "z221"}]}], ")"}]}]}], "]"}]}], ")"}]}]}], InterpretationBox[ DynamicModuleBox[{Typeset`open = False}, TemplateBox[{"Expression", StyleBox[ TagBox[ TooltipBox["\"condition\"", TagBox[ RowBox[{ RowBox[{ RowBox[{"(", RowBox[{"\[Lambda]", "|", SuperscriptBox["\[Sigma]1", "2"], "|", SuperscriptBox["\[Sigma]12", "2"], "|", SuperscriptBox["\[Sigma]2", "2"], "|", RowBox[{"\[Omega]1", "-", "\[Omega]2"}], "|", "\[Omega]2"}], ")"}], "\[Element]", TemplateBox[{}, "Reals"]}], "&&", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{"y11", "-", "y11d"}], ")"}], " ", RowBox[{"(", RowBox[{"y11d", "+", "y22"}], ")"}]}], ">", "0"}], "&&", RowBox[{ RowBox[{ SuperscriptBox["y11", "2"], "+", SuperscriptBox["y11d", "2"], "+", RowBox[{"2", " ", "q11d", " ", "z110"}], "+", RowBox[{"q11d", " ", "z11d1"}]}], ">", RowBox[{ RowBox[{"2", " ", "y11", " ", "y11d"}], "+", RowBox[{"2", " ", "q11d", " ", "z111"}], "+", RowBox[{"q11d", " ", "z11d0"}]}]}], "&&", RowBox[{ RowBox[{ RowBox[{"q11d", " ", "z11d0"}], "+", "z11d1", "+", RowBox[{"2", " ", "q11d", " ", "z220"}], "+", RowBox[{"2", " ", "z221"}]}], "<", RowBox[{ SuperscriptBox["y11d", "2"], "+", RowBox[{"2", " ", "y11d", " ", "y22"}], "+", SuperscriptBox["y22", "2"], "+", "z11d0", "+", RowBox[{"q11d", " ", "z11d1"}], "+", RowBox[{"2", " ", "z220"}], "+", RowBox[{"2", " ", "q11d", " ", "z221"}]}]}]}], Short[#, 7]& ]], Annotation[#, Short[ And[ Element[ Alternatives[$CellContext`\[Lambda], $CellContext`\[Sigma]1^2, \ $CellContext`\[Sigma]12^2, $CellContext`\[Sigma]2^2, $CellContext`\[Omega]1 - \ $CellContext`\[Omega]2, $CellContext`\[Omega]2], Reals], ($CellContext`y11 - $CellContext`y11d) \ ($CellContext`y11d + $CellContext`y22) > 0, $CellContext`y11^2 + $CellContext`y11d^2 + 2 $CellContext`q11d $CellContext`z110 + $CellContext`q11d \ $CellContext`z11d1 > 2 $CellContext`y11 $CellContext`y11d + 2 $CellContext`q11d $CellContext`z111 + $CellContext`q11d \ $CellContext`z11d0, $CellContext`q11d $CellContext`z11d0 + $CellContext`z11d1 + 2 $CellContext`q11d $CellContext`z220 + 2 $CellContext`z221 < $CellContext`y11d^2 + 2 $CellContext`y11d $CellContext`y22 + $CellContext`y22^2 + \ $CellContext`z11d0 + $CellContext`q11d $CellContext`z11d1 + 2 $CellContext`z220 + 2 $CellContext`q11d $CellContext`z221], 7], "Tooltip"]& ], "IconizedCustomName", StripOnInput -> False], GridBox[{{ RowBox[{ TagBox["\"Head: \"", "IconizedLabel"], "\[InvisibleSpace]", TagBox["And", "IconizedItem"]}]}, { RowBox[{ TagBox["\"Byte count: \"", "IconizedLabel"], "\[InvisibleSpace]", TagBox["2424", "IconizedItem"]}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle -> "Column", GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], Dynamic[Typeset`open]}, "IconizedObject"]], And[ Element[ Alternatives[$CellContext`\[Lambda], $CellContext`\[Sigma]1^2, \ $CellContext`\[Sigma]12^2, $CellContext`\[Sigma]2^2, $CellContext`\[Omega]1 - \ $CellContext`\[Omega]2, $CellContext`\[Omega]2], Reals], ($CellContext`y11 - $CellContext`y11d) ($CellContext`y11d + \ $CellContext`y22) > 0, $CellContext`y11^2 + $CellContext`y11d^2 + 2 $CellContext`q11d $CellContext`z110 + $CellContext`q11d \ $CellContext`z11d1 > 2 $CellContext`y11 $CellContext`y11d + 2 $CellContext`q11d $CellContext`z111 + $CellContext`q11d \ $CellContext`z11d0, $CellContext`q11d $CellContext`z11d0 + $CellContext`z11d1 + 2 $CellContext`q11d $CellContext`z220 + 2 $CellContext`z221 < $CellContext`y11d^2 + 2 $CellContext`y11d $CellContext`y22 + $CellContext`y22^2 + \ $CellContext`z11d0 + $CellContext`q11d $CellContext`z11d1 + 2 $CellContext`z220 + 2 $CellContext`q11d $CellContext`z221], SelectWithContents -> True, Selectable -> False]}, "ConditionalExpression"]], "Output", CellChangeTimes->{{3.91629857167759*^9, 3.916298576072043*^9}, 3.9162986288507338`*^9, 3.916298913386046*^9, 3.916299048042665*^9, 3.916300980766387*^9, {3.916304148260252*^9, 3.916304167644823*^9}, { 3.916304209025281*^9, 3.916304244193405*^9}, 3.916304303361568*^9, 3.916306100930346*^9}, CellLabel-> "Out[147]=",ExpressionUUID->"2ab0480a-d3ff-4a97-b7ed-5c8b82ae738f"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"e4", "=", RowBox[{ RowBox[{ RowBox[{"Simplify", "[", RowBox[{ RowBox[{"Normal", "@", "e3"}], ",", RowBox[{"Assumptions", "->", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{ RowBox[{"2", " ", "y111"}], "-", "y11d0", "-", "y11d1"}], ">", "0"}], ",", RowBox[{ RowBox[{"y11d0", "+", "y11d1", "+", RowBox[{"2", " ", "y221"}]}], ">", "0"}]}], "}"}]}]}], "]"}], "//.", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{ RowBox[{"a_", " ", RowBox[{"Log", "[", "x_", "]"}]}], "+", RowBox[{"b_", " ", RowBox[{"Log", "[", "y_", "]"}]}]}], ":>", RowBox[{"Log", "[", RowBox[{ SuperscriptBox["x", "a"], SuperscriptBox["y", "b"]}], "]"}]}], ",", RowBox[{ RowBox[{ RowBox[{"Log", "[", "x_", "]"}], "+", RowBox[{"Log", "[", "y_", "]"}]}], ":>", RowBox[{"Log", "[", RowBox[{"x", " ", "y"}], "]"}]}], ",", RowBox[{ RowBox[{ RowBox[{"a_", " ", RowBox[{"Log", "[", "x_", "]"}]}], "+", RowBox[{"Log", "[", "y_", "]"}]}], ":>", RowBox[{"Log", "[", RowBox[{ SuperscriptBox["x", "a"], "y"}], "]"}]}]}], "}"}]}], "//", "FullSimplify"}]}]], "Input", CellChangeTimes->{{3.9163061144090433`*^9, 3.916306128800597*^9}, { 3.916306171306858*^9, 3.916306176994102*^9}}, CellLabel-> "In[149]:=",ExpressionUUID->"bb7b14e3-b7dc-4aab-b889-d2be5f9e5ca1"], Cell[BoxData[ RowBox[{ RowBox[{"q11d", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "4"}], " ", "z110"}], "+", RowBox[{"4", " ", "z111"}], "+", RowBox[{"2", " ", "z11d0"}], "-", RowBox[{"2", " ", "z11d1"}], "+", RowBox[{"\[Lambda]", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "4"}], " ", "y11"}], "+", RowBox[{"4", " ", "y11d"}], "+", RowBox[{"q11d", " ", "\[Lambda]"}]}], ")"}]}]}], ")"}], " ", SuperscriptBox["\[Sigma]1", "2"]}], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ", "z110"}], "+", RowBox[{"2", " ", "z111"}], "+", "z11d0", "-", "z11d1", "-", RowBox[{"2", " ", "q11d", " ", RowBox[{"(", RowBox[{"z111", "+", "z11d0", "-", "z11d1", "+", "z220", "-", "z221"}], ")"}]}], "-", RowBox[{"2", " ", "y11", " ", "\[Lambda]"}], "+", RowBox[{"2", " ", RowBox[{"(", RowBox[{"y11d", "+", RowBox[{"q11d", " ", RowBox[{"(", RowBox[{"y11", "-", RowBox[{"2", " ", "y11d"}], "-", "y22"}], ")"}]}]}], ")"}], " ", "\[Lambda]"}], "-", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ", "q11d", " ", SuperscriptBox["\[Lambda]", "2"]}]}], ")"}], " ", SuperscriptBox["\[Sigma]12", "2"]}], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ", RowBox[{"(", RowBox[{ RowBox[{"2", " ", "z11d0"}], "-", RowBox[{"2", " ", "z11d1"}], "+", RowBox[{"4", " ", "z220"}], "-", RowBox[{"4", " ", "z221"}], "+", RowBox[{"4", " ", RowBox[{"(", RowBox[{"y11d", "+", "y22"}], ")"}], " ", "\[Lambda]"}], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ", SuperscriptBox["\[Lambda]", "2"]}]}], ")"}], " ", SuperscriptBox["\[Sigma]2", "2"]}], "+", RowBox[{"\[Lambda]", " ", RowBox[{"(", RowBox[{ RowBox[{"q11d", " ", RowBox[{"(", RowBox[{"\[Omega]1", "-", "\[Omega]2"}], ")"}]}], "+", "\[Omega]2"}], ")"}]}], "+", RowBox[{ FractionBox["1", "2"], " ", RowBox[{"Log", "[", FractionBox[ RowBox[{ RowBox[{"(", RowBox[{ SuperscriptBox[ RowBox[{"(", RowBox[{"y11", "-", "y11d"}], ")"}], "2"], "+", RowBox[{"q11d", " ", RowBox[{"(", RowBox[{ RowBox[{"2", " ", "z110"}], "-", RowBox[{"2", " ", "z111"}], "-", "z11d0", "+", "z11d1"}], ")"}]}]}], ")"}], " ", RowBox[{"(", RowBox[{ SuperscriptBox[ RowBox[{"(", RowBox[{"y11d", "+", "y22"}], ")"}], "2"], "-", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ", RowBox[{"(", RowBox[{"z11d0", "-", "z11d1", "+", RowBox[{"2", " ", "z220"}], "-", RowBox[{"2", " ", "z221"}]}], ")"}]}]}], ")"}]}], RowBox[{ SuperscriptBox[ RowBox[{"(", RowBox[{"y11", "-", "y11d"}], ")"}], "2"], " ", SuperscriptBox[ RowBox[{"(", RowBox[{"y11d", "+", "y22"}], ")"}], "2"]}]], "]"}]}]}]], "Output", CellChangeTimes->{3.916306129445941*^9, 3.916306177534773*^9}, CellLabel-> "Out[149]=",ExpressionUUID->"dc4be792-83a9-4fbe-af25-cb419d9bd7f5"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"e4b", "=", RowBox[{"Simplify", "[", RowBox[{"Expand", "[", RowBox[{"e4", "/.", RowBox[{"{", RowBox[{ RowBox[{"z221", "->", RowBox[{"\[CapitalDelta]z22", "+", "z220"}]}], ",", RowBox[{"z111", "->", RowBox[{"\[CapitalDelta]z11", "+", "z110"}]}], ",", RowBox[{"z11d1", "->", RowBox[{"\[CapitalDelta]z11d", "+", "z11d0"}]}]}], "}"}]}], "]"}], "]"}]}]], "Input", CellChangeTimes->{{3.9163074389935617`*^9, 3.916307451689497*^9}, { 3.916307529018978*^9, 3.9163075884521923`*^9}, {3.916307619718061*^9, 3.916307627004951*^9}}, CellLabel-> "In[190]:=",ExpressionUUID->"e749859b-f1bb-4500-b28b-6db621a38217"], Cell[BoxData[ RowBox[{ RowBox[{"2", " ", "\[CapitalDelta]z11", " ", SuperscriptBox["\[Sigma]12", "2"]}], "-", RowBox[{"\[CapitalDelta]z11d", " ", SuperscriptBox["\[Sigma]12", "2"]}], "-", RowBox[{"2", " ", "y11", " ", "\[Lambda]", " ", SuperscriptBox["\[Sigma]12", "2"]}], "+", RowBox[{"2", " ", "y11d", " ", "\[Lambda]", " ", SuperscriptBox["\[Sigma]12", "2"]}], "+", RowBox[{"2", " ", "\[CapitalDelta]z11d", " ", SuperscriptBox["\[Sigma]2", "2"]}], "+", RowBox[{"4", " ", "\[CapitalDelta]z22", " ", SuperscriptBox["\[Sigma]2", "2"]}], "-", RowBox[{"4", " ", "y11d", " ", "\[Lambda]", " ", SuperscriptBox["\[Sigma]2", "2"]}], "-", RowBox[{"4", " ", "y22", " ", "\[Lambda]", " ", SuperscriptBox["\[Sigma]2", "2"]}], "+", RowBox[{ SuperscriptBox["\[Lambda]", "2"], " ", SuperscriptBox["\[Sigma]2", "2"]}], "+", RowBox[{ SuperscriptBox["q11d", "2"], " ", SuperscriptBox["\[Lambda]", "2"], " ", RowBox[{"(", RowBox[{ SuperscriptBox["\[Sigma]1", "2"], "-", SuperscriptBox["\[Sigma]12", "2"], "+", SuperscriptBox["\[Sigma]2", "2"]}], ")"}]}], "+", RowBox[{"\[Lambda]", " ", "\[Omega]2"}], "+", RowBox[{"q11d", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "4"}], " ", "y11", " ", "\[Lambda]", " ", SuperscriptBox["\[Sigma]1", "2"]}], "+", RowBox[{"4", " ", "y11d", " ", "\[Lambda]", " ", SuperscriptBox["\[Sigma]1", "2"]}], "+", RowBox[{"2", " ", "\[CapitalDelta]z22", " ", SuperscriptBox["\[Sigma]12", "2"]}], "+", RowBox[{"2", " ", "y11", " ", "\[Lambda]", " ", SuperscriptBox["\[Sigma]12", "2"]}], "-", RowBox[{"4", " ", "y11d", " ", "\[Lambda]", " ", SuperscriptBox["\[Sigma]12", "2"]}], "-", RowBox[{"2", " ", "y22", " ", "\[Lambda]", " ", SuperscriptBox["\[Sigma]12", "2"]}], "+", RowBox[{ SuperscriptBox["\[Lambda]", "2"], " ", SuperscriptBox["\[Sigma]12", "2"]}], "+", RowBox[{"\[CapitalDelta]z11", " ", RowBox[{"(", RowBox[{ RowBox[{"4", " ", SuperscriptBox["\[Sigma]1", "2"]}], "-", RowBox[{"2", " ", SuperscriptBox["\[Sigma]12", "2"]}]}], ")"}]}], "-", RowBox[{"4", " ", "\[CapitalDelta]z22", " ", SuperscriptBox["\[Sigma]2", "2"]}], "+", RowBox[{"4", " ", "y11d", " ", "\[Lambda]", " ", SuperscriptBox["\[Sigma]2", "2"]}], "+", RowBox[{"4", " ", "y22", " ", "\[Lambda]", " ", SuperscriptBox["\[Sigma]2", "2"]}], "-", RowBox[{"2", " ", SuperscriptBox["\[Lambda]", "2"], " ", SuperscriptBox["\[Sigma]2", "2"]}], "-", RowBox[{"2", " ", "\[CapitalDelta]z11d", " ", RowBox[{"(", RowBox[{ SuperscriptBox["\[Sigma]1", "2"], "-", SuperscriptBox["\[Sigma]12", "2"], "+", SuperscriptBox["\[Sigma]2", "2"]}], ")"}]}], "+", RowBox[{"\[Lambda]", " ", "\[Omega]1"}], "-", RowBox[{"\[Lambda]", " ", "\[Omega]2"}]}], ")"}]}], "+", RowBox[{ FractionBox["1", "2"], " ", RowBox[{"Log", "[", FractionBox[ RowBox[{ RowBox[{"(", RowBox[{ SuperscriptBox["y11", "2"], "-", RowBox[{"2", " ", "y11", " ", "y11d"}], "+", SuperscriptBox["y11d", "2"], "+", RowBox[{"q11d", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", "\[CapitalDelta]z11"}], "+", "\[CapitalDelta]z11d"}], ")"}]}]}], ")"}], " ", RowBox[{"(", RowBox[{ SuperscriptBox["y11d", "2"], "+", RowBox[{"2", " ", "y11d", " ", "y22"}], "+", SuperscriptBox["y22", "2"], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ", RowBox[{"(", RowBox[{"\[CapitalDelta]z11d", "+", RowBox[{"2", " ", "\[CapitalDelta]z22"}]}], ")"}]}]}], ")"}]}], RowBox[{ SuperscriptBox[ RowBox[{"(", RowBox[{"y11", "-", "y11d"}], ")"}], "2"], " ", SuperscriptBox[ RowBox[{"(", RowBox[{"y11d", "+", "y22"}], ")"}], "2"]}]], "]"}]}]}]], "Output", CellChangeTimes->{ 3.916307451989723*^9, {3.916307534293832*^9, 3.916307556879973*^9}, 3.9163075887662687`*^9, 3.91630762725112*^9}, CellLabel-> "Out[190]=",ExpressionUUID->"d7d109d7-3932-47b3-bf98-64b81ad6ca17"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"vars", "=", RowBox[{"DeleteCases", "[", RowBox[{ RowBox[{"DeleteDuplicates", "[", RowBox[{"Cases", "[", RowBox[{"e4b", ",", "_Symbol", ",", "\[Infinity]"}], "]"}], "]"}], ",", RowBox[{ "\[Sigma]1", "|", "\[Sigma]2", "|", "\[Sigma]12", "|", "\[Omega]1", "|", "\[Omega]2"}]}], "]"}]}]], "Input", CellChangeTimes->{{3.91630645323995*^9, 3.916306518055871*^9}, { 3.916306548840878*^9, 3.916306571632999*^9}, {3.916306682771284*^9, 3.9163066847951736`*^9}, 3.9163076714139023`*^9}, CellLabel-> "In[192]:=",ExpressionUUID->"1e958760-e7cd-4052-b9b9-908474376dba"], Cell[BoxData[ RowBox[{"{", RowBox[{ "\[CapitalDelta]z11", ",", "\[CapitalDelta]z11d", ",", "y11", ",", "\[Lambda]", ",", "y11d", ",", "\[CapitalDelta]z22", ",", "y22", ",", "q11d"}], "}"}]], "Output", CellChangeTimes->{{3.916306476040718*^9, 3.916306487378581*^9}, 3.9163065182673597`*^9, {3.916306549895364*^9, 3.916306571833789*^9}, 3.9163066850931463`*^9, 3.9163076715873632`*^9}, CellLabel-> "Out[192]=",ExpressionUUID->"2ad54e2e-1894-4c5a-b49c-69dc3d8f2778"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"e5", "=", RowBox[{"FullSimplify", "[", RowBox[{"D", "[", RowBox[{"e4b", ",", RowBox[{"{", "vars", "}"}]}], "]"}], "]"}]}]], "Input", CellChangeTimes->{{3.916306182930187*^9, 3.9163061983138933`*^9}, { 3.9163062341868353`*^9, 3.916306245274665*^9}, {3.916306276772037*^9, 3.916306302339899*^9}, {3.91630637323778*^9, 3.916306443895063*^9}, { 3.9163065541449223`*^9, 3.9163065620247793`*^9}, {3.916306598561689*^9, 3.916306617305822*^9}, {3.9163066786830597`*^9, 3.9163066797629766`*^9}, { 3.91630743178557*^9, 3.916307437233692*^9}, {3.91630767551791*^9, 3.916307676174046*^9}}, CellLabel-> "In[193]:=",ExpressionUUID->"e3e9458f-95e8-4772-8a74-726345ff1051"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"2", " ", SuperscriptBox["\[Sigma]12", "2"]}], "+", RowBox[{"q11d", " ", RowBox[{"(", RowBox[{ RowBox[{"-", FractionBox["1", RowBox[{ SuperscriptBox[ RowBox[{"(", RowBox[{"y11", "-", "y11d"}], ")"}], "2"], "+", RowBox[{"q11d", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", "\[CapitalDelta]z11"}], "+", "\[CapitalDelta]z11d"}], ")"}]}]}]]}], "+", RowBox[{"4", " ", SuperscriptBox["\[Sigma]1", "2"]}], "-", RowBox[{"2", " ", SuperscriptBox["\[Sigma]12", "2"]}]}], ")"}]}]}], ",", RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{ FractionBox["q11d", RowBox[{ SuperscriptBox[ RowBox[{"(", RowBox[{"y11", "-", "y11d"}], ")"}], "2"], "+", RowBox[{"q11d", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", "\[CapitalDelta]z11"}], "+", "\[CapitalDelta]z11d"}], ")"}]}]}]], "+", FractionBox[ RowBox[{ RowBox[{"-", "1"}], "+", "q11d"}], RowBox[{ SuperscriptBox[ RowBox[{"(", RowBox[{"y11d", "+", "y22"}], ")"}], "2"], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ", RowBox[{"(", RowBox[{"\[CapitalDelta]z11d", "+", RowBox[{"2", " ", "\[CapitalDelta]z22"}]}], ")"}]}]}]], "-", RowBox[{"2", " ", SuperscriptBox["\[Sigma]12", "2"]}], "+", RowBox[{"4", " ", SuperscriptBox["\[Sigma]2", "2"]}], "-", RowBox[{"4", " ", "q11d", " ", RowBox[{"(", RowBox[{ SuperscriptBox["\[Sigma]1", "2"], "-", SuperscriptBox["\[Sigma]12", "2"], "+", SuperscriptBox["\[Sigma]2", "2"]}], ")"}]}]}], ")"}]}], ",", FractionBox[ RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", SuperscriptBox[ RowBox[{"(", RowBox[{"y11", "-", "y11d"}], ")"}], "3"], " ", "\[Lambda]", " ", SuperscriptBox["\[Sigma]12", "2"]}], "+", RowBox[{"2", " ", SuperscriptBox["q11d", "2"], " ", RowBox[{"(", RowBox[{"y11", "-", "y11d"}], ")"}], " ", RowBox[{"(", RowBox[{ RowBox[{"2", " ", "\[CapitalDelta]z11"}], "-", "\[CapitalDelta]z11d"}], ")"}], " ", "\[Lambda]", " ", RowBox[{"(", RowBox[{ RowBox[{"2", " ", SuperscriptBox["\[Sigma]1", "2"]}], "-", SuperscriptBox["\[Sigma]12", "2"]}], ")"}]}], "+", RowBox[{"q11d", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "\[CapitalDelta]z11d"}], "-", RowBox[{"2", " ", SuperscriptBox[ RowBox[{"(", RowBox[{"y11", "-", "y11d"}], ")"}], "3"], " ", "\[Lambda]", " ", RowBox[{"(", RowBox[{ RowBox[{"2", " ", SuperscriptBox["\[Sigma]1", "2"]}], "-", SuperscriptBox["\[Sigma]12", "2"]}], ")"}]}], "+", RowBox[{"2", " ", RowBox[{"(", RowBox[{"\[CapitalDelta]z11", "+", RowBox[{ RowBox[{"(", RowBox[{"y11", "-", "y11d"}], ")"}], " ", RowBox[{"(", RowBox[{ RowBox[{"2", " ", "\[CapitalDelta]z11"}], "-", "\[CapitalDelta]z11d"}], ")"}], " ", "\[Lambda]", " ", SuperscriptBox["\[Sigma]12", "2"]}]}], ")"}]}]}], ")"}]}]}], RowBox[{ RowBox[{"(", RowBox[{"y11", "-", "y11d"}], ")"}], " ", RowBox[{"(", RowBox[{ SuperscriptBox[ RowBox[{"(", RowBox[{"y11", "-", "y11d"}], ")"}], "2"], "+", RowBox[{"q11d", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", "\[CapitalDelta]z11"}], "+", "\[CapitalDelta]z11d"}], ")"}]}]}], ")"}]}]], ",", RowBox[{ RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "y11"}], "+", "y11d"}], ")"}], " ", SuperscriptBox["\[Sigma]12", "2"]}], "+", RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", RowBox[{"(", RowBox[{"y11d", "+", "y22"}], ")"}]}], "+", "\[Lambda]"}], ")"}], " ", SuperscriptBox["\[Sigma]2", "2"]}], "+", RowBox[{"2", " ", SuperscriptBox["q11d", "2"], " ", "\[Lambda]", " ", RowBox[{"(", RowBox[{ SuperscriptBox["\[Sigma]1", "2"], "-", SuperscriptBox["\[Sigma]12", "2"], "+", SuperscriptBox["\[Sigma]2", "2"]}], ")"}]}], "+", RowBox[{"q11d", " ", RowBox[{"(", RowBox[{ RowBox[{"2", " ", "y11", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", SuperscriptBox["\[Sigma]1", "2"]}], "+", SuperscriptBox["\[Sigma]12", "2"]}], ")"}]}], "-", RowBox[{"2", " ", RowBox[{"(", RowBox[{"y22", "-", "\[Lambda]"}], ")"}], " ", RowBox[{"(", RowBox[{ SuperscriptBox["\[Sigma]12", "2"], "-", RowBox[{"2", " ", SuperscriptBox["\[Sigma]2", "2"]}]}], ")"}]}], "+", RowBox[{"4", " ", "y11d", " ", RowBox[{"(", RowBox[{ SuperscriptBox["\[Sigma]1", "2"], "-", SuperscriptBox["\[Sigma]12", "2"], "+", SuperscriptBox["\[Sigma]2", "2"]}], ")"}]}], "+", "\[Omega]1", "-", "\[Omega]2"}], ")"}]}], "+", "\[Omega]2"}], ",", RowBox[{ FractionBox["1", RowBox[{"y11", "-", "y11d"}]], "-", FractionBox["1", RowBox[{"y11d", "+", "y22"}]], "+", FractionBox[ RowBox[{ RowBox[{"-", "y11"}], "+", "y11d"}], RowBox[{ SuperscriptBox[ RowBox[{"(", RowBox[{"y11", "-", "y11d"}], ")"}], "2"], "+", RowBox[{"q11d", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", "\[CapitalDelta]z11"}], "+", "\[CapitalDelta]z11d"}], ")"}]}]}]], "+", FractionBox[ RowBox[{"y11d", "+", "y22"}], RowBox[{ SuperscriptBox[ RowBox[{"(", RowBox[{"y11d", "+", "y22"}], ")"}], "2"], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ", RowBox[{"(", RowBox[{"\[CapitalDelta]z11d", "+", RowBox[{"2", " ", "\[CapitalDelta]z22"}]}], ")"}]}]}]], "+", RowBox[{"2", " ", "\[Lambda]", " ", RowBox[{"(", RowBox[{ SuperscriptBox["\[Sigma]12", "2"], "-", RowBox[{"2", " ", SuperscriptBox["\[Sigma]2", "2"]}], "+", RowBox[{"2", " ", "q11d", " ", RowBox[{"(", RowBox[{ SuperscriptBox["\[Sigma]1", "2"], "-", SuperscriptBox["\[Sigma]12", "2"], "+", SuperscriptBox["\[Sigma]2", "2"]}], ")"}]}]}], ")"}]}]}], ",", RowBox[{ FractionBox[ RowBox[{ RowBox[{"-", "1"}], "+", "q11d"}], RowBox[{ SuperscriptBox[ RowBox[{"(", RowBox[{"y11d", "+", "y22"}], ")"}], "2"], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ", RowBox[{"(", RowBox[{"\[CapitalDelta]z11d", "+", RowBox[{"2", " ", "\[CapitalDelta]z22"}]}], ")"}]}]}]], "+", RowBox[{"4", " ", SuperscriptBox["\[Sigma]2", "2"]}], "+", RowBox[{"2", " ", "q11d", " ", RowBox[{"(", RowBox[{ SuperscriptBox["\[Sigma]12", "2"], "-", RowBox[{"2", " ", SuperscriptBox["\[Sigma]2", "2"]}]}], ")"}]}]}], ",", RowBox[{ RowBox[{"-", FractionBox["1", RowBox[{"y11d", "+", "y22"}]]}], "+", FractionBox[ RowBox[{"y11d", "+", "y22"}], RowBox[{ SuperscriptBox[ RowBox[{"(", RowBox[{"y11d", "+", "y22"}], ")"}], "2"], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ", RowBox[{"(", RowBox[{"\[CapitalDelta]z11d", "+", RowBox[{"2", " ", "\[CapitalDelta]z22"}]}], ")"}]}]}]], "-", RowBox[{"2", " ", "q11d", " ", "\[Lambda]", " ", SuperscriptBox["\[Sigma]12", "2"]}], "+", RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ", "\[Lambda]", " ", SuperscriptBox["\[Sigma]2", "2"]}]}], ",", RowBox[{ FractionBox[ RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", "\[CapitalDelta]z11"}], "+", "\[CapitalDelta]z11d"}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ SuperscriptBox[ RowBox[{"(", RowBox[{"y11", "-", "y11d"}], ")"}], "2"], "+", RowBox[{"q11d", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", "\[CapitalDelta]z11"}], "+", "\[CapitalDelta]z11d"}], ")"}]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[CapitalDelta]z11d", "+", RowBox[{"2", " ", "\[CapitalDelta]z22"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ SuperscriptBox[ RowBox[{"(", RowBox[{"y11d", "+", "y22"}], ")"}], "2"], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ", RowBox[{"(", RowBox[{"\[CapitalDelta]z11d", "+", RowBox[{"2", " ", "\[CapitalDelta]z22"}]}], ")"}]}]}], ")"}]}]], "-", RowBox[{"4", " ", "y11", " ", "\[Lambda]", " ", SuperscriptBox["\[Sigma]1", "2"]}], "+", RowBox[{"4", " ", "y11d", " ", "\[Lambda]", " ", SuperscriptBox["\[Sigma]1", "2"]}], "+", RowBox[{"2", " ", "\[CapitalDelta]z22", " ", SuperscriptBox["\[Sigma]12", "2"]}], "+", RowBox[{"2", " ", "y11", " ", "\[Lambda]", " ", SuperscriptBox["\[Sigma]12", "2"]}], "-", RowBox[{"4", " ", "y11d", " ", "\[Lambda]", " ", SuperscriptBox["\[Sigma]12", "2"]}], "-", RowBox[{"2", " ", "y22", " ", "\[Lambda]", " ", SuperscriptBox["\[Sigma]12", "2"]}], "+", RowBox[{ SuperscriptBox["\[Lambda]", "2"], " ", SuperscriptBox["\[Sigma]12", "2"]}], "+", RowBox[{"\[CapitalDelta]z11", " ", RowBox[{"(", RowBox[{ RowBox[{"4", " ", SuperscriptBox["\[Sigma]1", "2"]}], "-", RowBox[{"2", " ", SuperscriptBox["\[Sigma]12", "2"]}]}], ")"}]}], "-", RowBox[{"4", " ", "\[CapitalDelta]z22", " ", SuperscriptBox["\[Sigma]2", "2"]}], "+", RowBox[{"4", " ", "y11d", " ", "\[Lambda]", " ", SuperscriptBox["\[Sigma]2", "2"]}], "+", RowBox[{"4", " ", "y22", " ", "\[Lambda]", " ", SuperscriptBox["\[Sigma]2", "2"]}], "-", RowBox[{"2", " ", SuperscriptBox["\[Lambda]", "2"], " ", SuperscriptBox["\[Sigma]2", "2"]}], "-", RowBox[{"2", " ", "\[CapitalDelta]z11d", " ", RowBox[{"(", RowBox[{ SuperscriptBox["\[Sigma]1", "2"], "-", SuperscriptBox["\[Sigma]12", "2"], "+", SuperscriptBox["\[Sigma]2", "2"]}], ")"}]}], "+", RowBox[{"2", " ", "q11d", " ", SuperscriptBox["\[Lambda]", "2"], " ", RowBox[{"(", RowBox[{ SuperscriptBox["\[Sigma]1", "2"], "-", SuperscriptBox["\[Sigma]12", "2"], "+", SuperscriptBox["\[Sigma]2", "2"]}], ")"}]}], "+", RowBox[{"\[Lambda]", " ", "\[Omega]1"}], "-", RowBox[{"\[Lambda]", " ", "\[Omega]2"}]}]}], "}"}]], "Output", CellChangeTimes->{ 3.916306314288726*^9, {3.916306389414822*^9, 3.916306432679513*^9}, { 3.916306554797228*^9, 3.916306572968211*^9}, {3.916306608568012*^9, 3.916306617767157*^9}, 3.9163066877696*^9, 3.916307679688073*^9}, CellLabel-> "Out[193]=",ExpressionUUID->"365b5ad7-7989-4846-bb39-0e6808cb0ccd"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"e6", "=", RowBox[{"Solve", "[", RowBox[{ RowBox[{"0", "==", "e5"}], ",", "vars"}], "]"}]}], ";"}]], "Input", CellChangeTimes->{{3.916299357672659*^9, 3.9162993963854647`*^9}, { 3.9162994291231127`*^9, 3.916299436346179*^9}, {3.9162994947078943`*^9, 3.916299497532009*^9}, {3.916300237985333*^9, 3.916300239561335*^9}, { 3.916301093498351*^9, 3.916301096825685*^9}, {3.916301280741534*^9, 3.91630128409282*^9}, {3.916304185548315*^9, 3.916304185643602*^9}, { 3.916306619882201*^9, 3.91630661997779*^9}, {3.916307689094699*^9, 3.9163076903981667`*^9}}, CellLabel-> "In[195]:=",ExpressionUUID->"13c24c5e-bb61-4d7d-b2bf-3c3997d9edaa"], Cell[BoxData["$Aborted"], "Output", CellChangeTimes->{3.916307376674399*^9, 3.916307687091338*^9, 3.9163143688834*^9}, CellLabel-> "Out[195]=",ExpressionUUID->"98447f30-3d37-4177-8919-efee0d8245af"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData["e6"], "Input", CellChangeTimes->{{3.916306622954783*^9, 3.916306623129745*^9}}, CellLabel-> "In[177]:=",ExpressionUUID->"af6aac65-5a4e-453d-b4b6-17d282a20e18"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"y11", "\[Rule]", FractionBox[ RowBox[{ RowBox[{"4", " ", "q11d", " ", "y11d", " ", SuperscriptBox["\[Sigma]1", "2"]}], "+", RowBox[{"2", " ", "y11d", " ", SuperscriptBox["\[Sigma]12", "2"]}], "-", RowBox[{"2", " ", "q11d", " ", "y11d", " ", SuperscriptBox["\[Sigma]12", "2"]}], "-", RowBox[{ SqrtBox["2"], " ", SqrtBox[ RowBox[{ RowBox[{"2", " ", SuperscriptBox["q11d", "2"], " ", SuperscriptBox["\[Sigma]1", "2"]}], "+", RowBox[{"q11d", " ", SuperscriptBox["\[Sigma]12", "2"]}], "-", RowBox[{ SuperscriptBox["q11d", "2"], " ", SuperscriptBox["\[Sigma]12", "2"]}]}]]}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"2", " ", "q11d", " ", SuperscriptBox["\[Sigma]1", "2"]}], "+", SuperscriptBox["\[Sigma]12", "2"], "-", RowBox[{"q11d", " ", SuperscriptBox["\[Sigma]12", "2"]}]}], ")"}]}]]}], ",", RowBox[{"y22", "\[Rule]", FractionBox[ RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", "q11d", " ", "y11d", " ", SuperscriptBox["\[Sigma]12", "2"]}], "-", RowBox[{"4", " ", "y11d", " ", SuperscriptBox["\[Sigma]2", "2"]}], "+", RowBox[{"4", " ", "q11d", " ", "y11d", " ", SuperscriptBox["\[Sigma]2", "2"]}], "-", RowBox[{ SqrtBox["2"], " ", SqrtBox[ RowBox[{ RowBox[{"q11d", " ", SuperscriptBox["\[Sigma]12", "2"]}], "-", RowBox[{ SuperscriptBox["q11d", "2"], " ", SuperscriptBox["\[Sigma]12", "2"]}], "+", RowBox[{"2", " ", SuperscriptBox["\[Sigma]2", "2"]}], "-", RowBox[{"4", " ", "q11d", " ", SuperscriptBox["\[Sigma]2", "2"]}], "+", RowBox[{"2", " ", SuperscriptBox["q11d", "2"], " ", SuperscriptBox["\[Sigma]2", "2"]}]}]]}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"q11d", " ", SuperscriptBox["\[Sigma]12", "2"]}], "+", RowBox[{"2", " ", SuperscriptBox["\[Sigma]2", "2"]}], "-", RowBox[{"2", " ", "q11d", " ", SuperscriptBox["\[Sigma]2", "2"]}]}], ")"}]}]]}], ",", RowBox[{"z111", "\[Rule]", RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"2", " ", "z110"}], "-", "z11d0", "+", "z11d1"}], ")"}]}]}], ",", RowBox[{"z221", "\[Rule]", RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"z11d0", "-", "z11d1", "+", RowBox[{"2", " ", "z220"}]}], ")"}]}]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"y11", "\[Rule]", FractionBox[ RowBox[{ RowBox[{"4", " ", "q11d", " ", "y11d", " ", SuperscriptBox["\[Sigma]1", "2"]}], "+", RowBox[{"2", " ", "y11d", " ", SuperscriptBox["\[Sigma]12", "2"]}], "-", RowBox[{"2", " ", "q11d", " ", "y11d", " ", SuperscriptBox["\[Sigma]12", "2"]}], "-", RowBox[{ SqrtBox["2"], " ", SqrtBox[ RowBox[{ RowBox[{"2", " ", SuperscriptBox["q11d", "2"], " ", SuperscriptBox["\[Sigma]1", "2"]}], "+", RowBox[{"q11d", " ", SuperscriptBox["\[Sigma]12", "2"]}], "-", RowBox[{ SuperscriptBox["q11d", "2"], " ", SuperscriptBox["\[Sigma]12", "2"]}]}]]}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"2", " ", "q11d", " ", SuperscriptBox["\[Sigma]1", "2"]}], "+", SuperscriptBox["\[Sigma]12", "2"], "-", RowBox[{"q11d", " ", SuperscriptBox["\[Sigma]12", "2"]}]}], ")"}]}]]}], ",", RowBox[{"y22", "\[Rule]", FractionBox[ RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", "q11d", " ", "y11d", " ", SuperscriptBox["\[Sigma]12", "2"]}], "-", RowBox[{"4", " ", "y11d", " ", SuperscriptBox["\[Sigma]2", "2"]}], "+", RowBox[{"4", " ", "q11d", " ", "y11d", " ", SuperscriptBox["\[Sigma]2", "2"]}], "+", RowBox[{ SqrtBox["2"], " ", SqrtBox[ RowBox[{ RowBox[{"q11d", " ", SuperscriptBox["\[Sigma]12", "2"]}], "-", RowBox[{ SuperscriptBox["q11d", "2"], " ", SuperscriptBox["\[Sigma]12", "2"]}], "+", RowBox[{"2", " ", SuperscriptBox["\[Sigma]2", "2"]}], "-", RowBox[{"4", " ", "q11d", " ", SuperscriptBox["\[Sigma]2", "2"]}], "+", RowBox[{"2", " ", SuperscriptBox["q11d", "2"], " ", SuperscriptBox["\[Sigma]2", "2"]}]}]]}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"q11d", " ", SuperscriptBox["\[Sigma]12", "2"]}], "+", RowBox[{"2", " ", SuperscriptBox["\[Sigma]2", "2"]}], "-", RowBox[{"2", " ", "q11d", " ", SuperscriptBox["\[Sigma]2", "2"]}]}], ")"}]}]]}], ",", RowBox[{"z111", "\[Rule]", RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"2", " ", "z110"}], "-", "z11d0", "+", "z11d1"}], ")"}]}]}], ",", RowBox[{"z221", "\[Rule]", RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"z11d0", "-", "z11d1", "+", RowBox[{"2", " ", "z220"}]}], ")"}]}]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"y11", "\[Rule]", FractionBox[ RowBox[{ RowBox[{"4", " ", "q11d", " ", "y11d", " ", SuperscriptBox["\[Sigma]1", "2"]}], "+", RowBox[{"2", " ", "y11d", " ", SuperscriptBox["\[Sigma]12", "2"]}], "-", RowBox[{"2", " ", "q11d", " ", "y11d", " ", SuperscriptBox["\[Sigma]12", "2"]}], "+", RowBox[{ SqrtBox["2"], " ", SqrtBox[ RowBox[{ RowBox[{"2", " ", SuperscriptBox["q11d", "2"], " ", SuperscriptBox["\[Sigma]1", "2"]}], "+", RowBox[{"q11d", " ", SuperscriptBox["\[Sigma]12", "2"]}], "-", RowBox[{ SuperscriptBox["q11d", "2"], " ", SuperscriptBox["\[Sigma]12", "2"]}]}]]}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"2", " ", "q11d", " ", SuperscriptBox["\[Sigma]1", "2"]}], "+", SuperscriptBox["\[Sigma]12", "2"], "-", RowBox[{"q11d", " ", SuperscriptBox["\[Sigma]12", "2"]}]}], ")"}]}]]}], ",", RowBox[{"y22", "\[Rule]", FractionBox[ RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", "q11d", " ", "y11d", " ", SuperscriptBox["\[Sigma]12", "2"]}], "-", RowBox[{"4", " ", "y11d", " ", SuperscriptBox["\[Sigma]2", "2"]}], "+", RowBox[{"4", " ", "q11d", " ", "y11d", " ", SuperscriptBox["\[Sigma]2", "2"]}], "-", RowBox[{ SqrtBox["2"], " ", SqrtBox[ RowBox[{ RowBox[{"q11d", " ", SuperscriptBox["\[Sigma]12", "2"]}], "-", RowBox[{ SuperscriptBox["q11d", "2"], " ", SuperscriptBox["\[Sigma]12", "2"]}], "+", RowBox[{"2", " ", SuperscriptBox["\[Sigma]2", "2"]}], "-", RowBox[{"4", " ", "q11d", " ", SuperscriptBox["\[Sigma]2", "2"]}], "+", RowBox[{"2", " ", SuperscriptBox["q11d", "2"], " ", SuperscriptBox["\[Sigma]2", "2"]}]}]]}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"q11d", " ", SuperscriptBox["\[Sigma]12", "2"]}], "+", RowBox[{"2", " ", SuperscriptBox["\[Sigma]2", "2"]}], "-", RowBox[{"2", " ", "q11d", " ", SuperscriptBox["\[Sigma]2", "2"]}]}], ")"}]}]]}], ",", RowBox[{"z111", "\[Rule]", RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"2", " ", "z110"}], "-", "z11d0", "+", "z11d1"}], ")"}]}]}], ",", RowBox[{"z221", "\[Rule]", RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"z11d0", "-", "z11d1", "+", RowBox[{"2", " ", "z220"}]}], ")"}]}]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"y11", "\[Rule]", FractionBox[ RowBox[{ RowBox[{"4", " ", "q11d", " ", "y11d", " ", SuperscriptBox["\[Sigma]1", "2"]}], "+", RowBox[{"2", " ", "y11d", " ", SuperscriptBox["\[Sigma]12", "2"]}], "-", RowBox[{"2", " ", "q11d", " ", "y11d", " ", SuperscriptBox["\[Sigma]12", "2"]}], "+", RowBox[{ SqrtBox["2"], " ", SqrtBox[ RowBox[{ RowBox[{"2", " ", SuperscriptBox["q11d", "2"], " ", SuperscriptBox["\[Sigma]1", "2"]}], "+", RowBox[{"q11d", " ", SuperscriptBox["\[Sigma]12", "2"]}], "-", RowBox[{ SuperscriptBox["q11d", "2"], " ", SuperscriptBox["\[Sigma]12", "2"]}]}]]}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"2", " ", "q11d", " ", SuperscriptBox["\[Sigma]1", "2"]}], "+", SuperscriptBox["\[Sigma]12", "2"], "-", RowBox[{"q11d", " ", SuperscriptBox["\[Sigma]12", "2"]}]}], ")"}]}]]}], ",", RowBox[{"y22", "\[Rule]", FractionBox[ RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", "q11d", " ", "y11d", " ", SuperscriptBox["\[Sigma]12", "2"]}], "-", RowBox[{"4", " ", "y11d", " ", SuperscriptBox["\[Sigma]2", "2"]}], "+", RowBox[{"4", " ", "q11d", " ", "y11d", " ", SuperscriptBox["\[Sigma]2", "2"]}], "+", RowBox[{ SqrtBox["2"], " ", SqrtBox[ RowBox[{ RowBox[{"q11d", " ", SuperscriptBox["\[Sigma]12", "2"]}], "-", RowBox[{ SuperscriptBox["q11d", "2"], " ", SuperscriptBox["\[Sigma]12", "2"]}], "+", RowBox[{"2", " ", SuperscriptBox["\[Sigma]2", "2"]}], "-", RowBox[{"4", " ", "q11d", " ", SuperscriptBox["\[Sigma]2", "2"]}], "+", RowBox[{"2", " ", SuperscriptBox["q11d", "2"], " ", SuperscriptBox["\[Sigma]2", "2"]}]}]]}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"q11d", " ", SuperscriptBox["\[Sigma]12", "2"]}], "+", RowBox[{"2", " ", SuperscriptBox["\[Sigma]2", "2"]}], "-", RowBox[{"2", " ", "q11d", " ", SuperscriptBox["\[Sigma]2", "2"]}]}], ")"}]}]]}], ",", RowBox[{"z111", "\[Rule]", RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"2", " ", "z110"}], "-", "z11d0", "+", "z11d1"}], ")"}]}]}], ",", RowBox[{"z221", "\[Rule]", RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"z11d0", "-", "z11d1", "+", RowBox[{"2", " ", "z220"}]}], ")"}]}]}]}], "}"}]}], "}"}]], "Output",\ CellChangeTimes->{3.916306623405658*^9}, CellLabel-> "Out[177]=",ExpressionUUID->"3e4a980e-1533-48dd-9ff1-621494d5b9c2"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Length", "[", "e6", "]"}]], "Input", CellChangeTimes->{{3.916304187772374*^9, 3.916304196652034*^9}, 3.91630425246096*^9}, CellLabel-> "In[178]:=",ExpressionUUID->"f42329fb-b20f-4aaa-a8d2-db55af9748ac"], Cell[BoxData["4"], "Output", CellChangeTimes->{{3.916304188583995*^9, 3.916304190812088*^9}, 3.916304252619479*^9, 3.916306624523417*^9}, CellLabel-> "Out[178]=",ExpressionUUID->"05e474ca-1e55-4d23-afd9-d0f3a09207a6"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData["e6"], "Input", CellChangeTimes->{{3.9163042537897387`*^9, 3.916304254012751*^9}}, CellLabel-> "In[134]:=",ExpressionUUID->"d10961b8-b152-4e5e-9c29-4145a2972d3d"], Cell[BoxData[ RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"y11", "\[Rule]", FractionBox[ RowBox[{ RowBox[{"4", " ", SuperscriptBox["q11d", "2"], " ", "y11d", " ", SuperscriptBox["\[Sigma]1", "2"], " ", SuperscriptBox["\[Sigma]12", "2"]}], "+", RowBox[{"2", " ", SuperscriptBox["q11d", "3"], " ", "\[Lambda]", " ", SuperscriptBox["\[Sigma]1", "2"], " ", SuperscriptBox["\[Sigma]12", "2"]}], "+", RowBox[{"16", " ", "q11d", " ", "y11d", " ", SuperscriptBox["\[Sigma]1", "2"], " ", SuperscriptBox["\[Sigma]2", "2"]}], "-", RowBox[{"16", " ", SuperscriptBox["q11d", "2"], " ", "y11d", " ", SuperscriptBox["\[Sigma]1", "2"], " ", SuperscriptBox["\[Sigma]2", "2"]}], "+", RowBox[{"8", " ", SuperscriptBox["q11d", "2"], " ", "\[Lambda]", " ", SuperscriptBox["\[Sigma]1", "2"], " ", SuperscriptBox["\[Sigma]2", "2"]}], "-", RowBox[{"8", " ", SuperscriptBox["q11d", "3"], " ", "\[Lambda]", " ", SuperscriptBox["\[Sigma]1", "2"], " ", SuperscriptBox["\[Sigma]2", "2"]}], "+", RowBox[{"4", " ", "y11d", " ", SuperscriptBox["\[Sigma]12", "2"], " ", SuperscriptBox["\[Sigma]2", "2"]}], "-", RowBox[{"8", " ", "q11d", " ", "y11d", " ", SuperscriptBox["\[Sigma]12", "2"], " ", SuperscriptBox["\[Sigma]2", "2"]}], "+", RowBox[{"4", " ", SuperscriptBox["q11d", "2"], " ", "y11d", " ", SuperscriptBox["\[Sigma]12", "2"], " ", SuperscriptBox["\[Sigma]2", "2"]}], "+", RowBox[{"2", " ", "q11d", " ", "\[Lambda]", " ", SuperscriptBox["\[Sigma]12", "2"], " ", SuperscriptBox["\[Sigma]2", "2"]}], "-", RowBox[{"4", " ", SuperscriptBox["q11d", "2"], " ", "\[Lambda]", " ", SuperscriptBox["\[Sigma]12", "2"], " ", SuperscriptBox["\[Sigma]2", "2"]}], "+", RowBox[{"2", " ", SuperscriptBox["q11d", "3"], " ", "\[Lambda]", " ", SuperscriptBox["\[Sigma]12", "2"], " ", SuperscriptBox["\[Sigma]2", "2"]}], "+", RowBox[{ SuperscriptBox["q11d", "2"], " ", SuperscriptBox["\[Sigma]12", "2"], " ", "\[Omega]1"}], "+", RowBox[{"4", " ", "q11d", " ", SuperscriptBox["\[Sigma]2", "2"], " ", "\[Omega]1"}], "-", RowBox[{"4", " ", SuperscriptBox["q11d", "2"], " ", SuperscriptBox["\[Sigma]2", "2"], " ", "\[Omega]1"}], "-", RowBox[{"q11d", " ", SuperscriptBox["\[Sigma]12", "2"], " ", "\[Omega]2"}], "+", RowBox[{ SuperscriptBox["q11d", "2"], " ", SuperscriptBox["\[Sigma]12", "2"], " ", "\[Omega]2"}]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ SuperscriptBox["q11d", "2"], " ", SuperscriptBox["\[Sigma]1", "2"], " ", SuperscriptBox["\[Sigma]12", "2"]}], "+", RowBox[{"4", " ", "q11d", " ", SuperscriptBox["\[Sigma]1", "2"], " ", SuperscriptBox["\[Sigma]2", "2"]}], "-", RowBox[{"4", " ", SuperscriptBox["q11d", "2"], " ", SuperscriptBox["\[Sigma]1", "2"], " ", SuperscriptBox["\[Sigma]2", "2"]}], "+", RowBox[{ SuperscriptBox["\[Sigma]12", "2"], " ", SuperscriptBox["\[Sigma]2", "2"]}], "-", RowBox[{"2", " ", "q11d", " ", SuperscriptBox["\[Sigma]12", "2"], " ", SuperscriptBox["\[Sigma]2", "2"]}], "+", RowBox[{ SuperscriptBox["q11d", "2"], " ", SuperscriptBox["\[Sigma]12", "2"], " ", SuperscriptBox["\[Sigma]2", "2"]}]}], ")"}]}]]}], ",", RowBox[{"y22", "\[Rule]", RowBox[{"-", RowBox[{ FractionBox["1", RowBox[{"4", " ", SuperscriptBox["\[Sigma]12", "2"], " ", SuperscriptBox["\[Sigma]2", "2"]}]], RowBox[{"(", RowBox[{ RowBox[{"4", " ", "q11d", " ", "y11d", " ", SuperscriptBox["\[Sigma]1", "2"], " ", SuperscriptBox["\[Sigma]12", "2"]}], "+", RowBox[{"2", " ", SuperscriptBox["q11d", "2"], " ", "\[Lambda]", " ", SuperscriptBox["\[Sigma]1", "2"], " ", SuperscriptBox["\[Sigma]12", "2"]}], "-", RowBox[{"16", " ", "q11d", " ", "y11d", " ", SuperscriptBox["\[Sigma]1", "2"], " ", SuperscriptBox["\[Sigma]2", "2"]}], "-", RowBox[{"8", " ", SuperscriptBox["q11d", "2"], " ", "\[Lambda]", " ", SuperscriptBox["\[Sigma]1", "2"], " ", SuperscriptBox["\[Sigma]2", "2"]}], "+", RowBox[{"4", " ", "q11d", " ", "y11d", " ", SuperscriptBox["\[Sigma]12", "2"], " ", SuperscriptBox["\[Sigma]2", "2"]}], "-", RowBox[{"2", " ", "\[Lambda]", " ", SuperscriptBox["\[Sigma]12", "2"], " ", SuperscriptBox["\[Sigma]2", "2"]}], "+", RowBox[{"2", " ", SuperscriptBox["q11d", "2"], " ", "\[Lambda]", " ", SuperscriptBox["\[Sigma]12", "2"], " ", SuperscriptBox["\[Sigma]2", "2"]}], "+", RowBox[{"q11d", " ", SuperscriptBox["\[Sigma]12", "2"], " ", "\[Omega]1"}], "-", RowBox[{"4", " ", "q11d", " ", SuperscriptBox["\[Sigma]2", "2"], " ", "\[Omega]1"}], "-", RowBox[{ SuperscriptBox["\[Sigma]12", "2"], " ", "\[Omega]2"}], "+", RowBox[{"q11d", " ", SuperscriptBox["\[Sigma]12", "2"], " ", "\[Omega]2"}], "-", FractionBox[ RowBox[{"q11d", " ", SuperscriptBox["\[Sigma]1", "2"], " ", SuperscriptBox["\[Sigma]12", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"4", " ", SuperscriptBox["q11d", "2"], " ", "y11d", " ", SuperscriptBox["\[Sigma]1", "2"], " ", SuperscriptBox["\[Sigma]12", "2"]}], "+", RowBox[{"2", " ", SuperscriptBox["q11d", "3"], " ", "\[Lambda]", " ", SuperscriptBox["\[Sigma]1", "2"], " ", SuperscriptBox["\[Sigma]12", "2"]}], "+", RowBox[{"16", " ", "q11d", " ", "y11d", " ", SuperscriptBox["\[Sigma]1", "2"], " ", SuperscriptBox["\[Sigma]2", "2"]}], "-", RowBox[{"16", " ", SuperscriptBox["q11d", "2"], " ", "y11d", " ", SuperscriptBox["\[Sigma]1", "2"], " ", SuperscriptBox["\[Sigma]2", "2"]}], "+", RowBox[{"8", " ", SuperscriptBox["q11d", "2"], " ", "\[Lambda]", " ", SuperscriptBox["\[Sigma]1", "2"], " ", SuperscriptBox["\[Sigma]2", "2"]}], "-", RowBox[{"8", " ", SuperscriptBox["q11d", "3"], " ", "\[Lambda]", " ", SuperscriptBox["\[Sigma]1", "2"], " ", SuperscriptBox["\[Sigma]2", "2"]}], "+", RowBox[{"4", " ", "y11d", " ", SuperscriptBox["\[Sigma]12", "2"], " ", SuperscriptBox["\[Sigma]2", "2"]}], "-", RowBox[{"8", " ", "q11d", " ", "y11d", " ", SuperscriptBox["\[Sigma]12", "2"], " ", SuperscriptBox["\[Sigma]2", "2"]}], "+", RowBox[{"4", " ", SuperscriptBox["q11d", "2"], " ", "y11d", " ", SuperscriptBox["\[Sigma]12", "2"], " ", SuperscriptBox["\[Sigma]2", "2"]}], "+", RowBox[{"2", " ", "q11d", " ", "\[Lambda]", " ", SuperscriptBox["\[Sigma]12", "2"], " ", SuperscriptBox["\[Sigma]2", "2"]}], "-", RowBox[{"4", " ", SuperscriptBox["q11d", "2"], " ", "\[Lambda]", " ", SuperscriptBox["\[Sigma]12", "2"], " ", SuperscriptBox["\[Sigma]2", "2"]}], "+", RowBox[{"2", " ", SuperscriptBox["q11d", "3"], " ", "\[Lambda]", " ", SuperscriptBox["\[Sigma]12", "2"], " ", SuperscriptBox["\[Sigma]2", "2"]}], "+", RowBox[{ SuperscriptBox["q11d", "2"], " ", SuperscriptBox["\[Sigma]12", "2"], " ", "\[Omega]1"}], "+", RowBox[{"4", " ", "q11d", " ", SuperscriptBox["\[Sigma]2", "2"], " ", "\[Omega]1"}], "-", RowBox[{"4", " ", SuperscriptBox["q11d", "2"], " ", SuperscriptBox["\[Sigma]2", "2"], " ", "\[Omega]1"}], "-", RowBox[{"q11d", " ", SuperscriptBox["\[Sigma]12", "2"], " ", "\[Omega]2"}], "+", RowBox[{ SuperscriptBox["q11d", "2"], " ", SuperscriptBox["\[Sigma]12", "2"], " ", "\[Omega]2"}]}], ")"}]}], RowBox[{ RowBox[{ SuperscriptBox["q11d", "2"], " ", SuperscriptBox["\[Sigma]1", "2"], " ", SuperscriptBox["\[Sigma]12", "2"]}], "+", RowBox[{"4", " ", "q11d", " ", SuperscriptBox["\[Sigma]1", "2"], " ", SuperscriptBox["\[Sigma]2", "2"]}], "-", RowBox[{"4", " ", SuperscriptBox["q11d", "2"], " ", SuperscriptBox["\[Sigma]1", "2"], " ", SuperscriptBox["\[Sigma]2", "2"]}], "+", RowBox[{ SuperscriptBox["\[Sigma]12", "2"], " ", SuperscriptBox["\[Sigma]2", "2"]}], "-", RowBox[{"2", " ", "q11d", " ", SuperscriptBox["\[Sigma]12", "2"], " ", SuperscriptBox["\[Sigma]2", "2"]}], "+", RowBox[{ SuperscriptBox["q11d", "2"], " ", SuperscriptBox["\[Sigma]12", "2"], " ", SuperscriptBox["\[Sigma]2", "2"]}]}]], "+", FractionBox[ RowBox[{"4", " ", "q11d", " ", SuperscriptBox["\[Sigma]1", "2"], " ", SuperscriptBox["\[Sigma]2", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"4", " ", SuperscriptBox["q11d", "2"], " ", "y11d", " ", SuperscriptBox["\[Sigma]1", "2"], " ", SuperscriptBox["\[Sigma]12", "2"]}], "+", RowBox[{"2", " ", SuperscriptBox["q11d", "3"], " ", "\[Lambda]", " ", SuperscriptBox["\[Sigma]1", "2"], " ", SuperscriptBox["\[Sigma]12", "2"]}], "+", RowBox[{"16", " ", "q11d", " ", "y11d", " ", SuperscriptBox["\[Sigma]1", "2"], " ", SuperscriptBox["\[Sigma]2", "2"]}], "-", RowBox[{"16", " ", SuperscriptBox["q11d", "2"], " ", "y11d", " ", SuperscriptBox["\[Sigma]1", "2"], " ", SuperscriptBox["\[Sigma]2", "2"]}], "+", RowBox[{"8", " ", SuperscriptBox["q11d", "2"], " ", "\[Lambda]", " ", SuperscriptBox["\[Sigma]1", "2"], " ", SuperscriptBox["\[Sigma]2", "2"]}], "-", RowBox[{"8", " ", SuperscriptBox["q11d", "3"], " ", "\[Lambda]", " ", SuperscriptBox["\[Sigma]1", "2"], " ", SuperscriptBox["\[Sigma]2", "2"]}], "+", RowBox[{"4", " ", "y11d", " ", SuperscriptBox["\[Sigma]12", "2"], " ", SuperscriptBox["\[Sigma]2", "2"]}], "-", RowBox[{"8", " ", "q11d", " ", "y11d", " ", SuperscriptBox["\[Sigma]12", "2"], " ", SuperscriptBox["\[Sigma]2", "2"]}], "+", RowBox[{"4", " ", SuperscriptBox["q11d", "2"], " ", "y11d", " ", SuperscriptBox["\[Sigma]12", "2"], " ", SuperscriptBox["\[Sigma]2", "2"]}], "+", RowBox[{"2", " ", "q11d", " ", "\[Lambda]", " ", SuperscriptBox["\[Sigma]12", "2"], " ", SuperscriptBox["\[Sigma]2", "2"]}], "-", RowBox[{"4", " ", SuperscriptBox["q11d", "2"], " ", "\[Lambda]", " ", SuperscriptBox["\[Sigma]12", "2"], " ", SuperscriptBox["\[Sigma]2", "2"]}], "+", RowBox[{"2", " ", SuperscriptBox["q11d", "3"], " ", "\[Lambda]", " ", SuperscriptBox["\[Sigma]12", "2"], " ", SuperscriptBox["\[Sigma]2", "2"]}], "+", RowBox[{ SuperscriptBox["q11d", "2"], " ", SuperscriptBox["\[Sigma]12", "2"], " ", "\[Omega]1"}], "+", RowBox[{"4", " ", "q11d", " ", SuperscriptBox["\[Sigma]2", "2"], " ", "\[Omega]1"}], "-", RowBox[{"4", " ", SuperscriptBox["q11d", "2"], " ", SuperscriptBox["\[Sigma]2", "2"], " ", "\[Omega]1"}], "-", RowBox[{"q11d", " ", SuperscriptBox["\[Sigma]12", "2"], " ", "\[Omega]2"}], "+", RowBox[{ SuperscriptBox["q11d", "2"], " ", SuperscriptBox["\[Sigma]12", "2"], " ", "\[Omega]2"}]}], ")"}]}], RowBox[{ RowBox[{ SuperscriptBox["q11d", "2"], " ", SuperscriptBox["\[Sigma]1", "2"], " ", SuperscriptBox["\[Sigma]12", "2"]}], "+", RowBox[{"4", " ", "q11d", " ", SuperscriptBox["\[Sigma]1", "2"], " ", SuperscriptBox["\[Sigma]2", "2"]}], "-", RowBox[{"4", " ", SuperscriptBox["q11d", "2"], " ", SuperscriptBox["\[Sigma]1", "2"], " ", SuperscriptBox["\[Sigma]2", "2"]}], "+", RowBox[{ SuperscriptBox["\[Sigma]12", "2"], " ", SuperscriptBox["\[Sigma]2", "2"]}], "-", RowBox[{"2", " ", "q11d", " ", SuperscriptBox["\[Sigma]12", "2"], " ", SuperscriptBox["\[Sigma]2", "2"]}], "+", RowBox[{ SuperscriptBox["q11d", "2"], " ", SuperscriptBox["\[Sigma]12", "2"], " ", SuperscriptBox["\[Sigma]2", "2"]}]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[Sigma]12", "2"], " ", SuperscriptBox["\[Sigma]2", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"4", " ", SuperscriptBox["q11d", "2"], " ", "y11d", " ", SuperscriptBox["\[Sigma]1", "2"], " ", SuperscriptBox["\[Sigma]12", "2"]}], "+", RowBox[{"2", " ", SuperscriptBox["q11d", "3"], " ", "\[Lambda]", " ", SuperscriptBox["\[Sigma]1", "2"], " ", SuperscriptBox["\[Sigma]12", "2"]}], "+", RowBox[{"16", " ", "q11d", " ", "y11d", " ", SuperscriptBox["\[Sigma]1", "2"], " ", SuperscriptBox["\[Sigma]2", "2"]}], "-", RowBox[{"16", " ", SuperscriptBox["q11d", "2"], " ", "y11d", " ", SuperscriptBox["\[Sigma]1", "2"], " ", SuperscriptBox["\[Sigma]2", "2"]}], "+", RowBox[{"8", " ", SuperscriptBox["q11d", "2"], " ", "\[Lambda]", " ", SuperscriptBox["\[Sigma]1", "2"], " ", SuperscriptBox["\[Sigma]2", "2"]}], "-", RowBox[{"8", " ", SuperscriptBox["q11d", "3"], " ", "\[Lambda]", " ", SuperscriptBox["\[Sigma]1", "2"], " ", SuperscriptBox["\[Sigma]2", "2"]}], "+", RowBox[{"4", " ", "y11d", " ", SuperscriptBox["\[Sigma]12", "2"], " ", SuperscriptBox["\[Sigma]2", "2"]}], "-", RowBox[{"8", " ", "q11d", " ", "y11d", " ", SuperscriptBox["\[Sigma]12", "2"], " ", SuperscriptBox["\[Sigma]2", "2"]}], "+", RowBox[{"4", " ", SuperscriptBox["q11d", "2"], " ", "y11d", " ", SuperscriptBox["\[Sigma]12", "2"], " ", SuperscriptBox["\[Sigma]2", "2"]}], "+", RowBox[{"2", " ", "q11d", " ", "\[Lambda]", " ", SuperscriptBox["\[Sigma]12", "2"], " ", SuperscriptBox["\[Sigma]2", "2"]}], "-", RowBox[{"4", " ", SuperscriptBox["q11d", "2"], " ", "\[Lambda]", " ", SuperscriptBox["\[Sigma]12", "2"], " ", SuperscriptBox["\[Sigma]2", "2"]}], "+", RowBox[{"2", " ", SuperscriptBox["q11d", "3"], " ", "\[Lambda]", " ", SuperscriptBox["\[Sigma]12", "2"], " ", SuperscriptBox["\[Sigma]2", "2"]}], "+", RowBox[{ SuperscriptBox["q11d", "2"], " ", SuperscriptBox["\[Sigma]12", "2"], " ", "\[Omega]1"}], "+", RowBox[{"4", " ", "q11d", " ", SuperscriptBox["\[Sigma]2", "2"], " ", "\[Omega]1"}], "-", RowBox[{"4", " ", SuperscriptBox["q11d", "2"], " ", SuperscriptBox["\[Sigma]2", "2"], " ", "\[Omega]1"}], "-", RowBox[{"q11d", " ", SuperscriptBox["\[Sigma]12", "2"], " ", "\[Omega]2"}], "+", RowBox[{ SuperscriptBox["q11d", "2"], " ", SuperscriptBox["\[Sigma]12", "2"], " ", "\[Omega]2"}]}], ")"}]}], RowBox[{ RowBox[{ SuperscriptBox["q11d", "2"], " ", SuperscriptBox["\[Sigma]1", "2"], " ", SuperscriptBox["\[Sigma]12", "2"]}], "+", RowBox[{"4", " ", "q11d", " ", SuperscriptBox["\[Sigma]1", "2"], " ", SuperscriptBox["\[Sigma]2", "2"]}], "-", RowBox[{"4", " ", SuperscriptBox["q11d", "2"], " ", SuperscriptBox["\[Sigma]1", "2"], " ", SuperscriptBox["\[Sigma]2", "2"]}], "+", RowBox[{ SuperscriptBox["\[Sigma]12", "2"], " ", SuperscriptBox["\[Sigma]2", "2"]}], "-", RowBox[{"2", " ", "q11d", " ", SuperscriptBox["\[Sigma]12", "2"], " ", SuperscriptBox["\[Sigma]2", "2"]}], "+", RowBox[{ SuperscriptBox["q11d", "2"], " ", SuperscriptBox["\[Sigma]12", "2"], " ", SuperscriptBox["\[Sigma]2", "2"]}]}]], "-", FractionBox[ RowBox[{"q11d", " ", SuperscriptBox["\[Sigma]12", "2"], " ", SuperscriptBox["\[Sigma]2", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"4", " ", SuperscriptBox["q11d", "2"], " ", "y11d", " ", SuperscriptBox["\[Sigma]1", "2"], " ", SuperscriptBox["\[Sigma]12", "2"]}], "+", RowBox[{"2", " ", SuperscriptBox["q11d", "3"], " ", "\[Lambda]", " ", SuperscriptBox["\[Sigma]1", "2"], " ", SuperscriptBox["\[Sigma]12", "2"]}], "+", RowBox[{"16", " ", "q11d", " ", "y11d", " ", SuperscriptBox["\[Sigma]1", "2"], " ", SuperscriptBox["\[Sigma]2", "2"]}], "-", RowBox[{"16", " ", SuperscriptBox["q11d", "2"], " ", "y11d", " ", SuperscriptBox["\[Sigma]1", "2"], " ", SuperscriptBox["\[Sigma]2", "2"]}], "+", RowBox[{"8", " ", SuperscriptBox["q11d", "2"], " ", "\[Lambda]", " ", SuperscriptBox["\[Sigma]1", "2"], " ", SuperscriptBox["\[Sigma]2", "2"]}], "-", RowBox[{"8", " ", SuperscriptBox["q11d", "3"], " ", "\[Lambda]", " ", SuperscriptBox["\[Sigma]1", "2"], " ", SuperscriptBox["\[Sigma]2", "2"]}], "+", RowBox[{"4", " ", "y11d", " ", SuperscriptBox["\[Sigma]12", "2"], " ", SuperscriptBox["\[Sigma]2", "2"]}], "-", RowBox[{"8", " ", "q11d", " ", "y11d", " ", SuperscriptBox["\[Sigma]12", "2"], " ", SuperscriptBox["\[Sigma]2", "2"]}], "+", RowBox[{"4", " ", SuperscriptBox["q11d", "2"], " ", "y11d", " ", SuperscriptBox["\[Sigma]12", "2"], " ", SuperscriptBox["\[Sigma]2", "2"]}], "+", RowBox[{"2", " ", "q11d", " ", "\[Lambda]", " ", SuperscriptBox["\[Sigma]12", "2"], " ", SuperscriptBox["\[Sigma]2", "2"]}], "-", RowBox[{"4", " ", SuperscriptBox["q11d", "2"], " ", "\[Lambda]", " ", SuperscriptBox["\[Sigma]12", "2"], " ", SuperscriptBox["\[Sigma]2", "2"]}], "+", RowBox[{"2", " ", SuperscriptBox["q11d", "3"], " ", "\[Lambda]", " ", SuperscriptBox["\[Sigma]12", "2"], " ", SuperscriptBox["\[Sigma]2", "2"]}], "+", RowBox[{ SuperscriptBox["q11d", "2"], " ", SuperscriptBox["\[Sigma]12", "2"], " ", "\[Omega]1"}], "+", RowBox[{"4", " ", "q11d", " ", SuperscriptBox["\[Sigma]2", "2"], " ", "\[Omega]1"}], "-", RowBox[{"4", " ", SuperscriptBox["q11d", "2"], " ", SuperscriptBox["\[Sigma]2", "2"], " ", "\[Omega]1"}], "-", RowBox[{"q11d", " ", SuperscriptBox["\[Sigma]12", "2"], " ", "\[Omega]2"}], "+", RowBox[{ SuperscriptBox["q11d", "2"], " ", SuperscriptBox["\[Sigma]12", "2"], " ", "\[Omega]2"}]}], ")"}]}], RowBox[{ RowBox[{ SuperscriptBox["q11d", "2"], " ", SuperscriptBox["\[Sigma]1", "2"], " ", SuperscriptBox["\[Sigma]12", "2"]}], "+", RowBox[{"4", " ", "q11d", " ", SuperscriptBox["\[Sigma]1", "2"], " ", SuperscriptBox["\[Sigma]2", "2"]}], "-", RowBox[{"4", " ", SuperscriptBox["q11d", "2"], " ", SuperscriptBox["\[Sigma]1", "2"], " ", SuperscriptBox["\[Sigma]2", "2"]}], "+", RowBox[{ SuperscriptBox["\[Sigma]12", "2"], " ", SuperscriptBox["\[Sigma]2", "2"]}], "-", RowBox[{"2", " ", "q11d", " ", SuperscriptBox["\[Sigma]12", "2"], " ", SuperscriptBox["\[Sigma]2", "2"]}], "+", RowBox[{ SuperscriptBox["q11d", "2"], " ", SuperscriptBox["\[Sigma]12", "2"], " ", SuperscriptBox["\[Sigma]2", "2"]}]}]]}], ")"}]}]}]}]}], "}"}], "}"}]], "Output", CellChangeTimes->{3.916304254576603*^9}, CellLabel-> "Out[134]=",ExpressionUUID->"c36222bd-4f89-4cc7-a993-0cf35af05bc7"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"e4", "=", RowBox[{"SeriesCoefficient", "[", RowBox[{ RowBox[{"e3", "//.", "rules"}], ",", RowBox[{"{", RowBox[{"\[Beta]", ",", "\[Infinity]", ",", RowBox[{"-", "2"}]}], "}"}]}], "]"}]}]], "Input", CellChangeTimes->{ 3.906187797968542*^9, {3.906187865137899*^9, 3.906187871433025*^9}}, CellLabel->"In[19]:=",ExpressionUUID->"58abea83-2416-4b80-aea1-49c6f03cd553"], Cell[BoxData[ RowBox[{"{", RowBox[{"0", ",", RowBox[{ RowBox[{"-", FractionBox["q11d", RowBox[{ SuperscriptBox["y11", "2"], "-", RowBox[{"2", " ", "y11", " ", "y11d"}], "+", SuperscriptBox["y11d", "2"], "+", RowBox[{"2", " ", "q11d", " ", "z110"}], "-", RowBox[{"2", " ", "q11d", " ", "z111"}], "-", RowBox[{"q11d", " ", "z11d0"}], "+", RowBox[{"q11d", " ", "z11d1"}]}]]}], "+", RowBox[{"4", " ", "q11d", " ", SuperscriptBox["\[Sigma]1", "2"]}]}], ",", RowBox[{"q11d", " ", RowBox[{"(", RowBox[{ FractionBox["1", RowBox[{ SuperscriptBox["y11", "2"], "-", RowBox[{"2", " ", "y11", " ", "y11d"}], "+", SuperscriptBox["y11d", "2"], "+", RowBox[{"2", " ", "q11d", " ", "z110"}], "-", RowBox[{"2", " ", "q11d", " ", "z111"}], "-", RowBox[{"q11d", " ", "z11d0"}], "+", RowBox[{"q11d", " ", "z11d1"}]}]], "-", RowBox[{"4", " ", SuperscriptBox["\[Sigma]1", "2"]}]}], ")"}]}], ",", RowBox[{ FractionBox["q11d", RowBox[{"2", " ", RowBox[{"(", RowBox[{ SuperscriptBox["y11", "2"], "-", RowBox[{"2", " ", "y11", " ", "y11d"}], "+", SuperscriptBox["y11d", "2"], "+", RowBox[{"2", " ", "q11d", " ", "z110"}], "-", RowBox[{"2", " ", "q11d", " ", "z111"}], "-", RowBox[{"q11d", " ", "z11d0"}], "+", RowBox[{"q11d", " ", "z11d1"}]}], ")"}]}]], "+", FractionBox[ RowBox[{ RowBox[{"-", "1"}], "+", "q11d"}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ SuperscriptBox["y11d", "2"], "+", RowBox[{"2", " ", "y11d", " ", "y22"}], "+", SuperscriptBox["y22", "2"], "+", "z11d0", "-", RowBox[{"q11d", " ", "z11d0"}], "-", "z11d1", "+", RowBox[{"q11d", " ", "z11d1"}], "+", RowBox[{"2", " ", "z220"}], "-", RowBox[{"2", " ", "q11d", " ", "z220"}], "-", RowBox[{"2", " ", "z221"}], "+", RowBox[{"2", " ", "q11d", " ", "z221"}]}], ")"}]}]], "-", RowBox[{"2", " ", "q11d", " ", SuperscriptBox["\[Sigma]1", "2"]}], "-", RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ", SuperscriptBox["\[Sigma]2", "2"]}]}], ",", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", FractionBox["q11d", RowBox[{ SuperscriptBox["y11", "2"], "-", RowBox[{"2", " ", "y11", " ", "y11d"}], "+", SuperscriptBox["y11d", "2"], "+", RowBox[{"2", " ", "q11d", " ", "z110"}], "-", RowBox[{"2", " ", "q11d", " ", "z111"}], "-", RowBox[{"q11d", " ", "z11d0"}], "+", RowBox[{"q11d", " ", "z11d1"}]}]]}], "+", FractionBox[ RowBox[{"1", "-", "q11d"}], RowBox[{ SuperscriptBox["y11d", "2"], "+", RowBox[{"2", " ", "y11d", " ", "y22"}], "+", SuperscriptBox["y22", "2"], "+", "z11d0", "-", RowBox[{"q11d", " ", "z11d0"}], "-", "z11d1", "+", RowBox[{"q11d", " ", "z11d1"}], "+", RowBox[{"2", " ", "z220"}], "-", RowBox[{"2", " ", "q11d", " ", "z220"}], "-", RowBox[{"2", " ", "z221"}], "+", RowBox[{"2", " ", "q11d", " ", "z221"}]}]]}], ")"}]}], "+", RowBox[{"2", " ", "q11d", " ", SuperscriptBox["\[Sigma]1", "2"]}], "+", RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ", SuperscriptBox["\[Sigma]2", "2"]}]}], ",", RowBox[{ FractionBox[ RowBox[{ RowBox[{"-", "1"}], "+", "q11d"}], RowBox[{ SuperscriptBox["y11d", "2"], "+", RowBox[{"2", " ", "y11d", " ", "y22"}], "+", SuperscriptBox["y22", "2"], "+", "z11d0", "-", RowBox[{"q11d", " ", "z11d0"}], "-", "z11d1", "+", RowBox[{"q11d", " ", "z11d1"}], "+", RowBox[{"2", " ", "z220"}], "-", RowBox[{"2", " ", "q11d", " ", "z220"}], "-", RowBox[{"2", " ", "z221"}], "+", RowBox[{"2", " ", "q11d", " ", "z221"}]}]], "-", RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ", SuperscriptBox["\[Sigma]2", "2"]}]}], ",", RowBox[{ RowBox[{"(", RowBox[{"1", "-", "q11d"}], ")"}], " ", RowBox[{"(", RowBox[{ FractionBox["1", RowBox[{ SuperscriptBox["y11d", "2"], "+", RowBox[{"2", " ", "y11d", " ", "y22"}], "+", SuperscriptBox["y22", "2"], "+", "z11d0", "-", RowBox[{"q11d", " ", "z11d0"}], "-", "z11d1", "+", RowBox[{"q11d", " ", "z11d1"}], "+", RowBox[{"2", " ", "z220"}], "-", RowBox[{"2", " ", "q11d", " ", "z220"}], "-", RowBox[{"2", " ", "z221"}], "+", RowBox[{"2", " ", "q11d", " ", "z221"}]}]], "-", RowBox[{"4", " ", SuperscriptBox["\[Sigma]2", "2"]}]}], ")"}]}]}], "}"}]], "Output", CellChangeTimes->{ 3.906187758262377*^9, 3.906187802390731*^9, {3.906187867026927*^9, 3.9061878721263776`*^9}, 3.906188383111711*^9, 3.906189229151506*^9, 3.90619068735071*^9, 3.906445753142694*^9, 3.906526396982582*^9, 3.907146536871374*^9, 3.907328416692205*^9, 3.908527776739359*^9, 3.908535193733109*^9, 3.908603321580958*^9, 3.908613759558733*^9, 3.908621342371894*^9, 3.908959029760838*^9, 3.909041262667035*^9, 3.915532095652994*^9, 3.915532506920657*^9, 3.915771581205089*^9}, CellLabel->"Out[19]=",ExpressionUUID->"e15a4a61-3508-49a6-873c-f26ddee17deb"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"e5", "=", RowBox[{ RowBox[{"SeriesCoefficient", "[", RowBox[{ RowBox[{"e3", "//.", "rules"}], ",", RowBox[{"{", RowBox[{"\[Beta]", ",", "\[Infinity]", ",", RowBox[{"-", "1"}]}], "}"}]}], "]"}], "//", "Simplify"}]}]], "Input", CellChangeTimes->{{3.906187873026173*^9, 3.906187899186184*^9}}, CellLabel->"In[20]:=",ExpressionUUID->"4538f42b-62c4-4651-9986-8bec11748d70"], Cell[BoxData[ RowBox[{"{", RowBox[{"0", ",", RowBox[{ FractionBox["1", RowBox[{"y11", "-", "y11d"}]], "+", FractionBox[ RowBox[{ RowBox[{"(", RowBox[{"y11", "-", "y11d"}], ")"}], " ", RowBox[{"(", RowBox[{ RowBox[{"y11", " ", "y11d"}], "-", SuperscriptBox["y11d", "2"], "+", RowBox[{"2", " ", "q11d", " ", RowBox[{"(", RowBox[{"z111", "-", "z11d1"}], ")"}]}]}], ")"}]}], SuperscriptBox[ RowBox[{"(", RowBox[{ SuperscriptBox["y11", "2"], "-", RowBox[{"2", " ", "y11", " ", "y11d"}], "+", SuperscriptBox["y11d", "2"], "+", RowBox[{"q11d", " ", RowBox[{"(", RowBox[{ RowBox[{"2", " ", "z110"}], "-", RowBox[{"2", " ", "z111"}], "-", "z11d0", "+", "z11d1"}], ")"}]}]}], ")"}], "2"]], "-", RowBox[{"4", " ", "y11", " ", SuperscriptBox["\[Sigma]1", "2"]}]}], ",", RowBox[{ RowBox[{"-", FractionBox["y11", RowBox[{ SuperscriptBox["y11", "2"], "-", RowBox[{"2", " ", "y11", " ", "y11d"}], "+", SuperscriptBox["y11d", "2"], "+", RowBox[{"q11d", " ", RowBox[{"(", RowBox[{ RowBox[{"2", " ", "z110"}], "-", RowBox[{"2", " ", "z111"}], "-", "z11d0", "+", "z11d1"}], ")"}]}]}]]}], "-", FractionBox[ RowBox[{"q11d", " ", RowBox[{"(", RowBox[{ RowBox[{"2", " ", "y11", " ", RowBox[{"(", RowBox[{"z111", "-", "z11d1"}], ")"}]}], "+", RowBox[{"y11d", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", "z110"}], "+", "z11d0", "+", "z11d1"}], ")"}]}]}], ")"}]}], SuperscriptBox[ RowBox[{"(", RowBox[{ SuperscriptBox["y11", "2"], "-", RowBox[{"2", " ", "y11", " ", "y11d"}], "+", SuperscriptBox["y11d", "2"], "+", RowBox[{"q11d", " ", RowBox[{"(", RowBox[{ RowBox[{"2", " ", "z110"}], "-", RowBox[{"2", " ", "z111"}], "-", "z11d0", "+", "z11d1"}], ")"}]}]}], ")"}], "2"]], "+", RowBox[{"4", " ", "y11", " ", SuperscriptBox["\[Sigma]1", "2"]}], "+", RowBox[{"4", " ", "q11d", " ", "\[Lambda]", " ", SuperscriptBox["\[Sigma]1", "2"]}]}], ",", RowBox[{ FractionBox["1", RowBox[{ RowBox[{"-", "y11"}], "+", "y11d"}]], "+", FractionBox["1", RowBox[{"y11d", "+", "y22"}]], "-", FractionBox[ RowBox[{ RowBox[{"(", RowBox[{"y11", "-", "y11d"}], ")"}], " ", RowBox[{"(", RowBox[{ RowBox[{"y11", " ", "y11d"}], "-", SuperscriptBox["y11d", "2"], "+", RowBox[{"2", " ", "q11d", " ", RowBox[{"(", RowBox[{"z111", "-", "z11d1"}], ")"}]}]}], ")"}]}], RowBox[{"2", " ", SuperscriptBox[ RowBox[{"(", RowBox[{ SuperscriptBox["y11", "2"], "-", RowBox[{"2", " ", "y11", " ", "y11d"}], "+", SuperscriptBox["y11d", "2"], "+", RowBox[{"q11d", " ", RowBox[{"(", RowBox[{ RowBox[{"2", " ", "z110"}], "-", RowBox[{"2", " ", "z111"}], "-", "z11d0", "+", "z11d1"}], ")"}]}]}], ")"}], "2"]}]], "-", FractionBox[ RowBox[{ RowBox[{"(", RowBox[{"y11d", "+", "y22"}], ")"}], " ", RowBox[{"(", RowBox[{ SuperscriptBox["y11d", "2"], "+", RowBox[{"y11d", " ", "y22"}], "+", RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ", RowBox[{"(", RowBox[{"z11d1", "+", "z221"}], ")"}]}]}], ")"}]}], RowBox[{"2", " ", SuperscriptBox[ RowBox[{"(", RowBox[{ SuperscriptBox["y11d", "2"], "+", RowBox[{"2", " ", "y11d", " ", "y22"}], "+", SuperscriptBox["y22", "2"], "-", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ", RowBox[{"(", RowBox[{"z11d0", "-", "z11d1", "+", RowBox[{"2", " ", "z220"}], "-", RowBox[{"2", " ", "z221"}]}], ")"}]}]}], ")"}], "2"]}]], "+", RowBox[{"2", " ", "y11d", " ", SuperscriptBox["\[Sigma]1", "2"]}], "+", RowBox[{"2", " ", "y11d", " ", SuperscriptBox["\[Sigma]2", "2"]}], "+", "\[Omega]1", "-", "\[Omega]2"}], ",", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{ FractionBox[ RowBox[{ RowBox[{"(", RowBox[{"y11", "-", "y11d"}], ")"}], " ", RowBox[{"(", RowBox[{ RowBox[{"2", " ", SuperscriptBox["y11", "2"]}], "-", RowBox[{"3", " ", "y11", " ", "y11d"}], "+", SuperscriptBox["y11d", "2"], "+", RowBox[{"4", " ", "q11d", " ", "z110"}], "-", RowBox[{"2", " ", "q11d", " ", "z111"}], "-", RowBox[{"2", " ", "q11d", " ", "z11d0"}]}], ")"}]}], SuperscriptBox[ RowBox[{"(", RowBox[{ SuperscriptBox["y11", "2"], "-", RowBox[{"2", " ", "y11", " ", "y11d"}], "+", SuperscriptBox["y11d", "2"], "+", RowBox[{"q11d", " ", RowBox[{"(", RowBox[{ RowBox[{"2", " ", "z110"}], "-", RowBox[{"2", " ", "z111"}], "-", "z11d0", "+", "z11d1"}], ")"}]}]}], ")"}], "2"]], "-", FractionBox[ RowBox[{"y11d", "+", RowBox[{"2", " ", "y22"}]}], RowBox[{ SuperscriptBox["y11d", "2"], "+", RowBox[{"2", " ", "y11d", " ", "y22"}], "+", SuperscriptBox["y22", "2"], "-", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ", RowBox[{"(", RowBox[{"z11d0", "-", "z11d1", "+", RowBox[{"2", " ", "z220"}], "-", RowBox[{"2", " ", "z221"}]}], ")"}]}]}]], "+", FractionBox[ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ", RowBox[{"(", RowBox[{ RowBox[{"y11d", " ", RowBox[{"(", RowBox[{"z11d0", "+", "z11d1", "+", RowBox[{"2", " ", "z220"}]}], ")"}]}], "+", RowBox[{"2", " ", "y22", " ", RowBox[{"(", RowBox[{"z11d1", "+", "z221"}], ")"}]}]}], ")"}]}], SuperscriptBox[ RowBox[{"(", RowBox[{ SuperscriptBox["y11d", "2"], "+", RowBox[{"2", " ", "y11d", " ", "y22"}], "+", SuperscriptBox["y22", "2"], "-", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ", RowBox[{"(", RowBox[{"z11d0", "-", "z11d1", "+", RowBox[{"2", " ", "z220"}], "-", RowBox[{"2", " ", "z221"}]}], ")"}]}]}], ")"}], "2"]]}], ")"}]}], "-", RowBox[{"2", " ", RowBox[{"(", RowBox[{"y11d", "+", RowBox[{"2", " ", "q11d", " ", "\[Lambda]"}]}], ")"}], " ", SuperscriptBox["\[Sigma]1", "2"]}], "-", RowBox[{"2", " ", RowBox[{"(", RowBox[{"y11d", "+", RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ", "\[Lambda]"}]}], ")"}], " ", SuperscriptBox["\[Sigma]2", "2"]}], "-", "\[Omega]1", "+", "\[Omega]2"}], ",", RowBox[{ FractionBox["1", RowBox[{"y11d", "+", "y22"}]], "-", FractionBox[ RowBox[{ RowBox[{"(", RowBox[{"y11d", "+", "y22"}], ")"}], " ", RowBox[{"(", RowBox[{ SuperscriptBox["y11d", "2"], "+", RowBox[{"y11d", " ", "y22"}], "+", RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ", RowBox[{"(", RowBox[{"z11d1", "+", "z221"}], ")"}]}]}], ")"}]}], SuperscriptBox[ RowBox[{"(", RowBox[{ SuperscriptBox["y11d", "2"], "+", RowBox[{"2", " ", "y11d", " ", "y22"}], "+", SuperscriptBox["y22", "2"], "-", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ", RowBox[{"(", RowBox[{"z11d0", "-", "z11d1", "+", RowBox[{"2", " ", "z220"}], "-", RowBox[{"2", " ", "z221"}]}], ")"}]}]}], ")"}], "2"]], "-", RowBox[{"4", " ", "y22", " ", SuperscriptBox["\[Sigma]2", "2"]}]}], ",", RowBox[{ RowBox[{ RowBox[{"-", "y22"}], " ", RowBox[{"(", RowBox[{ FractionBox["1", RowBox[{ SuperscriptBox["y11d", "2"], "+", RowBox[{"2", " ", "y11d", " ", "y22"}], "+", SuperscriptBox["y22", "2"], "-", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ", RowBox[{"(", RowBox[{"z11d0", "-", "z11d1", "+", RowBox[{"2", " ", "z220"}], "-", RowBox[{"2", " ", "z221"}]}], ")"}]}]}]], "-", RowBox[{"4", " ", SuperscriptBox["\[Sigma]2", "2"]}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"1", "-", "q11d"}], ")"}], " ", RowBox[{"(", RowBox[{ RowBox[{"-", FractionBox[ RowBox[{ RowBox[{"y11d", " ", RowBox[{"(", RowBox[{"z11d0", "+", "z11d1", "+", RowBox[{"2", " ", "z220"}]}], ")"}]}], "+", RowBox[{"2", " ", "y22", " ", RowBox[{"(", RowBox[{"z11d1", "+", "z221"}], ")"}]}]}], SuperscriptBox[ RowBox[{"(", RowBox[{ SuperscriptBox["y11d", "2"], "+", RowBox[{"2", " ", "y11d", " ", "y22"}], "+", SuperscriptBox["y22", "2"], "-", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ", RowBox[{"(", RowBox[{"z11d0", "-", "z11d1", "+", RowBox[{"2", " ", "z220"}], "-", RowBox[{"2", " ", "z221"}]}], ")"}]}]}], ")"}], "2"]]}], "+", RowBox[{"4", " ", "\[Lambda]", " ", SuperscriptBox["\[Sigma]2", "2"]}]}], ")"}]}]}]}], "}"}]], "Output", CellChangeTimes->{{3.9061878924875402`*^9, 3.906187907449717*^9}, 3.906188395619846*^9, 3.9061892307700033`*^9, 3.906190699743403*^9, 3.906445765588705*^9, 3.906526409231572*^9, 3.907146549327018*^9, 3.9073284290518627`*^9, 3.9085278141653852`*^9, 3.908535231005335*^9, 3.908603358180184*^9, 3.908613796140329*^9, 3.9086213853239603`*^9, 3.908959065638323*^9, 3.909041299813568*^9, 3.915532108906477*^9, 3.915532519605406*^9, 3.9157715941794653`*^9}, CellLabel->"Out[20]=",ExpressionUUID->"7c39a957-cd36-48d3-a034-eee66c14231d"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"e6", "=", RowBox[{ RowBox[{"SeriesCoefficient", "[", RowBox[{ RowBox[{ RowBox[{"e3", "[", RowBox[{"[", "1", "]"}], "]"}], "//.", "rules"}], ",", RowBox[{"{", RowBox[{"\[Beta]", ",", "\[Infinity]", ",", "0"}], "}"}]}], "]"}], "//", "Simplify"}]}]], "Input", CellChangeTimes->{{3.906187902458308*^9, 3.906187917954363*^9}}, CellLabel->"In[21]:=",ExpressionUUID->"b2530e76-38c3-48b8-85fb-23b713cd8c3c"], Cell[BoxData[ RowBox[{ RowBox[{"2", " ", "q11d", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", "y11"}], "+", RowBox[{"2", " ", "y11d"}], "+", RowBox[{"q11d", " ", "\[Lambda]"}]}], ")"}], " ", SuperscriptBox["\[Sigma]1", "2"]}], "+", RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ", RowBox[{"(", RowBox[{ RowBox[{"2", " ", RowBox[{"(", RowBox[{"y11d", "+", "y22"}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ", "\[Lambda]"}]}], ")"}], " ", SuperscriptBox["\[Sigma]2", "2"]}], "+", RowBox[{"q11d", " ", RowBox[{"(", RowBox[{"\[Omega]1", "-", "\[Omega]2"}], ")"}]}], "+", "\[Omega]2"}]], "Output", CellChangeTimes->{3.906187918228827*^9, 3.906188395740288*^9, 3.906189231662617*^9, 3.906190699863659*^9, 3.906445765679088*^9, 3.9065264093386173`*^9, 3.907146549432131*^9, 3.907328429169303*^9, 3.908527814198004*^9, 3.908535231041009*^9, 3.908603358210541*^9, 3.90861379620579*^9, 3.90862138535625*^9, 3.909041299849929*^9, 3.915532115920799*^9, 3.9155325197505903`*^9, 3.9157715942701187`*^9}, CellLabel->"Out[21]=",ExpressionUUID->"abded75c-64eb-402a-9a69-78d296d1035c"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"s6", "=", RowBox[{"Simplify", "[", RowBox[{"Solve", "[", RowBox[{ RowBox[{"0", "==", RowBox[{"Join", "[", RowBox[{"e4", ",", "e5", ",", RowBox[{"{", "e6", "}"}]}], "]"}]}], ",", RowBox[{"{", RowBox[{ "\[Lambda]", ",", "y11", ",", "y11d", ",", "y22", ",", "q11d", ",", "z110", ",", "z111", ",", "z11d0", ",", "z11d1", ",", "z220", ",", "z221"}], "}"}]}], "]"}], "]"}]}], ";"}]], "Input", CellChangeTimes->{{3.906187633925405*^9, 3.9061876626932497`*^9}, { 3.906187731847047*^9, 3.906187753167115*^9}, {3.90618781156046*^9, 3.906187831432788*^9}, {3.906187923675535*^9, 3.906187969649603*^9}, { 3.906188000516306*^9, 3.9061880008675756`*^9}, {3.906188709249345*^9, 3.906188738449854*^9}, {3.906190696079129*^9, 3.9061906986149282`*^9}}, CellLabel->"In[22]:=",ExpressionUUID->"583ab52e-3647-429c-9c33-fd12ede259b8"], Cell[BoxData[ TemplateBox[{ "Solve", "svars", "\"Equations may not give solutions for all \\\"solve\\\" variables.\"", 2, 22, 1, 23800662333952606617, "Local"}, "MessageTemplate"]], "Message", "MSG", CellChangeTimes->{3.906188768978856*^9, 3.906189233017943*^9, 3.906190730289953*^9, 3.906445795758022*^9, 3.906455280766007*^9, 3.9065264390893784`*^9, 3.9071465797681427`*^9, 3.907328458968724*^9, 3.908527846938418*^9, 3.90853526395877*^9, 3.908603390307139*^9, 3.908613828558267*^9, 3.908615455337167*^9, 3.90862142384585*^9, 3.908959097492876*^9, 3.909041332451538*^9, 3.915532146769128*^9, 3.915532550417849*^9, 3.915771624173337*^9}, CellLabel-> "During evaluation of \ In[22]:=",ExpressionUUID->"2f4c2728-fd8d-46d6-a68a-371b7c8a7ba9"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"testparams", "=", RowBox[{"{", RowBox[{ RowBox[{"\[Sigma]1", "->", "1"}], ",", RowBox[{"\[Sigma]2", "->", "1"}], ",", RowBox[{"\[Omega]1", "->", "3"}], ",", RowBox[{"\[Omega]2", "->", RowBox[{"200005", "/", "100000"}]}], ",", RowBox[{"\[Epsilon]", "->", RowBox[{"1", "/", "100"}]}]}], "}"}]}], ";"}]], "Input", CellChangeTimes->{{3.907245948262267*^9, 3.907245950646895*^9}, { 3.908611448200711*^9, 3.908611448896093*^9}, {3.908614445394108*^9, 3.908614446153916*^9}, {3.908615875779113*^9, 3.908615877987123*^9}, { 3.908616482086334*^9, 3.908616482206256*^9}, 3.908616534687642*^9, { 3.908616963967916*^9, 3.908616965983852*^9}, 3.908617191179674*^9, 3.908962534254868*^9, 3.908963027542485*^9, {3.908963083415245*^9, 3.908963089503387*^9}, 3.9089631790945587`*^9, {3.908963292075355*^9, 3.908963292187259*^9}}, CellLabel->"In[23]:=",ExpressionUUID->"e570420b-e9e0-4c23-ae5b-1941f99cb727"], Cell[BoxData[ RowBox[{ RowBox[{"rules2", "=", RowBox[{"{", RowBox[{ RowBox[{"q110", "->", RowBox[{"q11d", "-", RowBox[{"y110", "/", "\[Beta]"}], "-", RowBox[{"z110", "/", SuperscriptBox["\[Beta]", "2"]}]}]}], ",", RowBox[{"q111", "->", RowBox[{"q11d", "-", RowBox[{"y111", "/", "\[Beta]"}], "-", RowBox[{"z111", "/", SuperscriptBox["\[Beta]", "2"]}]}]}], ",", RowBox[{"q11d0", "->", RowBox[{"q11d", "-", " ", RowBox[{"y11d0", "/", "\[Beta]"}], "-", RowBox[{"z11d0", "/", SuperscriptBox["\[Beta]", "2"]}]}]}], ",", RowBox[{"q11d1", "->", RowBox[{"q11d", "-", RowBox[{"y11d1", "/", "\[Beta]"}], "-", RowBox[{"z11d1", "/", SuperscriptBox["\[Beta]", "2"]}]}]}], ",", RowBox[{"q220", "->", RowBox[{"q22d", "-", RowBox[{"y220", "/", "\[Beta]"}], "-", RowBox[{"z220", "/", SuperscriptBox["\[Beta]", "2"]}]}]}], ",", RowBox[{"q221", "->", RowBox[{"q22d", "-", RowBox[{"y221", "/", "\[Beta]"}], "-", RowBox[{"z221", "/", SuperscriptBox["\[Beta]", "2"]}]}]}], ",", RowBox[{"q12d1", "->", RowBox[{"q12", "-", RowBox[{"y12d1", "/", "\[Beta]"}], "-", RowBox[{"z12d1", "/", SuperscriptBox["\[Beta]", "2"]}]}]}], ",", RowBox[{"q12d0", "->", RowBox[{"q12", "-", RowBox[{"y12d0", "/", "\[Beta]"}], "-", RowBox[{"z12d0", "/", SuperscriptBox["\[Beta]", "2"]}]}]}], ",", RowBox[{"q121", "->", RowBox[{"q12", "-", RowBox[{"y121", "/", "\[Beta]"}], "-", RowBox[{"z121", "/", SuperscriptBox["\[Beta]", "2"]}]}]}], ",", RowBox[{"q120", "->", RowBox[{"q12", "-", RowBox[{"y120", "/", "\[Beta]"}], "-", RowBox[{"z120", "/", SuperscriptBox["\[Beta]", "2"]}]}]}], ",", RowBox[{"q22d", "->", RowBox[{"1", "-", "q11d"}]}], ",", RowBox[{"\[Lambda]", "->", RowBox[{"\[Lambda]0", "-", RowBox[{"\[Lambda]1", "/", "\[Beta]"}], "-", RowBox[{"\[Lambda]2", "/", SuperscriptBox["\[Beta]", "2"]}]}]}]}], "}"}]}], ";"}]], "Input", CellChangeTimes->{{3.905861542929487*^9, 3.905861546187963*^9}, { 3.9058616088771887`*^9, 3.905861619740603*^9}, {3.9058616556854*^9, 3.905861699276464*^9}, {3.905861855312809*^9, 3.905861857476181*^9}, { 3.905912367239668*^9, 3.905912369548286*^9}, {3.905912613884484*^9, 3.905912616896575*^9}, {3.90591332909175*^9, 3.9059133499069*^9}, { 3.905913476003109*^9, 3.905913478780634*^9}, 3.905913510172113*^9, { 3.905913658453998*^9, 3.905913661681223*^9}, {3.905918897671769*^9, 3.905918933808075*^9}, {3.9059194397219048`*^9, 3.905919487154225*^9}, { 3.905919971332117*^9, 3.905919981516094*^9}, {3.905921624987239*^9, 3.905921647467622*^9}, {3.905921807702829*^9, 3.905921811630349*^9}, { 3.905922272815454*^9, 3.9059222846000423`*^9}, {3.905931570960396*^9, 3.905931578736177*^9}, {3.905931954887074*^9, 3.905931975071704*^9}, { 3.906014772838179*^9, 3.90601477479656*^9}, {3.906014805045081*^9, 3.906014807781166*^9}, {3.906014900111161*^9, 3.906014903118968*^9}, { 3.906015113442898*^9, 3.906015153147285*^9}, {3.906016827027356*^9, 3.906016885852555*^9}, 3.906190615589766*^9, {3.906192507465321*^9, 3.9061925793946037`*^9}, {3.906195398887929*^9, 3.906195399407722*^9}, { 3.906195767951429*^9, 3.9061957720793056`*^9}, {3.906195840496765*^9, 3.906195919154381*^9}, {3.906213868718033*^9, 3.906213885938034*^9}, { 3.906449467308639*^9, 3.906449467504347*^9}, {3.906458374848988*^9, 3.90645838768067*^9}, 3.907244382872212*^9, 3.908959048467206*^9}, CellLabel->"In[24]:=",ExpressionUUID->"83b8cb66-7a5d-443e-8848-d633f7da5d42"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"stest2", "=", RowBox[{"Solve", "[", RowBox[{ RowBox[{"0", "==", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"2", " ", "y120"}], "-", RowBox[{"2", " ", "y121"}], "-", "y12d0", "+", "y12d1"}], ",", RowBox[{ RowBox[{"2", " ", "y110"}], "-", RowBox[{"2", " ", "y111"}], "-", "y11d0", "+", "y11d1"}], ",", RowBox[{"y11d0", "-", "y11d1", "+", RowBox[{"2", " ", "y220"}], "-", RowBox[{"2", " ", "y221"}]}]}], "}"}]}], ",", RowBox[{"{", RowBox[{"y110", ",", "y120", ",", "y220"}], "}"}]}], "]"}]}]], "Input", CellChangeTimes->{{3.906209108534292*^9, 3.906209142918777*^9}, { 3.906209281514675*^9, 3.906209401810359*^9}, {3.906209557442634*^9, 3.90620956311773*^9}, {3.906210598464419*^9, 3.906210622697938*^9}, { 3.90621490877896*^9, 3.906214961058323*^9}, {3.906215011570169*^9, 3.906215011869331*^9}, {3.90621511367527*^9, 3.906215113937558*^9}, { 3.906449850271374*^9, 3.906449864831753*^9}, {3.906452288389834*^9, 3.906452349678601*^9}, {3.906452536307121*^9, 3.906452536562147*^9}, { 3.90724443620947*^9, 3.907244488412445*^9}}, CellLabel->"In[25]:=",ExpressionUUID->"408b9498-9f18-42c3-a258-3358b138cc65"], Cell[BoxData[ RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"y110", "\[Rule]", RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"2", " ", "y111"}], "+", "y11d0", "-", "y11d1"}], ")"}]}]}], ",", RowBox[{"y120", "\[Rule]", RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"2", " ", "y121"}], "+", "y12d0", "-", "y12d1"}], ")"}]}]}], ",", RowBox[{"y220", "\[Rule]", RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "y11d0"}], "+", "y11d1", "+", RowBox[{"2", " ", "y221"}]}], ")"}]}]}]}], "}"}], "}"}]], "Output", CellChangeTimes->{{3.906209114847683*^9, 3.906209134528015*^9}, { 3.9062092861324043`*^9, 3.906209307644665*^9}, {3.906209348694558*^9, 3.906209402069257*^9}, 3.906209567919038*^9, {3.906210599059472*^9, 3.906210623077407*^9}, {3.906214910275611*^9, 3.906214961402548*^9}, 3.906215012221205*^9, 3.906215114141577*^9, 3.906449865837833*^9, { 3.906452290224807*^9, 3.906452324323553*^9}, 3.9064523548160133`*^9, 3.906452536825111*^9, 3.906452992821587*^9, 3.906535913473673*^9, { 3.907244450027872*^9, 3.9072444889943857`*^9}, 3.907329066028408*^9, 3.908528771220576*^9, 3.908535928499719*^9, 3.908604043703294*^9, 3.908611456149561*^9, 3.9086144305920887`*^9, 3.908621428030292*^9, 3.9089591306410522`*^9, 3.909041335868808*^9, 3.915532186836844*^9, 3.915532553880711*^9, 3.915771627638197*^9}, CellLabel->"Out[25]=",ExpressionUUID->"e46e4e60-dba7-4188-9de8-05742c779360"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"e9", "=", RowBox[{"Simplify", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"e1", "/.", RowBox[{ RowBox[{ RowBox[{ RowBox[{"-", "2"}], RowBox[{"Log", "[", "x_", "]"}]}], "+", RowBox[{"Log", "[", "y_", "]"}]}], ":>", RowBox[{"Log", "[", RowBox[{"y", " ", SuperscriptBox["x", RowBox[{"-", "2"}]]}], "]"}]}]}], "//.", "rules2"}], "/.", RowBox[{"stest2", "[", RowBox[{"[", "1", "]"}], "]"}]}], ",", RowBox[{"TimeConstraint", "->", "600"}]}], "]"}]}], ";"}]], "Input", CellChangeTimes->{{3.906460267036875*^9, 3.906460376670369*^9}, { 3.906460777446906*^9, 3.906460792814526*^9}, {3.90724455188748*^9, 3.907244564134206*^9}, {3.908530577362788*^9, 3.908530577674566*^9}, 3.908533636339531*^9}, CellLabel->"In[26]:=",ExpressionUUID->"59c41cae-4e24-4a51-a7a3-7d500a289340"], Cell[BoxData[ RowBox[{ RowBox[{"e10", "=", RowBox[{"Simplify", "[", RowBox[{"Limit", "[", RowBox[{"e9", ",", RowBox[{"\[Beta]", "->", "\[Infinity]"}]}], "]"}], "]"}]}], ";"}]], "Input", CellChangeTimes->{{3.908529782124156*^9, 3.908529796140355*^9}}, CellLabel->"In[27]:=",ExpressionUUID->"10d3cd49-4d16-4520-bb58-ea59fc8d7b92"], Cell[BoxData[ RowBox[{ RowBox[{"e11", "=", RowBox[{"Simplify", "[", RowBox[{"D", "[", RowBox[{"e10", ",", RowBox[{"{", RowBox[{"{", RowBox[{ "q11d", ",", "q12", ",", "y111", ",", "y221", ",", "y12d1", ",", "y11d0", ",", "y11d1", ",", "y121", ",", "y12d0", ",", "z110", ",", "z111", ",", "z11d0", ",", "z11d1", ",", "z220", ",", "z221", ",", "z120", ",", "z121", ",", "z12d0", ",", "z12d1", ",", "\[Lambda]0"}], "}"}], "}"}]}], "]"}], "]"}]}], ";"}]], "Input", CellChangeTimes->{{3.908534070987885*^9, 3.908534106731855*^9}, { 3.908534493867115*^9, 3.908534503451172*^9}, {3.908534639469946*^9, 3.908534652366032*^9}, {3.908534769136189*^9, 3.908534784840426*^9}, { 3.908534838729506*^9, 3.908534842369544*^9}}, CellLabel->"In[28]:=",ExpressionUUID->"93de0c72-ab3d-4e0e-91df-edd506da949b"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{"iniTest", "=", RowBox[{"Thread", "[", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ "q11d", ",", "q12", ",", "y111", ",", "y221", ",", "y12d1", ",", "y11d0", ",", "y11d1", ",", "y121", ",", "y12d0", ",", "z110", ",", "z111", ",", "z11d0", ",", "z11d1", ",", "z220", ",", "z221", ",", "z120", ",", "z121", ",", "z12d0", ",", "z12d1", ",", "\[Lambda]0"}], "}"}], ",", "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{ RowBox[{ RowBox[{ RowBox[{"{", RowBox[{ "q11d", ",", "q12", ",", "y111", ",", "y221", ",", "y12d1", ",", "y11d0", ",", "y11d1", ",", "y121", ",", "y12d0", ",", "z110", ",", "z111", ",", "z11d0", ",", "z11d1", ",", "z220", ",", "z221", ",", "z120", ",", "z121", ",", "z12d0", ",", "z12d1", ",", "\[Lambda]0"}], "}"}], "/.", RowBox[{"{", "\[IndentingNewLine]", RowBox[{ RowBox[{"\[Lambda]0", "->", " ", "\[Lambda]"}], ",", RowBox[{"y110", "->", "y11"}], ",", RowBox[{"y111", "->", "y11"}], ",", RowBox[{"y220", "->", "y22"}], ",", RowBox[{"y221", "->", "y22"}], ",", RowBox[{"y11d0", "->", "y11d"}], ",", RowBox[{"y11d1", "->", "y11d"}]}], "\[IndentingNewLine]", "}"}]}], "/.", RowBox[{"s6", "[", RowBox[{"[", "3", "]"}], "]"}]}], "/.", RowBox[{"{", RowBox[{ RowBox[{"z111", "->", "0"}], ",", RowBox[{"z110", "->", "0"}], ",", RowBox[{"z11d0", "->", "0"}], ",", RowBox[{"z220", "->", "0"}], ",", RowBox[{"z221", "->", "0"}], ",", RowBox[{"z11d1", "->", "0"}], ",", RowBox[{"q12", "->", "0"}], ",", RowBox[{"y12d1", "->", "0"}], ",", RowBox[{"y121", "->", "0"}], ",", RowBox[{"y12d0", "->", "0"}], ",", RowBox[{"z120", "->", "0"}], ",", RowBox[{"z121", "->", "0"}], ",", RowBox[{"z12d0", "->", "0"}], ",", RowBox[{"z12d1", "->", "0"}]}], "}"}]}], "/.", RowBox[{"Append", "[", RowBox[{ RowBox[{"Most", "[", "testparams", "]"}], ",", RowBox[{"\[Epsilon]", "->", SuperscriptBox["10", RowBox[{"-", "2"}]]}]}], "]"}]}], "/.", " ", RowBox[{"0", ":>", RowBox[{ RowBox[{"RandomReal", "[", "]"}], SuperscriptBox["10", RowBox[{"-", "5"}]]}]}]}]}], "\[IndentingNewLine]", "}"}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{"newsol", "=", RowBox[{"FindRoot", "[", RowBox[{ RowBox[{"e11", "/.", RowBox[{"Append", "[", RowBox[{ RowBox[{"Most", "[", "testparams", "]"}], ",", RowBox[{"\[Epsilon]", "->", SuperscriptBox["10", RowBox[{"-", "2"}]]}]}], "]"}]}], ",", "iniTest", ",", RowBox[{"WorkingPrecision", "->", "20"}], ",", RowBox[{"MaxIterations", "->", "1000"}]}], "]"}]}]}], "Input", CellChangeTimes->CompressedData[" 1:eJxTTMoPSmViYGAQA2IQLdE9S/2D3FtH5vuy2iDa/tFuQxC9p1/FCETPEk1y ANElVcaOIFqlcf0/Ufm3jkcyp/0H0aFtxzXFgbTYUh5dEP1IWO4WiHbJ2nYP RGtxijJJAGmpRWfZQXRSG1vBfiD9I9YeTFtYn1I/AKTl2M+A6RkRci4g+tlC BTAt9O3pNRCdUv3zNoh+tE7zI4hWLM8G041iFT9A9KTblWA6pYiP7yCQFrAV BNMpeqFyIPpDhb0uiP4S89oRRLfMfuAMok9IVkWDaIWz68C0gbx+Coh+7qKd BqJlptqVguiZffMqQHT/pUm1IHrDSp86EP2u7nALiK5mmdUGojfn3esH0Tqe XDNANACqiaYp "], CellLabel->"In[29]:=",ExpressionUUID->"9e5141ea-32bd-48b0-8277-cb026f090ea9"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{ "q11d", "\[Rule]", "0.00001719918305512310846812066162581739`20."}], ",", RowBox[{"q12", "\[Rule]", RowBox[{"-", "0.00383281097181573630367754982616161269`20."}]}], ",", RowBox[{"y111", "\[Rule]", RowBox[{"-", "0.00035195692931336096614732113808739622`20."}]}], ",", RowBox[{ "y221", "\[Rule]", "0.68962883518266681666929540111765532089`20."}], ",", RowBox[{ "y12d1", "\[Rule]", "0.00001195902976122081536376878225626195`20."}], ",", RowBox[{"y11d0", "\[Rule]", RowBox[{"-", "0.19134347483798316542575123636469573829`20."}]}], ",", RowBox[{"y11d1", "\[Rule]", RowBox[{"-", "0.19134347443763013996154143114836188033`20."}]}], ",", RowBox[{"y121", "\[Rule]", RowBox[{"-", "0.00189131160660317551985182544384737973`20."}]}], ",", RowBox[{ "y12d0", "\[Rule]", "0.00001200394654371134792896803900053015`20."}], ",", RowBox[{"z110", "\[Rule]", RowBox[{"-", "0.00138209065735460074830929170551699655`20."}]}], ",", RowBox[{"z111", "\[Rule]", RowBox[{"-", "0.0001686535286287455946870050826902343`20."}]}], ",", RowBox[{"z11d0", "\[Rule]", RowBox[{"-", "0.00314607804000348555647997344240855575`20."}]}], ",", RowBox[{"z11d1", "\[Rule]", RowBox[{"-", "0.00006310263942843852237249424597109737`20."}]}], ",", RowBox[{ "z220", "\[Rule]", "0.00097124584745275979735801286096830154`20."}], ",", RowBox[{"z221", "\[Rule]", RowBox[{"-", "0.00142610628812969058090698304397392349`20."}]}], ",", RowBox[{"z120", "\[Rule]", RowBox[{"-", "2.91776898432395453655741051424094`20.*^-6"}]}], ",", RowBox[{"z121", "\[Rule]", "1.95468917188534837593456156001892`20.*^-6"}], ",", RowBox[{"z12d0", "\[Rule]", "3.53440597451910610968988171731731`20.*^-6"}], ",", RowBox[{"z12d1", "\[Rule]", "6.76382789044256168528622755187207`20.*^-6"}], ",", RowBox[{"\[Lambda]0", "\[Rule]", RowBox[{"-", "0.00343523813242614214746524692591004446`20."}]}]}], "}"}]], "Output", CellChangeTimes->{ 3.908534617165332*^9, 3.908534760405347*^9, 3.9085347944529567`*^9, 3.9085362696996202`*^9, 3.908604381422617*^9, 3.908612093101529*^9, 3.908614449703895*^9, {3.908614481344686*^9, 3.908614504811044*^9}, { 3.908616210963707*^9, 3.908616254842885*^9}, {3.908616312237392*^9, 3.9086163170447197`*^9}, 3.908616970303256*^9, 3.908621789726719*^9, { 3.90862195734993*^9, 3.908621968286858*^9}, 3.908959467170705*^9, { 3.908960499329819*^9, 3.908960526670731*^9}, {3.908960574847391*^9, 3.9089606038254843`*^9}, {3.908960782913903*^9, 3.908960813745655*^9}, { 3.908961757784819*^9, 3.908961770114484*^9}, 3.90896180984956*^9, { 3.908961981727275*^9, 3.908962027694907*^9}, {3.908962188993072*^9, 3.908962209399077*^9}, {3.908962244124213*^9, 3.908962284221075*^9}, 3.908962342678248*^9, {3.9089624171398773`*^9, 3.908962455324469*^9}, { 3.9089625398547907`*^9, 3.9089626737739773`*^9}, {3.908962847416065*^9, 3.908962888610635*^9}, {3.908962952419513*^9, 3.90896296095532*^9}, { 3.9089630322598047`*^9, 3.908963121645569*^9}, {3.9089631813370247`*^9, 3.908963207296228*^9}, {3.908963248759201*^9, 3.90896338669203*^9}, { 3.908963452507598*^9, 3.908963523634545*^9}, {3.909041670516673*^9, 3.909041694543151*^9}, 3.909042006145735*^9, {3.915532160299971*^9, 3.915532168934849*^9}, 3.9155327735576057`*^9, 3.915771847507398*^9}, CellLabel->"Out[30]=",ExpressionUUID->"0ec956b2-4200-4dbd-bf3a-8e1ba4f9fb29"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"e12", "=", RowBox[{"FoldList", "[", RowBox[{ RowBox[{"Function", "[", RowBox[{ RowBox[{"{", RowBox[{"sol", ",", "\[Omega]22"}], "}"}], ",", RowBox[{"Join", "[", RowBox[{ RowBox[{"Append", "[", RowBox[{ RowBox[{"Delete", "[", RowBox[{"testparams", ",", RowBox[{"{", "4", "}"}]}], "]"}], ",", RowBox[{"\[Omega]2", "->", "\[Omega]22"}]}], "]"}], ",", RowBox[{"FindRoot", "[", RowBox[{ RowBox[{"e11", "/.", RowBox[{"Append", "[", RowBox[{ RowBox[{"Delete", "[", RowBox[{"testparams", ",", RowBox[{"{", "4", "}"}]}], "]"}], ",", RowBox[{"\[Omega]2", "->", "\[Omega]22"}]}], "]"}]}], ",", RowBox[{ RowBox[{"Drop", "[", RowBox[{"sol", ",", "5"}], "]"}], "/.", RowBox[{"Rule", "->", "List"}]}], ",", RowBox[{"WorkingPrecision", "->", "20"}]}], "]"}]}], "]"}]}], "]"}], ",", RowBox[{"Join", "[", RowBox[{ RowBox[{"Append", "[", RowBox[{ RowBox[{"Most", "[", "testparams", "]"}], ",", RowBox[{"\[Epsilon]", "->", SuperscriptBox["10", RowBox[{"-", "2"}]]}]}], "]"}], ",", "newsol"}], "]"}], ",", RowBox[{"Range", "[", RowBox[{ RowBox[{"200005", "/", "100000"}], ",", RowBox[{"200003", "/", "100000"}], ",", RowBox[{"-", SuperscriptBox["10", RowBox[{"-", "6"}]]}]}], "]"}]}], "]"}]}], ";"}]], "Input", CellChangeTimes->{{3.908612319761338*^9, 3.908612417546509*^9}, { 3.9086124874051113`*^9, 3.90861254511722*^9}, {3.908612745906377*^9, 3.908612793106409*^9}, {3.908612832420323*^9, 3.908612861411959*^9}, { 3.908613309205525*^9, 3.908613364644801*^9}, {3.90861342802299*^9, 3.908613519839675*^9}, 3.9086135669615602`*^9, {3.90861449347665*^9, 3.908614589381097*^9}, {3.908614669654983*^9, 3.908614697639248*^9}, { 3.9086147913854*^9, 3.908614791473036*^9}, {3.908614898533624*^9, 3.908614898571179*^9}, {3.908616326011752*^9, 3.908616327083562*^9}, { 3.908616469198354*^9, 3.908616512344514*^9}, {3.908616543200011*^9, 3.9086165541439466`*^9}, {3.908616606713204*^9, 3.908616607505047*^9}, { 3.908616705004503*^9, 3.908616705122736*^9}, {3.9086168341272717`*^9, 3.908616895070513*^9}, {3.908617028003454*^9, 3.908617065841843*^9}, { 3.908964574277124*^9, 3.908964612668378*^9}, {3.908965377762587*^9, 3.90896537784248*^9}, {3.909042427724539*^9, 3.90904242782031*^9}, { 3.909042471277335*^9, 3.909042532246409*^9}}, CellLabel->"In[31]:=",ExpressionUUID->"15a4bc43-3d38-4bf8-ab87-9fe6c3c52fd5"], Cell[BoxData[ TemplateBox[{ "FindRoot", "lstol", "\"The line search decreased the step size to within tolerance specified \ by AccuracyGoal and PrecisionGoal but was unable to find a sufficient \ decrease in the merit function. You may need more than \ \\!\\(\\*RowBox[{\\\"20.`\\\"}]\\) digits of working precision to meet these \ tolerances.\"", 2, 31, 2, 23800662333952606617, "Local"}, "MessageTemplate"]], "Message", "MSG", CellChangeTimes->{3.909042535149797*^9, 3.9155328751204443`*^9, 3.915771850129451*^9}, CellLabel-> "During evaluation of \ In[31]:=",ExpressionUUID->"021c4989-876c-4967-bcac-1f978a0f6419"], Cell[BoxData[ TemplateBox[{ "FindRoot", "lstol", "\"The line search decreased the step size to within tolerance specified \ by AccuracyGoal and PrecisionGoal but was unable to find a sufficient \ decrease in the merit function. You may need more than \ \\!\\(\\*RowBox[{\\\"20.`\\\"}]\\) digits of working precision to meet these \ tolerances.\"", 2, 31, 3, 23800662333952606617, "Local"}, "MessageTemplate"]], "Message", "MSG", CellChangeTimes->{3.909042535149797*^9, 3.9155328751204443`*^9, 3.915771850522373*^9}, CellLabel-> "During evaluation of \ In[31]:=",ExpressionUUID->"4c8cb9d5-8149-4cd8-9ae8-7fb98ffaf525"], Cell[BoxData[ TemplateBox[{ "FindRoot", "lstol", "\"The line search decreased the step size to within tolerance specified \ by AccuracyGoal and PrecisionGoal but was unable to find a sufficient \ decrease in the merit function. You may need more than \ \\!\\(\\*RowBox[{\\\"20.`\\\"}]\\) digits of working precision to meet these \ tolerances.\"", 2, 31, 4, 23800662333952606617, "Local"}, "MessageTemplate"]], "Message", "MSG", CellChangeTimes->{3.909042535149797*^9, 3.9155328751204443`*^9, 3.915771850670816*^9}, CellLabel-> "During evaluation of \ In[31]:=",ExpressionUUID->"9bc6aaf1-acad-42a4-8e8c-3d1bc23999cc"], Cell[BoxData[ TemplateBox[{ "General", "stop", "\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"FindRoot\\\", \ \\\"::\\\", \\\"lstol\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ during this calculation.\"", 2, 31, 5, 23800662333952606617, "Local"}, "MessageTemplate"]], "Message", "MSG", CellChangeTimes->{3.909042535149797*^9, 3.9155328751204443`*^9, 3.915771850675591*^9}, CellLabel-> "During evaluation of \ In[31]:=",ExpressionUUID->"f629becb-1a0a-41c4-982d-075455cd242a"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{"testzero", "=", RowBox[{"SelectFirst", "[", RowBox[{"e12", ",", RowBox[{ RowBox[{ RowBox[{ RowBox[{"Abs", "[", "\[Lambda]0", "]"}], "<", SuperscriptBox["10", RowBox[{"-", "2"}]]}], "/.", "#"}], "&"}]}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{"solzero", "=", RowBox[{"Join", "[", RowBox[{ RowBox[{"{", RowBox[{"\[Lambda]0", "->", "0"}], "}"}], ",", RowBox[{"Delete", "[", RowBox[{ RowBox[{"Take", "[", RowBox[{"testzero", ",", "5"}], "]"}], ",", RowBox[{"{", "4", "}"}]}], "]"}], ",", RowBox[{"FindRoot", "[", RowBox[{ RowBox[{ RowBox[{"e11", "/.", RowBox[{"Delete", "[", RowBox[{ RowBox[{"Take", "[", RowBox[{"testzero", ",", "5"}], "]"}], ",", RowBox[{"{", "4", "}"}]}], "]"}]}], "/.", RowBox[{"\[Lambda]0", "->", "0"}]}], ",", RowBox[{ RowBox[{"Prepend", "[", RowBox[{ RowBox[{"Delete", "[", RowBox[{ RowBox[{"Drop", "[", RowBox[{"testzero", ",", "5"}], "]"}], ",", RowBox[{"{", RowBox[{"-", "1"}], "}"}]}], "]"}], ",", RowBox[{"\[Omega]2", "->", RowBox[{"(", RowBox[{"\[Omega]2", "/.", "testzero"}], ")"}]}]}], "]"}], "/.", RowBox[{"Rule", "->", "List"}]}], ",", RowBox[{"WorkingPrecision", "->", "30"}]}], "]"}]}], "]"}]}]}], "Input",\ CellChangeTimes->{{3.908622224176259*^9, 3.908622421996703*^9}, { 3.908961708782144*^9, 3.908961740141968*^9}, {3.908965836484462*^9, 3.908965836578917*^9}, {3.909042567863147*^9, 3.909042711337614*^9}, { 3.909042759667089*^9, 3.90904277613109*^9}, {3.909042894757884*^9, 3.909042904805442*^9}}, CellLabel->"In[32]:=",ExpressionUUID->"a6ab04f8-b182-4e06-87d3-44cf4d55f296"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"\[Lambda]0", "\[Rule]", "0"}], ",", RowBox[{"\[Sigma]1", "\[Rule]", "1"}], ",", RowBox[{"\[Sigma]2", "\[Rule]", "1"}], ",", RowBox[{"\[Omega]1", "\[Rule]", "3"}], ",", RowBox[{"\[Epsilon]", "\[Rule]", FractionBox["1", "100"]}], ",", RowBox[{ "\[Omega]2", "\[Rule]", "2.0000381968503537617864731671808729605325080144764559775944`30."}], ",", RowBox[{ "q11d", "\[Rule]", "0.0000170822314380834927572226081181288574675382698548629537`30."}], ",", RowBox[{"q12", "\[Rule]", RowBox[{ "-", "0.0038196447095974041482929032765487177645431829999483482005`30."}]}\ ], ",", RowBox[{"y111", "\[Rule]", RowBox[{ "-", "0.0003519276719374559692910087876122558545974667489420526399`30."}]}\ ], ",", RowBox[{ "y221", "\[Rule]", "0.6913434743753216630427656669722923098544593773636691701013`30."}], ",", RowBox[{ "y12d1", "\[Rule]", "0.0000120039465437113479289680390005301546806664944032453276`30."}], ",", RowBox[{"y11d0", "\[Rule]", RowBox[{ "-", "0.1913434744376301399615414311483618803321916514469416379969`30."}]}\ ], ",", RowBox[{"y11d1", "\[Rule]", RowBox[{ "-", "0.1913434744376301399615414311483618803322315216064453125`30."}]}], ",", RowBox[{"y121", "\[Rule]", RowBox[{ "-", "0.0018978385709063784423964020016173749045875148205681706019`30."}]}\ ], ",", RowBox[{ "y12d0", "\[Rule]", "0.0000120039465437113479289680390005301546807459089905023575`30."}], ",", RowBox[{"z110", "\[Rule]", RowBox[{ "-", "0.0025660056642111959729520009876324593280142607890710954488`30."}]}\ ], ",", RowBox[{"z111", "\[Rule]", RowBox[{ "-", "0.0001686535286287455946870050826902343032998032867908477783`30."}]}\ ], ",", RowBox[{"z11d0", "\[Rule]", RowBox[{ "-", "0.0048578069105933392789024860558555474202180867340514728639`30."}]}\ ], ",", RowBox[{"z11d1", "\[Rule]", RowBox[{ "-", "0.0000631026394284385223724942459710973707842640578746795654`30."}]}\ ], ",", RowBox[{ "z220", "\[Rule]", "0.0009712458474527597973580128609683015383780002593994140625`30."}], ",", RowBox[{"z221", "\[Rule]", RowBox[{ "-", "0.0014261062881296905809069830439739234861917793750762939453`30."}]}\ ], ",", RowBox[{ "z120", "\[Rule]", "3.3997821392362058813638864274153661503214492588533`30.*^-7"}], ",", RowBox[{ "z121", "\[Rule]", "1.9546891718853483759345615600189205451897578313946724`30.*^-6"}], ",", RowBox[{ "z12d0", "\[Rule]", "3.5344059745191061096898817173173057426538434810936451`30.*^-6"}], ",", RowBox[{ "z12d1", "\[Rule]", "6.7638278904425616852862275518720736044997465796768665`30.*^-6"}]}], "}"}]], "Output", CellChangeTimes->{{3.908622258019921*^9, 3.908622282010366*^9}, { 3.908622358176366*^9, 3.908622423275463*^9}, 3.908960404757339*^9, 3.9089619597735023`*^9, 3.90896216556334*^9, 3.908965839807811*^9, 3.909041910725379*^9, 3.909041952412874*^9, 3.909042132178347*^9, { 3.9090426426640863`*^9, 3.909042703605441*^9}, 3.909042794897882*^9, 3.909042920676709*^9, {3.915532883718834*^9, 3.9155328867105827`*^9}, 3.915771852468653*^9}, CellLabel->"Out[33]=",ExpressionUUID->"e43b3e00-885a-43e1-b26b-8b1a2615d3fc"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"solzeros", "=", RowBox[{"FoldList", "[", RowBox[{ RowBox[{"Function", "[", RowBox[{ RowBox[{"{", RowBox[{"sol", ",", "\[Epsilon]\[Epsilon]"}], "}"}], ",", RowBox[{"Join", "[", RowBox[{ RowBox[{"Append", "[", RowBox[{ RowBox[{"Take", "[", RowBox[{"sol", ",", "4"}], "]"}], ",", RowBox[{"\[Epsilon]", "->", "\[Epsilon]\[Epsilon]"}]}], "]"}], ",", RowBox[{"FindRoot", "[", RowBox[{ RowBox[{"e11", "/.", RowBox[{"Append", "[", RowBox[{ RowBox[{"Take", "[", RowBox[{"sol", ",", "4"}], "]"}], ",", RowBox[{"\[Epsilon]", "->", "\[Epsilon]\[Epsilon]"}]}], "]"}]}], ",", RowBox[{ RowBox[{"Drop", "[", RowBox[{"sol", ",", "5"}], "]"}], "/.", RowBox[{"Rule", "->", "List"}]}], ",", RowBox[{"WorkingPrecision", "->", "20"}], ",", RowBox[{"MaxIterations", "->", "500"}]}], "]"}]}], "]"}]}], "]"}], ",", "solzero", ",", RowBox[{"Range", "[", RowBox[{ RowBox[{"1", "/", "100"}], ",", "1.6", ",", SuperscriptBox["10", RowBox[{"-", "3"}]]}], "]"}]}], "]"}]}], ";"}]], "Input", CellChangeTimes->{{3.909043333070065*^9, 3.909043451649344*^9}, { 3.9090464238882*^9, 3.909046424128012*^9}, {3.909046458976687*^9, 3.909046460128731*^9}}, CellLabel->"In[34]:=",ExpressionUUID->"cc4f2eca-a54d-413e-8b18-94ba1c2bbbc2"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"ListPlot", "[", RowBox[{ RowBox[{"{", RowBox[{"\[Epsilon]", ",", "\[Omega]2"}], "}"}], "/.", "solzeros"}], "]"}]], "Input", CellChangeTimes->{{3.909043941257431*^9, 3.909043955169023*^9}}, CellLabel->"In[35]:=",ExpressionUUID->"971b5a9c-8ceb-429f-9eab-88056cb74ad9"], Cell[BoxData[ GraphicsBox[{{}, InterpretationBox[{ TagBox[ TagBox[ {RGBColor[0.368417, 0.506779, 0.709798], PointSize[ 0.0055000000000000005`], AbsoluteThickness[2], PointBox[CompressedData[" 1:eJxd12VYVN3bBXDO9CCCgmIrJgZ2oKIuRMEERVHswG5Fxe5W7G7FDmxRQhFB UBqkQ7prkhnEeI889/5/ePnidV+DZ845e+/1W7R1WzNpkcDAwGCgxMDg37/b Gj0blbN1P358fSlpZGBg+/9nvzFGgm6HDqK38QSbpvz8c+fygA1nD2O5mUdS S34e9Oarx8ebR1GvsWVKW37eUtKpt+ypJzJd3Gwt+fl96wNlzu9PoKRZZ5Pu /PzrkTLe0e0UdrzYPLIvP18LsXjhvvQ0rJa7ZA/iZ5usCccvrj6DiOv+ubb8 nF5T94VY/+DZuNH/u79z2F/cvcVEfm7RM7ODZM953Aob5Dztf/d7Ac9exFfM 4+cZC+uuiLRGNYpl/7v/Szi33HvGen6+crnuB2e7K7ru+N/zXEHcj6D5h/g5 NVo3Oe/eVZwStf97+n/Pdw1TuzYSXufnZqKpxt1fXUdV9vlVD//3vDew+uPD YW/4edp/F0S3OY4en/73/LcQOm9/oyh+Hm99ZPi8glvotNKpWdr/3sdtbOr2 dH8RP5c7/7vibfSacGOq9n/vxwv1j3c8KeQMbI+tLKp9pPSC2S27HqYce193 cHJ0dd+2/NztkDn/CHfQZPzwW7049v7u4vDGDutt+Tnitr2P+vdd1D9/6+lE jr3Pe2i022f8fH7+97aaiu5jZsMlk9059n7vo6jz60/7+Nkw+c7aoYYPIHt6 9dx5jr3vB5hxoG3MA35+/O9xGzxE8F37tX4ce/8P4fFXtjmKn8f+u5z5IyhO rizM5th6PMLfKev8Nfxc97pbPobv1KY6mYCtz2Psu+Z2uRU//3t7se2ewNTa 2auPgK3XEyyxKWg4mp+7zDr5Wdv5KeKD2xTPFrD1ewplFddxAz9/46/WvKc3 3uR7fj0qYOvpjRmRQfG3+Xnp6Yrt6P8M7km3R/gK2Po+Q6Z1jxZx/MzfHP/I zxHZden0EgFb7+cIrpz4hxMa2Lrwm4dfUlz+WiJvIWTr/wIegn7b+/HzXf7t Jd95gdSyXlOchGw/vMDp1JxzS/lZ8zthc0mnlwjtONpmn5Dtj5dQ9Fw0+gY/ j6zbAC+RO2twgK+Q7ZeX+Gz+7UIiP/OL9++BUD/KNEUpZPvnFa5omu42FhnY /nd7r3Bemnmim4jtp1c4cGCeaAw/9637eY3R6rvZi0Vsf71Gs/Qn7Q/w875P 4fwOeo1jkR5Rd0Rsv73G8VnSH5/5+Tu/+vw7wfKOc6fkitj+e4Nvobv6CsQG tu3rLvgGzwuWb24nZvvxDXZateswgp/X1y3AW+jHPhiwUMz251vYVNc+P8DP wdrO/Aq/xbfitqceiNl+9cHe3ObJ3/jZ9L8bxIOHxfvLxWz/+iBTfPyyicTA tu7uvvqgW7i8cV8J28/vUBs+TzeVn19dr3oQOu4dWuSdtd0mYfv7HT6p7ipu 8rOg7oHfYV/WeekXCdvv77Ho3NIDpfw86b8Ng0iuzfIGUrb/3+NIK/+3A/jZ 69/jJrxHQu6wpbOl7Dz4wnnS0z37+Vn173LTfGHkLhY8lbLz4YudjuNLvvOz 3b/tn+4LT+1e619Sdl78cGT3k/IOMgPbuu07xw/9Db/KnGTs/Pgh8HXasU38 nLP134L4IfROwcbbMnae/DFdUhYawc+96za4P2qNKnZWy9j58seNyorrbeUG tnvOj+C3jD8eFVW1d5Sz8xaAmkHaBlv4Oa5d3QIj08pg0T05O38BaFXfzCKe n9v+S/+KAFRb9bL7K2fn8QNa50+PsDI0sF3373is/YAvJ8/4zzBk5/MDzp3J MD3Cz0H/Vlf9Ac9cBse9M2Tn9SPejHhWXcjPDf47kAiJH7zPvB47vx+xaWuu hwM/172+mo8off8gzqMeO8+BeNvw+NkH/Fx3e9sDoa1/PiClHjvfgRg15PN4 QyMDnqh/P58Q2avJyCFG7Lx/QpcDF7xW8/PD0HH8if6Eoyl2S28bsfP/Cbdi Wp9P4OeJ/Gnk9yi8GnXvIqvP8uATJruu7TCEn/X/9An5hD/jyw6urc/y4RM2 v7g18R4/32r+70AEoaPd2T1p9VleBEET9qVZA2MD29F1CxwEt/o2zRyMWX4E YUeedtd2flY8+HeDQci3qHF8bczyJAhfbo/aV8rPl/7dXTj/+aj8Nu1MWL4E 4fLPuPYz+Pnf5hpj9Bmx981OnjFhefMZRng6P4Kf/6VJvONnLPO/cVXUgOXP Z1xvVjlkGD//2y38loF21nX7zQ1YHn3GrBPP377i57rHjf2MmQGWxysasHz6 jCa1ssjODQ1s6y5nGoypC6e6L2zI8ioYO5uY7b7Fz3VxNDkYFwbZaTMasvwK hqO2MK6ZqYHtf/UhGMqtInNXU5ZnwdhicCPoHD/XxUFyMPYH+STEm7J8C8b0 v84TGpoZ2O6qC5wQFBus7z3RjOVdCGJMW207yc+WdQcoBK6HJlvFmLH8C8Em n2b2Jo0MbGPq6kUIUn+7f5nQiOVhCBI+uXmf4udN/45DZgjWLy3/FdeI5SP/ /xeYvTFrbGDb5t92bv0FLp3S46c0Znn5BQO6jZp+iZ/D/m2/eV/AqWaMSm/M 8vMLJhk0v97a3MB2TV1AfsH+nEMz3MxZnn7B004Pd93n5yZ1B/4LbizeaVRm zvI1FIqhxlyvJga2dbfXIRTVTjNnb2zC8jYU34Yva+vPz4vrfkIxKsTGkWvK 8jcUDY8mZY/i53/liU9YnB0/NONEU5bHoeAi1iOJn/+l4+aSUEwP32HYuhnL 5zAsajx36GJ+nlN3wTAEbm+R8qwZy+swRCf5pOn4WVIXUGGI+tvPfnhzlt9h CEu93OQYP/9bjUbPwnB9fIlzYnOW52GQOFhq2rQwsK1rd1VhOOPr+md5C5bv X/Hg1s61Pvz8599x6/0VR37eHCtoyfL+K98fAj2d+Pn+v+3s/hXmbXMHXG3J 8v8rbsjrjSnmZ6f/Hhivrg0L7t+KefAVNdW77+3j5+p/y6H9itrBSVVxrZgP 39DttJ2XRWsD2xv/Htf6G/IswwPWtGZefMPyvusQyM8OdS/wG1QVNl1N2jA/ vuHqxR475vJzZR0P37DJw3HgizbMk284knRtJmdhYHvhX7zXfsNXeduiSRbM l3C0W/oj7S4/18Xz0HBsnZA6QGfBvAnHi/bmtWPaGtjWxevOcFxzumx5vS3z JxxNbJcEKPj5v/gLR/Wq/b4j2zGPwtHQRdv6Mj/XxYsgAsM3fCyvaMd8isDS qfntRrQ3sK07viMisPzwiqBL7ZlXERh4Y9rXSn6uOx4HIhDZ+4W1fQfmVwR6 5HmYXOPn/7ZfBNynvZyg7sA8i0DQ0IX6sR0NbBP/La8sEi725+R3OjLfIrHV 0mFfLT/vqAvASFz22rnIpRPzLhK9t9m98ObnjnUbMBJp2y4skFoy/yIxfuOu XfP5OSqy7gdzhglEAZbMw0jI3rRXmnc2sN1YF6hRWOhb7ODemfkYhbfWU8XR /NyqbkNHYX7rdVZduzAvo/DbbVjAQX7+UvfnVRQcuOA3eV2Yn1HoWis0H97V wHZVXUBH4cs0SfaNrszTKCztHGP6m5/r4qpRNC7sXPBsZjfmazTqe3x95cfP dXEwNRqBPYUWza2Yt9H4Ed+0egs///fnVzSSPY37p1kxf6Mx/XRJxuDuBrZG /x04uDR/XnG1O/M4Gr+XLFzym5/rtkvzGER/Mh47twfzOQYn1r0+H8TPdcsx Kwbjo1zHdujJvI7Bku7c0kP8/N+fZzE4rnxTWdqT+R2DwF2bfzj1MrCtu1xW DCaNdLZ+3Yt5HgvNy5E1TXqz8x6LJ8OnddjRm/kei3T30+9ze7PzHwv7CO3b 0X2Y97Gol3y05fM+LA9i8abz1PLGfZn/seg6fXbHHX1ZPsTis/R+WH5f1gdi MSSt//fx/Vhe8J9vNx39th/rB7FQ3x7eqXV/lh/8/Qi+rTrUn/WFWPyd86y1 sj/Lk1hM364bOHMA6w+xmGv5OODLAJYvseD6Rj7qZc36RBxebV5gcM2a5U0c 3FI2fpIOZP0iDscGykvXD2T5E4cuB9vvyB7I+kYcQt6Eb3EcxPIoDus+irL9 BrH+EYf4O8nPOw9m+RSHVivHlFwYzPpIHJp3nOcptmF5FYdueW0vb7Bh/SQO Y4LOmeTbsPyKQ72cj1WTh7C+Eof7y+8PChnC8iwOWk/nin5DWX+Jg/uOUMP7 Q1m+xWHE5npnmgxjfSYe1p867TsyjOVdPCJutP5RO4z1m3h0XVjjtRos/+LR b8mHuBywvhOPneJ1y6fYsjyMx9Q7zVd9s2X9Jx6hTz6lDh3O8jEe508te/Fq OOtD8Rgf3kJpacfyMh6DUjKvXrdj/Sge62x9XpiNYPkZj/iTT3oeHcH6UjwM Z4Q05UayPI3H2UHSlZtHsv4Ujw8xW7soRrJ8/Y7nIR2dl9qzPvUdi8OM87Lt Wd5+x8fjQ7KmO7B+9R1rE97af3dg+fsdLebuMXccxfrWd0B/zzlsFMvj7xi9 rqtu+GjWv77D06ux9MNols/fMXHF6j0Dx7A+9h3hL20WvxnD8vo7Oi/Y/7bX WNbPvuPE+glrvMey/Oa//8eds13Hsb72HZV3D7d7OI7l+Xd0iRO17DSe9bfv qHJvs/vueJbvCVh7O8upvSPrcwko3Dr+sJcjy/sEXOywyqqdE+t3CcgJH23j 5cTyPwF9bhe+aTeB9b0ENMp1vHxnAvMgAVYxB4o7TGT9LwG2L8973Z/IfEiA dcr+sM7OrA8moM3VGa5PnJkXCeg9rfWkHpNYP0xA/Ibkdy8nMT8ScGH28cP9 J7O+mIAxB0eF+E5mniSgdFn9FcNcWH9MwLujhduDXZgviejqnlYzegrrk4kw eKnIiZ7CvEnE4Kxe/adMZf0yER2ueanTpzJ/EuF6wrHVAlfWNxPht2DQq1JX 5lEijsSteuU+jfXPREw/p2pVO435lAjztTGafdNZH02ESS8j6/ozmFeJUN9/ kX9hBuuniUh5FvLbYibzKxFDu0zc+2Qm66uJaPB3hvuAWcyzRHhbVEQFzWL9 NQmlB4zPO85mviWhQY+wsNTZrM8mobhNm8WL5zDvkhCwrPVa9RzWb5MwrW1U we65zL8kmCzsG2Y8j/XdJARPnd7o+jzmYRIKOo6K6jaf9d8keIjFKr/5zMck mPW+unesG+vDSVCVNdyV5sa85O9n97qi5QtYP07CGrvP/rULmJ9JeHDU6Jfn QtaXkzDTf9rD1ouYp0mQDHv+6cUi1p+Tkbyvqf2IxczXZLwUX++ftJj16WQM GGl/ZtkS5m0yQsOazfy9hPXrZBywaH/q9FLmbzLmFC7r3WkZ69vJkPpWD/Nf xjxOhtw2/v3E5ax/J+NDV/HNwuXM52RM73VJuX0F6+PJKDM598JsJfM6GYtO cRmPV7J+noxru0vW261ifidjwjuXzWmrWF9PRjez8SXuq5nnKYjZmhJabw3z PAWxGYKG99Ywz1Pg3zMhbNha5nkK2rpPKUtZyzxPwenHJ7etX8c8T8G9omOb jd2Z5ykQ2k7OfeTOPE/B3PjK9/brmecpOPBlya+c9czzFEwfHfZ05wbmeQoy TpuHt9jIPE9Bv5w5Lr4bmecpeLrj0ThXD+Y5f78+f59rPZjnKZDnL99zbhPz PAXuizSBfTczz1NR7869Fd83M89T0bn+4f3rtzDPUzG35T3DRluZ56k44Sz5 82Yr8zwVWf3fzpm6jXmeiogZ/lb6bczzVLSf0W7ple3M81Q0TFI3GLqDeZ6K 1lsGWWbvYJ6nYmD1r8f7djLPU/FWNvqa5S7meSpcN3SojdjFPE/FFPG1sLW7 meepmHXqPWe+h3meivOqfY/89zDPU/G4oSxw/l7meRqi0p3sZPuY52nwHeXW 9/k+5nka/FzGn5m6n3mehpeGTeb+2c88T0PTrZGX7x9gnqfBMMDDbsJB5nka 7FVtpusPMs/T0GdUfObtQ8zzNBRUXIwdd5h5noZu7bb1rj7MPE/D/s4HDW4f YZ6noa9T8NDxR5nnaRhSMqREd5R5nobl034L7h5jnqdhhtDk2ERP5nk6Ns3Y vue3J/M8HbLkCYWPjzPP09Gr9qzvtBPM83TonCfXSk4yz9Mxds2lJ29PMs/5 /69YFb7wFPM8HX+3/HBtdJp5no6f/prJIaeZ5+n4uMr/44YzzPN0NJ049FLH s8zzdKRZHchOOss8T0dR0vWLh88xz9Nh3fXMh8Hnmef879dbNaniPPM8HYLl g6beusA8T4dwiODb5IvM8wzM2Rv/WHqJeZ6BEIe3tf6XmOcZaHXtrf/ay8zz DHje+FHa8QrzPAMe622OpF9hnmfg8JjkC6evMs8zEDDtg9noa8zzDMzN1f/9 c415noGmvc/P9LnOPM9A+aXrnVbfYJ5nwH5Tq/mdbjLPM6DvY1Ev6ybzPAPj h7zscOkW8zwDv40yvJ1vM88zMLLz0/v1vJjnGfjRvLtJqBfzPBMNty0v2n2H eZ6Jl8Vreg65yzzPhGX9MUW6u8zzTGy5ypm8ucc8z4TjxHv3195nnmdCqcSz 7g+Y55lwm5jZsewB8zwTE+yP1H/0kHmeiQ5vJixa8oh5ngmjo0O6d3rMPM/E zw8zFxU8Zp5n4sVE3/r3njDPMxE4fn6nRU+Z55m4HDr3eUdv5nkmjmV8eljo zTz/gSifU6YPnzHPf2D/ofTyZc+Z5z8QdtTb2uoF8/wHnkjM1JUvmOc/4DCu aZtXL5nnP/Dm1Tf/ja+Y5z/Q9nbfb4NeM89/IHa/26g/r5nnP9A6yW1A8Bvm +Q8cazL8wuG3zPMf+JwoX+Lkwzz/gesPvj1s9I55/gM9exyfmf6Oec7fb6P5 u7zeM89/4FeDSY2W+zLPf+Bp7srmffyY51kwdvl4+qcf8zwLzwZN3hrszzzP wnb3gQmeAczzLEQVbb059QPzPAtLjltmWHxknmfh0PxxR8s+Ms+zkL9S/cgn kHmeBf/PVjZ7PzHPs5C0WzTMKYh5noVTMYdeNf/MPM/Cj5zgS0WfmedZcNV+ UbwJZp5nYdCkq357Q5jnWdg4zrl64hfmeRZeDtPeaRPKPM/GpHPngitD2XnP xr7AIVM+hjHfszFsWO20E1/Z+c+G8+XM6DnfmPfZWLJQ6dMznOVBNkyGjWzI RTD/s/ElJi8zPoLlQzZ0UZkt70WyPpANYz2iN0WxvMjGlqZNVWOjWT/Ihrdo w+HWMSw/stH/+vzTqhjWF7LxNqrSKCyW5Uk21J5daq/Gsf6QjeyMNrPWxbN8 ycbV8Kyeo76zPsE/7+pNHq0SWN5ko2+5pqcmgfWLbJx1XzwrIpHlTzYybdJq vZJY38iG1/E5xtuSWR5lI+U9d25yCusf2fjRLN7TKpXlUzYONP2hF6exPpKN Zp37pWSlsbzKxrKw3K5+6ayfZCN2t15xLoPlVzYGl+7rujaT9ZVs9Ll3Nnnc D5Zn2cibM0BvmcX6Sza6xm71FGWzfMvGuQ9rzuVksz6Tg7W69g0Cc1je5SB2 +v2/13JZv8nBxUjxgm15LP9ysHOE8+AZ+azv5KDNx4sHBhWwPMzB71HFI5sV sv6Tg6N65801hSwfc2CtzmuTVsT6UA42LvG28S9meZmDT6c+RFwrYf0oB099 2sfuLGX5mYNiq6rR88tYX8qB4+SeA0aWszzNQc559UXLCtafcpC3ctzqepUs X3OQNMvBt6qS9akcHKxWb06oYnmbg8bJC7x9Faxf5YB7eG/qTSXL3xz0avNt wwEV61s50P3JlK5UszzOQUdzjclkDetfOahn2+L4YC3L5xwcWrhgV7tq1sdy YLQ5o9BQx/I6B97bLgSrdayf5aDDjtuNM/Usv3OQdaF+ZmgN62s5kCpKm738 yfKcf98BYyKv1rL+loNOQwdrDv5i+Z4L98DI0+6/WZ/LRfH1hvfm/GF5n4tK NOsx7i/rd7nIbqaxGmjAUf7nooX3q9sdOY76Xi6khxd5mgk48iAXbRxaVXBC jvpfLv6cLA1W8PN/PuRiSYsfDbJFHPXBXEx8IkuIEXPkRS5KTLbV/yThqB/m 4lknhw8vpBz5kYtlaVvzbss46ou5GN6+6+6zco48yUWQZNHZA4Yc9Uf+eheH tNpcjyNfctFTF9RqhRFHfTIXpydJzs+pz5E3ubhR0HzfJGOO+mUudtY0KHYw 4cifXPzOrwm2acBR38zFVaMi894NOfIoFydzS7I7mXLUP3ORXGjWrpUZRz7x 9/vAI82sEUd9NBebAtsb1mvMkVe5kKdavRSYc9RPc7H5yZ2Yn/z8n1+5sP11 eZG6CUd9NReFN9quL2/KkWe54DaO1xc046i/5sF+tZU2qzlHvuXh5OHvy9Ja cNRn86CMmTw1sSVH3uUhYE6gX2wrjvptHo7O7nwxsjVH/uXBSXi77Gsbjvpu Hmaet3n/xYIjD/PgvsTw9+e2HPXfPP7vhTZ+n9px5GMeui44UfWxPUd9OA/J 25de/9CBIy/zEOjzKTigI0f9OA/rvR+5BXTiyM88DDIasDXAkqO+nIfGxzcb fujMkad5SNXvM/vYhaP+nAcryxXnA7ty5GseLv+xPRXUjaM+nYdrG5qKQqw4 8jYPj4+LlKHdOerXebCb3dQ1vAdH/uZBJ14yILonR307D9t9hSfje3HkcR5e vefmJ/fmqH/z8+QNTzP6cORzHjJKVq/L7ctRH89DXonoRXE/jrzOQ1LcmKVV /Tnq53no19P5SvUAjvzm1+tGD4c/1hz19TwcjtKukAziyPN8SDb51TMZzJHn +TBfcqpjUxuOPM+HyZZjvm2HcOR5PoSXAsO6DeXI83x8/Wg7ccAwjjznr6dv N3k4OPI8H2PmbI0db8uR5/mQtpz5ddpwjjzPx5sVqYMX2XHkOX+9i/LO7iM4 8jwfST//ntw1kiPP83Hyb6z7cXuOPM9HqsXp2KsOHHnO/36Jy6PHozjyPB9q ba/fvqM58jwfNYpBkd/GcOR5Pppd3G+eNpYjz/NR/aZjRuk4jjzPh69ln1a/ xnPkeT5aZH5Mre/Ekef58Pie3dBiAkee5yO2mfeXPhM58jwfpTEDtfbOHHme j4mdLt+aPokjz/OxZE5e2KrJHHmej83hViv2unDkeT6Co44evTiFI8/z+f5t 2sl7Kkee56P99rShwa4cec6vzwhdXOo0jjzPR3TKzlzFdI48z8fS6oNrZDM5 8rwAfxd13GIxiyPPC2AhXPt34GyOPC9AkN92waQ5HHlegEnH5u9dMZcjzwsQ sb/frgPzOPK8AIFf69XcnM+R5wVYfPR3lZ8bR54X4JmxxcKkBRx5XgDHp0em qBZy5HkBoiImhhgv5sjzAtwoOvai2xKOPC9AB0/n5mOWcuR5AcJc33NLlnHk eQFEtUmLDyznyPMCbBsYMubuCo485583/8Lj4JUceV6Ah0WLjuSt4sjzAuQM Gl0oXMOR5wXYXOQS1GEtR54X4IXxneYO6zjyvAATsseolrhz5Dn/+c15o4+u 58jzAiR4/WnpvYEjzwuwdpLN2tiNHHlegD9dethpPDjyvABx7yrPNN3Mkef8 elw/5zZ0C0eeF6DlCeuXbls58px/HueqnYe3ceQ5/3nw94hn2znyvADK6F8X E3dw5HkhBnjszfu1kyPPC6GO3P6sw26OPC/EsZ/CmvF7OPK8EAmDegVv3Ms8 L0S71Gb1b+5jnhdi9uDUpK/7meeFaPD9oIX6APO8ENusbEpbHWKeF+JBnnG/ MYeZ54XweNT8z4YjzPNCvLbbNPr2UeZ5ITofHmoWfYx5Xoiniw/OqfVknhdi cNbyrl1OMM8L8Vsi2uR6knleiKXSFSMPnmKeF8Khte+Zt6eZ54UIvy51KzjD POfvr3zNq8bnmOeFaHOw3n6H88zzQjT+qU7adIF5zr+PCrsnjy4yz/n/39SU y7jEPC9EzthtKcZXmOeFqF18qbfdVeZ5ISwW7TPyuMY8L+T7xdRlj68zzwvh 49xtdNYN5nkh+l5p+ajRLeY5f73NIz3H3maeF2LBxA/K3V7M8yIMuHQ79d0d 5nkRwjPrjay6yzwvgmmIeW/L+8zzIrwWZt6a+4B5XoRmK7acvfSQeV6Ewz8k 8vhHzPMi9J92izN6wjwvwpTieTscnjLPi2D9dsH2Pd7M8yJMrg3+E/CMeV4E t/rXRTXPmedF2OBieKL/S+Z5EbiJllfdXzHPi2BwwcTqxWvmeRF+xf+wrXzD PC9C1/AXqVY+zPMibJ9yu3rFO+Z5Ed4virz45D3zvAjHBU4fynyZ50V4MNZu iZU/87wI39Z/Ob8qgHlehMxw9ejnH5jnRTB+U7Jb+ZF5XoSMx8FD+31inheh n92NXZuCmOdF2NfhgoP/Z+Z5EaLNvp75G8w857+vZOLCkV+Y50Uov+jofySU eV6EY5bpF2PCmOf8577mPxt/Y54XY9bhVrmzwpnnxRibbzTxbgTzvBjTrQUj yyOZ58XYJmzxsV8087wYkrwNH3fEMM+LEXW4u31YLPO8GAM+uU1qGM88L8ak VX0KZ35nnhfzf0/7GTxIYJ4XI6xfMy9VIvO8GGvOrgwflsw8L8ZZRfyWYynM 82IYeC9/kZLKPC9GgN2k1Z3SmefFsLB/+HpDBvO8GIp5x3YHZzLPi7F+VvNE 0yzmeTE8m2x46ZbNPC9G4rF3jV/nMM+L8TpSKBDlMc+LsUG62WNKPvO8GAv3 9V3/oIB5XozS21P0NYXM82Jc//Fb7FjMPC/Ggphx126VMM+Lsb/DXH9NKfO8 GOEPXReMKWeeF+PC8CnnblQwz4vxp3KTk6aSeV6MvIis02MVzPNi1Df2nnNb yTwvxiiJwVu9inlegk0WNecmapjnJfDLe//noZZ5XoLtqrkqTsc8L8FFQ5O1 M/XM8xKsFBdtelvDPC/Br2SZYYNa5nkJJGfPd1rxi3legvYLnkWF/maelyDj 1Ia/7f4yz0sQuVsesMtAQJ6XwPf1CWEmJyDPS/A8tGPSYKGAPC9Bq/WKvpdF AvK8BMoTDVrpxQLyvARvjR6edpUKyPMSPKhNOf1OJiDPS5B56EurpoYC8rwE s36e7L+lnoA8L0F/3xmpaUYC8rwE90eNlg81FpDnJejtsO3LTRMBeV6CD+7m xsKGAvK8BD4Ph+QtNhWQ5yVol9PAPsJMQJ6XIKyPT99ejQXkeQlGxk94ft5c QJ7z1zfl3tc2EZDnJbBZUOHo1kxAnvO/7zJw3bfmAvK8BHvOiNv1bikgz0tw oWTzvMutBOR5KXxH+FgJ2gjI81JEPco5uMJCQJ6XYs+INmsS2wrI81Kscz1b gPYC8rwUI8e5lT7uICDP+f9/58UO804C8rwUncR3bu61FJDnpUjoM2diVWcB eV6KfBPpqVldBeR5Kerf/DwnvJuAPC9FjMAnYGB3AXleijM7JI8f9BCQ56X4 ti61U5NeAvK8FCZuLn0P9RaQ56UYr7wWo+sjIM9LEZubUru0n4A8L8WW5j3e p/UXkOf8/V37LHK0FpDnpRh4MiAncKCAPC+F0tpuQt/BAvK8FK5/tjg+sBGQ 56WoXX40o8VQAXleig+WV36dGiYgz0uh/xvjLbEVkOeluJk9SbF9uIA8L8W8 lDEhajsBeV6KsCYZXVaMFJDnpZiv7NU2z15AnpciM3XN45mjBOR5Kfos/fQl YbSAPC9F4JSx653GCsjzMqzb2f/113EC8rwMBdmPDoxwFJDnZTh2I6b0o5OA PC9DRG107uCJAvK8DF3mxa565ywgz8uwZOqvY/0mC8jzMjz13Db0lYuAPC/D owSPvb2mCsjzMvi1bzLzuauAPC+D0dkDYT2mC8jzMnyZWxb2bIaAPC9Dp7J1 s3rOEpDnZXjpZ3fgxWwBeV4Gp82H7PrMFZDnZVivWnbuzTwBeV6GUS0bbbN2 E5DnZfha/0W13wIBeV4GrXCpFIsE5HkZ78Fi7+DFAvK8DB2fJhaPXiogz8uw 4Uy2b/QyAXleBpfClxZTVgjI8zL8ubmhVcZKAXlehlOZk18sWC0gz8swIG9r atkaAXlehsktGl/esE5AnpfhoblT1W93AXlehu2ezhmHNgjI8zJ8njFunqmH gDwvg/3BJduubxKQ52WIHhzfvcsWAXleDseId5vebhWQ5+UQvBo53W67gDwv x4NT9+JjdgjI83Jc7iXNn71LQJ6X4+/eC8fLdwvI83Lobu2O2bZXQJ6X42OE 6lG9/QLyvBzpK5u3unZAQJ6Xw8G8Y5fuhwTkOX/9vbbRHw8LyPNy9Dl/xcj5 qIA8L8eiGfPz844JyPNy3JUGT9l0XECel+NhbcW8eicF5Hk5vD42kNw6JSDP yzFfMMO+/xkBeV6O3V761hFnBeR5OU7fbXF2/nkBeV6O8QNVt/UXBOR5Od6/ ezLu1CUBeV6OaQ82nep8RUCel2O6z4G1QVcF5Hk5Aj+Ky2dcF5Dn5Tj1xVKo vSEgz8shrG3hc/KWgDwvxzM/U3E3LwF5Xo7Xx4YoQu8IyPNylFmEb1pwT0Ce l6PF9PKrBg8E5Dk/I2HWjYcC8rwccsPXfkMeC8jzcni08nub/kRAnlfgvLyF 0zZvAXlegZXHpPtbPBeQ5xUwOP7SNeCFgDyvwMGO477NfiUgz/n/f1mS+ve1 gDyvgPNM80NebwXkeQW8DL2/278TkOcVmLPx98eS9wLyvALbLg4ec8JPQJ5X wO7qRfe+AczzCuxOHWWT+oF5XoG3qTvv7ApknlfAftLaJ52CmOcV8O48cXL0 Z+Z5BV6tm3TVI4R5XoGz657saxPKPK8Arp00+hbGPOe/73zfAeu/Mc8rYN07 0qB1BPOcf/71J1Z+i2SeV6De6edbNkYzzytgVLWwc7tY5nkFXrbP3xwTxzyv QL9qtxU7vjPPK9BobhMDq0TmeQWcDltbpycxzytwLKqmwbEU5nkFZgWcO26T xjyvwNJG8C5PZ55X4E5Yz7U3MpnnFTj083rSxCzmeSXsRUHZwhzmeSV+r449 8S6XeV4JlU6YsyKfeV6J4JNnky0KmeeVuDHjnXtSEfO8EltfPHjlWcI8r8S4 Vtcvjihjnldi8PzYtrXlzPNKZKzd6vy6knleiZUbEzqtVDDPK/EnsolXRxXz vBL+hjuDs9TM80qY62yPXdEyzyshPXWlZoqOeV6J4fIvxqY1zPNKrIr8GR79 k3leiYVbPHp4/mKeV8Kt0H3Q2D/M80qMsuhWLjMQkueViFqe5vCVE5LnlQiy DRhzWCgkzyth62KkHS0WkueVqDwhGWMoFZLnlehnWmQfKROS55XYZF1adsJQ SJ5XwvXUeJtJRkLyvBJFhWP78Y2QPK9E6dB2yWkmQvK8EsZxJh1uNRSS55Ww bOzcYrGZkDyvxJr37T9YNRaS51UI8Poi15gLyfMqfNZu4AKaCsnzKjjWX3t3 f3MheV6F3bu0KseWQvK8CiatRlY0aS0kz6uwS3nlbG4bIXlehfkjBhV6txWS 51W4cG5OwZb2QvK8Cvu8xp526Cgkz6swffHQUjNLIXleBafGmxQ5nYXkeRUy LAbefdFVSJ5XQWgdJN5tJSTPq7DfbnLjiT2E5HkV2q/o+d2il5A8r0JR44tQ 9RaS51WYWhAxI6SvkDyvgp+vSceL/YXkeRVmv7x7Y7m1kDyvQmTnqLBhg4Tk eRXM/SNumdkIyfMqGNvldSkZIiTPq3A0aeqCwGFC8rwKj2KXOV6wFZLnVaj/ dW7xKjsheV6Fdue293MYKSTPqzBnvKhPGwcheV6Fg6NtcvSjhOR5FUotFtt9 HyMkz6vw9Nm3Kc/GCcnzKoiMnrQ46igkzxXYfm7CucUThHTeFRhS8CtwhLOQ fFdgZKb+RtvJQjr/Cry/fqS3wRQhea9A66PaTVlThZQHCniN3uceOE1I/isw 6/OWtrdmCCkfFDjX3uLAnllC6gMKSDI+XF8wR0h5oUCHm1dWOMwTUj9QYO7C P5Vd3ISUHwosW9K7s/FCIfUFBbZ23t5EvUhIeaLAhZWWH1KWCKk/KJAwdHuz wGVCyhcFbpUFW91fIaQ+oYCo3mjd8VVCyhsFyjwmbfFYI6R+ocDyid1fz10n pPxRQPy33b0x64XUNxRQ99o5od9GIeWRAkvTj7xqs0lI/UOBzMGno+ttEVI+ KTDhe9Yd/VYh9REFTq8N6lO4XUh5pcDhTnu3JewUUj9RYIfz6p3Bu4WUXwrM vBBv83qvkPqKAn9ya1/f2S+kPFPAY7V10bmDQuov/Pf5xicePCykfFPgx/EW u7ccFVKfUWCfwbzClZ5CyjsFNGsqZfNPCKnfKHDwQOPiKaeElH8KbOjfYf+4 M0LqOwp0DVyWOfyckPKQv3/v/pqBF4TUfxTol5z8tdcllo8KpM+5NbPLFSH1 IX7/vc562u4ay0sF3p4qDGh5Q0j9iN8ff8WeTW6x/FSgrcvJ5mZeQupLCnTv m7DU5C7LUwUaH++0yei+kPqTAlG3UuwNH7J8VeBm7ZBE2WMh9SkF1m+531H2 lOWtAi3tl1rLngmpXylwJSXRUP6C5a8Cq3/b3TJ8JaS+xb/PSKHe6A3LYwWG vlhp2sBHSP2Ln+fHV5m9Z/msQO/SI6ea+gmpj/Hn436xplUAy2sFBtuNbNXh o5D6mQJh/ip5t08svxWIcxvr3+ezkPqaAoNSb/e2CWF5rsAIs4mrRoYKqb8p kOP6dLXTV5bvSuhsjQdMDxdSn1PC2z8qeGEky3slXslGNF0XLaR+p8SJgNC+ O2NZ/itREPjS3DNeSH1PiZAJs4OuJDAPlCj/3a7f4yQh9T8lWryctcYvhfmg hOu9hesj0oTUB5Xot/K8bWYG80KJThVjkqt+CKkfKhG0KNNamMP8UMJw+RO3 JnlC6otKBOabTLMqYJ4oca3JkqZ2RULqj/zzXa1/d1oJ84V/nvnzateUCalP KhHwMqD14QrmjRKpVruNb1cJqV/y7ytCFuGnZP4okZX9xiVRLaS+qcQ887wn Ci3zSAnPtapYI72Q+qcS9R3tQrr8ZD4psWBBn4OjfgmpjyrR90u7Jov/MK+U OPJj/aYDBiLqp/z78Dj44J5ARH4p8cnb/0GoSER9VQlnwcbNxRIReabEtPGN mteTi6i/KtH2U61nj3oi8o2/n8rjcZPqi6jPKpH8uXvxJhMReadE+qFhcdcb iqjfKjE9r/3xEDMR+ce/75ThLcsbi6jvKlH09dfORk1F5KESi9x93w5tLqL+ q8RnZcanJS1F5KMSoUGRt860FlEf5t+/f+WUjxYi8lKJ500eZZe2E1E/VsJn pdvwph1F5KcSvV7u2exgKaK+rITcZvXBjV1E5KkSNYEnV9zrJqL+rETkFKfO Sd1F5KsSl91NP0h7iahPK2FcMbLr4D4i8laJe7+c1q7qJ6J+rUTFoCsnbw8Q kb/889w4dThpoIj6thKnDl6baWQjIo/5+Vln+YihIurfSogG3Dq9FSLyWYnN N1ZrXw0XUR9X4mfE337lI0TkNb9+4k8TOzmIqJ8rMVvTYsz80SLym3/e+7tb Xx8ror6uRNTRmXGp40XkuQohHs3dmkwQkecqVNzuFjfFWUSeqzD34e/W5yeL yHMVjhz9Oy5xiog85z/3vjXNfJqIPFfhctpE+2kzROS5Crm2u02vzhKR5yo0 3HDz0485IvJchVmr2kxsP19EnvPXP7YuaOkCEXmuQoez0sbPF4nIcxWeP5s8 rnqJiDxXIW7114XDlovIcxWOhafMP7RSRJ6rsKCN3i5utYg8V+F07yuylutE 5LkK/az6vl6yXkSeq+Bx23rEm40i8lyFgKMtfbnNIvJchdjRro0nbhWR5yrU uzt72s3tIvJche2R9/ZW7RSR5yqYzrh/znaPiDxX4fP4pBNn9onIcxWeGnmv KzggIs9VwHKvoYMOi8hzFebc6KE+flREnquwb2z4mTxPEXmuQtbmypaDT4rI cxU2X2t05vRpEXmuwvjTPqqSsyLyXIXV15ww4oKIPFfBYqXr5uuXROS5Csom 42/or4jIcxUSLR6+dLkuIs/5+1tX9OrlTRF5roLN7INeJl4i8lyFnV7cntV3 ReS5CruXJjlF3xeR5yqctN1r1PORiDzn77/jPr9TT0TkuQrXdrhOV3uLyHMV asx3lkx9ISLP+e/v5rHC/5WIPOfvb3ZglsVbEXmuwqSAVIdD70TkOf/9H+1v V/qKyHMVFjvsr5oaICLPVZhwy7zPp48i8lyFqL07l3UNEpHnKnwwHnbhfLCI PFdhVEzyey5URJ6rkO0bzW9BEXmugn2P+zkZ4SLyXIUt1TnF46JE5Dl/PQdJ sX+MiDxX4fiHi1lW8SLyXIWzC1rE3kgQkef8+3hi7tcwWUSe87/vbnLjQKqI PFfB5e+x7T/TReS5CgkCs6lrf4jIcxVSLnbrVpQtIs/VqLGb/WtOnog8V+OY qmd4coGIPFdjz59u552LReS5Gi6d02ZHlorIczVKrwR3GF0hIs/VWF26rjSk SkSeqzGw0ZrndioRea7GvZ32G4I0IvJcDaV+16DhOhF5roaZ/6O/QTUi8lyN k4ucwkb8EpHnakzgfp4K/SMiz9VY9Xfg7LGcmDxXQz7oklWMUEye89eruvvX RSImz9UwDy9PSpeJyXM1/qT+frWgnpg8VyPn/OJz5fXF5LkaH9PfbvNoICbP 1bBTbF3GmYnJczX27bSfc7yxmDxXI+DivRnNm4rJczXEr7vNfdhcTJ6rYeS9 dKV1KzF5rkZoWMXesDZi8lyNto/H35nWTkyeq/FybpPo0g5i8lyNWdOyhTst xeQ5f/2lg+1Nu4rJczV6hL4/88BKTJ6rcb1+VfnQnmLynH9em3Uuib3F5Lka 215+/7aqn5g8V2NmryeOUmsxea7G1QzP7NuDxOQ5//s2xvuGDhGT52o06ful f9owMXmuhko+umbTcDF5rsbexd2jzUeKyXM13jsZvfVxEJPnahy03P7MdYyY PFdj/ptG/jXjxOS5GoHmq9OvOYnJczXORlk0GO4sJs/VCHvzZXrhZDF5rsZz UfV7z6li8lyNnc7jevSbLibP+c+PzvXLmCkmz9XY+jNy9sE5YvJcjd72PZr1 ni8mz/nfX9q6ImOBmDxX44X/wLQji8XkuRrWFU1zrJeJyXM18oQzBUUrxOS5 GqNmXx12cbWYPFdjuLfHhdHrxOS5GiN/HzGsXS8mz9V4/MT96jMPMXmuRu3y 6DELtojJc/7+htuYN9suJs/V+HnQlYvdKSbP1dAXBtU7vEdMnmtQO6vZgOH7 xeS5Bv37/95de1BMnmuwrl79Cp8jYvJcg+HhxVvXe4rJcw0sH/fq1vukmDzX ILjXgT9Vp8XkuQbKnoe0z8+JyXMNykOSG6y7KCbPNVjt2tS57xUxea7B50ul PtXXxOS5Bj/2Kuz8b4rJcw08XCO1u73E5LkG3E2L2FH3xOS5BtGWp+JNHorJ cw3+ij7+TnksJs81OHPccdIdbzF5rsHsmbmxq1+IyXMNpGMtttq8FpPnGvze +MRJ7iMmzzVYatN5Qsp7MXmuQfP+Ntsf+ovJcw022RxJ2vJRTJ5rMH3Buznj g8TkuQa/fi1vbBEiJs81iD0zplYTKibPNZhTrG8Q8U1MnmvQtKa1q1ekmDzX oLdufvTWGDF5rsGSsUs3ucSLyXMN4k6kTOqZKCbPNbhzdvr8eili8lyD6uln 7hSniclzDfaadW0elikmzzWY0fbrl/vZYvJcg/umjR4cyhOT5xpMvvP247JC MXmuQYifS33HEjF5rsGu5ZfP9i4Xk+caxJR3m9SkSkyea7Dqzpsxf5Ri8lyD NuYZWws1YvJcg0nKsYUxOjF5rsEr0WNPv59i8lyDT8O9Vt//LSbPNXDzy/A8 ayAhz/n9dFNQvEcoIc81sMaH3eskEvJcA0ORj6ubXEKea+DnfmGVi5GEPNeg URdZ8CgTCXmuwbyMN9OGmErIcw3iXR169mksIc81MNi2eFSXphLyXAPngYG3 27aQkOcaLD77c1iL1hLyXIMDNz+3MW8rIc/587cjaKRpBwl5rsGOWbefmVhK yHMNDq03mmPcVUKea/BO5D3ZuLuEPOff3/Tup0x6SchzDW4EWjcy7SshzzXo dswju/EACXmuRceG57TNB0nIcy2uPxjs0naIhDzX4vKdRr87Q0KeazHDNVLR 205CnmtxrYFRryH2EvJci+/mO/1HjZaQ51q4PYo86zJOQp5rkfz7tq+bk4Q8 16L1sIfd3Z0l5LkWLw4eUex1kZDnWgTnVwnOu0rIcy02uxxY9HCGhDzXQhCo bvphtoQ81yJSn9/q+zwJea7FrUDBxtIFEvJciy/vq1sLl0jIcy06rFnestVy CXmuxSxn6eqBqyTkuRYFzz0aTVkrIc+1aO8/v8H69RLyXIs9e9a5nfGQkOda 7Khwqvd6i4Q81yIk2Kte4nYJea7FwNuNF+p3SchzLWQ1Exq32ichz7V4bfqz zYiDEvJci2aygP3Lj0jIc/77goeOPOspIc+18Prdae6HkxLyXIv7Nm2Sis9I yHMtekdFPWp8QUKe8+sRnpo24rKEPOfXo2HpsvXXJOS5Fk8c7rnevSkhz7Xw iH55N8lLQp5r4Rjz1tnwvoQ818K/u+tcPJKQ5/zzHrWJ3vhUQp5rkTZcdtP7 uYQ81yJzsVt84SsJea6FaUjl0rY+EvJcC4sU5wWzfSXkuRaShJ6frwRIyHMt Gl+2OpgaKCHPtSj3KXveLFhCnmuxalkD25mhEvJci7cXhlrf+CYhz7VoHtX4 Qm6khDzXotVwm9mdYyXkuRZLIiYcX/NdQp5r8blQ0+l9koQ816Lhs4iugjQJ ea7FuLQNlx0zJeS5Fps+nVp/JVtCnmtxd0Kgb3GehDzXosz41sqBRRLyXIsF LeI9j5RKyHMtunbSNM+okJDn/Hlzv9ukl1JCnvPv6/vufQc0EvJcizWPOs3N 0EnIcy0u5vZ50q9WQp5X4712+NITfyTkeTVMcqsulHBS8rwaSqsUawexlDyv xves8+PuyqTkeTWmHgyOFxpJyfNqTLaqjVpoIiXPq1E+M2lomKmUPK/G1RaV 7bqZS8nzaowqT9txqpmUPK/G9LB+E3QtpeR5NZJbnr0410JKnldja5yn67f2 UvK8GnFD3p/sZyklz6sxw/KJ7e2uUvK8Gs++/lxu0kNKnlfjxhcbk129peR5 NRb2EPRQ9JOS59UI3Z4T5jZQSp5XY8KZlZlJNlLyvBpbfPqvGQ8peV6N4nPR O4LtpOR5NW7afJUPcZCS59UY3uy1mc8YKXnOX6+29bXejlLyvBqrjK7eeTZR Sp5X42H8267dXaTkeTW+dP/d29tVSp5Xw3PKH98eM6XkeTXapdgHv5wjJc/5 578012mAm5Q8r0azyKSZAYuk5Hk1vH/2Lx+xTEqeV2NwrcQgaqWUPK+GhTr+ outaKXlejaUu7d7krZeS59Wwztg+Zd0mKXleDfvTy7YbbJOS5/z3f17d5fRO KXlejSiR6ez2e6XkeTUM+6Y0eXdASp5Xo+UK+xnjj0jJ82oMrZ/ZIc9TSp5X Y4Vf283bTknJ82pwk8+7ND4nJc+r4aJ97/fiopQ8r8bsX0ZPHK9KyfNqzPzT oFP5DSl5Xo2DESOsPL2k5Hk1Qla2/9j9vpQ8r8b8dt0zYh9JyfNqRLtlHtzo LSXPq7Es9fnHFi+l5Hk17Ba12R/8RkqeV0PV5H7yyvdS8py//34ffJsESMnz aqR0z+waEiglz6ux4/6Obu7BUvKc35+rGwe0DZOS5/z+2Nc8Mz5cSp5X4099 wckD0VLyvBrD3GzjB8VLyfNq6H6PflCVKCXP+fd/6ITxg1Qpea7DlOi9snmZ UvJch+ZhF843z5GS5zoEHh/sk5QvJc91aLogc/m5Yil5rsO4pxWvJ5dLyXMd BKqU040UUvJch3NZ9cTJail5roOtnar+VZ2UPNdhqUz3dF6tlDzXId52f67l Xyl5roOumfC5QiAjz3UYn5Nu6i+Rkec63BB4GB8ylJHnOiyRDvRyMZaR5zoM vHAour2pjDzXoaX7t7OaxjLyXId6W+erQpvJyHMdZjx8VXqllYw812GYaZsd a9vKyHMdRhVJH4/qKCPPdShdG7XOoouMPNfBzDQm4aeVjDzXwcdhxfekXjLy nH/eO39XveknI891ECcW3z07UEae8+txa+/mDUNk5LkOvjmWJVNtZeS5Dtme fXSDR8rIcx12PK31shgtI891MHZLL5eOl5HnOlwt6JyomCAjz3U4eGDwrPTJ MvJchzn3F+0Nc5WR5zq8/vxn1NuZMvJch5/Lp3vfnSsjz3VYYf/11fkFMvJc B1X969MOL5GR5/z+uND55vYVMvJchz8hfgfd18jIcx2mX/QyWb5eRp7rsK5N j8ELNsnIcx0sDzyWzNkmI891kEsWbpyxS0ae8/ervXdw2j4Zec7vpwC/wdMO ychzHT6klp2efkxGnutQk7vHc9ZJGXmug8u+kK7zz8rIcx2ub/+5cslFGXnO r++DZZPXXJWR5/z7U039sfmmjDzX4e9CifH+OzLyXIcBLf1zTz2Qkec6PHZ8 N+vmExl5zq+fw5Dtz5/LyHMdjFYdHR70Wkae8/tnWM7ThHcy8lyHa5N3fSzx l5HnOkTM9PIw+CQjz3UoaXsosWmIjDzn9//RZel9vsrIcx2sz+8/7BQpI8/1 aDXLNHNFrIw812Ni4/GpRxNk5LkehabLdzxJkZHnengG3/kWlSEjz/Vo+Lrn R2W2jDzXQ3V0xMwmBTLyXI9S00a3h5XIyHM9DvVOPLmkQkae6/Gl3NfyjFJG nuvxeLlm6UetjDzXo1j5dnJ5jYw812NPaY/iFn9k5LkeHj9OdHIUyMlzPdZs FZnslsjJcz1Wn/hw+42hnDznv9+46EepsZw81+O8mXdoOzM5ea5HTfrg6bOa yMlzPWZE+l242EJOnuuxbO3UXQlt5OS5Hg+2DTAz6yAnz/XoGb530uTOcvJc j6Pz3Yaet5KT53psXFf7PaWXnDzX47PLevPW/eXkuR6WZypFiwbJyXM9WmSe uuk9VE6e6/HWfEehbricPNfjmFNi6ggHOXmux8Vgvy2nx8rJcz2aFziGZjvJ yXN+/SY/C+w9WU6e67Ez5+ei/a5y8lyPU+ecfVNmyslzPebfj/HtMU9Onuux 68DpJQcXyslzPeYkvfqctVROnusxaYNTxOBVcvJcjyPuO/dcXCcnz/WQtJpV oN0oJ8/18Kr5Wz1lq5w818Po2x6fdzvl5Lke4Yf07Vvsk5PneoxYsxW7D8nJ c/79VbeUFx2Tk+d67E7Q7J5wSk6e6/HsT+MHvufk5LkeB56e3dbxspw812OC 6+4/Z67LyXM9NvtX9BR4yclz/v5Sy03W35eT53q80x2/UfBYTp7r8fN2dvr0 53LyXI+2T9VhMa/l5Lkey/skuo16LyfP9Xh55czTTwFy8px/3+cH3rMJkpPn eqxv8338+y9y8lwPnz2r7gwIl5Pn/HmZbPrIJ1pOnusxYHvE7IHf5eS5HiW9 vYL8k+XkuR6df99IsM2Qk+c1+Pr+24WwbDl5XoNxZ7vIJhbIyfMa/DX50jmt RE6e18BS5qVfVCknz2vQ5OmXTWqVnDyvwdz9/e7v1cnJ8xqUuav2mf2Sk+c1 6PZG0PC+gSF5XoOB2UscB4sNyfMa6MvaD4qVG5Ln/P10HZiwxNiQPK9BZ8d7 rTkzQ/K8BlGLVzS91sSQPK9BTumRoIEtDcnzGtx6/rdZsoUheV6DP5XhbTd1 NCTPaxA/qiSlaVdD8rwGvz66IqCHIXleg5OfTKfM72tIntegxsK8uWygIXnO 30/r2SdeDDEkz2vwdl7uyxnDDcnzGsh/39wvcTAkz2tweMNJyZuxhuR5DXx8 HlkvmGBIntdgVruiJo1cDMnzGrw5iAeh0wzJ8xqc6PC4YOtsQ/K8Buuet/re y82QPK/BN6dTa4oXG5LnNZDc1PndXmFIntcg9NXot7PWGpLnNdCabZ7TbKMh eV4DdcgWn+QthuR5DXyHD/9wcacheV6D2t1B7tP3GZLnNRitLU9qediQPK9B rxNvS3I8DW3/D8t6RRQ= "]]}, Annotation[#, "Charting`Private`Tag#1"]& ], {"WolframDynamicHighlight", <| "Label" -> {"XYLabel"}, "Ball" -> {"IndicatedBall"}|>}], StyleBox[ DynamicBox[(Charting`HighlightActionBox["DynamicHighlight", {}, Slot["HighlightElements"], Slot["LayoutOptions"], Slot["Meta"], Charting`HighlightActionFunction["DynamicHighlight", {{ Annotation[{ Directive[ PointSize[0.0055000000000000005`], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[2]], Point[CompressedData[" 1:eJxd12VYVN3bBXDO9CCCgmIrJgZ2oKIuRMEERVHswG5Fxe5W7G7FDmxRQhFB UBqkQ7prkhnEeI889/5/ePnidV+DZ845e+/1W7R1WzNpkcDAwGCgxMDg37/b Gj0blbN1P358fSlpZGBg+/9nvzFGgm6HDqK38QSbpvz8c+fygA1nD2O5mUdS S34e9Oarx8ebR1GvsWVKW37eUtKpt+ypJzJd3Gwt+fl96wNlzu9PoKRZZ5Pu /PzrkTLe0e0UdrzYPLIvP18LsXjhvvQ0rJa7ZA/iZ5usCccvrj6DiOv+ubb8 nF5T94VY/+DZuNH/u79z2F/cvcVEfm7RM7ODZM953Aob5Dztf/d7Ac9exFfM 4+cZC+uuiLRGNYpl/7v/Szi33HvGen6+crnuB2e7K7ru+N/zXEHcj6D5h/g5 NVo3Oe/eVZwStf97+n/Pdw1TuzYSXufnZqKpxt1fXUdV9vlVD//3vDew+uPD YW/4edp/F0S3OY4en/73/LcQOm9/oyh+Hm99ZPi8glvotNKpWdr/3sdtbOr2 dH8RP5c7/7vibfSacGOq9n/vxwv1j3c8KeQMbI+tLKp9pPSC2S27HqYce193 cHJ0dd+2/NztkDn/CHfQZPzwW7049v7u4vDGDutt+Tnitr2P+vdd1D9/6+lE jr3Pe2i022f8fH7+97aaiu5jZsMlk9059n7vo6jz60/7+Nkw+c7aoYYPIHt6 9dx5jr3vB5hxoG3MA35+/O9xGzxE8F37tX4ce/8P4fFXtjmKn8f+u5z5IyhO rizM5th6PMLfKev8Nfxc97pbPobv1KY6mYCtz2Psu+Z2uRU//3t7se2ewNTa 2auPgK3XEyyxKWg4mp+7zDr5Wdv5KeKD2xTPFrD1ewplFddxAz9/46/WvKc3 3uR7fj0qYOvpjRmRQfG3+Xnp6Yrt6P8M7km3R/gK2Po+Q6Z1jxZx/MzfHP/I zxHZden0EgFb7+cIrpz4hxMa2Lrwm4dfUlz+WiJvIWTr/wIegn7b+/HzXf7t Jd95gdSyXlOchGw/vMDp1JxzS/lZ8zthc0mnlwjtONpmn5Dtj5dQ9Fw0+gY/ j6zbAC+RO2twgK+Q7ZeX+Gz+7UIiP/OL9++BUD/KNEUpZPvnFa5omu42FhnY /nd7r3Bemnmim4jtp1c4cGCeaAw/9637eY3R6rvZi0Vsf71Gs/Qn7Q/w875P 4fwOeo1jkR5Rd0Rsv73G8VnSH5/5+Tu/+vw7wfKOc6fkitj+e4Nvobv6CsQG tu3rLvgGzwuWb24nZvvxDXZateswgp/X1y3AW+jHPhiwUMz251vYVNc+P8DP wdrO/Aq/xbfitqceiNl+9cHe3ObJ3/jZ9L8bxIOHxfvLxWz/+iBTfPyyicTA tu7uvvqgW7i8cV8J28/vUBs+TzeVn19dr3oQOu4dWuSdtd0mYfv7HT6p7ipu 8rOg7oHfYV/WeekXCdvv77Ho3NIDpfw86b8Ng0iuzfIGUrb/3+NIK/+3A/jZ 69/jJrxHQu6wpbOl7Dz4wnnS0z37+Vn173LTfGHkLhY8lbLz4YudjuNLvvOz 3b/tn+4LT+1e619Sdl78cGT3k/IOMgPbuu07xw/9Db/KnGTs/Pgh8HXasU38 nLP134L4IfROwcbbMnae/DFdUhYawc+96za4P2qNKnZWy9j58seNyorrbeUG tnvOj+C3jD8eFVW1d5Sz8xaAmkHaBlv4Oa5d3QIj08pg0T05O38BaFXfzCKe n9v+S/+KAFRb9bL7K2fn8QNa50+PsDI0sF3373is/YAvJ8/4zzBk5/MDzp3J MD3Cz0H/Vlf9Ac9cBse9M2Tn9SPejHhWXcjPDf47kAiJH7zPvB47vx+xaWuu hwM/172+mo8off8gzqMeO8+BeNvw+NkH/Fx3e9sDoa1/PiClHjvfgRg15PN4 QyMDnqh/P58Q2avJyCFG7Lx/QpcDF7xW8/PD0HH8if6Eoyl2S28bsfP/Cbdi Wp9P4OeJ/Gnk9yi8GnXvIqvP8uATJruu7TCEn/X/9An5hD/jyw6urc/y4RM2 v7g18R4/32r+70AEoaPd2T1p9VleBEET9qVZA2MD29F1CxwEt/o2zRyMWX4E YUeedtd2flY8+HeDQci3qHF8bczyJAhfbo/aV8rPl/7dXTj/+aj8Nu1MWL4E 4fLPuPYz+Pnf5hpj9Bmx981OnjFhefMZRng6P4Kf/6VJvONnLPO/cVXUgOXP Z1xvVjlkGD//2y38loF21nX7zQ1YHn3GrBPP377i57rHjf2MmQGWxysasHz6 jCa1ssjODQ1s6y5nGoypC6e6L2zI8ioYO5uY7b7Fz3VxNDkYFwbZaTMasvwK hqO2MK6ZqYHtf/UhGMqtInNXU5ZnwdhicCPoHD/XxUFyMPYH+STEm7J8C8b0 v84TGpoZ2O6qC5wQFBus7z3RjOVdCGJMW207yc+WdQcoBK6HJlvFmLH8C8Em n2b2Jo0MbGPq6kUIUn+7f5nQiOVhCBI+uXmf4udN/45DZgjWLy3/FdeI5SP/ /xeYvTFrbGDb5t92bv0FLp3S46c0Znn5BQO6jZp+iZ/D/m2/eV/AqWaMSm/M 8vMLJhk0v97a3MB2TV1AfsH+nEMz3MxZnn7B004Pd93n5yZ1B/4LbizeaVRm zvI1FIqhxlyvJga2dbfXIRTVTjNnb2zC8jYU34Yva+vPz4vrfkIxKsTGkWvK 8jcUDY8mZY/i53/liU9YnB0/NONEU5bHoeAi1iOJn/+l4+aSUEwP32HYuhnL 5zAsajx36GJ+nlN3wTAEbm+R8qwZy+swRCf5pOn4WVIXUGGI+tvPfnhzlt9h CEu93OQYP/9bjUbPwnB9fIlzYnOW52GQOFhq2rQwsK1rd1VhOOPr+md5C5bv X/Hg1s61Pvz8599x6/0VR37eHCtoyfL+K98fAj2d+Pn+v+3s/hXmbXMHXG3J 8v8rbsjrjSnmZ6f/Hhivrg0L7t+KefAVNdW77+3j5+p/y6H9itrBSVVxrZgP 39DttJ2XRWsD2xv/Htf6G/IswwPWtGZefMPyvusQyM8OdS/wG1QVNl1N2jA/ vuHqxR475vJzZR0P37DJw3HgizbMk284knRtJmdhYHvhX7zXfsNXeduiSRbM l3C0W/oj7S4/18Xz0HBsnZA6QGfBvAnHi/bmtWPaGtjWxevOcFxzumx5vS3z JxxNbJcEKPj5v/gLR/Wq/b4j2zGPwtHQRdv6Mj/XxYsgAsM3fCyvaMd8isDS qfntRrQ3sK07viMisPzwiqBL7ZlXERh4Y9rXSn6uOx4HIhDZ+4W1fQfmVwR6 5HmYXOPn/7ZfBNynvZyg7sA8i0DQ0IX6sR0NbBP/La8sEi725+R3OjLfIrHV 0mFfLT/vqAvASFz22rnIpRPzLhK9t9m98ObnjnUbMBJp2y4skFoy/yIxfuOu XfP5OSqy7gdzhglEAZbMw0jI3rRXmnc2sN1YF6hRWOhb7ODemfkYhbfWU8XR /NyqbkNHYX7rdVZduzAvo/DbbVjAQX7+UvfnVRQcuOA3eV2Yn1HoWis0H97V wHZVXUBH4cs0SfaNrszTKCztHGP6m5/r4qpRNC7sXPBsZjfmazTqe3x95cfP dXEwNRqBPYUWza2Yt9H4Ed+0egs///fnVzSSPY37p1kxf6Mx/XRJxuDuBrZG /x04uDR/XnG1O/M4Gr+XLFzym5/rtkvzGER/Mh47twfzOQYn1r0+H8TPdcsx Kwbjo1zHdujJvI7Bku7c0kP8/N+fZzE4rnxTWdqT+R2DwF2bfzj1MrCtu1xW DCaNdLZ+3Yt5HgvNy5E1TXqz8x6LJ8OnddjRm/kei3T30+9ze7PzHwv7CO3b 0X2Y97Gol3y05fM+LA9i8abz1PLGfZn/seg6fXbHHX1ZPsTis/R+WH5f1gdi MSSt//fx/Vhe8J9vNx39th/rB7FQ3x7eqXV/lh/8/Qi+rTrUn/WFWPyd86y1 sj/Lk1hM364bOHMA6w+xmGv5OODLAJYvseD6Rj7qZc36RBxebV5gcM2a5U0c 3FI2fpIOZP0iDscGykvXD2T5E4cuB9vvyB7I+kYcQt6Eb3EcxPIoDus+irL9 BrH+EYf4O8nPOw9m+RSHVivHlFwYzPpIHJp3nOcptmF5FYdueW0vb7Bh/SQO Y4LOmeTbsPyKQ72cj1WTh7C+Eof7y+8PChnC8iwOWk/nin5DWX+Jg/uOUMP7 Q1m+xWHE5npnmgxjfSYe1p867TsyjOVdPCJutP5RO4z1m3h0XVjjtRos/+LR b8mHuBywvhOPneJ1y6fYsjyMx9Q7zVd9s2X9Jx6hTz6lDh3O8jEe508te/Fq OOtD8Rgf3kJpacfyMh6DUjKvXrdj/Sge62x9XpiNYPkZj/iTT3oeHcH6UjwM Z4Q05UayPI3H2UHSlZtHsv4Ujw8xW7soRrJ8/Y7nIR2dl9qzPvUdi8OM87Lt Wd5+x8fjQ7KmO7B+9R1rE97af3dg+fsdLebuMXccxfrWd0B/zzlsFMvj7xi9 rqtu+GjWv77D06ux9MNols/fMXHF6j0Dx7A+9h3hL20WvxnD8vo7Oi/Y/7bX WNbPvuPE+glrvMey/Oa//8eds13Hsb72HZV3D7d7OI7l+Xd0iRO17DSe9bfv qHJvs/vueJbvCVh7O8upvSPrcwko3Dr+sJcjy/sEXOywyqqdE+t3CcgJH23j 5cTyPwF9bhe+aTeB9b0ENMp1vHxnAvMgAVYxB4o7TGT9LwG2L8973Z/IfEiA dcr+sM7OrA8moM3VGa5PnJkXCeg9rfWkHpNYP0xA/Ibkdy8nMT8ScGH28cP9 J7O+mIAxB0eF+E5mniSgdFn9FcNcWH9MwLujhduDXZgviejqnlYzegrrk4kw eKnIiZ7CvEnE4Kxe/adMZf0yER2ueanTpzJ/EuF6wrHVAlfWNxPht2DQq1JX 5lEijsSteuU+jfXPREw/p2pVO435lAjztTGafdNZH02ESS8j6/ozmFeJUN9/ kX9hBuuniUh5FvLbYibzKxFDu0zc+2Qm66uJaPB3hvuAWcyzRHhbVEQFzWL9 NQmlB4zPO85mviWhQY+wsNTZrM8mobhNm8WL5zDvkhCwrPVa9RzWb5MwrW1U we65zL8kmCzsG2Y8j/XdJARPnd7o+jzmYRIKOo6K6jaf9d8keIjFKr/5zMck mPW+unesG+vDSVCVNdyV5sa85O9n97qi5QtYP07CGrvP/rULmJ9JeHDU6Jfn QtaXkzDTf9rD1ouYp0mQDHv+6cUi1p+Tkbyvqf2IxczXZLwUX++ftJj16WQM GGl/ZtkS5m0yQsOazfy9hPXrZBywaH/q9FLmbzLmFC7r3WkZ69vJkPpWD/Nf xjxOhtw2/v3E5ax/J+NDV/HNwuXM52RM73VJuX0F6+PJKDM598JsJfM6GYtO cRmPV7J+noxru0vW261ifidjwjuXzWmrWF9PRjez8SXuq5nnKYjZmhJabw3z PAWxGYKG99Ywz1Pg3zMhbNha5nkK2rpPKUtZyzxPwenHJ7etX8c8T8G9omOb jd2Z5ykQ2k7OfeTOPE/B3PjK9/brmecpOPBlya+c9czzFEwfHfZ05wbmeQoy TpuHt9jIPE9Bv5w5Lr4bmecpeLrj0ThXD+Y5f78+f59rPZjnKZDnL99zbhPz PAXuizSBfTczz1NR7869Fd83M89T0bn+4f3rtzDPUzG35T3DRluZ56k44Sz5 82Yr8zwVWf3fzpm6jXmeiogZ/lb6bczzVLSf0W7ple3M81Q0TFI3GLqDeZ6K 1lsGWWbvYJ6nYmD1r8f7djLPU/FWNvqa5S7meSpcN3SojdjFPE/FFPG1sLW7 meepmHXqPWe+h3meivOqfY/89zDPU/G4oSxw/l7meRqi0p3sZPuY52nwHeXW 9/k+5nka/FzGn5m6n3mehpeGTeb+2c88T0PTrZGX7x9gnqfBMMDDbsJB5nka 7FVtpusPMs/T0GdUfObtQ8zzNBRUXIwdd5h5noZu7bb1rj7MPE/D/s4HDW4f YZ6noa9T8NDxR5nnaRhSMqREd5R5nobl034L7h5jnqdhhtDk2ERP5nk6Ns3Y vue3J/M8HbLkCYWPjzPP09Gr9qzvtBPM83TonCfXSk4yz9Mxds2lJ29PMs/5 /69YFb7wFPM8HX+3/HBtdJp5no6f/prJIaeZ5+n4uMr/44YzzPN0NJ049FLH s8zzdKRZHchOOss8T0dR0vWLh88xz9Nh3fXMh8Hnmef879dbNaniPPM8HYLl g6beusA8T4dwiODb5IvM8wzM2Rv/WHqJeZ6BEIe3tf6XmOcZaHXtrf/ay8zz DHje+FHa8QrzPAMe622OpF9hnmfg8JjkC6evMs8zEDDtg9noa8zzDMzN1f/9 c415noGmvc/P9LnOPM9A+aXrnVbfYJ5nwH5Tq/mdbjLPM6DvY1Ev6ybzPAPj h7zscOkW8zwDv40yvJ1vM88zMLLz0/v1vJjnGfjRvLtJqBfzPBMNty0v2n2H eZ6Jl8Vreg65yzzPhGX9MUW6u8zzTGy5ypm8ucc8z4TjxHv3195nnmdCqcSz 7g+Y55lwm5jZsewB8zwTE+yP1H/0kHmeiQ5vJixa8oh5ngmjo0O6d3rMPM/E zw8zFxU8Zp5n4sVE3/r3njDPMxE4fn6nRU+Z55m4HDr3eUdv5nkmjmV8eljo zTz/gSifU6YPnzHPf2D/ofTyZc+Z5z8QdtTb2uoF8/wHnkjM1JUvmOc/4DCu aZtXL5nnP/Dm1Tf/ja+Y5z/Q9nbfb4NeM89/IHa/26g/r5nnP9A6yW1A8Bvm +Q8cazL8wuG3zPMf+JwoX+Lkwzz/gesPvj1s9I55/gM9exyfmf6Oec7fb6P5 u7zeM89/4FeDSY2W+zLPf+Bp7srmffyY51kwdvl4+qcf8zwLzwZN3hrszzzP wnb3gQmeAczzLEQVbb059QPzPAtLjltmWHxknmfh0PxxR8s+Ms+zkL9S/cgn kHmeBf/PVjZ7PzHPs5C0WzTMKYh5noVTMYdeNf/MPM/Cj5zgS0WfmedZcNV+ UbwJZp5nYdCkq357Q5jnWdg4zrl64hfmeRZeDtPeaRPKPM/GpHPngitD2XnP xr7AIVM+hjHfszFsWO20E1/Z+c+G8+XM6DnfmPfZWLJQ6dMznOVBNkyGjWzI RTD/s/ElJi8zPoLlQzZ0UZkt70WyPpANYz2iN0WxvMjGlqZNVWOjWT/Ihrdo w+HWMSw/stH/+vzTqhjWF7LxNqrSKCyW5Uk21J5daq/Gsf6QjeyMNrPWxbN8 ycbV8Kyeo76zPsE/7+pNHq0SWN5ko2+5pqcmgfWLbJx1XzwrIpHlTzYybdJq vZJY38iG1/E5xtuSWR5lI+U9d25yCusf2fjRLN7TKpXlUzYONP2hF6exPpKN Zp37pWSlsbzKxrKw3K5+6ayfZCN2t15xLoPlVzYGl+7rujaT9ZVs9Ll3Nnnc D5Zn2cibM0BvmcX6Sza6xm71FGWzfMvGuQ9rzuVksz6Tg7W69g0Cc1je5SB2 +v2/13JZv8nBxUjxgm15LP9ysHOE8+AZ+azv5KDNx4sHBhWwPMzB71HFI5sV sv6Tg6N65801hSwfc2CtzmuTVsT6UA42LvG28S9meZmDT6c+RFwrYf0oB099 2sfuLGX5mYNiq6rR88tYX8qB4+SeA0aWszzNQc559UXLCtafcpC3ctzqepUs X3OQNMvBt6qS9akcHKxWb06oYnmbg8bJC7x9Faxf5YB7eG/qTSXL3xz0avNt wwEV61s50P3JlK5UszzOQUdzjclkDetfOahn2+L4YC3L5xwcWrhgV7tq1sdy YLQ5o9BQx/I6B97bLgSrdayf5aDDjtuNM/Usv3OQdaF+ZmgN62s5kCpKm738 yfKcf98BYyKv1rL+loNOQwdrDv5i+Z4L98DI0+6/WZ/LRfH1hvfm/GF5n4tK NOsx7i/rd7nIbqaxGmjAUf7nooX3q9sdOY76Xi6khxd5mgk48iAXbRxaVXBC jvpfLv6cLA1W8PN/PuRiSYsfDbJFHPXBXEx8IkuIEXPkRS5KTLbV/yThqB/m 4lknhw8vpBz5kYtlaVvzbss46ou5GN6+6+6zco48yUWQZNHZA4Yc9Uf+eheH tNpcjyNfctFTF9RqhRFHfTIXpydJzs+pz5E3ubhR0HzfJGOO+mUudtY0KHYw 4cifXPzOrwm2acBR38zFVaMi894NOfIoFydzS7I7mXLUP3ORXGjWrpUZRz7x 9/vAI82sEUd9NBebAtsb1mvMkVe5kKdavRSYc9RPc7H5yZ2Yn/z8n1+5sP11 eZG6CUd9NReFN9quL2/KkWe54DaO1xc046i/5sF+tZU2qzlHvuXh5OHvy9Ja cNRn86CMmTw1sSVH3uUhYE6gX2wrjvptHo7O7nwxsjVH/uXBSXi77Gsbjvpu Hmaet3n/xYIjD/PgvsTw9+e2HPXfPP7vhTZ+n9px5GMeui44UfWxPUd9OA/J 25de/9CBIy/zEOjzKTigI0f9OA/rvR+5BXTiyM88DDIasDXAkqO+nIfGxzcb fujMkad5SNXvM/vYhaP+nAcryxXnA7ty5GseLv+xPRXUjaM+nYdrG5qKQqw4 8jYPj4+LlKHdOerXebCb3dQ1vAdH/uZBJ14yILonR307D9t9hSfje3HkcR5e vefmJ/fmqH/z8+QNTzP6cORzHjJKVq/L7ctRH89DXonoRXE/jrzOQ1LcmKVV /Tnq53no19P5SvUAjvzm1+tGD4c/1hz19TwcjtKukAziyPN8SDb51TMZzJHn +TBfcqpjUxuOPM+HyZZjvm2HcOR5PoSXAsO6DeXI83x8/Wg7ccAwjjznr6dv N3k4OPI8H2PmbI0db8uR5/mQtpz5ddpwjjzPx5sVqYMX2XHkOX+9i/LO7iM4 8jwfST//ntw1kiPP83Hyb6z7cXuOPM9HqsXp2KsOHHnO/36Jy6PHozjyPB9q ba/fvqM58jwfNYpBkd/GcOR5Pppd3G+eNpYjz/NR/aZjRuk4jjzPh69ln1a/ xnPkeT5aZH5Mre/Ekef58Pie3dBiAkee5yO2mfeXPhM58jwfpTEDtfbOHHme j4mdLt+aPokjz/OxZE5e2KrJHHmej83hViv2unDkeT6Co44evTiFI8/z+f5t 2sl7Kkee56P99rShwa4cec6vzwhdXOo0jjzPR3TKzlzFdI48z8fS6oNrZDM5 8rwAfxd13GIxiyPPC2AhXPt34GyOPC9AkN92waQ5HHlegEnH5u9dMZcjzwsQ sb/frgPzOPK8AIFf69XcnM+R5wVYfPR3lZ8bR54X4JmxxcKkBRx5XgDHp0em qBZy5HkBoiImhhgv5sjzAtwoOvai2xKOPC9AB0/n5mOWcuR5AcJc33NLlnHk eQFEtUmLDyznyPMCbBsYMubuCo485583/8Lj4JUceV6Ah0WLjuSt4sjzAuQM Gl0oXMOR5wXYXOQS1GEtR54X4IXxneYO6zjyvAATsseolrhz5Dn/+c15o4+u 58jzAiR4/WnpvYEjzwuwdpLN2tiNHHlegD9dethpPDjyvABx7yrPNN3Mkef8 elw/5zZ0C0eeF6DlCeuXbls58px/HueqnYe3ceQ5/3nw94hn2znyvADK6F8X E3dw5HkhBnjszfu1kyPPC6GO3P6sw26OPC/EsZ/CmvF7OPK8EAmDegVv3Ms8 L0S71Gb1b+5jnhdi9uDUpK/7meeFaPD9oIX6APO8ENusbEpbHWKeF+JBnnG/ MYeZ54XweNT8z4YjzPNCvLbbNPr2UeZ5ITofHmoWfYx5Xoiniw/OqfVknhdi cNbyrl1OMM8L8Vsi2uR6knleiKXSFSMPnmKeF8Khte+Zt6eZ54UIvy51KzjD POfvr3zNq8bnmOeFaHOw3n6H88zzQjT+qU7adIF5zr+PCrsnjy4yz/n/39SU y7jEPC9EzthtKcZXmOeFqF18qbfdVeZ5ISwW7TPyuMY8L+T7xdRlj68zzwvh 49xtdNYN5nkh+l5p+ajRLeY5f73NIz3H3maeF2LBxA/K3V7M8yIMuHQ79d0d 5nkRwjPrjay6yzwvgmmIeW/L+8zzIrwWZt6a+4B5XoRmK7acvfSQeV6Ewz8k 8vhHzPMi9J92izN6wjwvwpTieTscnjLPi2D9dsH2Pd7M8yJMrg3+E/CMeV4E t/rXRTXPmedF2OBieKL/S+Z5EbiJllfdXzHPi2BwwcTqxWvmeRF+xf+wrXzD PC9C1/AXqVY+zPMibJ9yu3rFO+Z5Ed4virz45D3zvAjHBU4fynyZ50V4MNZu iZU/87wI39Z/Ob8qgHlehMxw9ejnH5jnRTB+U7Jb+ZF5XoSMx8FD+31inheh n92NXZuCmOdF2NfhgoP/Z+Z5EaLNvp75G8w857+vZOLCkV+Y50Uov+jofySU eV6EY5bpF2PCmOf8577mPxt/Y54XY9bhVrmzwpnnxRibbzTxbgTzvBjTrQUj yyOZ58XYJmzxsV8087wYkrwNH3fEMM+LEXW4u31YLPO8GAM+uU1qGM88L8ak VX0KZ35nnhfzf0/7GTxIYJ4XI6xfMy9VIvO8GGvOrgwflsw8L8ZZRfyWYynM 82IYeC9/kZLKPC9GgN2k1Z3SmefFsLB/+HpDBvO8GIp5x3YHZzLPi7F+VvNE 0yzmeTE8m2x46ZbNPC9G4rF3jV/nMM+L8TpSKBDlMc+LsUG62WNKPvO8GAv3 9V3/oIB5XozS21P0NYXM82Jc//Fb7FjMPC/Ggphx126VMM+Lsb/DXH9NKfO8 GOEPXReMKWeeF+PC8CnnblQwz4vxp3KTk6aSeV6MvIis02MVzPNi1Df2nnNb yTwvxiiJwVu9inlegk0WNecmapjnJfDLe//noZZ5XoLtqrkqTsc8L8FFQ5O1 M/XM8xKsFBdtelvDPC/Br2SZYYNa5nkJJGfPd1rxi3legvYLnkWF/maelyDj 1Ia/7f4yz0sQuVsesMtAQJ6XwPf1CWEmJyDPS/A8tGPSYKGAPC9Bq/WKvpdF AvK8BMoTDVrpxQLyvARvjR6edpUKyPMSPKhNOf1OJiDPS5B56EurpoYC8rwE s36e7L+lnoA8L0F/3xmpaUYC8rwE90eNlg81FpDnJejtsO3LTRMBeV6CD+7m xsKGAvK8BD4Ph+QtNhWQ5yVol9PAPsJMQJ6XIKyPT99ejQXkeQlGxk94ft5c QJ7z1zfl3tc2EZDnJbBZUOHo1kxAnvO/7zJw3bfmAvK8BHvOiNv1bikgz0tw oWTzvMutBOR5KXxH+FgJ2gjI81JEPco5uMJCQJ6XYs+INmsS2wrI81Kscz1b gPYC8rwUI8e5lT7uICDP+f9/58UO804C8rwUncR3bu61FJDnpUjoM2diVWcB eV6KfBPpqVldBeR5Kerf/DwnvJuAPC9FjMAnYGB3AXleijM7JI8f9BCQ56X4 ti61U5NeAvK8FCZuLn0P9RaQ56UYr7wWo+sjIM9LEZubUru0n4A8L8WW5j3e p/UXkOf8/V37LHK0FpDnpRh4MiAncKCAPC+F0tpuQt/BAvK8FK5/tjg+sBGQ 56WoXX40o8VQAXleig+WV36dGiYgz0uh/xvjLbEVkOeluJk9SbF9uIA8L8W8 lDEhajsBeV6KsCYZXVaMFJDnpZiv7NU2z15AnpciM3XN45mjBOR5Kfos/fQl YbSAPC9F4JSx653GCsjzMqzb2f/113EC8rwMBdmPDoxwFJDnZTh2I6b0o5OA PC9DRG107uCJAvK8DF3mxa565ywgz8uwZOqvY/0mC8jzMjz13Db0lYuAPC/D owSPvb2mCsjzMvi1bzLzuauAPC+D0dkDYT2mC8jzMnyZWxb2bIaAPC9Dp7J1 s3rOEpDnZXjpZ3fgxWwBeV4Gp82H7PrMFZDnZVivWnbuzTwBeV6GUS0bbbN2 E5DnZfha/0W13wIBeV4GrXCpFIsE5HkZ78Fi7+DFAvK8DB2fJhaPXiogz8uw 4Uy2b/QyAXleBpfClxZTVgjI8zL8ubmhVcZKAXlehlOZk18sWC0gz8swIG9r atkaAXlehsktGl/esE5AnpfhoblT1W93AXlehu2ezhmHNgjI8zJ8njFunqmH gDwvg/3BJduubxKQ52WIHhzfvcsWAXleDseId5vebhWQ5+UQvBo53W67gDwv x4NT9+JjdgjI83Jc7iXNn71LQJ6X4+/eC8fLdwvI83Lobu2O2bZXQJ6X42OE 6lG9/QLyvBzpK5u3unZAQJ6Xw8G8Y5fuhwTkOX/9vbbRHw8LyPNy9Dl/xcj5 qIA8L8eiGfPz844JyPNy3JUGT9l0XECel+NhbcW8eicF5Hk5vD42kNw6JSDP yzFfMMO+/xkBeV6O3V761hFnBeR5OU7fbXF2/nkBeV6O8QNVt/UXBOR5Od6/ ezLu1CUBeV6OaQ82nep8RUCel2O6z4G1QVcF5Hk5Aj+Ky2dcF5Dn5Tj1xVKo vSEgz8shrG3hc/KWgDwvxzM/U3E3LwF5Xo7Xx4YoQu8IyPNylFmEb1pwT0Ce l6PF9PKrBg8E5Dk/I2HWjYcC8rwccsPXfkMeC8jzcni08nub/kRAnlfgvLyF 0zZvAXlegZXHpPtbPBeQ5xUwOP7SNeCFgDyvwMGO477NfiUgz/n/f1mS+ve1 gDyvgPNM80NebwXkeQW8DL2/278TkOcVmLPx98eS9wLyvALbLg4ec8JPQJ5X wO7qRfe+AczzCuxOHWWT+oF5XoG3qTvv7ApknlfAftLaJ52CmOcV8O48cXL0 Z+Z5BV6tm3TVI4R5XoGz657saxPKPK8Arp00+hbGPOe/73zfAeu/Mc8rYN07 0qB1BPOcf/71J1Z+i2SeV6De6edbNkYzzytgVLWwc7tY5nkFXrbP3xwTxzyv QL9qtxU7vjPPK9BobhMDq0TmeQWcDltbpycxzytwLKqmwbEU5nkFZgWcO26T xjyvwNJG8C5PZ55X4E5Yz7U3MpnnFTj083rSxCzmeSXsRUHZwhzmeSV+r449 8S6XeV4JlU6YsyKfeV6J4JNnky0KmeeVuDHjnXtSEfO8EltfPHjlWcI8r8S4 Vtcvjihjnldi8PzYtrXlzPNKZKzd6vy6knleiZUbEzqtVDDPK/EnsolXRxXz vBL+hjuDs9TM80qY62yPXdEyzyshPXWlZoqOeV6J4fIvxqY1zPNKrIr8GR79 k3leiYVbPHp4/mKeV8Kt0H3Q2D/M80qMsuhWLjMQkueViFqe5vCVE5LnlQiy DRhzWCgkzyth62KkHS0WkueVqDwhGWMoFZLnlehnWmQfKROS55XYZF1adsJQ SJ5XwvXUeJtJRkLyvBJFhWP78Y2QPK9E6dB2yWkmQvK8EsZxJh1uNRSS55Ww bOzcYrGZkDyvxJr37T9YNRaS51UI8Poi15gLyfMqfNZu4AKaCsnzKjjWX3t3 f3MheV6F3bu0KseWQvK8CiatRlY0aS0kz6uwS3nlbG4bIXlehfkjBhV6txWS 51W4cG5OwZb2QvK8Cvu8xp526Cgkz6swffHQUjNLIXleBafGmxQ5nYXkeRUy LAbefdFVSJ5XQWgdJN5tJSTPq7DfbnLjiT2E5HkV2q/o+d2il5A8r0JR44tQ 9RaS51WYWhAxI6SvkDyvgp+vSceL/YXkeRVmv7x7Y7m1kDyvQmTnqLBhg4Tk eRXM/SNumdkIyfMqGNvldSkZIiTPq3A0aeqCwGFC8rwKj2KXOV6wFZLnVaj/ dW7xKjsheV6Fdue293MYKSTPqzBnvKhPGwcheV6Fg6NtcvSjhOR5FUotFtt9 HyMkz6vw9Nm3Kc/GCcnzKoiMnrQ46igkzxXYfm7CucUThHTeFRhS8CtwhLOQ fFdgZKb+RtvJQjr/Cry/fqS3wRQhea9A66PaTVlThZQHCniN3uceOE1I/isw 6/OWtrdmCCkfFDjX3uLAnllC6gMKSDI+XF8wR0h5oUCHm1dWOMwTUj9QYO7C P5Vd3ISUHwosW9K7s/FCIfUFBbZ23t5EvUhIeaLAhZWWH1KWCKk/KJAwdHuz wGVCyhcFbpUFW91fIaQ+oYCo3mjd8VVCyhsFyjwmbfFYI6R+ocDyid1fz10n pPxRQPy33b0x64XUNxRQ99o5od9GIeWRAkvTj7xqs0lI/UOBzMGno+ttEVI+ KTDhe9Yd/VYh9REFTq8N6lO4XUh5pcDhTnu3JewUUj9RYIfz6p3Bu4WUXwrM vBBv83qvkPqKAn9ya1/f2S+kPFPAY7V10bmDQuov/Pf5xicePCykfFPgx/EW u7ccFVKfUWCfwbzClZ5CyjsFNGsqZfNPCKnfKHDwQOPiKaeElH8KbOjfYf+4 M0LqOwp0DVyWOfyckPKQv3/v/pqBF4TUfxTol5z8tdcllo8KpM+5NbPLFSH1 IX7/vc562u4ay0sF3p4qDGh5Q0j9iN8ff8WeTW6x/FSgrcvJ5mZeQupLCnTv m7DU5C7LUwUaH++0yei+kPqTAlG3UuwNH7J8VeBm7ZBE2WMh9SkF1m+531H2 lOWtAi3tl1rLngmpXylwJSXRUP6C5a8Cq3/b3TJ8JaS+xb/PSKHe6A3LYwWG vlhp2sBHSP2Ln+fHV5m9Z/msQO/SI6ea+gmpj/Hn436xplUAy2sFBtuNbNXh o5D6mQJh/ip5t08svxWIcxvr3+ezkPqaAoNSb/e2CWF5rsAIs4mrRoYKqb8p kOP6dLXTV5bvSuhsjQdMDxdSn1PC2z8qeGEky3slXslGNF0XLaR+p8SJgNC+ O2NZ/itREPjS3DNeSH1PiZAJs4OuJDAPlCj/3a7f4yQh9T8lWryctcYvhfmg hOu9hesj0oTUB5Xot/K8bWYG80KJThVjkqt+CKkfKhG0KNNamMP8UMJw+RO3 JnlC6otKBOabTLMqYJ4oca3JkqZ2RULqj/zzXa1/d1oJ84V/nvnzateUCalP KhHwMqD14QrmjRKpVruNb1cJqV/y7ytCFuGnZP4okZX9xiVRLaS+qcQ887wn Ci3zSAnPtapYI72Q+qcS9R3tQrr8ZD4psWBBn4OjfgmpjyrR90u7Jov/MK+U OPJj/aYDBiLqp/z78Dj44J5ARH4p8cnb/0GoSER9VQlnwcbNxRIReabEtPGN mteTi6i/KtH2U61nj3oi8o2/n8rjcZPqi6jPKpH8uXvxJhMReadE+qFhcdcb iqjfKjE9r/3xEDMR+ce/75ThLcsbi6jvKlH09dfORk1F5KESi9x93w5tLqL+ q8RnZcanJS1F5KMSoUGRt860FlEf5t+/f+WUjxYi8lKJ500eZZe2E1E/VsJn pdvwph1F5KcSvV7u2exgKaK+rITcZvXBjV1E5KkSNYEnV9zrJqL+rETkFKfO Sd1F5KsSl91NP0h7iahPK2FcMbLr4D4i8laJe7+c1q7qJ6J+rUTFoCsnbw8Q kb/889w4dThpoIj6thKnDl6baWQjIo/5+Vln+YihIurfSogG3Dq9FSLyWYnN N1ZrXw0XUR9X4mfE337lI0TkNb9+4k8TOzmIqJ8rMVvTYsz80SLym3/e+7tb Xx8ror6uRNTRmXGp40XkuQohHs3dmkwQkecqVNzuFjfFWUSeqzD34e/W5yeL yHMVjhz9Oy5xiog85z/3vjXNfJqIPFfhctpE+2kzROS5Crm2u02vzhKR5yo0 3HDz0485IvJchVmr2kxsP19EnvPXP7YuaOkCEXmuQoez0sbPF4nIcxWeP5s8 rnqJiDxXIW7114XDlovIcxWOhafMP7RSRJ6rsKCN3i5utYg8V+F07yuylutE 5LkK/az6vl6yXkSeq+Bx23rEm40i8lyFgKMtfbnNIvJchdjRro0nbhWR5yrU uzt72s3tIvJche2R9/ZW7RSR5yqYzrh/znaPiDxX4fP4pBNn9onIcxWeGnmv KzggIs9VwHKvoYMOi8hzFebc6KE+flREnquwb2z4mTxPEXmuQtbmypaDT4rI cxU2X2t05vRpEXmuwvjTPqqSsyLyXIXV15ww4oKIPFfBYqXr5uuXROS5Csom 42/or4jIcxUSLR6+dLkuIs/5+1tX9OrlTRF5roLN7INeJl4i8lyFnV7cntV3 ReS5CruXJjlF3xeR5yqctN1r1PORiDzn77/jPr9TT0TkuQrXdrhOV3uLyHMV asx3lkx9ISLP+e/v5rHC/5WIPOfvb3ZglsVbEXmuwqSAVIdD70TkOf/9H+1v V/qKyHMVFjvsr5oaICLPVZhwy7zPp48i8lyFqL07l3UNEpHnKnwwHnbhfLCI PFdhVEzyey5URJ6rkO0bzW9BEXmugn2P+zkZ4SLyXIUt1TnF46JE5Dl/PQdJ sX+MiDxX4fiHi1lW8SLyXIWzC1rE3kgQkef8+3hi7tcwWUSe87/vbnLjQKqI PFfB5e+x7T/TReS5CgkCs6lrf4jIcxVSLnbrVpQtIs/VqLGb/WtOnog8V+OY qmd4coGIPFdjz59u552LReS5Gi6d02ZHlorIczVKrwR3GF0hIs/VWF26rjSk SkSeqzGw0ZrndioRea7GvZ32G4I0IvJcDaV+16DhOhF5roaZ/6O/QTUi8lyN k4ucwkb8EpHnakzgfp4K/SMiz9VY9Xfg7LGcmDxXQz7oklWMUEye89eruvvX RSImz9UwDy9PSpeJyXM1/qT+frWgnpg8VyPn/OJz5fXF5LkaH9PfbvNoICbP 1bBTbF3GmYnJczX27bSfc7yxmDxXI+DivRnNm4rJczXEr7vNfdhcTJ6rYeS9 dKV1KzF5rkZoWMXesDZi8lyNto/H35nWTkyeq/FybpPo0g5i8lyNWdOyhTst xeQ5f/2lg+1Nu4rJczV6hL4/88BKTJ6rcb1+VfnQnmLynH9em3Uuib3F5Lka 215+/7aqn5g8V2NmryeOUmsxea7G1QzP7NuDxOQ5//s2xvuGDhGT52o06ful f9owMXmuhko+umbTcDF5rsbexd2jzUeKyXM13jsZvfVxEJPnahy03P7MdYyY PFdj/ptG/jXjxOS5GoHmq9OvOYnJczXORlk0GO4sJs/VCHvzZXrhZDF5rsZz UfV7z6li8lyNnc7jevSbLibP+c+PzvXLmCkmz9XY+jNy9sE5YvJcjd72PZr1 ni8mz/nfX9q6ImOBmDxX44X/wLQji8XkuRrWFU1zrJeJyXM18oQzBUUrxOS5 GqNmXx12cbWYPFdjuLfHhdHrxOS5GiN/HzGsXS8mz9V4/MT96jMPMXmuRu3y 6DELtojJc/7+htuYN9suJs/V+HnQlYvdKSbP1dAXBtU7vEdMnmtQO6vZgOH7 xeS5Bv37/95de1BMnmuwrl79Cp8jYvJcg+HhxVvXe4rJcw0sH/fq1vukmDzX ILjXgT9Vp8XkuQbKnoe0z8+JyXMNykOSG6y7KCbPNVjt2tS57xUxea7B50ul PtXXxOS5Bj/2Kuz8b4rJcw08XCO1u73E5LkG3E2L2FH3xOS5BtGWp+JNHorJ cw3+ij7+TnksJs81OHPccdIdbzF5rsHsmbmxq1+IyXMNpGMtttq8FpPnGvze +MRJ7iMmzzVYatN5Qsp7MXmuQfP+Ntsf+ovJcw022RxJ2vJRTJ5rMH3Buznj g8TkuQa/fi1vbBEiJs81iD0zplYTKibPNZhTrG8Q8U1MnmvQtKa1q1ekmDzX oLdufvTWGDF5rsGSsUs3ucSLyXMN4k6kTOqZKCbPNbhzdvr8eili8lyD6uln 7hSniclzDfaadW0elikmzzWY0fbrl/vZYvJcg/umjR4cyhOT5xpMvvP247JC MXmuQYifS33HEjF5rsGu5ZfP9i4Xk+caxJR3m9SkSkyea7Dqzpsxf5Ri8lyD NuYZWws1YvJcg0nKsYUxOjF5rsEr0WNPv59i8lyDT8O9Vt//LSbPNXDzy/A8 ayAhz/n9dFNQvEcoIc81sMaH3eskEvJcA0ORj6ubXEKea+DnfmGVi5GEPNeg URdZ8CgTCXmuwbyMN9OGmErIcw3iXR169mksIc81MNi2eFSXphLyXAPngYG3 27aQkOcaLD77c1iL1hLyXIMDNz+3MW8rIc/587cjaKRpBwl5rsGOWbefmVhK yHMNDq03mmPcVUKea/BO5D3ZuLuEPOff3/Tup0x6SchzDW4EWjcy7SshzzXo dswju/EACXmuRceG57TNB0nIcy2uPxjs0naIhDzX4vKdRr87Q0KeazHDNVLR 205CnmtxrYFRryH2EvJci+/mO/1HjZaQ51q4PYo86zJOQp5rkfz7tq+bk4Q8 16L1sIfd3Z0l5LkWLw4eUex1kZDnWgTnVwnOu0rIcy02uxxY9HCGhDzXQhCo bvphtoQ81yJSn9/q+zwJea7FrUDBxtIFEvJciy/vq1sLl0jIcy06rFnestVy CXmuxSxn6eqBqyTkuRYFzz0aTVkrIc+1aO8/v8H69RLyXIs9e9a5nfGQkOda 7Khwqvd6i4Q81yIk2Kte4nYJea7FwNuNF+p3SchzLWQ1Exq32ichz7V4bfqz zYiDEvJci2aygP3Lj0jIc/77goeOPOspIc+18Prdae6HkxLyXIv7Nm2Sis9I yHMtekdFPWp8QUKe8+sRnpo24rKEPOfXo2HpsvXXJOS5Fk8c7rnevSkhz7Xw iH55N8lLQp5r4Rjz1tnwvoQ818K/u+tcPJKQ5/zzHrWJ3vhUQp5rkTZcdtP7 uYQ81yJzsVt84SsJea6FaUjl0rY+EvJcC4sU5wWzfSXkuRaShJ6frwRIyHMt Gl+2OpgaKCHPtSj3KXveLFhCnmuxalkD25mhEvJci7cXhlrf+CYhz7VoHtX4 Qm6khDzXotVwm9mdYyXkuRZLIiYcX/NdQp5r8blQ0+l9koQ816Lhs4iugjQJ ea7FuLQNlx0zJeS5Fps+nVp/JVtCnmtxd0Kgb3GehDzXosz41sqBRRLyXIsF LeI9j5RKyHMtunbSNM+okJDn/Hlzv9ukl1JCnvPv6/vufQc0EvJcizWPOs3N 0EnIcy0u5vZ50q9WQp5X4712+NITfyTkeTVMcqsulHBS8rwaSqsUawexlDyv xves8+PuyqTkeTWmHgyOFxpJyfNqTLaqjVpoIiXPq1E+M2lomKmUPK/G1RaV 7bqZS8nzaowqT9txqpmUPK/G9LB+E3QtpeR5NZJbnr0410JKnldja5yn67f2 UvK8GnFD3p/sZyklz6sxw/KJ7e2uUvK8Gs++/lxu0kNKnlfjxhcbk129peR5 NRb2EPRQ9JOS59UI3Z4T5jZQSp5XY8KZlZlJNlLyvBpbfPqvGQ8peV6N4nPR O4LtpOR5NW7afJUPcZCS59UY3uy1mc8YKXnOX6+29bXejlLyvBqrjK7eeTZR Sp5X42H8267dXaTkeTW+dP/d29tVSp5Xw3PKH98eM6XkeTXapdgHv5wjJc/5 578012mAm5Q8r0azyKSZAYuk5Hk1vH/2Lx+xTEqeV2NwrcQgaqWUPK+GhTr+ outaKXlejaUu7d7krZeS59Wwztg+Zd0mKXleDfvTy7YbbJOS5/z3f17d5fRO KXlejSiR6ez2e6XkeTUM+6Y0eXdASp5Xo+UK+xnjj0jJ82oMrZ/ZIc9TSp5X Y4Vf283bTknJ82pwk8+7ND4nJc+r4aJ97/fiopQ8r8bsX0ZPHK9KyfNqzPzT oFP5DSl5Xo2DESOsPL2k5Hk1Qla2/9j9vpQ8r8b8dt0zYh9JyfNqRLtlHtzo LSXPq7Es9fnHFi+l5Hk17Ba12R/8RkqeV0PV5H7yyvdS8py//34ffJsESMnz aqR0z+waEiglz6ux4/6Obu7BUvKc35+rGwe0DZOS5/z+2Nc8Mz5cSp5X4099 wckD0VLyvBrD3GzjB8VLyfNq6H6PflCVKCXP+fd/6ITxg1Qpea7DlOi9snmZ UvJch+ZhF843z5GS5zoEHh/sk5QvJc91aLogc/m5Yil5rsO4pxWvJ5dLyXMd BKqU040UUvJch3NZ9cTJail5roOtnar+VZ2UPNdhqUz3dF6tlDzXId52f67l Xyl5roOumfC5QiAjz3UYn5Nu6i+Rkec63BB4GB8ylJHnOiyRDvRyMZaR5zoM vHAour2pjDzXoaX7t7OaxjLyXId6W+erQpvJyHMdZjx8VXqllYw812GYaZsd a9vKyHMdRhVJH4/qKCPPdShdG7XOoouMPNfBzDQm4aeVjDzXwcdhxfekXjLy nH/eO39XveknI891ECcW3z07UEae8+txa+/mDUNk5LkOvjmWJVNtZeS5Dtme fXSDR8rIcx12PK31shgtI891MHZLL5eOl5HnOlwt6JyomCAjz3U4eGDwrPTJ MvJchzn3F+0Nc5WR5zq8/vxn1NuZMvJch5/Lp3vfnSsjz3VYYf/11fkFMvJc B1X969MOL5GR5/z+uND55vYVMvJchz8hfgfd18jIcx2mX/QyWb5eRp7rsK5N j8ELNsnIcx0sDzyWzNkmI891kEsWbpyxS0ae8/ervXdw2j4Zec7vpwC/wdMO ychzHT6klp2efkxGnutQk7vHc9ZJGXmug8u+kK7zz8rIcx2ub/+5cslFGXnO r++DZZPXXJWR5/z7U039sfmmjDzX4e9CifH+OzLyXIcBLf1zTz2Qkec6PHZ8 N+vmExl5zq+fw5Dtz5/LyHMdjFYdHR70Wkae8/tnWM7ThHcy8lyHa5N3fSzx l5HnOkTM9PIw+CQjz3UoaXsosWmIjDzn9//RZel9vsrIcx2sz+8/7BQpI8/1 aDXLNHNFrIw812Ni4/GpRxNk5LkehabLdzxJkZHnengG3/kWlSEjz/Vo+Lrn R2W2jDzXQ3V0xMwmBTLyXI9S00a3h5XIyHM9DvVOPLmkQkae6/Gl3NfyjFJG nuvxeLlm6UetjDzXo1j5dnJ5jYw812NPaY/iFn9k5LkeHj9OdHIUyMlzPdZs FZnslsjJcz1Wn/hw+42hnDznv9+46EepsZw81+O8mXdoOzM5ea5HTfrg6bOa yMlzPWZE+l242EJOnuuxbO3UXQlt5OS5Hg+2DTAz6yAnz/XoGb530uTOcvJc j6Pz3Yaet5KT53psXFf7PaWXnDzX47PLevPW/eXkuR6WZypFiwbJyXM9WmSe uuk9VE6e6/HWfEehbricPNfjmFNi6ggHOXmux8Vgvy2nx8rJcz2aFziGZjvJ yXN+/SY/C+w9WU6e67Ez5+ei/a5y8lyPU+ecfVNmyslzPebfj/HtMU9Onuux 68DpJQcXyslzPeYkvfqctVROnusxaYNTxOBVcvJcjyPuO/dcXCcnz/WQtJpV oN0oJ8/18Kr5Wz1lq5w818Po2x6fdzvl5Lke4Yf07Vvsk5PneoxYsxW7D8nJ c/79VbeUFx2Tk+d67E7Q7J5wSk6e6/HsT+MHvufk5LkeB56e3dbxspw812OC 6+4/Z67LyXM9NvtX9BR4yclz/v5Sy03W35eT53q80x2/UfBYTp7r8fN2dvr0 53LyXI+2T9VhMa/l5Lkey/skuo16LyfP9Xh55czTTwFy8px/3+cH3rMJkpPn eqxv8338+y9y8lwPnz2r7gwIl5Pn/HmZbPrIJ1pOnusxYHvE7IHf5eS5HiW9 vYL8k+XkuR6df99IsM2Qk+c1+Pr+24WwbDl5XoNxZ7vIJhbIyfMa/DX50jmt RE6e18BS5qVfVCknz2vQ5OmXTWqVnDyvwdz9/e7v1cnJ8xqUuav2mf2Sk+c1 6PZG0PC+gSF5XoOB2UscB4sNyfMa6MvaD4qVG5Ln/P10HZiwxNiQPK9BZ8d7 rTkzQ/K8BlGLVzS91sSQPK9BTumRoIEtDcnzGtx6/rdZsoUheV6DP5XhbTd1 NCTPaxA/qiSlaVdD8rwGvz66IqCHIXleg5OfTKfM72tIntegxsK8uWygIXnO 30/r2SdeDDEkz2vwdl7uyxnDDcnzGsh/39wvcTAkz2tweMNJyZuxhuR5DXx8 HlkvmGBIntdgVruiJo1cDMnzGrw5iAeh0wzJ8xqc6PC4YOtsQ/K8Buuet/re y82QPK/BN6dTa4oXG5LnNZDc1PndXmFIntcg9NXot7PWGpLnNdCabZ7TbKMh eV4DdcgWn+QthuR5DXyHD/9wcacheV6D2t1B7tP3GZLnNRitLU9qediQPK9B rxNvS3I8DW3/D8t6RRQ= "]]}, "Charting`Private`Tag#1"]}}, <| "HighlightElements" -> <| "Label" -> {"XYLabel"}, "Ball" -> {"IndicatedBall"}|>, "LayoutOptions" -> <| "PanelPlotLayout" -> <||>, "PlotRange" -> {{0, 1.6}, {1.9267741928025102`, 3.31879026971162}}, "Frame" -> {{True, True}, {True, True}}, "AxesOrigin" -> {0, 1.9267741928025102`}, "ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True}, "LabelStyle" -> {FontFamily -> "Times", GrayLevel[0], FontSize -> 12}, "AspectRatio" -> GoldenRatio^(-1), "DefaultStyle" -> { Directive[ PointSize[0.0055000000000000005`], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[2]]}, "HighlightLabelingFunctions" -> <| "CoordinatesToolOptions" -> Identity, "ScalingFunctions" -> {{Identity, Identity}, { Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>, "Meta" -> <| "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> ListPlot, "GroupHighlight" -> False|>|>]]& )[<| "HighlightElements" -> <| "Label" -> {"XYLabel"}, "Ball" -> {"IndicatedBall"}|>, "LayoutOptions" -> <| "PanelPlotLayout" -> <||>, "PlotRange" -> {{0, 1.6}, {1.9267741928025102`, 3.31879026971162}}, "Frame" -> {{True, True}, {True, True}}, "AxesOrigin" -> {0, 1.9267741928025102`}, "ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True}, "LabelStyle" -> {FontFamily -> "Times", GrayLevel[0], FontSize -> 12}, "AspectRatio" -> GoldenRatio^(-1), "DefaultStyle" -> { Directive[ PointSize[0.0055000000000000005`], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[2]]}, "HighlightLabelingFunctions" -> <| "CoordinatesToolOptions" -> Identity, "ScalingFunctions" -> {{Identity, Identity}, { Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>, "Meta" -> <| "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> ListPlot, "GroupHighlight" -> False|>|>], ImageSizeCache->{{4.503599627370496*^15, -4.503599627370496*^15}, { 4.503599627370496*^15, -4.503599627370496*^15}}], Selectable->False]}, Annotation[{{ Annotation[{ Directive[ PointSize[0.0055000000000000005`], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[2]], Point[CompressedData[" 1:eJxd12VYVN3bBXDO9CCCgmIrJgZ2oKIuRMEERVHswG5Fxe5W7G7FDmxRQhFB UBqkQ7prkhnEeI889/5/ePnidV+DZ845e+/1W7R1WzNpkcDAwGCgxMDg37/b Gj0blbN1P358fSlpZGBg+/9nvzFGgm6HDqK38QSbpvz8c+fygA1nD2O5mUdS S34e9Oarx8ebR1GvsWVKW37eUtKpt+ypJzJd3Gwt+fl96wNlzu9PoKRZZ5Pu /PzrkTLe0e0UdrzYPLIvP18LsXjhvvQ0rJa7ZA/iZ5usCccvrj6DiOv+ubb8 nF5T94VY/+DZuNH/u79z2F/cvcVEfm7RM7ODZM953Aob5Dztf/d7Ac9exFfM 4+cZC+uuiLRGNYpl/7v/Szi33HvGen6+crnuB2e7K7ru+N/zXEHcj6D5h/g5 NVo3Oe/eVZwStf97+n/Pdw1TuzYSXufnZqKpxt1fXUdV9vlVD//3vDew+uPD YW/4edp/F0S3OY4en/73/LcQOm9/oyh+Hm99ZPi8glvotNKpWdr/3sdtbOr2 dH8RP5c7/7vibfSacGOq9n/vxwv1j3c8KeQMbI+tLKp9pPSC2S27HqYce193 cHJ0dd+2/NztkDn/CHfQZPzwW7049v7u4vDGDutt+Tnitr2P+vdd1D9/6+lE jr3Pe2i022f8fH7+97aaiu5jZsMlk9059n7vo6jz60/7+Nkw+c7aoYYPIHt6 9dx5jr3vB5hxoG3MA35+/O9xGzxE8F37tX4ce/8P4fFXtjmKn8f+u5z5IyhO rizM5th6PMLfKev8Nfxc97pbPobv1KY6mYCtz2Psu+Z2uRU//3t7se2ewNTa 2auPgK3XEyyxKWg4mp+7zDr5Wdv5KeKD2xTPFrD1ewplFddxAz9/46/WvKc3 3uR7fj0qYOvpjRmRQfG3+Xnp6Yrt6P8M7km3R/gK2Po+Q6Z1jxZx/MzfHP/I zxHZden0EgFb7+cIrpz4hxMa2Lrwm4dfUlz+WiJvIWTr/wIegn7b+/HzXf7t Jd95gdSyXlOchGw/vMDp1JxzS/lZ8zthc0mnlwjtONpmn5Dtj5dQ9Fw0+gY/ j6zbAC+RO2twgK+Q7ZeX+Gz+7UIiP/OL9++BUD/KNEUpZPvnFa5omu42FhnY /nd7r3Bemnmim4jtp1c4cGCeaAw/9637eY3R6rvZi0Vsf71Gs/Qn7Q/w875P 4fwOeo1jkR5Rd0Rsv73G8VnSH5/5+Tu/+vw7wfKOc6fkitj+e4Nvobv6CsQG tu3rLvgGzwuWb24nZvvxDXZateswgp/X1y3AW+jHPhiwUMz251vYVNc+P8DP wdrO/Aq/xbfitqceiNl+9cHe3ObJ3/jZ9L8bxIOHxfvLxWz/+iBTfPyyicTA tu7uvvqgW7i8cV8J28/vUBs+TzeVn19dr3oQOu4dWuSdtd0mYfv7HT6p7ipu 8rOg7oHfYV/WeekXCdvv77Ho3NIDpfw86b8Ng0iuzfIGUrb/3+NIK/+3A/jZ 69/jJrxHQu6wpbOl7Dz4wnnS0z37+Vn173LTfGHkLhY8lbLz4YudjuNLvvOz 3b/tn+4LT+1e619Sdl78cGT3k/IOMgPbuu07xw/9Db/KnGTs/Pgh8HXasU38 nLP134L4IfROwcbbMnae/DFdUhYawc+96za4P2qNKnZWy9j58seNyorrbeUG tnvOj+C3jD8eFVW1d5Sz8xaAmkHaBlv4Oa5d3QIj08pg0T05O38BaFXfzCKe n9v+S/+KAFRb9bL7K2fn8QNa50+PsDI0sF3373is/YAvJ8/4zzBk5/MDzp3J MD3Cz0H/Vlf9Ac9cBse9M2Tn9SPejHhWXcjPDf47kAiJH7zPvB47vx+xaWuu hwM/172+mo8off8gzqMeO8+BeNvw+NkH/Fx3e9sDoa1/PiClHjvfgRg15PN4 QyMDnqh/P58Q2avJyCFG7Lx/QpcDF7xW8/PD0HH8if6Eoyl2S28bsfP/Cbdi Wp9P4OeJ/Gnk9yi8GnXvIqvP8uATJruu7TCEn/X/9An5hD/jyw6urc/y4RM2 v7g18R4/32r+70AEoaPd2T1p9VleBEET9qVZA2MD29F1CxwEt/o2zRyMWX4E YUeedtd2flY8+HeDQci3qHF8bczyJAhfbo/aV8rPl/7dXTj/+aj8Nu1MWL4E 4fLPuPYz+Pnf5hpj9Bmx981OnjFhefMZRng6P4Kf/6VJvONnLPO/cVXUgOXP Z1xvVjlkGD//2y38loF21nX7zQ1YHn3GrBPP377i57rHjf2MmQGWxysasHz6 jCa1ssjODQ1s6y5nGoypC6e6L2zI8ioYO5uY7b7Fz3VxNDkYFwbZaTMasvwK hqO2MK6ZqYHtf/UhGMqtInNXU5ZnwdhicCPoHD/XxUFyMPYH+STEm7J8C8b0 v84TGpoZ2O6qC5wQFBus7z3RjOVdCGJMW207yc+WdQcoBK6HJlvFmLH8C8Em n2b2Jo0MbGPq6kUIUn+7f5nQiOVhCBI+uXmf4udN/45DZgjWLy3/FdeI5SP/ /xeYvTFrbGDb5t92bv0FLp3S46c0Znn5BQO6jZp+iZ/D/m2/eV/AqWaMSm/M 8vMLJhk0v97a3MB2TV1AfsH+nEMz3MxZnn7B004Pd93n5yZ1B/4LbizeaVRm zvI1FIqhxlyvJga2dbfXIRTVTjNnb2zC8jYU34Yva+vPz4vrfkIxKsTGkWvK 8jcUDY8mZY/i53/liU9YnB0/NONEU5bHoeAi1iOJn/+l4+aSUEwP32HYuhnL 5zAsajx36GJ+nlN3wTAEbm+R8qwZy+swRCf5pOn4WVIXUGGI+tvPfnhzlt9h CEu93OQYP/9bjUbPwnB9fIlzYnOW52GQOFhq2rQwsK1rd1VhOOPr+md5C5bv X/Hg1s61Pvz8599x6/0VR37eHCtoyfL+K98fAj2d+Pn+v+3s/hXmbXMHXG3J 8v8rbsjrjSnmZ6f/Hhivrg0L7t+KefAVNdW77+3j5+p/y6H9itrBSVVxrZgP 39DttJ2XRWsD2xv/Htf6G/IswwPWtGZefMPyvusQyM8OdS/wG1QVNl1N2jA/ vuHqxR475vJzZR0P37DJw3HgizbMk284knRtJmdhYHvhX7zXfsNXeduiSRbM l3C0W/oj7S4/18Xz0HBsnZA6QGfBvAnHi/bmtWPaGtjWxevOcFxzumx5vS3z JxxNbJcEKPj5v/gLR/Wq/b4j2zGPwtHQRdv6Mj/XxYsgAsM3fCyvaMd8isDS qfntRrQ3sK07viMisPzwiqBL7ZlXERh4Y9rXSn6uOx4HIhDZ+4W1fQfmVwR6 5HmYXOPn/7ZfBNynvZyg7sA8i0DQ0IX6sR0NbBP/La8sEi725+R3OjLfIrHV 0mFfLT/vqAvASFz22rnIpRPzLhK9t9m98ObnjnUbMBJp2y4skFoy/yIxfuOu XfP5OSqy7gdzhglEAZbMw0jI3rRXmnc2sN1YF6hRWOhb7ODemfkYhbfWU8XR /NyqbkNHYX7rdVZduzAvo/DbbVjAQX7+UvfnVRQcuOA3eV2Yn1HoWis0H97V wHZVXUBH4cs0SfaNrszTKCztHGP6m5/r4qpRNC7sXPBsZjfmazTqe3x95cfP dXEwNRqBPYUWza2Yt9H4Ed+0egs///fnVzSSPY37p1kxf6Mx/XRJxuDuBrZG /x04uDR/XnG1O/M4Gr+XLFzym5/rtkvzGER/Mh47twfzOQYn1r0+H8TPdcsx Kwbjo1zHdujJvI7Bku7c0kP8/N+fZzE4rnxTWdqT+R2DwF2bfzj1MrCtu1xW DCaNdLZ+3Yt5HgvNy5E1TXqz8x6LJ8OnddjRm/kei3T30+9ze7PzHwv7CO3b 0X2Y97Gol3y05fM+LA9i8abz1PLGfZn/seg6fXbHHX1ZPsTis/R+WH5f1gdi MSSt//fx/Vhe8J9vNx39th/rB7FQ3x7eqXV/lh/8/Qi+rTrUn/WFWPyd86y1 sj/Lk1hM364bOHMA6w+xmGv5OODLAJYvseD6Rj7qZc36RBxebV5gcM2a5U0c 3FI2fpIOZP0iDscGykvXD2T5E4cuB9vvyB7I+kYcQt6Eb3EcxPIoDus+irL9 BrH+EYf4O8nPOw9m+RSHVivHlFwYzPpIHJp3nOcptmF5FYdueW0vb7Bh/SQO Y4LOmeTbsPyKQ72cj1WTh7C+Eof7y+8PChnC8iwOWk/nin5DWX+Jg/uOUMP7 Q1m+xWHE5npnmgxjfSYe1p867TsyjOVdPCJutP5RO4z1m3h0XVjjtRos/+LR b8mHuBywvhOPneJ1y6fYsjyMx9Q7zVd9s2X9Jx6hTz6lDh3O8jEe508te/Fq OOtD8Rgf3kJpacfyMh6DUjKvXrdj/Sge62x9XpiNYPkZj/iTT3oeHcH6UjwM Z4Q05UayPI3H2UHSlZtHsv4Ujw8xW7soRrJ8/Y7nIR2dl9qzPvUdi8OM87Lt Wd5+x8fjQ7KmO7B+9R1rE97af3dg+fsdLebuMXccxfrWd0B/zzlsFMvj7xi9 rqtu+GjWv77D06ux9MNols/fMXHF6j0Dx7A+9h3hL20WvxnD8vo7Oi/Y/7bX WNbPvuPE+glrvMey/Oa//8eds13Hsb72HZV3D7d7OI7l+Xd0iRO17DSe9bfv qHJvs/vueJbvCVh7O8upvSPrcwko3Dr+sJcjy/sEXOywyqqdE+t3CcgJH23j 5cTyPwF9bhe+aTeB9b0ENMp1vHxnAvMgAVYxB4o7TGT9LwG2L8973Z/IfEiA dcr+sM7OrA8moM3VGa5PnJkXCeg9rfWkHpNYP0xA/Ibkdy8nMT8ScGH28cP9 J7O+mIAxB0eF+E5mniSgdFn9FcNcWH9MwLujhduDXZgviejqnlYzegrrk4kw eKnIiZ7CvEnE4Kxe/adMZf0yER2ueanTpzJ/EuF6wrHVAlfWNxPht2DQq1JX 5lEijsSteuU+jfXPREw/p2pVO435lAjztTGafdNZH02ESS8j6/ozmFeJUN9/ kX9hBuuniUh5FvLbYibzKxFDu0zc+2Qm66uJaPB3hvuAWcyzRHhbVEQFzWL9 NQmlB4zPO85mviWhQY+wsNTZrM8mobhNm8WL5zDvkhCwrPVa9RzWb5MwrW1U we65zL8kmCzsG2Y8j/XdJARPnd7o+jzmYRIKOo6K6jaf9d8keIjFKr/5zMck mPW+unesG+vDSVCVNdyV5sa85O9n97qi5QtYP07CGrvP/rULmJ9JeHDU6Jfn QtaXkzDTf9rD1ouYp0mQDHv+6cUi1p+Tkbyvqf2IxczXZLwUX++ftJj16WQM GGl/ZtkS5m0yQsOazfy9hPXrZBywaH/q9FLmbzLmFC7r3WkZ69vJkPpWD/Nf xjxOhtw2/v3E5ax/J+NDV/HNwuXM52RM73VJuX0F6+PJKDM598JsJfM6GYtO cRmPV7J+noxru0vW261ifidjwjuXzWmrWF9PRjez8SXuq5nnKYjZmhJabw3z PAWxGYKG99Ywz1Pg3zMhbNha5nkK2rpPKUtZyzxPwenHJ7etX8c8T8G9omOb jd2Z5ykQ2k7OfeTOPE/B3PjK9/brmecpOPBlya+c9czzFEwfHfZ05wbmeQoy TpuHt9jIPE9Bv5w5Lr4bmecpeLrj0ThXD+Y5f78+f59rPZjnKZDnL99zbhPz PAXuizSBfTczz1NR7869Fd83M89T0bn+4f3rtzDPUzG35T3DRluZ56k44Sz5 82Yr8zwVWf3fzpm6jXmeiogZ/lb6bczzVLSf0W7ple3M81Q0TFI3GLqDeZ6K 1lsGWWbvYJ6nYmD1r8f7djLPU/FWNvqa5S7meSpcN3SojdjFPE/FFPG1sLW7 meepmHXqPWe+h3meivOqfY/89zDPU/G4oSxw/l7meRqi0p3sZPuY52nwHeXW 9/k+5nka/FzGn5m6n3mehpeGTeb+2c88T0PTrZGX7x9gnqfBMMDDbsJB5nka 7FVtpusPMs/T0GdUfObtQ8zzNBRUXIwdd5h5noZu7bb1rj7MPE/D/s4HDW4f YZ6noa9T8NDxR5nnaRhSMqREd5R5nobl034L7h5jnqdhhtDk2ERP5nk6Ns3Y vue3J/M8HbLkCYWPjzPP09Gr9qzvtBPM83TonCfXSk4yz9Mxds2lJ29PMs/5 /69YFb7wFPM8HX+3/HBtdJp5no6f/prJIaeZ5+n4uMr/44YzzPN0NJ049FLH s8zzdKRZHchOOss8T0dR0vWLh88xz9Nh3fXMh8Hnmef879dbNaniPPM8HYLl g6beusA8T4dwiODb5IvM8wzM2Rv/WHqJeZ6BEIe3tf6XmOcZaHXtrf/ay8zz DHje+FHa8QrzPAMe622OpF9hnmfg8JjkC6evMs8zEDDtg9noa8zzDMzN1f/9 c415noGmvc/P9LnOPM9A+aXrnVbfYJ5nwH5Tq/mdbjLPM6DvY1Ev6ybzPAPj h7zscOkW8zwDv40yvJ1vM88zMLLz0/v1vJjnGfjRvLtJqBfzPBMNty0v2n2H eZ6Jl8Vreg65yzzPhGX9MUW6u8zzTGy5ypm8ucc8z4TjxHv3195nnmdCqcSz 7g+Y55lwm5jZsewB8zwTE+yP1H/0kHmeiQ5vJixa8oh5ngmjo0O6d3rMPM/E zw8zFxU8Zp5n4sVE3/r3njDPMxE4fn6nRU+Z55m4HDr3eUdv5nkmjmV8eljo zTz/gSifU6YPnzHPf2D/ofTyZc+Z5z8QdtTb2uoF8/wHnkjM1JUvmOc/4DCu aZtXL5nnP/Dm1Tf/ja+Y5z/Q9nbfb4NeM89/IHa/26g/r5nnP9A6yW1A8Bvm +Q8cazL8wuG3zPMf+JwoX+Lkwzz/gesPvj1s9I55/gM9exyfmf6Oec7fb6P5 u7zeM89/4FeDSY2W+zLPf+Bp7srmffyY51kwdvl4+qcf8zwLzwZN3hrszzzP wnb3gQmeAczzLEQVbb059QPzPAtLjltmWHxknmfh0PxxR8s+Ms+zkL9S/cgn kHmeBf/PVjZ7PzHPs5C0WzTMKYh5noVTMYdeNf/MPM/Cj5zgS0WfmedZcNV+ UbwJZp5nYdCkq357Q5jnWdg4zrl64hfmeRZeDtPeaRPKPM/GpHPngitD2XnP xr7AIVM+hjHfszFsWO20E1/Z+c+G8+XM6DnfmPfZWLJQ6dMznOVBNkyGjWzI RTD/s/ElJi8zPoLlQzZ0UZkt70WyPpANYz2iN0WxvMjGlqZNVWOjWT/Ihrdo w+HWMSw/stH/+vzTqhjWF7LxNqrSKCyW5Uk21J5daq/Gsf6QjeyMNrPWxbN8 ycbV8Kyeo76zPsE/7+pNHq0SWN5ko2+5pqcmgfWLbJx1XzwrIpHlTzYybdJq vZJY38iG1/E5xtuSWR5lI+U9d25yCusf2fjRLN7TKpXlUzYONP2hF6exPpKN Zp37pWSlsbzKxrKw3K5+6ayfZCN2t15xLoPlVzYGl+7rujaT9ZVs9Ll3Nnnc D5Zn2cibM0BvmcX6Sza6xm71FGWzfMvGuQ9rzuVksz6Tg7W69g0Cc1je5SB2 +v2/13JZv8nBxUjxgm15LP9ysHOE8+AZ+azv5KDNx4sHBhWwPMzB71HFI5sV sv6Tg6N65801hSwfc2CtzmuTVsT6UA42LvG28S9meZmDT6c+RFwrYf0oB099 2sfuLGX5mYNiq6rR88tYX8qB4+SeA0aWszzNQc559UXLCtafcpC3ctzqepUs X3OQNMvBt6qS9akcHKxWb06oYnmbg8bJC7x9Faxf5YB7eG/qTSXL3xz0avNt wwEV61s50P3JlK5UszzOQUdzjclkDetfOahn2+L4YC3L5xwcWrhgV7tq1sdy YLQ5o9BQx/I6B97bLgSrdayf5aDDjtuNM/Usv3OQdaF+ZmgN62s5kCpKm738 yfKcf98BYyKv1rL+loNOQwdrDv5i+Z4L98DI0+6/WZ/LRfH1hvfm/GF5n4tK NOsx7i/rd7nIbqaxGmjAUf7nooX3q9sdOY76Xi6khxd5mgk48iAXbRxaVXBC jvpfLv6cLA1W8PN/PuRiSYsfDbJFHPXBXEx8IkuIEXPkRS5KTLbV/yThqB/m 4lknhw8vpBz5kYtlaVvzbss46ou5GN6+6+6zco48yUWQZNHZA4Yc9Uf+eheH tNpcjyNfctFTF9RqhRFHfTIXpydJzs+pz5E3ubhR0HzfJGOO+mUudtY0KHYw 4cifXPzOrwm2acBR38zFVaMi894NOfIoFydzS7I7mXLUP3ORXGjWrpUZRz7x 9/vAI82sEUd9NBebAtsb1mvMkVe5kKdavRSYc9RPc7H5yZ2Yn/z8n1+5sP11 eZG6CUd9NReFN9quL2/KkWe54DaO1xc046i/5sF+tZU2qzlHvuXh5OHvy9Ja cNRn86CMmTw1sSVH3uUhYE6gX2wrjvptHo7O7nwxsjVH/uXBSXi77Gsbjvpu Hmaet3n/xYIjD/PgvsTw9+e2HPXfPP7vhTZ+n9px5GMeui44UfWxPUd9OA/J 25de/9CBIy/zEOjzKTigI0f9OA/rvR+5BXTiyM88DDIasDXAkqO+nIfGxzcb fujMkad5SNXvM/vYhaP+nAcryxXnA7ty5GseLv+xPRXUjaM+nYdrG5qKQqw4 8jYPj4+LlKHdOerXebCb3dQ1vAdH/uZBJ14yILonR307D9t9hSfje3HkcR5e vefmJ/fmqH/z8+QNTzP6cORzHjJKVq/L7ctRH89DXonoRXE/jrzOQ1LcmKVV /Tnq53no19P5SvUAjvzm1+tGD4c/1hz19TwcjtKukAziyPN8SDb51TMZzJHn +TBfcqpjUxuOPM+HyZZjvm2HcOR5PoSXAsO6DeXI83x8/Wg7ccAwjjznr6dv N3k4OPI8H2PmbI0db8uR5/mQtpz5ddpwjjzPx5sVqYMX2XHkOX+9i/LO7iM4 8jwfST//ntw1kiPP83Hyb6z7cXuOPM9HqsXp2KsOHHnO/36Jy6PHozjyPB9q ba/fvqM58jwfNYpBkd/GcOR5Pppd3G+eNpYjz/NR/aZjRuk4jjzPh69ln1a/ xnPkeT5aZH5Mre/Ekef58Pie3dBiAkee5yO2mfeXPhM58jwfpTEDtfbOHHme j4mdLt+aPokjz/OxZE5e2KrJHHmej83hViv2unDkeT6Co44evTiFI8/z+f5t 2sl7Kkee56P99rShwa4cec6vzwhdXOo0jjzPR3TKzlzFdI48z8fS6oNrZDM5 8rwAfxd13GIxiyPPC2AhXPt34GyOPC9AkN92waQ5HHlegEnH5u9dMZcjzwsQ sb/frgPzOPK8AIFf69XcnM+R5wVYfPR3lZ8bR54X4JmxxcKkBRx5XgDHp0em qBZy5HkBoiImhhgv5sjzAtwoOvai2xKOPC9AB0/n5mOWcuR5AcJc33NLlnHk eQFEtUmLDyznyPMCbBsYMubuCo485583/8Lj4JUceV6Ah0WLjuSt4sjzAuQM Gl0oXMOR5wXYXOQS1GEtR54X4IXxneYO6zjyvAATsseolrhz5Dn/+c15o4+u 58jzAiR4/WnpvYEjzwuwdpLN2tiNHHlegD9dethpPDjyvABx7yrPNN3Mkef8 elw/5zZ0C0eeF6DlCeuXbls58px/HueqnYe3ceQ5/3nw94hn2znyvADK6F8X E3dw5HkhBnjszfu1kyPPC6GO3P6sw26OPC/EsZ/CmvF7OPK8EAmDegVv3Ms8 L0S71Gb1b+5jnhdi9uDUpK/7meeFaPD9oIX6APO8ENusbEpbHWKeF+JBnnG/ MYeZ54XweNT8z4YjzPNCvLbbNPr2UeZ5ITofHmoWfYx5Xoiniw/OqfVknhdi cNbyrl1OMM8L8Vsi2uR6knleiKXSFSMPnmKeF8Khte+Zt6eZ54UIvy51KzjD POfvr3zNq8bnmOeFaHOw3n6H88zzQjT+qU7adIF5zr+PCrsnjy4yz/n/39SU y7jEPC9EzthtKcZXmOeFqF18qbfdVeZ5ISwW7TPyuMY8L+T7xdRlj68zzwvh 49xtdNYN5nkh+l5p+ajRLeY5f73NIz3H3maeF2LBxA/K3V7M8yIMuHQ79d0d 5nkRwjPrjay6yzwvgmmIeW/L+8zzIrwWZt6a+4B5XoRmK7acvfSQeV6Ewz8k 8vhHzPMi9J92izN6wjwvwpTieTscnjLPi2D9dsH2Pd7M8yJMrg3+E/CMeV4E t/rXRTXPmedF2OBieKL/S+Z5EbiJllfdXzHPi2BwwcTqxWvmeRF+xf+wrXzD PC9C1/AXqVY+zPMibJ9yu3rFO+Z5Ed4virz45D3zvAjHBU4fynyZ50V4MNZu iZU/87wI39Z/Ob8qgHlehMxw9ejnH5jnRTB+U7Jb+ZF5XoSMx8FD+31inheh n92NXZuCmOdF2NfhgoP/Z+Z5EaLNvp75G8w857+vZOLCkV+Y50Uov+jofySU eV6EY5bpF2PCmOf8577mPxt/Y54XY9bhVrmzwpnnxRibbzTxbgTzvBjTrQUj yyOZ58XYJmzxsV8087wYkrwNH3fEMM+LEXW4u31YLPO8GAM+uU1qGM88L8ak VX0KZ35nnhfzf0/7GTxIYJ4XI6xfMy9VIvO8GGvOrgwflsw8L8ZZRfyWYynM 82IYeC9/kZLKPC9GgN2k1Z3SmefFsLB/+HpDBvO8GIp5x3YHZzLPi7F+VvNE 0yzmeTE8m2x46ZbNPC9G4rF3jV/nMM+L8TpSKBDlMc+LsUG62WNKPvO8GAv3 9V3/oIB5XozS21P0NYXM82Jc//Fb7FjMPC/Ggphx126VMM+Lsb/DXH9NKfO8 GOEPXReMKWeeF+PC8CnnblQwz4vxp3KTk6aSeV6MvIis02MVzPNi1Df2nnNb yTwvxiiJwVu9inlegk0WNecmapjnJfDLe//noZZ5XoLtqrkqTsc8L8FFQ5O1 M/XM8xKsFBdtelvDPC/Br2SZYYNa5nkJJGfPd1rxi3legvYLnkWF/maelyDj 1Ia/7f4yz0sQuVsesMtAQJ6XwPf1CWEmJyDPS/A8tGPSYKGAPC9Bq/WKvpdF AvK8BMoTDVrpxQLyvARvjR6edpUKyPMSPKhNOf1OJiDPS5B56EurpoYC8rwE s36e7L+lnoA8L0F/3xmpaUYC8rwE90eNlg81FpDnJejtsO3LTRMBeV6CD+7m xsKGAvK8BD4Ph+QtNhWQ5yVol9PAPsJMQJ6XIKyPT99ejQXkeQlGxk94ft5c QJ7z1zfl3tc2EZDnJbBZUOHo1kxAnvO/7zJw3bfmAvK8BHvOiNv1bikgz0tw oWTzvMutBOR5KXxH+FgJ2gjI81JEPco5uMJCQJ6XYs+INmsS2wrI81Kscz1b gPYC8rwUI8e5lT7uICDP+f9/58UO804C8rwUncR3bu61FJDnpUjoM2diVWcB eV6KfBPpqVldBeR5Kerf/DwnvJuAPC9FjMAnYGB3AXleijM7JI8f9BCQ56X4 ti61U5NeAvK8FCZuLn0P9RaQ56UYr7wWo+sjIM9LEZubUru0n4A8L8WW5j3e p/UXkOf8/V37LHK0FpDnpRh4MiAncKCAPC+F0tpuQt/BAvK8FK5/tjg+sBGQ 56WoXX40o8VQAXleig+WV36dGiYgz0uh/xvjLbEVkOeluJk9SbF9uIA8L8W8 lDEhajsBeV6KsCYZXVaMFJDnpZiv7NU2z15AnpciM3XN45mjBOR5Kfos/fQl YbSAPC9F4JSx653GCsjzMqzb2f/113EC8rwMBdmPDoxwFJDnZTh2I6b0o5OA PC9DRG107uCJAvK8DF3mxa565ywgz8uwZOqvY/0mC8jzMjz13Db0lYuAPC/D owSPvb2mCsjzMvi1bzLzuauAPC+D0dkDYT2mC8jzMnyZWxb2bIaAPC9Dp7J1 s3rOEpDnZXjpZ3fgxWwBeV4Gp82H7PrMFZDnZVivWnbuzTwBeV6GUS0bbbN2 E5DnZfha/0W13wIBeV4GrXCpFIsE5HkZ78Fi7+DFAvK8DB2fJhaPXiogz8uw 4Uy2b/QyAXleBpfClxZTVgjI8zL8ubmhVcZKAXlehlOZk18sWC0gz8swIG9r atkaAXlehsktGl/esE5AnpfhoblT1W93AXlehu2ezhmHNgjI8zJ8njFunqmH gDwvg/3BJduubxKQ52WIHhzfvcsWAXleDseId5vebhWQ5+UQvBo53W67gDwv x4NT9+JjdgjI83Jc7iXNn71LQJ6X4+/eC8fLdwvI83Lobu2O2bZXQJ6X42OE 6lG9/QLyvBzpK5u3unZAQJ6Xw8G8Y5fuhwTkOX/9vbbRHw8LyPNy9Dl/xcj5 qIA8L8eiGfPz844JyPNy3JUGT9l0XECel+NhbcW8eicF5Hk5vD42kNw6JSDP yzFfMMO+/xkBeV6O3V761hFnBeR5OU7fbXF2/nkBeV6O8QNVt/UXBOR5Od6/ ezLu1CUBeV6OaQ82nep8RUCel2O6z4G1QVcF5Hk5Aj+Ky2dcF5Dn5Tj1xVKo vSEgz8shrG3hc/KWgDwvxzM/U3E3LwF5Xo7Xx4YoQu8IyPNylFmEb1pwT0Ce l6PF9PKrBg8E5Dk/I2HWjYcC8rwccsPXfkMeC8jzcni08nub/kRAnlfgvLyF 0zZvAXlegZXHpPtbPBeQ5xUwOP7SNeCFgDyvwMGO477NfiUgz/n/f1mS+ve1 gDyvgPNM80NebwXkeQW8DL2/278TkOcVmLPx98eS9wLyvALbLg4ec8JPQJ5X wO7qRfe+AczzCuxOHWWT+oF5XoG3qTvv7ApknlfAftLaJ52CmOcV8O48cXL0 Z+Z5BV6tm3TVI4R5XoGz657saxPKPK8Arp00+hbGPOe/73zfAeu/Mc8rYN07 0qB1BPOcf/71J1Z+i2SeV6De6edbNkYzzytgVLWwc7tY5nkFXrbP3xwTxzyv QL9qtxU7vjPPK9BobhMDq0TmeQWcDltbpycxzytwLKqmwbEU5nkFZgWcO26T xjyvwNJG8C5PZ55X4E5Yz7U3MpnnFTj083rSxCzmeSXsRUHZwhzmeSV+r449 8S6XeV4JlU6YsyKfeV6J4JNnky0KmeeVuDHjnXtSEfO8EltfPHjlWcI8r8S4 Vtcvjihjnldi8PzYtrXlzPNKZKzd6vy6knleiZUbEzqtVDDPK/EnsolXRxXz vBL+hjuDs9TM80qY62yPXdEyzyshPXWlZoqOeV6J4fIvxqY1zPNKrIr8GR79 k3leiYVbPHp4/mKeV8Kt0H3Q2D/M80qMsuhWLjMQkueViFqe5vCVE5LnlQiy DRhzWCgkzyth62KkHS0WkueVqDwhGWMoFZLnlehnWmQfKROS55XYZF1adsJQ SJ5XwvXUeJtJRkLyvBJFhWP78Y2QPK9E6dB2yWkmQvK8EsZxJh1uNRSS55Ww bOzcYrGZkDyvxJr37T9YNRaS51UI8Poi15gLyfMqfNZu4AKaCsnzKjjWX3t3 f3MheV6F3bu0KseWQvK8CiatRlY0aS0kz6uwS3nlbG4bIXlehfkjBhV6txWS 51W4cG5OwZb2QvK8Cvu8xp526Cgkz6swffHQUjNLIXleBafGmxQ5nYXkeRUy LAbefdFVSJ5XQWgdJN5tJSTPq7DfbnLjiT2E5HkV2q/o+d2il5A8r0JR44tQ 9RaS51WYWhAxI6SvkDyvgp+vSceL/YXkeRVmv7x7Y7m1kDyvQmTnqLBhg4Tk eRXM/SNumdkIyfMqGNvldSkZIiTPq3A0aeqCwGFC8rwKj2KXOV6wFZLnVaj/ dW7xKjsheV6Fdue293MYKSTPqzBnvKhPGwcheV6Fg6NtcvSjhOR5FUotFtt9 HyMkz6vw9Nm3Kc/GCcnzKoiMnrQ46igkzxXYfm7CucUThHTeFRhS8CtwhLOQ fFdgZKb+RtvJQjr/Cry/fqS3wRQhea9A66PaTVlThZQHCniN3uceOE1I/isw 6/OWtrdmCCkfFDjX3uLAnllC6gMKSDI+XF8wR0h5oUCHm1dWOMwTUj9QYO7C P5Vd3ISUHwosW9K7s/FCIfUFBbZ23t5EvUhIeaLAhZWWH1KWCKk/KJAwdHuz wGVCyhcFbpUFW91fIaQ+oYCo3mjd8VVCyhsFyjwmbfFYI6R+ocDyid1fz10n pPxRQPy33b0x64XUNxRQ99o5od9GIeWRAkvTj7xqs0lI/UOBzMGno+ttEVI+ KTDhe9Yd/VYh9REFTq8N6lO4XUh5pcDhTnu3JewUUj9RYIfz6p3Bu4WUXwrM vBBv83qvkPqKAn9ya1/f2S+kPFPAY7V10bmDQuov/Pf5xicePCykfFPgx/EW u7ccFVKfUWCfwbzClZ5CyjsFNGsqZfNPCKnfKHDwQOPiKaeElH8KbOjfYf+4 M0LqOwp0DVyWOfyckPKQv3/v/pqBF4TUfxTol5z8tdcllo8KpM+5NbPLFSH1 IX7/vc562u4ay0sF3p4qDGh5Q0j9iN8ff8WeTW6x/FSgrcvJ5mZeQupLCnTv m7DU5C7LUwUaH++0yei+kPqTAlG3UuwNH7J8VeBm7ZBE2WMh9SkF1m+531H2 lOWtAi3tl1rLngmpXylwJSXRUP6C5a8Cq3/b3TJ8JaS+xb/PSKHe6A3LYwWG vlhp2sBHSP2Ln+fHV5m9Z/msQO/SI6ea+gmpj/Hn436xplUAy2sFBtuNbNXh o5D6mQJh/ip5t08svxWIcxvr3+ezkPqaAoNSb/e2CWF5rsAIs4mrRoYKqb8p kOP6dLXTV5bvSuhsjQdMDxdSn1PC2z8qeGEky3slXslGNF0XLaR+p8SJgNC+ O2NZ/itREPjS3DNeSH1PiZAJs4OuJDAPlCj/3a7f4yQh9T8lWryctcYvhfmg hOu9hesj0oTUB5Xot/K8bWYG80KJThVjkqt+CKkfKhG0KNNamMP8UMJw+RO3 JnlC6otKBOabTLMqYJ4oca3JkqZ2RULqj/zzXa1/d1oJ84V/nvnzateUCalP KhHwMqD14QrmjRKpVruNb1cJqV/y7ytCFuGnZP4okZX9xiVRLaS+qcQ887wn Ci3zSAnPtapYI72Q+qcS9R3tQrr8ZD4psWBBn4OjfgmpjyrR90u7Jov/MK+U OPJj/aYDBiLqp/z78Dj44J5ARH4p8cnb/0GoSER9VQlnwcbNxRIReabEtPGN mteTi6i/KtH2U61nj3oi8o2/n8rjcZPqi6jPKpH8uXvxJhMReadE+qFhcdcb iqjfKjE9r/3xEDMR+ce/75ThLcsbi6jvKlH09dfORk1F5KESi9x93w5tLqL+ q8RnZcanJS1F5KMSoUGRt860FlEf5t+/f+WUjxYi8lKJ500eZZe2E1E/VsJn pdvwph1F5KcSvV7u2exgKaK+rITcZvXBjV1E5KkSNYEnV9zrJqL+rETkFKfO Sd1F5KsSl91NP0h7iahPK2FcMbLr4D4i8laJe7+c1q7qJ6J+rUTFoCsnbw8Q kb/889w4dThpoIj6thKnDl6baWQjIo/5+Vln+YihIurfSogG3Dq9FSLyWYnN N1ZrXw0XUR9X4mfE337lI0TkNb9+4k8TOzmIqJ8rMVvTYsz80SLym3/e+7tb Xx8ror6uRNTRmXGp40XkuQohHs3dmkwQkecqVNzuFjfFWUSeqzD34e/W5yeL yHMVjhz9Oy5xiog85z/3vjXNfJqIPFfhctpE+2kzROS5Crm2u02vzhKR5yo0 3HDz0485IvJchVmr2kxsP19EnvPXP7YuaOkCEXmuQoez0sbPF4nIcxWeP5s8 rnqJiDxXIW7114XDlovIcxWOhafMP7RSRJ6rsKCN3i5utYg8V+F07yuylutE 5LkK/az6vl6yXkSeq+Bx23rEm40i8lyFgKMtfbnNIvJchdjRro0nbhWR5yrU uzt72s3tIvJche2R9/ZW7RSR5yqYzrh/znaPiDxX4fP4pBNn9onIcxWeGnmv KzggIs9VwHKvoYMOi8hzFebc6KE+flREnquwb2z4mTxPEXmuQtbmypaDT4rI cxU2X2t05vRpEXmuwvjTPqqSsyLyXIXV15ww4oKIPFfBYqXr5uuXROS5Csom 42/or4jIcxUSLR6+dLkuIs/5+1tX9OrlTRF5roLN7INeJl4i8lyFnV7cntV3 ReS5CruXJjlF3xeR5yqctN1r1PORiDzn77/jPr9TT0TkuQrXdrhOV3uLyHMV asx3lkx9ISLP+e/v5rHC/5WIPOfvb3ZglsVbEXmuwqSAVIdD70TkOf/9H+1v V/qKyHMVFjvsr5oaICLPVZhwy7zPp48i8lyFqL07l3UNEpHnKnwwHnbhfLCI PFdhVEzyey5URJ6rkO0bzW9BEXmugn2P+zkZ4SLyXIUt1TnF46JE5Dl/PQdJ sX+MiDxX4fiHi1lW8SLyXIWzC1rE3kgQkef8+3hi7tcwWUSe87/vbnLjQKqI PFfB5e+x7T/TReS5CgkCs6lrf4jIcxVSLnbrVpQtIs/VqLGb/WtOnog8V+OY qmd4coGIPFdjz59u552LReS5Gi6d02ZHlorIczVKrwR3GF0hIs/VWF26rjSk SkSeqzGw0ZrndioRea7GvZ32G4I0IvJcDaV+16DhOhF5roaZ/6O/QTUi8lyN k4ucwkb8EpHnakzgfp4K/SMiz9VY9Xfg7LGcmDxXQz7oklWMUEye89eruvvX RSImz9UwDy9PSpeJyXM1/qT+frWgnpg8VyPn/OJz5fXF5LkaH9PfbvNoICbP 1bBTbF3GmYnJczX27bSfc7yxmDxXI+DivRnNm4rJczXEr7vNfdhcTJ6rYeS9 dKV1KzF5rkZoWMXesDZi8lyNto/H35nWTkyeq/FybpPo0g5i8lyNWdOyhTst xeQ5f/2lg+1Nu4rJczV6hL4/88BKTJ6rcb1+VfnQnmLynH9em3Uuib3F5Lka 215+/7aqn5g8V2NmryeOUmsxea7G1QzP7NuDxOQ5//s2xvuGDhGT52o06ful f9owMXmuhko+umbTcDF5rsbexd2jzUeKyXM13jsZvfVxEJPnahy03P7MdYyY PFdj/ptG/jXjxOS5GoHmq9OvOYnJczXORlk0GO4sJs/VCHvzZXrhZDF5rsZz UfV7z6li8lyNnc7jevSbLibP+c+PzvXLmCkmz9XY+jNy9sE5YvJcjd72PZr1 ni8mz/nfX9q6ImOBmDxX44X/wLQji8XkuRrWFU1zrJeJyXM18oQzBUUrxOS5 GqNmXx12cbWYPFdjuLfHhdHrxOS5GiN/HzGsXS8mz9V4/MT96jMPMXmuRu3y 6DELtojJc/7+htuYN9suJs/V+HnQlYvdKSbP1dAXBtU7vEdMnmtQO6vZgOH7 xeS5Bv37/95de1BMnmuwrl79Cp8jYvJcg+HhxVvXe4rJcw0sH/fq1vukmDzX ILjXgT9Vp8XkuQbKnoe0z8+JyXMNykOSG6y7KCbPNVjt2tS57xUxea7B50ul PtXXxOS5Bj/2Kuz8b4rJcw08XCO1u73E5LkG3E2L2FH3xOS5BtGWp+JNHorJ cw3+ij7+TnksJs81OHPccdIdbzF5rsHsmbmxq1+IyXMNpGMtttq8FpPnGvze +MRJ7iMmzzVYatN5Qsp7MXmuQfP+Ntsf+ovJcw022RxJ2vJRTJ5rMH3Buznj g8TkuQa/fi1vbBEiJs81iD0zplYTKibPNZhTrG8Q8U1MnmvQtKa1q1ekmDzX oLdufvTWGDF5rsGSsUs3ucSLyXMN4k6kTOqZKCbPNbhzdvr8eili8lyD6uln 7hSniclzDfaadW0elikmzzWY0fbrl/vZYvJcg/umjR4cyhOT5xpMvvP247JC MXmuQYifS33HEjF5rsGu5ZfP9i4Xk+caxJR3m9SkSkyea7Dqzpsxf5Ri8lyD NuYZWws1YvJcg0nKsYUxOjF5rsEr0WNPv59i8lyDT8O9Vt//LSbPNXDzy/A8 ayAhz/n9dFNQvEcoIc81sMaH3eskEvJcA0ORj6ubXEKea+DnfmGVi5GEPNeg URdZ8CgTCXmuwbyMN9OGmErIcw3iXR169mksIc81MNi2eFSXphLyXAPngYG3 27aQkOcaLD77c1iL1hLyXIMDNz+3MW8rIc/587cjaKRpBwl5rsGOWbefmVhK yHMNDq03mmPcVUKea/BO5D3ZuLuEPOff3/Tup0x6SchzDW4EWjcy7SshzzXo dswju/EACXmuRceG57TNB0nIcy2uPxjs0naIhDzX4vKdRr87Q0KeazHDNVLR 205CnmtxrYFRryH2EvJci+/mO/1HjZaQ51q4PYo86zJOQp5rkfz7tq+bk4Q8 16L1sIfd3Z0l5LkWLw4eUex1kZDnWgTnVwnOu0rIcy02uxxY9HCGhDzXQhCo bvphtoQ81yJSn9/q+zwJea7FrUDBxtIFEvJciy/vq1sLl0jIcy06rFnestVy CXmuxSxn6eqBqyTkuRYFzz0aTVkrIc+1aO8/v8H69RLyXIs9e9a5nfGQkOda 7Khwqvd6i4Q81yIk2Kte4nYJea7FwNuNF+p3SchzLWQ1Exq32ichz7V4bfqz zYiDEvJci2aygP3Lj0jIc/77goeOPOspIc+18Prdae6HkxLyXIv7Nm2Sis9I yHMtekdFPWp8QUKe8+sRnpo24rKEPOfXo2HpsvXXJOS5Fk8c7rnevSkhz7Xw iH55N8lLQp5r4Rjz1tnwvoQ818K/u+tcPJKQ5/zzHrWJ3vhUQp5rkTZcdtP7 uYQ81yJzsVt84SsJea6FaUjl0rY+EvJcC4sU5wWzfSXkuRaShJ6frwRIyHMt Gl+2OpgaKCHPtSj3KXveLFhCnmuxalkD25mhEvJci7cXhlrf+CYhz7VoHtX4 Qm6khDzXotVwm9mdYyXkuRZLIiYcX/NdQp5r8blQ0+l9koQ816Lhs4iugjQJ ea7FuLQNlx0zJeS5Fps+nVp/JVtCnmtxd0Kgb3GehDzXosz41sqBRRLyXIsF LeI9j5RKyHMtunbSNM+okJDn/Hlzv9ukl1JCnvPv6/vufQc0EvJcizWPOs3N 0EnIcy0u5vZ50q9WQp5X4712+NITfyTkeTVMcqsulHBS8rwaSqsUawexlDyv xves8+PuyqTkeTWmHgyOFxpJyfNqTLaqjVpoIiXPq1E+M2lomKmUPK/G1RaV 7bqZS8nzaowqT9txqpmUPK/G9LB+E3QtpeR5NZJbnr0410JKnldja5yn67f2 UvK8GnFD3p/sZyklz6sxw/KJ7e2uUvK8Gs++/lxu0kNKnlfjxhcbk129peR5 NRb2EPRQ9JOS59UI3Z4T5jZQSp5XY8KZlZlJNlLyvBpbfPqvGQ8peV6N4nPR O4LtpOR5NW7afJUPcZCS59UY3uy1mc8YKXnOX6+29bXejlLyvBqrjK7eeTZR Sp5X42H8267dXaTkeTW+dP/d29tVSp5Xw3PKH98eM6XkeTXapdgHv5wjJc/5 578012mAm5Q8r0azyKSZAYuk5Hk1vH/2Lx+xTEqeV2NwrcQgaqWUPK+GhTr+ outaKXlejaUu7d7krZeS59Wwztg+Zd0mKXleDfvTy7YbbJOS5/z3f17d5fRO KXlejSiR6ez2e6XkeTUM+6Y0eXdASp5Xo+UK+xnjj0jJ82oMrZ/ZIc9TSp5X Y4Vf283bTknJ82pwk8+7ND4nJc+r4aJ97/fiopQ8r8bsX0ZPHK9KyfNqzPzT oFP5DSl5Xo2DESOsPL2k5Hk1Qla2/9j9vpQ8r8b8dt0zYh9JyfNqRLtlHtzo LSXPq7Es9fnHFi+l5Hk17Ba12R/8RkqeV0PV5H7yyvdS8py//34ffJsESMnz aqR0z+waEiglz6ux4/6Obu7BUvKc35+rGwe0DZOS5/z+2Nc8Mz5cSp5X4099 wckD0VLyvBrD3GzjB8VLyfNq6H6PflCVKCXP+fd/6ITxg1Qpea7DlOi9snmZ UvJch+ZhF843z5GS5zoEHh/sk5QvJc91aLogc/m5Yil5rsO4pxWvJ5dLyXMd BKqU040UUvJch3NZ9cTJail5roOtnar+VZ2UPNdhqUz3dF6tlDzXId52f67l Xyl5roOumfC5QiAjz3UYn5Nu6i+Rkec63BB4GB8ylJHnOiyRDvRyMZaR5zoM vHAour2pjDzXoaX7t7OaxjLyXId6W+erQpvJyHMdZjx8VXqllYw812GYaZsd a9vKyHMdRhVJH4/qKCPPdShdG7XOoouMPNfBzDQm4aeVjDzXwcdhxfekXjLy nH/eO39XveknI891ECcW3z07UEae8+txa+/mDUNk5LkOvjmWJVNtZeS5Dtme fXSDR8rIcx12PK31shgtI891MHZLL5eOl5HnOlwt6JyomCAjz3U4eGDwrPTJ MvJchzn3F+0Nc5WR5zq8/vxn1NuZMvJch5/Lp3vfnSsjz3VYYf/11fkFMvJc B1X969MOL5GR5/z+uND55vYVMvJchz8hfgfd18jIcx2mX/QyWb5eRp7rsK5N j8ELNsnIcx0sDzyWzNkmI891kEsWbpyxS0ae8/ervXdw2j4Zec7vpwC/wdMO ychzHT6klp2efkxGnutQk7vHc9ZJGXmug8u+kK7zz8rIcx2ub/+5cslFGXnO r++DZZPXXJWR5/z7U039sfmmjDzX4e9CifH+OzLyXIcBLf1zTz2Qkec6PHZ8 N+vmExl5zq+fw5Dtz5/LyHMdjFYdHR70Wkae8/tnWM7ThHcy8lyHa5N3fSzx l5HnOkTM9PIw+CQjz3UoaXsosWmIjDzn9//RZel9vsrIcx2sz+8/7BQpI8/1 aDXLNHNFrIw812Ni4/GpRxNk5LkehabLdzxJkZHnengG3/kWlSEjz/Vo+Lrn R2W2jDzXQ3V0xMwmBTLyXI9S00a3h5XIyHM9DvVOPLmkQkae6/Gl3NfyjFJG nuvxeLlm6UetjDzXo1j5dnJ5jYw812NPaY/iFn9k5LkeHj9OdHIUyMlzPdZs FZnslsjJcz1Wn/hw+42hnDznv9+46EepsZw81+O8mXdoOzM5ea5HTfrg6bOa yMlzPWZE+l242EJOnuuxbO3UXQlt5OS5Hg+2DTAz6yAnz/XoGb530uTOcvJc j6Pz3Yaet5KT53psXFf7PaWXnDzX47PLevPW/eXkuR6WZypFiwbJyXM9WmSe uuk9VE6e6/HWfEehbricPNfjmFNi6ggHOXmux8Vgvy2nx8rJcz2aFziGZjvJ yXN+/SY/C+w9WU6e67Ez5+ei/a5y8lyPU+ecfVNmyslzPebfj/HtMU9Onuux 68DpJQcXyslzPeYkvfqctVROnusxaYNTxOBVcvJcjyPuO/dcXCcnz/WQtJpV oN0oJ8/18Kr5Wz1lq5w818Po2x6fdzvl5Lke4Yf07Vvsk5PneoxYsxW7D8nJ c/79VbeUFx2Tk+d67E7Q7J5wSk6e6/HsT+MHvufk5LkeB56e3dbxspw812OC 6+4/Z67LyXM9NvtX9BR4yclz/v5Sy03W35eT53q80x2/UfBYTp7r8fN2dvr0 53LyXI+2T9VhMa/l5Lkey/skuo16LyfP9Xh55czTTwFy8px/3+cH3rMJkpPn eqxv8338+y9y8lwPnz2r7gwIl5Pn/HmZbPrIJ1pOnusxYHvE7IHf5eS5HiW9 vYL8k+XkuR6df99IsM2Qk+c1+Pr+24WwbDl5XoNxZ7vIJhbIyfMa/DX50jmt RE6e18BS5qVfVCknz2vQ5OmXTWqVnDyvwdz9/e7v1cnJ8xqUuav2mf2Sk+c1 6PZG0PC+gSF5XoOB2UscB4sNyfMa6MvaD4qVG5Ln/P10HZiwxNiQPK9BZ8d7 rTkzQ/K8BlGLVzS91sSQPK9BTumRoIEtDcnzGtx6/rdZsoUheV6DP5XhbTd1 NCTPaxA/qiSlaVdD8rwGvz66IqCHIXleg5OfTKfM72tIntegxsK8uWygIXnO 30/r2SdeDDEkz2vwdl7uyxnDDcnzGsh/39wvcTAkz2tweMNJyZuxhuR5DXx8 HlkvmGBIntdgVruiJo1cDMnzGrw5iAeh0wzJ8xqc6PC4YOtsQ/K8Buuet/re y82QPK/BN6dTa4oXG5LnNZDc1PndXmFIntcg9NXot7PWGpLnNdCabZ7TbKMh eV4DdcgWn+QthuR5DXyHD/9wcacheV6D2t1B7tP3GZLnNRitLU9qediQPK9B rxNvS3I8DW3/D8t6RRQ= "]]}, "Charting`Private`Tag#1"]}}, <| "HighlightElements" -> <| "Label" -> {"XYLabel"}, "Ball" -> {"IndicatedBall"}|>, "LayoutOptions" -> <| "PanelPlotLayout" -> <||>, "PlotRange" -> {{0, 1.6}, {1.9267741928025102`, 3.31879026971162}}, "Frame" -> {{True, True}, {True, True}}, "AxesOrigin" -> {0, 1.9267741928025102`}, "ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True}, "LabelStyle" -> {FontFamily -> "Times", GrayLevel[0], FontSize -> 12}, "AspectRatio" -> GoldenRatio^(-1), "DefaultStyle" -> { Directive[ PointSize[0.0055000000000000005`], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[2]]}, "HighlightLabelingFunctions" -> <| "CoordinatesToolOptions" -> Identity, "ScalingFunctions" -> {{Identity, Identity}, { Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>, "Meta" -> <| "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> ListPlot, "GroupHighlight" -> False|>|>, "DynamicHighlight"]], {{}, {}}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 1.9267741928025102`}, DisplayFunction->Identity, Frame->{{True, True}, {True, True}}, FrameLabel->{{None, None}, {None, None}}, FrameStyle->GrayLevel[0], FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], LabelStyle->{FontFamily -> "Times", GrayLevel[0], FontSize -> 12}, Method->{ "AxisPadding" -> Scaled[0.02], "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "DefaultPlotStyle" -> { Directive[ RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[2]], Directive[ RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[2]], Directive[ RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[2]], Directive[ RGBColor[0.922526, 0.385626, 0.209179], AbsoluteThickness[2]], Directive[ RGBColor[0.528488, 0.470624, 0.701351], AbsoluteThickness[2]], Directive[ RGBColor[0.772079, 0.431554, 0.102387], AbsoluteThickness[2]], Directive[ RGBColor[0.363898, 0.618501, 0.782349], AbsoluteThickness[2]], Directive[ RGBColor[1, 0.75, 0], AbsoluteThickness[2]], Directive[ RGBColor[0.647624, 0.37816, 0.614037], AbsoluteThickness[2]], Directive[ RGBColor[0.571589, 0.586483, 0.], AbsoluteThickness[2]], Directive[ RGBColor[0.915, 0.3325, 0.2125], AbsoluteThickness[2]], Directive[ RGBColor[0.40082222609352647`, 0.5220066643438841, 0.85], AbsoluteThickness[2]], Directive[ RGBColor[0.9728288904374106, 0.621644452187053, 0.07336199581899142], AbsoluteThickness[2]], Directive[ RGBColor[0.736782672705901, 0.358, 0.5030266573755369], AbsoluteThickness[2]], Directive[ RGBColor[0.28026441037696703`, 0.715, 0.4292089322474965], AbsoluteThickness[2]]}, "DomainPadding" -> Scaled[0.02], "PointSizeFunction" -> "SmallPointSize", "RangePadding" -> Scaled[0.05], "OptimizePlotMarkers" -> True, "IncludeHighlighting" -> "CurrentPoint", "HighlightStyle" -> Automatic, "OptimizePlotMarkers" -> True, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& )}}, PlotRange->{{0, 1.6}, {1.9267741928025102`, 3.31879026971162}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{3.909043955430275*^9, 3.909046701012884*^9, 3.915533054748672*^9, 3.915772001814284*^9}, CellLabel->"Out[35]=",ExpressionUUID->"e2ba4c38-edde-4b75-bc95-88dc47d04160"] }, Open ]], Cell[BoxData[ GraphicsBox[{{}, {RGBColor[0.368417, 0.506779, 0.709798], PointSize[0.0055000000000000005`], AbsoluteThickness[1.6], PointBox[CompressedData[" 1:eJxd12VYVN3bBXDO9CCCgmIrJgZ2oKIuRMEERVHswG5Fxe5W7G7FDmxRQhFB UBqkQ7prkhnEeI889/5/ePnidV+DZ845e+/1W7R1WzNpkcDAwGCgxMDg37/b Gj0blbN1P358fSlpZGBg+/9nvzFGgm6HDqK38QSbpvz8c+fygA1nD2O5mUdS S34e9Oarx8ebR1GvsWVKW37eUtKpt+ypJzJd3Gwt+fl96wNlzu9PoKRZZ5Pu /PzrkTLe0e0UdrzYPLIvP18LsXjhvvQ0rJa7ZA/iZ5usCccvrj6DiOv+ubb8 nF5T94VY/+DZuNH/u79z2F/cvcVEfm7RM7ODZM953Aob5Dztf/d7Ac9exFfM 4+cZC+uuiLRGNYpl/7v/Szi33HvGen6+crnuB2e7K7ru+N/zXEHcj6D5h/g5 NVo3Oe/eVZwStf97+n/Pdw1TuzYSXufnZqKpxt1fXUdV9vlVD//3vDew+uPD YW/4edp/F0S3OY4en/73/LcQOm9/oyh+Hm99ZPi8glvotNKpWdr/3sdtbOr2 dH8RP5c7/7vibfSacGOq9n/vxwv1j3c8KeQMbI+tLKp9pPSC2S27HqYce193 cHJ0dd+2/NztkDn/CHfQZPzwW7049v7u4vDGDutt+Tnitr2P+vdd1D9/6+lE jr3Pe2i022f8fH7+97aaiu5jZsMlk9059n7vo6jz60/7+Nkw+c7aoYYPIHt6 9dx5jr3vB5hxoG3MA35+/O9xGzxE8F37tX4ce/8P4fFXtjmKn8f+u5z5IyhO rizM5th6PMLfKev8Nfxc97pbPobv1KY6mYCtz2Psu+Z2uRU//3t7se2ewNTa 2auPgK3XEyyxKWg4mp+7zDr5Wdv5KeKD2xTPFrD1ewplFddxAz9/46/WvKc3 3uR7fj0qYOvpjRmRQfG3+Xnp6Yrt6P8M7km3R/gK2Po+Q6Z1jxZx/MzfHP/I zxHZden0EgFb7+cIrpz4hxMa2Lrwm4dfUlz+WiJvIWTr/wIegn7b+/HzXf7t Jd95gdSyXlOchGw/vMDp1JxzS/lZ8zthc0mnlwjtONpmn5Dtj5dQ9Fw0+gY/ j6zbAC+RO2twgK+Q7ZeX+Gz+7UIiP/OL9++BUD/KNEUpZPvnFa5omu42FhnY /nd7r3Bemnmim4jtp1c4cGCeaAw/9637eY3R6rvZi0Vsf71Gs/Qn7Q/w875P 4fwOeo1jkR5Rd0Rsv73G8VnSH5/5+Tu/+vw7wfKOc6fkitj+e4Nvobv6CsQG tu3rLvgGzwuWb24nZvvxDXZateswgp/X1y3AW+jHPhiwUMz251vYVNc+P8DP wdrO/Aq/xbfitqceiNl+9cHe3ObJ3/jZ9L8bxIOHxfvLxWz/+iBTfPyyicTA tu7uvvqgW7i8cV8J28/vUBs+TzeVn19dr3oQOu4dWuSdtd0mYfv7HT6p7ipu 8rOg7oHfYV/WeekXCdvv77Ho3NIDpfw86b8Ng0iuzfIGUrb/3+NIK/+3A/jZ 69/jJrxHQu6wpbOl7Dz4wnnS0z37+Vn173LTfGHkLhY8lbLz4YudjuNLvvOz 3b/tn+4LT+1e619Sdl78cGT3k/IOMgPbuu07xw/9Db/KnGTs/Pgh8HXasU38 nLP134L4IfROwcbbMnae/DFdUhYawc+96za4P2qNKnZWy9j58seNyorrbeUG tnvOj+C3jD8eFVW1d5Sz8xaAmkHaBlv4Oa5d3QIj08pg0T05O38BaFXfzCKe n9v+S/+KAFRb9bL7K2fn8QNa50+PsDI0sF3373is/YAvJ8/4zzBk5/MDzp3J MD3Cz0H/Vlf9Ac9cBse9M2Tn9SPejHhWXcjPDf47kAiJH7zPvB47vx+xaWuu hwM/172+mo8off8gzqMeO8+BeNvw+NkH/Fx3e9sDoa1/PiClHjvfgRg15PN4 QyMDnqh/P58Q2avJyCFG7Lx/QpcDF7xW8/PD0HH8if6Eoyl2S28bsfP/Cbdi Wp9P4OeJ/Gnk9yi8GnXvIqvP8uATJruu7TCEn/X/9An5hD/jyw6urc/y4RM2 v7g18R4/32r+70AEoaPd2T1p9VleBEET9qVZA2MD29F1CxwEt/o2zRyMWX4E YUeedtd2flY8+HeDQci3qHF8bczyJAhfbo/aV8rPl/7dXTj/+aj8Nu1MWL4E 4fLPuPYz+Pnf5hpj9Bmx981OnjFhefMZRng6P4Kf/6VJvONnLPO/cVXUgOXP Z1xvVjlkGD//2y38loF21nX7zQ1YHn3GrBPP377i57rHjf2MmQGWxysasHz6 jCa1ssjODQ1s6y5nGoypC6e6L2zI8ioYO5uY7b7Fz3VxNDkYFwbZaTMasvwK hqO2MK6ZqYHtf/UhGMqtInNXU5ZnwdhicCPoHD/XxUFyMPYH+STEm7J8C8b0 v84TGpoZ2O6qC5wQFBus7z3RjOVdCGJMW207yc+WdQcoBK6HJlvFmLH8C8Em n2b2Jo0MbGPq6kUIUn+7f5nQiOVhCBI+uXmf4udN/45DZgjWLy3/FdeI5SP/ /xeYvTFrbGDb5t92bv0FLp3S46c0Znn5BQO6jZp+iZ/D/m2/eV/AqWaMSm/M 8vMLJhk0v97a3MB2TV1AfsH+nEMz3MxZnn7B004Pd93n5yZ1B/4LbizeaVRm zvI1FIqhxlyvJga2dbfXIRTVTjNnb2zC8jYU34Yva+vPz4vrfkIxKsTGkWvK 8jcUDY8mZY/i53/liU9YnB0/NONEU5bHoeAi1iOJn/+l4+aSUEwP32HYuhnL 5zAsajx36GJ+nlN3wTAEbm+R8qwZy+swRCf5pOn4WVIXUGGI+tvPfnhzlt9h CEu93OQYP/9bjUbPwnB9fIlzYnOW52GQOFhq2rQwsK1rd1VhOOPr+md5C5bv X/Hg1s61Pvz8599x6/0VR37eHCtoyfL+K98fAj2d+Pn+v+3s/hXmbXMHXG3J 8v8rbsjrjSnmZ6f/Hhivrg0L7t+KefAVNdW77+3j5+p/y6H9itrBSVVxrZgP 39DttJ2XRWsD2xv/Htf6G/IswwPWtGZefMPyvusQyM8OdS/wG1QVNl1N2jA/ vuHqxR475vJzZR0P37DJw3HgizbMk284knRtJmdhYHvhX7zXfsNXeduiSRbM l3C0W/oj7S4/18Xz0HBsnZA6QGfBvAnHi/bmtWPaGtjWxevOcFxzumx5vS3z JxxNbJcEKPj5v/gLR/Wq/b4j2zGPwtHQRdv6Mj/XxYsgAsM3fCyvaMd8isDS qfntRrQ3sK07viMisPzwiqBL7ZlXERh4Y9rXSn6uOx4HIhDZ+4W1fQfmVwR6 5HmYXOPn/7ZfBNynvZyg7sA8i0DQ0IX6sR0NbBP/La8sEi725+R3OjLfIrHV 0mFfLT/vqAvASFz22rnIpRPzLhK9t9m98ObnjnUbMBJp2y4skFoy/yIxfuOu XfP5OSqy7gdzhglEAZbMw0jI3rRXmnc2sN1YF6hRWOhb7ODemfkYhbfWU8XR /NyqbkNHYX7rdVZduzAvo/DbbVjAQX7+UvfnVRQcuOA3eV2Yn1HoWis0H97V wHZVXUBH4cs0SfaNrszTKCztHGP6m5/r4qpRNC7sXPBsZjfmazTqe3x95cfP dXEwNRqBPYUWza2Yt9H4Ed+0egs///fnVzSSPY37p1kxf6Mx/XRJxuDuBrZG /x04uDR/XnG1O/M4Gr+XLFzym5/rtkvzGER/Mh47twfzOQYn1r0+H8TPdcsx Kwbjo1zHdujJvI7Bku7c0kP8/N+fZzE4rnxTWdqT+R2DwF2bfzj1MrCtu1xW DCaNdLZ+3Yt5HgvNy5E1TXqz8x6LJ8OnddjRm/kei3T30+9ze7PzHwv7CO3b 0X2Y97Gol3y05fM+LA9i8abz1PLGfZn/seg6fXbHHX1ZPsTis/R+WH5f1gdi MSSt//fx/Vhe8J9vNx39th/rB7FQ3x7eqXV/lh/8/Qi+rTrUn/WFWPyd86y1 sj/Lk1hM364bOHMA6w+xmGv5OODLAJYvseD6Rj7qZc36RBxebV5gcM2a5U0c 3FI2fpIOZP0iDscGykvXD2T5E4cuB9vvyB7I+kYcQt6Eb3EcxPIoDus+irL9 BrH+EYf4O8nPOw9m+RSHVivHlFwYzPpIHJp3nOcptmF5FYdueW0vb7Bh/SQO Y4LOmeTbsPyKQ72cj1WTh7C+Eof7y+8PChnC8iwOWk/nin5DWX+Jg/uOUMP7 Q1m+xWHE5npnmgxjfSYe1p867TsyjOVdPCJutP5RO4z1m3h0XVjjtRos/+LR b8mHuBywvhOPneJ1y6fYsjyMx9Q7zVd9s2X9Jx6hTz6lDh3O8jEe508te/Fq OOtD8Rgf3kJpacfyMh6DUjKvXrdj/Sge62x9XpiNYPkZj/iTT3oeHcH6UjwM Z4Q05UayPI3H2UHSlZtHsv4Ujw8xW7soRrJ8/Y7nIR2dl9qzPvUdi8OM87Lt Wd5+x8fjQ7KmO7B+9R1rE97af3dg+fsdLebuMXccxfrWd0B/zzlsFMvj7xi9 rqtu+GjWv77D06ux9MNols/fMXHF6j0Dx7A+9h3hL20WvxnD8vo7Oi/Y/7bX WNbPvuPE+glrvMey/Oa//8eds13Hsb72HZV3D7d7OI7l+Xd0iRO17DSe9bfv qHJvs/vueJbvCVh7O8upvSPrcwko3Dr+sJcjy/sEXOywyqqdE+t3CcgJH23j 5cTyPwF9bhe+aTeB9b0ENMp1vHxnAvMgAVYxB4o7TGT9LwG2L8973Z/IfEiA dcr+sM7OrA8moM3VGa5PnJkXCeg9rfWkHpNYP0xA/Ibkdy8nMT8ScGH28cP9 J7O+mIAxB0eF+E5mniSgdFn9FcNcWH9MwLujhduDXZgviejqnlYzegrrk4kw eKnIiZ7CvEnE4Kxe/adMZf0yER2ueanTpzJ/EuF6wrHVAlfWNxPht2DQq1JX 5lEijsSteuU+jfXPREw/p2pVO435lAjztTGafdNZH02ESS8j6/ozmFeJUN9/ kX9hBuuniUh5FvLbYibzKxFDu0zc+2Qm66uJaPB3hvuAWcyzRHhbVEQFzWL9 NQmlB4zPO85mviWhQY+wsNTZrM8mobhNm8WL5zDvkhCwrPVa9RzWb5MwrW1U we65zL8kmCzsG2Y8j/XdJARPnd7o+jzmYRIKOo6K6jaf9d8keIjFKr/5zMck mPW+unesG+vDSVCVNdyV5sa85O9n97qi5QtYP07CGrvP/rULmJ9JeHDU6Jfn QtaXkzDTf9rD1ouYp0mQDHv+6cUi1p+Tkbyvqf2IxczXZLwUX++ftJj16WQM GGl/ZtkS5m0yQsOazfy9hPXrZBywaH/q9FLmbzLmFC7r3WkZ69vJkPpWD/Nf xjxOhtw2/v3E5ax/J+NDV/HNwuXM52RM73VJuX0F6+PJKDM598JsJfM6GYtO cRmPV7J+noxru0vW261ifidjwjuXzWmrWF9PRjez8SXuq5nnKYjZmhJabw3z PAWxGYKG99Ywz1Pg3zMhbNha5nkK2rpPKUtZyzxPwenHJ7etX8c8T8G9omOb jd2Z5ykQ2k7OfeTOPE/B3PjK9/brmecpOPBlya+c9czzFEwfHfZ05wbmeQoy TpuHt9jIPE9Bv5w5Lr4bmecpeLrj0ThXD+Y5f78+f59rPZjnKZDnL99zbhPz PAXuizSBfTczz1NR7869Fd83M89T0bn+4f3rtzDPUzG35T3DRluZ56k44Sz5 82Yr8zwVWf3fzpm6jXmeiogZ/lb6bczzVLSf0W7ple3M81Q0TFI3GLqDeZ6K 1lsGWWbvYJ6nYmD1r8f7djLPU/FWNvqa5S7meSpcN3SojdjFPE/FFPG1sLW7 meepmHXqPWe+h3meivOqfY/89zDPU/G4oSxw/l7meRqi0p3sZPuY52nwHeXW 9/k+5nka/FzGn5m6n3mehpeGTeb+2c88T0PTrZGX7x9gnqfBMMDDbsJB5nka 7FVtpusPMs/T0GdUfObtQ8zzNBRUXIwdd5h5noZu7bb1rj7MPE/D/s4HDW4f YZ6noa9T8NDxR5nnaRhSMqREd5R5nobl034L7h5jnqdhhtDk2ERP5nk6Ns3Y vue3J/M8HbLkCYWPjzPP09Gr9qzvtBPM83TonCfXSk4yz9Mxds2lJ29PMs/5 /69YFb7wFPM8HX+3/HBtdJp5no6f/prJIaeZ5+n4uMr/44YzzPN0NJ049FLH s8zzdKRZHchOOss8T0dR0vWLh88xz9Nh3fXMh8Hnmef879dbNaniPPM8HYLl g6beusA8T4dwiODb5IvM8wzM2Rv/WHqJeZ6BEIe3tf6XmOcZaHXtrf/ay8zz DHje+FHa8QrzPAMe622OpF9hnmfg8JjkC6evMs8zEDDtg9noa8zzDMzN1f/9 c415noGmvc/P9LnOPM9A+aXrnVbfYJ5nwH5Tq/mdbjLPM6DvY1Ev6ybzPAPj h7zscOkW8zwDv40yvJ1vM88zMLLz0/v1vJjnGfjRvLtJqBfzPBMNty0v2n2H eZ6Jl8Vreg65yzzPhGX9MUW6u8zzTGy5ypm8ucc8z4TjxHv3195nnmdCqcSz 7g+Y55lwm5jZsewB8zwTE+yP1H/0kHmeiQ5vJixa8oh5ngmjo0O6d3rMPM/E zw8zFxU8Zp5n4sVE3/r3njDPMxE4fn6nRU+Z55m4HDr3eUdv5nkmjmV8eljo zTz/gSifU6YPnzHPf2D/ofTyZc+Z5z8QdtTb2uoF8/wHnkjM1JUvmOc/4DCu aZtXL5nnP/Dm1Tf/ja+Y5z/Q9nbfb4NeM89/IHa/26g/r5nnP9A6yW1A8Bvm +Q8cazL8wuG3zPMf+JwoX+Lkwzz/gesPvj1s9I55/gM9exyfmf6Oec7fb6P5 u7zeM89/4FeDSY2W+zLPf+Bp7srmffyY51kwdvl4+qcf8zwLzwZN3hrszzzP wnb3gQmeAczzLEQVbb059QPzPAtLjltmWHxknmfh0PxxR8s+Ms+zkL9S/cgn kHmeBf/PVjZ7PzHPs5C0WzTMKYh5noVTMYdeNf/MPM/Cj5zgS0WfmedZcNV+ UbwJZp5nYdCkq357Q5jnWdg4zrl64hfmeRZeDtPeaRPKPM/GpHPngitD2XnP xr7AIVM+hjHfszFsWO20E1/Z+c+G8+XM6DnfmPfZWLJQ6dMznOVBNkyGjWzI RTD/s/ElJi8zPoLlQzZ0UZkt70WyPpANYz2iN0WxvMjGlqZNVWOjWT/Ihrdo w+HWMSw/stH/+vzTqhjWF7LxNqrSKCyW5Uk21J5daq/Gsf6QjeyMNrPWxbN8 ycbV8Kyeo76zPsE/7+pNHq0SWN5ko2+5pqcmgfWLbJx1XzwrIpHlTzYybdJq vZJY38iG1/E5xtuSWR5lI+U9d25yCusf2fjRLN7TKpXlUzYONP2hF6exPpKN Zp37pWSlsbzKxrKw3K5+6ayfZCN2t15xLoPlVzYGl+7rujaT9ZVs9Ll3Nnnc D5Zn2cibM0BvmcX6Sza6xm71FGWzfMvGuQ9rzuVksz6Tg7W69g0Cc1je5SB2 +v2/13JZv8nBxUjxgm15LP9ysHOE8+AZ+azv5KDNx4sHBhWwPMzB71HFI5sV sv6Tg6N65801hSwfc2CtzmuTVsT6UA42LvG28S9meZmDT6c+RFwrYf0oB099 2sfuLGX5mYNiq6rR88tYX8qB4+SeA0aWszzNQc559UXLCtafcpC3ctzqepUs X3OQNMvBt6qS9akcHKxWb06oYnmbg8bJC7x9Faxf5YB7eG/qTSXL3xz0avNt wwEV61s50P3JlK5UszzOQUdzjclkDetfOahn2+L4YC3L5xwcWrhgV7tq1sdy YLQ5o9BQx/I6B97bLgSrdayf5aDDjtuNM/Usv3OQdaF+ZmgN62s5kCpKm738 yfKcf98BYyKv1rL+loNOQwdrDv5i+Z4L98DI0+6/WZ/LRfH1hvfm/GF5n4tK NOsx7i/rd7nIbqaxGmjAUf7nooX3q9sdOY76Xi6khxd5mgk48iAXbRxaVXBC jvpfLv6cLA1W8PN/PuRiSYsfDbJFHPXBXEx8IkuIEXPkRS5KTLbV/yThqB/m 4lknhw8vpBz5kYtlaVvzbss46ou5GN6+6+6zco48yUWQZNHZA4Yc9Uf+eheH tNpcjyNfctFTF9RqhRFHfTIXpydJzs+pz5E3ubhR0HzfJGOO+mUudtY0KHYw 4cifXPzOrwm2acBR38zFVaMi894NOfIoFydzS7I7mXLUP3ORXGjWrpUZRz7x 9/vAI82sEUd9NBebAtsb1mvMkVe5kKdavRSYc9RPc7H5yZ2Yn/z8n1+5sP11 eZG6CUd9NReFN9quL2/KkWe54DaO1xc046i/5sF+tZU2qzlHvuXh5OHvy9Ja cNRn86CMmTw1sSVH3uUhYE6gX2wrjvptHo7O7nwxsjVH/uXBSXi77Gsbjvpu Hmaet3n/xYIjD/PgvsTw9+e2HPXfPP7vhTZ+n9px5GMeui44UfWxPUd9OA/J 25de/9CBIy/zEOjzKTigI0f9OA/rvR+5BXTiyM88DDIasDXAkqO+nIfGxzcb fujMkad5SNXvM/vYhaP+nAcryxXnA7ty5GseLv+xPRXUjaM+nYdrG5qKQqw4 8jYPj4+LlKHdOerXebCb3dQ1vAdH/uZBJ14yILonR307D9t9hSfje3HkcR5e vefmJ/fmqH/z8+QNTzP6cORzHjJKVq/L7ctRH89DXonoRXE/jrzOQ1LcmKVV /Tnq53no19P5SvUAjvzm1+tGD4c/1hz19TwcjtKukAziyPN8SDb51TMZzJHn +TBfcqpjUxuOPM+HyZZjvm2HcOR5PoSXAsO6DeXI83x8/Wg7ccAwjjznr6dv N3k4OPI8H2PmbI0db8uR5/mQtpz5ddpwjjzPx5sVqYMX2XHkOX+9i/LO7iM4 8jwfST//ntw1kiPP83Hyb6z7cXuOPM9HqsXp2KsOHHnO/36Jy6PHozjyPB9q ba/fvqM58jwfNYpBkd/GcOR5Pppd3G+eNpYjz/NR/aZjRuk4jjzPh69ln1a/ xnPkeT5aZH5Mre/Ekef58Pie3dBiAkee5yO2mfeXPhM58jwfpTEDtfbOHHme j4mdLt+aPokjz/OxZE5e2KrJHHmej83hViv2unDkeT6Co44evTiFI8/z+f5t 2sl7Kkee56P99rShwa4cec6vzwhdXOo0jjzPR3TKzlzFdI48z8fS6oNrZDM5 8rwAfxd13GIxiyPPC2AhXPt34GyOPC9AkN92waQ5HHlegEnH5u9dMZcjzwsQ sb/frgPzOPK8AIFf69XcnM+R5wVYfPR3lZ8bR54X4JmxxcKkBRx5XgDHp0em qBZy5HkBoiImhhgv5sjzAtwoOvai2xKOPC9AB0/n5mOWcuR5AcJc33NLlnHk eQFEtUmLDyznyPMCbBsYMubuCo485583/8Lj4JUceV6Ah0WLjuSt4sjzAuQM Gl0oXMOR5wXYXOQS1GEtR54X4IXxneYO6zjyvAATsseolrhz5Dn/+c15o4+u 58jzAiR4/WnpvYEjzwuwdpLN2tiNHHlegD9dethpPDjyvABx7yrPNN3Mkef8 elw/5zZ0C0eeF6DlCeuXbls58px/HueqnYe3ceQ5/3nw94hn2znyvADK6F8X E3dw5HkhBnjszfu1kyPPC6GO3P6sw26OPC/EsZ/CmvF7OPK8EAmDegVv3Ms8 L0S71Gb1b+5jnhdi9uDUpK/7meeFaPD9oIX6APO8ENusbEpbHWKeF+JBnnG/ MYeZ54XweNT8z4YjzPNCvLbbNPr2UeZ5ITofHmoWfYx5Xoiniw/OqfVknhdi cNbyrl1OMM8L8Vsi2uR6knleiKXSFSMPnmKeF8Khte+Zt6eZ54UIvy51KzjD POfvr3zNq8bnmOeFaHOw3n6H88zzQjT+qU7adIF5zr+PCrsnjy4yz/n/39SU y7jEPC9EzthtKcZXmOeFqF18qbfdVeZ5ISwW7TPyuMY8L+T7xdRlj68zzwvh 49xtdNYN5nkh+l5p+ajRLeY5f73NIz3H3maeF2LBxA/K3V7M8yIMuHQ79d0d 5nkRwjPrjay6yzwvgmmIeW/L+8zzIrwWZt6a+4B5XoRmK7acvfSQeV6Ewz8k 8vhHzPMi9J92izN6wjwvwpTieTscnjLPi2D9dsH2Pd7M8yJMrg3+E/CMeV4E t/rXRTXPmedF2OBieKL/S+Z5EbiJllfdXzHPi2BwwcTqxWvmeRF+xf+wrXzD PC9C1/AXqVY+zPMibJ9yu3rFO+Z5Ed4virz45D3zvAjHBU4fynyZ50V4MNZu iZU/87wI39Z/Ob8qgHlehMxw9ejnH5jnRTB+U7Jb+ZF5XoSMx8FD+31inheh n92NXZuCmOdF2NfhgoP/Z+Z5EaLNvp75G8w857+vZOLCkV+Y50Uov+jofySU eV6EY5bpF2PCmOf8577mPxt/Y54XY9bhVrmzwpnnxRibbzTxbgTzvBjTrQUj yyOZ58XYJmzxsV8087wYkrwNH3fEMM+LEXW4u31YLPO8GAM+uU1qGM88L8ak VX0KZ35nnhfzf0/7GTxIYJ4XI6xfMy9VIvO8GGvOrgwflsw8L8ZZRfyWYynM 82IYeC9/kZLKPC9GgN2k1Z3SmefFsLB/+HpDBvO8GIp5x3YHZzLPi7F+VvNE 0yzmeTE8m2x46ZbNPC9G4rF3jV/nMM+L8TpSKBDlMc+LsUG62WNKPvO8GAv3 9V3/oIB5XozS21P0NYXM82Jc//Fb7FjMPC/Ggphx126VMM+Lsb/DXH9NKfO8 GOEPXReMKWeeF+PC8CnnblQwz4vxp3KTk6aSeV6MvIis02MVzPNi1Df2nnNb yTwvxiiJwVu9inlegk0WNecmapjnJfDLe//noZZ5XoLtqrkqTsc8L8FFQ5O1 M/XM8xKsFBdtelvDPC/Br2SZYYNa5nkJJGfPd1rxi3legvYLnkWF/maelyDj 1Ia/7f4yz0sQuVsesMtAQJ6XwPf1CWEmJyDPS/A8tGPSYKGAPC9Bq/WKvpdF AvK8BMoTDVrpxQLyvARvjR6edpUKyPMSPKhNOf1OJiDPS5B56EurpoYC8rwE s36e7L+lnoA8L0F/3xmpaUYC8rwE90eNlg81FpDnJejtsO3LTRMBeV6CD+7m xsKGAvK8BD4Ph+QtNhWQ5yVol9PAPsJMQJ6XIKyPT99ejQXkeQlGxk94ft5c QJ7z1zfl3tc2EZDnJbBZUOHo1kxAnvO/7zJw3bfmAvK8BHvOiNv1bikgz0tw oWTzvMutBOR5KXxH+FgJ2gjI81JEPco5uMJCQJ6XYs+INmsS2wrI81Kscz1b gPYC8rwUI8e5lT7uICDP+f9/58UO804C8rwUncR3bu61FJDnpUjoM2diVWcB eV6KfBPpqVldBeR5Kerf/DwnvJuAPC9FjMAnYGB3AXleijM7JI8f9BCQ56X4 ti61U5NeAvK8FCZuLn0P9RaQ56UYr7wWo+sjIM9LEZubUru0n4A8L8WW5j3e p/UXkOf8/V37LHK0FpDnpRh4MiAncKCAPC+F0tpuQt/BAvK8FK5/tjg+sBGQ 56WoXX40o8VQAXleig+WV36dGiYgz0uh/xvjLbEVkOeluJk9SbF9uIA8L8W8 lDEhajsBeV6KsCYZXVaMFJDnpZiv7NU2z15AnpciM3XN45mjBOR5Kfos/fQl YbSAPC9F4JSx653GCsjzMqzb2f/113EC8rwMBdmPDoxwFJDnZTh2I6b0o5OA PC9DRG107uCJAvK8DF3mxa565ywgz8uwZOqvY/0mC8jzMjz13Db0lYuAPC/D owSPvb2mCsjzMvi1bzLzuauAPC+D0dkDYT2mC8jzMnyZWxb2bIaAPC9Dp7J1 s3rOEpDnZXjpZ3fgxWwBeV4Gp82H7PrMFZDnZVivWnbuzTwBeV6GUS0bbbN2 E5DnZfha/0W13wIBeV4GrXCpFIsE5HkZ78Fi7+DFAvK8DB2fJhaPXiogz8uw 4Uy2b/QyAXleBpfClxZTVgjI8zL8ubmhVcZKAXlehlOZk18sWC0gz8swIG9r atkaAXlehsktGl/esE5AnpfhoblT1W93AXlehu2ezhmHNgjI8zJ8njFunqmH gDwvg/3BJduubxKQ52WIHhzfvcsWAXleDseId5vebhWQ5+UQvBo53W67gDwv x4NT9+JjdgjI83Jc7iXNn71LQJ6X4+/eC8fLdwvI83Lobu2O2bZXQJ6X42OE 6lG9/QLyvBzpK5u3unZAQJ6Xw8G8Y5fuhwTkOX/9vbbRHw8LyPNy9Dl/xcj5 qIA8L8eiGfPz844JyPNy3JUGT9l0XECel+NhbcW8eicF5Hk5vD42kNw6JSDP yzFfMMO+/xkBeV6O3V761hFnBeR5OU7fbXF2/nkBeV6O8QNVt/UXBOR5Od6/ ezLu1CUBeV6OaQ82nep8RUCel2O6z4G1QVcF5Hk5Aj+Ky2dcF5Dn5Tj1xVKo vSEgz8shrG3hc/KWgDwvxzM/U3E3LwF5Xo7Xx4YoQu8IyPNylFmEb1pwT0Ce l6PF9PKrBg8E5Dk/I2HWjYcC8rwccsPXfkMeC8jzcni08nub/kRAnlfgvLyF 0zZvAXlegZXHpPtbPBeQ5xUwOP7SNeCFgDyvwMGO477NfiUgz/n/f1mS+ve1 gDyvgPNM80NebwXkeQW8DL2/278TkOcVmLPx98eS9wLyvALbLg4ec8JPQJ5X wO7qRfe+AczzCuxOHWWT+oF5XoG3qTvv7ApknlfAftLaJ52CmOcV8O48cXL0 Z+Z5BV6tm3TVI4R5XoGz657saxPKPK8Arp00+hbGPOe/73zfAeu/Mc8rYN07 0qB1BPOcf/71J1Z+i2SeV6De6edbNkYzzytgVLWwc7tY5nkFXrbP3xwTxzyv QL9qtxU7vjPPK9BobhMDq0TmeQWcDltbpycxzytwLKqmwbEU5nkFZgWcO26T xjyvwNJG8C5PZ55X4E5Yz7U3MpnnFTj083rSxCzmeSXsRUHZwhzmeSV+r449 8S6XeV4JlU6YsyKfeV6J4JNnky0KmeeVuDHjnXtSEfO8EltfPHjlWcI8r8S4 Vtcvjihjnldi8PzYtrXlzPNKZKzd6vy6knleiZUbEzqtVDDPK/EnsolXRxXz vBL+hjuDs9TM80qY62yPXdEyzyshPXWlZoqOeV6J4fIvxqY1zPNKrIr8GR79 k3leiYVbPHp4/mKeV8Kt0H3Q2D/M80qMsuhWLjMQkueViFqe5vCVE5LnlQiy DRhzWCgkzyth62KkHS0WkueVqDwhGWMoFZLnlehnWmQfKROS55XYZF1adsJQ SJ5XwvXUeJtJRkLyvBJFhWP78Y2QPK9E6dB2yWkmQvK8EsZxJh1uNRSS55Ww bOzcYrGZkDyvxJr37T9YNRaS51UI8Poi15gLyfMqfNZu4AKaCsnzKjjWX3t3 f3MheV6F3bu0KseWQvK8CiatRlY0aS0kz6uwS3nlbG4bIXlehfkjBhV6txWS 51W4cG5OwZb2QvK8Cvu8xp526Cgkz6swffHQUjNLIXleBafGmxQ5nYXkeRUy LAbefdFVSJ5XQWgdJN5tJSTPq7DfbnLjiT2E5HkV2q/o+d2il5A8r0JR44tQ 9RaS51WYWhAxI6SvkDyvgp+vSceL/YXkeRVmv7x7Y7m1kDyvQmTnqLBhg4Tk eRXM/SNumdkIyfMqGNvldSkZIiTPq3A0aeqCwGFC8rwKj2KXOV6wFZLnVaj/ dW7xKjsheV6Fdue293MYKSTPqzBnvKhPGwcheV6Fg6NtcvSjhOR5FUotFtt9 HyMkz6vw9Nm3Kc/GCcnzKoiMnrQ46igkzxXYfm7CucUThHTeFRhS8CtwhLOQ fFdgZKb+RtvJQjr/Cry/fqS3wRQhea9A66PaTVlThZQHCniN3uceOE1I/isw 6/OWtrdmCCkfFDjX3uLAnllC6gMKSDI+XF8wR0h5oUCHm1dWOMwTUj9QYO7C P5Vd3ISUHwosW9K7s/FCIfUFBbZ23t5EvUhIeaLAhZWWH1KWCKk/KJAwdHuz wGVCyhcFbpUFW91fIaQ+oYCo3mjd8VVCyhsFyjwmbfFYI6R+ocDyid1fz10n pPxRQPy33b0x64XUNxRQ99o5od9GIeWRAkvTj7xqs0lI/UOBzMGno+ttEVI+ KTDhe9Yd/VYh9REFTq8N6lO4XUh5pcDhTnu3JewUUj9RYIfz6p3Bu4WUXwrM vBBv83qvkPqKAn9ya1/f2S+kPFPAY7V10bmDQuov/Pf5xicePCykfFPgx/EW u7ccFVKfUWCfwbzClZ5CyjsFNGsqZfNPCKnfKHDwQOPiKaeElH8KbOjfYf+4 M0LqOwp0DVyWOfyckPKQv3/v/pqBF4TUfxTol5z8tdcllo8KpM+5NbPLFSH1 IX7/vc562u4ay0sF3p4qDGh5Q0j9iN8ff8WeTW6x/FSgrcvJ5mZeQupLCnTv m7DU5C7LUwUaH++0yei+kPqTAlG3UuwNH7J8VeBm7ZBE2WMh9SkF1m+531H2 lOWtAi3tl1rLngmpXylwJSXRUP6C5a8Cq3/b3TJ8JaS+xb/PSKHe6A3LYwWG vlhp2sBHSP2Ln+fHV5m9Z/msQO/SI6ea+gmpj/Hn436xplUAy2sFBtuNbNXh o5D6mQJh/ip5t08svxWIcxvr3+ezkPqaAoNSb/e2CWF5rsAIs4mrRoYKqb8p kOP6dLXTV5bvSuhsjQdMDxdSn1PC2z8qeGEky3slXslGNF0XLaR+p8SJgNC+ O2NZ/itREPjS3DNeSH1PiZAJs4OuJDAPlCj/3a7f4yQh9T8lWryctcYvhfmg hOu9hesj0oTUB5Xot/K8bWYG80KJThVjkqt+CKkfKhG0KNNamMP8UMJw+RO3 JnlC6otKBOabTLMqYJ4oca3JkqZ2RULqj/zzXa1/d1oJ84V/nvnzateUCalP KhHwMqD14QrmjRKpVruNb1cJqV/y7ytCFuGnZP4okZX9xiVRLaS+qcQ887wn Ci3zSAnPtapYI72Q+qcS9R3tQrr8ZD4psWBBn4OjfgmpjyrR90u7Jov/MK+U OPJj/aYDBiLqp/z78Dj44J5ARH4p8cnb/0GoSER9VQlnwcbNxRIReabEtPGN mteTi6i/KtH2U61nj3oi8o2/n8rjcZPqi6jPKpH8uXvxJhMReadE+qFhcdcb iqjfKjE9r/3xEDMR+ce/75ThLcsbi6jvKlH09dfORk1F5KESi9x93w5tLqL+ q8RnZcanJS1F5KMSoUGRt860FlEf5t+/f+WUjxYi8lKJ500eZZe2E1E/VsJn pdvwph1F5KcSvV7u2exgKaK+rITcZvXBjV1E5KkSNYEnV9zrJqL+rETkFKfO Sd1F5KsSl91NP0h7iahPK2FcMbLr4D4i8laJe7+c1q7qJ6J+rUTFoCsnbw8Q kb/889w4dThpoIj6thKnDl6baWQjIo/5+Vln+YihIurfSogG3Dq9FSLyWYnN N1ZrXw0XUR9X4mfE337lI0TkNb9+4k8TOzmIqJ8rMVvTYsz80SLym3/e+7tb Xx8ror6uRNTRmXGp40XkuQohHs3dmkwQkecqVNzuFjfFWUSeqzD34e/W5yeL yHMVjhz9Oy5xiog85z/3vjXNfJqIPFfhctpE+2kzROS5Crm2u02vzhKR5yo0 3HDz0485IvJchVmr2kxsP19EnvPXP7YuaOkCEXmuQoez0sbPF4nIcxWeP5s8 rnqJiDxXIW7114XDlovIcxWOhafMP7RSRJ6rsKCN3i5utYg8V+F07yuylutE 5LkK/az6vl6yXkSeq+Bx23rEm40i8lyFgKMtfbnNIvJchdjRro0nbhWR5yrU uzt72s3tIvJche2R9/ZW7RSR5yqYzrh/znaPiDxX4fP4pBNn9onIcxWeGnmv KzggIs9VwHKvoYMOi8hzFebc6KE+flREnquwb2z4mTxPEXmuQtbmypaDT4rI cxU2X2t05vRpEXmuwvjTPqqSsyLyXIXV15ww4oKIPFfBYqXr5uuXROS5Csom 42/or4jIcxUSLR6+dLkuIs/5+1tX9OrlTRF5roLN7INeJl4i8lyFnV7cntV3 ReS5CruXJjlF3xeR5yqctN1r1PORiDzn77/jPr9TT0TkuQrXdrhOV3uLyHMV asx3lkx9ISLP+e/v5rHC/5WIPOfvb3ZglsVbEXmuwqSAVIdD70TkOf/9H+1v V/qKyHMVFjvsr5oaICLPVZhwy7zPp48i8lyFqL07l3UNEpHnKnwwHnbhfLCI PFdhVEzyey5URJ6rkO0bzW9BEXmugn2P+zkZ4SLyXIUt1TnF46JE5Dl/PQdJ sX+MiDxX4fiHi1lW8SLyXIWzC1rE3kgQkef8+3hi7tcwWUSe87/vbnLjQKqI PFfB5e+x7T/TReS5CgkCs6lrf4jIcxVSLnbrVpQtIs/VqLGb/WtOnog8V+OY qmd4coGIPFdjz59u552LReS5Gi6d02ZHlorIczVKrwR3GF0hIs/VWF26rjSk SkSeqzGw0ZrndioRea7GvZ32G4I0IvJcDaV+16DhOhF5roaZ/6O/QTUi8lyN k4ucwkb8EpHnakzgfp4K/SMiz9VY9Xfg7LGcmDxXQz7oklWMUEye89eruvvX RSImz9UwDy9PSpeJyXM1/qT+frWgnpg8VyPn/OJz5fXF5LkaH9PfbvNoICbP 1bBTbF3GmYnJczX27bSfc7yxmDxXI+DivRnNm4rJczXEr7vNfdhcTJ6rYeS9 dKV1KzF5rkZoWMXesDZi8lyNto/H35nWTkyeq/FybpPo0g5i8lyNWdOyhTst xeQ5f/2lg+1Nu4rJczV6hL4/88BKTJ6rcb1+VfnQnmLynH9em3Uuib3F5Lka 215+/7aqn5g8V2NmryeOUmsxea7G1QzP7NuDxOQ5//s2xvuGDhGT52o06ful f9owMXmuhko+umbTcDF5rsbexd2jzUeKyXM13jsZvfVxEJPnahy03P7MdYyY PFdj/ptG/jXjxOS5GoHmq9OvOYnJczXORlk0GO4sJs/VCHvzZXrhZDF5rsZz UfV7z6li8lyNnc7jevSbLibP+c+PzvXLmCkmz9XY+jNy9sE5YvJcjd72PZr1 ni8mz/nfX9q6ImOBmDxX44X/wLQji8XkuRrWFU1zrJeJyXM18oQzBUUrxOS5 GqNmXx12cbWYPFdjuLfHhdHrxOS5GiN/HzGsXS8mz9V4/MT96jMPMXmuRu3y 6DELtojJc/7+htuYN9suJs/V+HnQlYvdKSbP1dAXBtU7vEdMnmtQO6vZgOH7 xeS5Bv37/95de1BMnmuwrl79Cp8jYvJcg+HhxVvXe4rJcw0sH/fq1vukmDzX ILjXgT9Vp8XkuQbKnoe0z8+JyXMNykOSG6y7KCbPNVjt2tS57xUxea7B50ul PtXXxOS5Bj/2Kuz8b4rJcw08XCO1u73E5LkG3E2L2FH3xOS5BtGWp+JNHorJ cw3+ij7+TnksJs81OHPccdIdbzF5rsHsmbmxq1+IyXMNpGMtttq8FpPnGvze +MRJ7iMmzzVYatN5Qsp7MXmuQfP+Ntsf+ovJcw022RxJ2vJRTJ5rMH3Buznj g8TkuQa/fi1vbBEiJs81iD0zplYTKibPNZhTrG8Q8U1MnmvQtKa1q1ekmDzX oLdufvTWGDF5rsGSsUs3ucSLyXMN4k6kTOqZKCbPNbhzdvr8eili8lyD6uln 7hSniclzDfaadW0elikmzzWY0fbrl/vZYvJcg/umjR4cyhOT5xpMvvP247JC MXmuQYifS33HEjF5rsGu5ZfP9i4Xk+caxJR3m9SkSkyea7Dqzpsxf5Ri8lyD NuYZWws1YvJcg0nKsYUxOjF5rsEr0WNPv59i8lyDT8O9Vt//LSbPNXDzy/A8 ayAhz/n9dFNQvEcoIc81sMaH3eskEvJcA0ORj6ubXEKea+DnfmGVi5GEPNeg URdZ8CgTCXmuwbyMN9OGmErIcw3iXR169mksIc81MNi2eFSXphLyXAPngYG3 27aQkOcaLD77c1iL1hLyXIMDNz+3MW8rIc/587cjaKRpBwl5rsGOWbefmVhK yHMNDq03mmPcVUKea/BO5D3ZuLuEPOff3/Tup0x6SchzDW4EWjcy7SshzzXo dswju/EACXmuRceG57TNB0nIcy2uPxjs0naIhDzX4vKdRr87Q0KeazHDNVLR 205CnmtxrYFRryH2EvJci+/mO/1HjZaQ51q4PYo86zJOQp5rkfz7tq+bk4Q8 16L1sIfd3Z0l5LkWLw4eUex1kZDnWgTnVwnOu0rIcy02uxxY9HCGhDzXQhCo bvphtoQ81yJSn9/q+zwJea7FrUDBxtIFEvJciy/vq1sLl0jIcy06rFnestVy CXmuxSxn6eqBqyTkuRYFzz0aTVkrIc+1aO8/v8H69RLyXIs9e9a5nfGQkOda 7Khwqvd6i4Q81yIk2Kte4nYJea7FwNuNF+p3SchzLWQ1Exq32ichz7V4bfqz zYiDEvJci2aygP3Lj0jIc/77goeOPOspIc+18Prdae6HkxLyXIv7Nm2Sis9I yHMtekdFPWp8QUKe8+sRnpo24rKEPOfXo2HpsvXXJOS5Fk8c7rnevSkhz7Xw iH55N8lLQp5r4Rjz1tnwvoQ818K/u+tcPJKQ5/zzHrWJ3vhUQp5rkTZcdtP7 uYQ81yJzsVt84SsJea6FaUjl0rY+EvJcC4sU5wWzfSXkuRaShJ6frwRIyHMt Gl+2OpgaKCHPtSj3KXveLFhCnmuxalkD25mhEvJci7cXhlrf+CYhz7VoHtX4 Qm6khDzXotVwm9mdYyXkuRZLIiYcX/NdQp5r8blQ0+l9koQ816Lhs4iugjQJ ea7FuLQNlx0zJeS5Fps+nVp/JVtCnmtxd0Kgb3GehDzXosz41sqBRRLyXIsF LeI9j5RKyHMtunbSNM+okJDn/Hlzv9ukl1JCnvPv6/vufQc0EvJcizWPOs3N 0EnIcy0u5vZ50q9WQp5X4712+NITfyTkeTVMcqsulHBS8rwaSqsUawexlDyv xves8+PuyqTkeTWmHgyOFxpJyfNqTLaqjVpoIiXPq1E+M2lomKmUPK/G1RaV 7bqZS8nzaowqT9txqpmUPK/G9LB+E3QtpeR5NZJbnr0410JKnldja5yn67f2 UvK8GnFD3p/sZyklz6sxw/KJ7e2uUvK8Gs++/lxu0kNKnlfjxhcbk129peR5 NRb2EPRQ9JOS59UI3Z4T5jZQSp5XY8KZlZlJNlLyvBpbfPqvGQ8peV6N4nPR O4LtpOR5NW7afJUPcZCS59UY3uy1mc8YKXnOX6+29bXejlLyvBqrjK7eeTZR Sp5X42H8267dXaTkeTW+dP/d29tVSp5Xw3PKH98eM6XkeTXapdgHv5wjJc/5 578012mAm5Q8r0azyKSZAYuk5Hk1vH/2Lx+xTEqeV2NwrcQgaqWUPK+GhTr+ outaKXlejaUu7d7krZeS59Wwztg+Zd0mKXleDfvTy7YbbJOS5/z3f17d5fRO KXlejSiR6ez2e6XkeTUM+6Y0eXdASp5Xo+UK+xnjj0jJ82oMrZ/ZIc9TSp5X Y4Vf283bTknJ82pwk8+7ND4nJc+r4aJ97/fiopQ8r8bsX0ZPHK9KyfNqzPzT oFP5DSl5Xo2DESOsPL2k5Hk1Qla2/9j9vpQ8r8b8dt0zYh9JyfNqRLtlHtzo LSXPq7Es9fnHFi+l5Hk17Ba12R/8RkqeV0PV5H7yyvdS8py//34ffJsESMnz aqR0z+waEiglz6ux4/6Obu7BUvKc35+rGwe0DZOS5/z+2Nc8Mz5cSp5X4099 wckD0VLyvBrD3GzjB8VLyfNq6H6PflCVKCXP+fd/6ITxg1Qpea7DlOi9snmZ UvJch+ZhF843z5GS5zoEHh/sk5QvJc91aLogc/m5Yil5rsO4pxWvJ5dLyXMd BKqU040UUvJch3NZ9cTJail5roOtnar+VZ2UPNdhqUz3dF6tlDzXId52f67l Xyl5roOumfC5QiAjz3UYn5Nu6i+Rkec63BB4GB8ylJHnOiyRDvRyMZaR5zoM vHAour2pjDzXoaX7t7OaxjLyXId6W+erQpvJyHMdZjx8VXqllYw812GYaZsd a9vKyHMdRhVJH4/qKCPPdShdG7XOoouMPNfBzDQm4aeVjDzXwcdhxfekXjLy nH/eO39XveknI891ECcW3z07UEae8+txa+/mDUNk5LkOvjmWJVNtZeS5Dtme fXSDR8rIcx12PK31shgtI891MHZLL5eOl5HnOlwt6JyomCAjz3U4eGDwrPTJ MvJchzn3F+0Nc5WR5zq8/vxn1NuZMvJch5/Lp3vfnSsjz3VYYf/11fkFMvJc B1X969MOL5GR5/z+uND55vYVMvJchz8hfgfd18jIcx2mX/QyWb5eRp7rsK5N j8ELNsnIcx0sDzyWzNkmI891kEsWbpyxS0ae8/ervXdw2j4Zec7vpwC/wdMO ychzHT6klp2efkxGnutQk7vHc9ZJGXmug8u+kK7zz8rIcx2ub/+5cslFGXnO r++DZZPXXJWR5/z7U039sfmmjDzX4e9CifH+OzLyXIcBLf1zTz2Qkec6PHZ8 N+vmExl5zq+fw5Dtz5/LyHMdjFYdHR70Wkae8/tnWM7ThHcy8lyHa5N3fSzx l5HnOkTM9PIw+CQjz3UoaXsosWmIjDzn9//RZel9vsrIcx2sz+8/7BQpI8/1 aDXLNHNFrIw812Ni4/GpRxNk5LkehabLdzxJkZHnengG3/kWlSEjz/Vo+Lrn R2W2jDzXQ3V0xMwmBTLyXI9S00a3h5XIyHM9DvVOPLmkQkae6/Gl3NfyjFJG nuvxeLlm6UetjDzXo1j5dnJ5jYw812NPaY/iFn9k5LkeHj9OdHIUyMlzPdZs FZnslsjJcz1Wn/hw+42hnDznv9+46EepsZw81+O8mXdoOzM5ea5HTfrg6bOa yMlzPWZE+l242EJOnuuxbO3UXQlt5OS5Hg+2DTAz6yAnz/XoGb530uTOcvJc j6Pz3Yaet5KT53psXFf7PaWXnDzX47PLevPW/eXkuR6WZypFiwbJyXM9WmSe uuk9VE6e6/HWfEehbricPNfjmFNi6ggHOXmux8Vgvy2nx8rJcz2aFziGZjvJ yXN+/SY/C+w9WU6e67Ez5+ei/a5y8lyPU+ecfVNmyslzPebfj/HtMU9Onuux 68DpJQcXyslzPeYkvfqctVROnusxaYNTxOBVcvJcjyPuO/dcXCcnz/WQtJpV oN0oJ8/18Kr5Wz1lq5w818Po2x6fdzvl5Lke4Yf07Vvsk5PneoxYsxW7D8nJ c/79VbeUFx2Tk+d67E7Q7J5wSk6e6/HsT+MHvufk5LkeB56e3dbxspw812OC 6+4/Z67LyXM9NvtX9BR4yclz/v5Sy03W35eT53q80x2/UfBYTp7r8fN2dvr0 53LyXI+2T9VhMa/l5Lkey/skuo16LyfP9Xh55czTTwFy8px/3+cH3rMJkpPn eqxv8338+y9y8lwPnz2r7gwIl5Pn/HmZbPrIJ1pOnusxYHvE7IHf5eS5HiW9 vYL8k+XkuR6df99IsM2Qk+c1+Pr+24WwbDl5XoNxZ7vIJhbIyfMa/DX50jmt RE6e18BS5qVfVCknz2vQ5OmXTWqVnDyvwdz9/e7v1cnJ8xqUuav2mf2Sk+c1 6PZG0PC+gSF5XoOB2UscB4sNyfMa6MvaD4qVG5Ln/P10HZiwxNiQPK9BZ8d7 rTkzQ/K8BlGLVzS91sSQPK9BTumRoIEtDcnzGtx6/rdZsoUheV6DP5XhbTd1 NCTPaxA/qiSlaVdD8rwGvz66IqCHIXleg5OfTKfM72tIntegxsK8uWygIXnO 30/r2SdeDDEkz2vwdl7uyxnDDcnzGsh/39wvcTAkz2tweMNJyZuxhuR5DXx8 HlkvmGBIntdgVruiJo1cDMnzGrw5iAeh0wzJ8xqc6PC4YOtsQ/K8Buuet/re y82QPK/BN6dTa4oXG5LnNZDc1PndXmFIntcg9NXot7PWGpLnNdCabZ7TbKMh eV4DdcgWn+QthuR5DXyHD/9wcacheV6D2t1B7tP3GZLnNRitLU9qediQPK9B rxNvS3I8DW3/D8t6RRQ= "]]}, {{}, {}}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 1.9267741928025102`}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], Method->{ "OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& )}}, PlotRange->{{0, 1.6}, {1.9267741928025102`, 3.31879026971162}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]], "Input", CellChangeTimes->{{3.915771872450286*^9, 3.915771873801431*^9}},ExpressionUUID->"596a8ce7-fc36-4ac8-af24-\ 031757805468"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"e13", "=", RowBox[{ RowBox[{"(", RowBox[{"inisol", "\[Function]", RowBox[{"FoldWhileList", "[", RowBox[{ RowBox[{"Function", "[", RowBox[{ RowBox[{"{", RowBox[{"sol", ",", "\[Omega]22"}], "}"}], ",", RowBox[{"Join", "[", RowBox[{ RowBox[{"Append", "[", RowBox[{ RowBox[{"Take", "[", RowBox[{"sol", ",", "4"}], "]"}], ",", RowBox[{"\[Omega]2", "->", "\[Omega]22"}]}], "]"}], ",", RowBox[{"FindRoot", "[", RowBox[{ RowBox[{"e11", "/.", RowBox[{"Append", "[", RowBox[{ RowBox[{"Take", "[", RowBox[{"sol", ",", "4"}], "]"}], ",", RowBox[{"\[Omega]2", "->", "\[Omega]22"}]}], "]"}]}], ",", RowBox[{ RowBox[{"Drop", "[", RowBox[{"sol", ",", "5"}], "]"}], "/.", RowBox[{"Rule", "->", "List"}]}], ",", RowBox[{"WorkingPrecision", "->", "20"}], ",", RowBox[{"MaxIterations", "->", "500"}]}], "]"}]}], "]"}]}], "]"}], ",", RowBox[{"Join", "[", RowBox[{ RowBox[{"inisol", "[", RowBox[{"[", RowBox[{"{", RowBox[{"1", ",", "2", ",", "3", ",", "5", ",", "6", ",", "4"}], "}"}], "]"}], "]"}], ",", RowBox[{"inisol", "[", RowBox[{"[", RowBox[{"7", ";;"}], "]"}], "]"}]}], "]"}], ",", RowBox[{"Range", "[", RowBox[{ RowBox[{"Rationalize", "[", RowBox[{ RowBox[{"\[Omega]2", "/.", "inisol"}], ",", SuperscriptBox["10", RowBox[{"-", "6"}]]}], "]"}], ",", "3", ",", SuperscriptBox["10", RowBox[{"-", "4"}]]}], "]"}], ",", RowBox[{ RowBox[{ RowBox[{"\[Omega]2", "<", "\[Omega]1"}], "/.", "#"}], "&"}]}], "]"}]}], ")"}], "/@", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"\[Epsilon]\[Epsilon]", "\[Function]", RowBox[{"SelectFirst", "[", RowBox[{"solzeros", ",", RowBox[{ RowBox[{ RowBox[{"\[Epsilon]", "==", "\[Epsilon]\[Epsilon]"}], "/.", "#"}], "&"}]}], "]"}]}], ")"}], "/@", RowBox[{"Range", "[", RowBox[{"0.2", ",", "1.6", ",", "0.2"}], "]"}]}], ")"}]}]}], ";"}]], "Input", CellChangeTimes->{{3.908965845707684*^9, 3.908965933284802*^9}, { 3.908966061855267*^9, 3.90896634830872*^9}, {3.908966417734704*^9, 3.908966417829668*^9}, {3.909041956908346*^9, 3.909041957027675*^9}, { 3.90904201242258*^9, 3.909042012604719*^9}, {3.909042831164308*^9, 3.909042875324937*^9}, {3.909042936502192*^9, 3.909042990614989*^9}, { 3.909043033303988*^9, 3.9090430858649387`*^9}, {3.909043120074722*^9, 3.9090431489458647`*^9}, {3.90904317971463*^9, 3.9090432258672523`*^9}, { 3.909043264180773*^9, 3.909043270956205*^9}, {3.909044224006723*^9, 3.909044276911423*^9}, {3.90904459896806*^9, 3.909044606013604*^9}, 3.9090448090817537`*^9, {3.909045133487328*^9, 3.909045149072093*^9}, { 3.909045183744899*^9, 3.909045184480734*^9}, {3.909045272674652*^9, 3.909045275818399*^9}, {3.909045363781097*^9, 3.909045364556114*^9}, 3.909045705179872*^9, {3.909046708942043*^9, 3.909046709005525*^9}}, CellLabel->"In[36]:=",ExpressionUUID->"22832d0e-448c-47f2-8f0e-e89d73befd40"], Cell[BoxData[ TemplateBox[{ "FindRoot", "lstol", "\"The line search decreased the step size to within tolerance specified \ by AccuracyGoal and PrecisionGoal but was unable to find a sufficient \ decrease in the merit function. You may need more than \ \\!\\(\\*RowBox[{\\\"20.`\\\"}]\\) digits of working precision to meet these \ tolerances.\"", 2, 36, 6, 23800662333952606617, "Local"}, "MessageTemplate"]], "Message", "MSG", CellChangeTimes->{3.9090452974512463`*^9, 3.909045386864654*^9, 3.909045729966325*^9, 3.909046731316805*^9, 3.915533082647563*^9, 3.915772719163579*^9}, CellLabel-> "During evaluation of \ In[36]:=",ExpressionUUID->"0e26f2eb-9d86-492c-91a9-5ea47d8e976a"], Cell[BoxData[ TemplateBox[{ "FindRoot", "lstol", "\"The line search decreased the step size to within tolerance specified \ by AccuracyGoal and PrecisionGoal but was unable to find a sufficient \ decrease in the merit function. You may need more than \ \\!\\(\\*RowBox[{\\\"20.`\\\"}]\\) digits of working precision to meet these \ tolerances.\"", 2, 36, 7, 23800662333952606617, "Local"}, "MessageTemplate"]], "Message", "MSG", CellChangeTimes->{3.9090452974512463`*^9, 3.909045386864654*^9, 3.909045729966325*^9, 3.909046731316805*^9, 3.915533082647563*^9, 3.915772757794013*^9}, CellLabel-> "During evaluation of \ In[36]:=",ExpressionUUID->"d7d2d2b6-5759-4cc8-9a15-621a513b57c6"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"ListPlot", "[", RowBox[{ RowBox[{"Evaluate", "[", RowBox[{"Prepend", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"Join", "[", RowBox[{ RowBox[{ RowBox[{"{", RowBox[{"\[Omega]1", ",", "\[Omega]2"}], "}"}], "/.", RowBox[{"Most", "[", "#", "]"}]}], ",", RowBox[{ RowBox[{"{", RowBox[{"\[Omega]2", ",", "\[Omega]1"}], "}"}], "/.", RowBox[{"Reverse", "[", RowBox[{"Most", "[", "#", "]"}], "]"}]}]}], "]"}], "&"}], "/@", "e13"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"3", ",", "2"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "2"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "3"}], "}"}]}], "}"}]}], "]"}], "]"}], ",", RowBox[{"PlotRange", "->", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"1.9", ",", "3"}], "}"}], ",", RowBox[{"{", RowBox[{"1.9", ",", "3"}], "}"}]}], "}"}]}], ",", RowBox[{"AspectRatio", "->", "1"}], ",", RowBox[{"Joined", "->", "True"}], ",", RowBox[{"FrameLabel", "->", RowBox[{"{", RowBox[{ SubscriptBox["\[Omega]", "1"], ",", SubscriptBox["\[Omega]", "2"]}], "}"}]}], ",", RowBox[{"PlotLegends", "->", RowBox[{"LineLegend", "[", RowBox[{ RowBox[{"Range", "[", RowBox[{"0", ",", "1.4", ",", "0.2"}], "]"}], ",", RowBox[{"LegendLabel", "->", "\[Epsilon]"}]}], "]"}]}]}], "]"}]], "Input", CellChangeTimes->{{3.909042514190548*^9, 3.909042520941848*^9}, { 3.909043279228549*^9, 3.909043290980391*^9}, {3.909044758712824*^9, 3.909044817697377*^9}, {3.909045206161439*^9, 3.909045253529738*^9}, { 3.909045341508081*^9, 3.909045343371456*^9}, {3.909045626801211*^9, 3.909045676689952*^9}, {3.909046978946875*^9, 3.909047057939874*^9}, { 3.909047460827964*^9, 3.909047525484823*^9}, {3.909047561565816*^9, 3.909047563765341*^9}, {3.915533019222624*^9, 3.915533021933949*^9}, 3.915536859762843*^9}, CellLabel->"In[37]:=",ExpressionUUID->"e61533c0-9653-4007-9f77-db9184a97720"], Cell[BoxData[ TemplateBox[{ GraphicsBox[{{}, {{{}, {}, TagBox[{ Hue[0.67, 0.6, 0.6], Directive[ PointSize[ NCache[ Rational[1, 360], 0.002777777777777778]], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[2]], LineBox[{{3., 2.}, {2., 2.}, {2., 3.}}]}, Annotation[#, "Charting`Private`Tag#1"]& ], TagBox[{ Hue[0.9060679774997897, 0.6, 0.6], Directive[ PointSize[ NCache[ Rational[1, 360], 0.002777777777777778]], RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[2]], LineBox[CompressedData[" 1:eJxNmXlYj2nbx6/7t5TRQpJSKaUyholkK8pJiWKIQqSSakohVCJbC1pUIoyS zBSVvSwjU3gYS0qWSo1BDKORMkW0YTznHO/7fY/XP46Ppfrd93Wd53cxWRI6 J0AmhLgtCfHv7//zqwft/8Fyo4+xIPVBhi6NX1TpQKTX4X95g1HTnzHPVenB d4O0dzMbtUiWKddVSdOsMbqM+dPWG+96HFElp+6Tf39i3n+nRbMtWZU23wtf ZDVQUGud1jLnVap0Ps+2PIBZ6Wkp9ZynSq0bxLhM5qgVzlUjx6vS1243Dt9h 3jpO1nploCr5DknWlpsIGhM2PPKciiplfJkdM5Z5cMbmNLU3KlT1QLclhDl1 l+HKq9Uq1PP4k0U/Mt8rnTP3t19UyCE2t7yGed7X45Om56jQeo+l474yFTT5 dZCffpIKnbUcnmfHTL4ZEx1Wq9AbxQft1cwmMwPjry1UIfNHv8TkMW/PESey HFTIuyi65XfmxY31Q8uHqdDeeCevXoMEnf82NmF6PxW666Ve4cBc5GTpaixU SHVU1bi1zBGhR/UcXyuJeu7LO878TFseXVyjpLXPvPr+wRxW8t2w9ZeVVPTz oFgdM0F9Pq+oSDqqpMbkxhZnZvPA530a9ijJ1O+U1ybmlGlbLm+PUdJCm4iK 08xnpnrtiVqupPRe423+Ym4+F+pTtEBJFS9FvoG5IK3UbS2WTkpSlN7o68rc oaFi9G6kkibsSo7dwjz60cVbXcZKigia01rMbHOotM5RQ0kn7PW83zCHDje3 rupWUEPf+goTC0G/lCsqf3ylIKOmXJt5zMM0h2adqlXQ/CtL85OY17yUHfh8 TUFpPwzXuczcVb3sfuIZBZUt/xDbxiwFZZJbjoIkx5LWwYP5PFW9bvfYqSAb /RjvRcxib5kyM1pBq1udbqcxH3VJiNNZqaCjN9RtrzMvWjxte7mPgl5kVeV3 MZ97fn9C8SwFGYTt07H8WpCDZVTpk4kKcnf2jlvCfDVNaW07QkHJxmZv9zI3 VSRV3h6ooOsfGr0rmG+vnn9xt5aCPlecuv2F2Uz/wdidMgWNyYmwHTVEUKB7 6JorbXJasXZ8QRBzyOqon81eyil/ptTvAPNnycDml1o5PTW7GXefuVlu6RBT Jie9j8lvld8Icqq2GrDuFzm53p/jY8tcdn649k/H5ZSYr1e5gvnugLzwzmw5 Xd1Yb5vLPHJF2O5NO+XU7XaooI75bPSVspFb5GT9TXA/9aGC3ua+De4bKacQ MWILMT8cnVhnGiynQ7Uf3oYzd9w0WuHlJafHx0t8jjC3lE/d+aurnHTiYiqf MP9Wui3P3VFO3y2YOr7PMEEWtTb9eo+T07bhGkecmA2tkqZ/GCqnS8rqfuuZ HwR6npUPlFPHo31bTjH3Pzz+im1fOQ0/7f3uBfNMM/eXGT3kFJRgtljvW0EG AxbuHfhZRj96v66cwTxaN3rGnbcyejiqcHwM86jcwNicBhlpqa05co55RIT2 uaxHMnL5Y7zua2bz+od+pfdkFHte2mpkyX//0/ze0g0ZlaTcfDeH+a6Jn31w iYza/FIWxzMHvfoS1lEoo2G2bndKmMOi5tgU5MkooHf/Ca3MV+N2623IktGB hvojZsMFLZ/5VfbqXTKqLT2ku4D587Z387cnyEgzPXhrCvMBl6211zfJaOrS EW1XmHtufHrMJEJGmye2L25nHuL/OSQ7REbFOqV3vhnBHH/q+PglMmptipng w2x/N03Z5SGjIVenHk1nlr/61Kt2lox892nolTHvf6ISWOUko8wV1Vs/MT9q D81/YyejKseMthFWggpuZYcOHi0jNQMf3wDmv+L3+mweJiOHt2Z3M5gXxv2t 92GQjDbcfD3hDvPDhlv2CQYyOnug8KhspCCv3LsR47Rl9CZsjd5Y5qAdpv5K NRmZu0zYFsI89/yCor9lMvIeKHt/kJmerFV53y3RD+03fWuYtQY3aui0SXT3 dsrdHtaC4rtWhc1ukqhHrpudHXPdP1Z/FryQiNb1P7aKuWr+Pk2DxxKtm/VU L495crtXTn6NREXmh7f9zrzSeLPrzEqJXn8Mfq85iuelzugKzRsSmVaNWOIw 6t/n03L91SWJPAva70Yyz/je9cOj8xKlbyq1O87camPa61WhRLfdY489Y+5l Mq9c/ahEiqHT+uuM5nk6/VO9c65EdpJmvDOz+SN7lYNZEkXUVb/fyFyzaVG3 2l6JTp7IWHKa2WBU7pq0HRI1xPnca2BuMAkZOyxRIuOF5vYGY/j+p2t118dK NH9E07FZzM0a7zcUbJAoTaWo/xbmh9tCNieskajs8Zr4YuY7p25e2bRSIunM hA/NzCt9XZTbgyWyTZT5mYwVdMRokPoJf4lW+5Tdm8u8pig4409viY6NTrVP Yg5/ZrTKaoFEL9Tcj19iXj7ByCPdTSLD5/3125gXKs369pwpkXvx0/jB4wRZ WVwL2TNNopTUwx88mbucAi1GO0h03T/EL4058b2TeqOdRP/YWt2/xuz7ZGlD 4TiJxmh12HcxGw/6cVOytUShf5Ue/9ZGkOI/mw+ut5Qo/2Ks/hJmVeHbd9MQ iZ6lT0vYy9yu7nkk3UwivWDN9nLmkSk0tNRYotlU4/eFOdY9K7BDX6LEfpn3 rW0F7bY4OWxKP4muNvtMDGL+OSnQ+bCWRN1XzU9kMbsXBqXoakhkndGkf5+5 zu9z2f4eEoWEFiUox/Pz0davtFJIdGhKZLsNc+YLj5CHXwQ9MbDzX8HsV9Ue seujIJ13sqoc5i+N9y4v6uA5VFY2sY7ZN8bXcFyboG3ZqSfUJgjS2H7Rx6xF 0OVwdwNiTn6709ukieeki35iOLOdZPK35V88Z0yetRcwWzyd+OeMF3xvOg77 P2EOUXfXXf9U0E+VIVVadoJM2129Lzzic5BrRU7MFjvPpan+xns7quNEFPNB KWlbQI0gF9eLBqeYm77z0qu+JyjOIi7xBfMBQwdj10pBJZ+mdeja833ZeD/8 8S1B76s0A2YwZ5cYtUXe4L16pKYqmrm33eVw018FBWzOpHPMLwJ/rXl0mb/O 3MUnG5ktdp/7O7dUUO1QC0OjiTyvlfuyoy7wPZE1J85h/tTy/D8+Pwua+ltR xzbmhOjYkW5nBEWfjAwoYY5+X3PPvVBQ8Ra76hbm2WcL1vmf4D2zUD7JjATV R9qqxR7lOWd166QHs8pqa/8T+YKWqO4wTGGeFZfv13CI39MT96QrzO5h2o3D cgRVn9Hv/MBcOMKzJvqgILWkZwHfTBLU1q9M+TxLkOPivGpv5rm2qt6umawz xyyblM5cWDz4UsUPvNfVR566ybygV4aq+x5Bb553GH5iDooYYti4iz/3hYtJ Iyb/Ox8U9Ulpgrx3xHX6M6ebFw63SRX0Q4Dz9xnMXfUa79u2894Y36umknnF 7HmaJYmCevR5MEnmwHpXp/+S1Hieg68yT41hzqqzrV6+VdC6S4sHhDD7X2+b siBO0OndFtsPMje2Vma7xgh6HdzcWc28szj3qttmQYMmnf6+h6Ogzq+z9y7Z KMhTd23NBObMhdZi43q+F2/sJq9innrL7GXOOtYdv8oLDzPvyt04tCaSdXHm rQG/M9v33nmh9xo+lyt3bNecwvMwsDPCI5zvhdPcrsnMTZ47px5bLeikoUFg JLN53w06X63iPfHuWc0x5qxv+t9cFcr3/Fbe5GfMrXtUHV8uF+RxcFlhXyd+ LytNw/2WCUqLGGnkzJydtWlic7CgW9M7t29kDhoblLp5Kes000tdRcyKJz7O A4IE2XbGBTYw/1qgu+D694JW33F+oD9V0PWm0LzIAEHHDvVymMVskhimP8pf 0J9RDwrjmLUb3LK7l7CumL3fqJh5p4e/QYUvv/fBvsnNzFVdfdcfXsy69rNF 98BpPP9Km/MSfQTdqG4OnMv8bXZsQqS3oH+OnH6QyOx0LeKrUC9BY6PXOlxi Lnb01165iHXqPPuid8zLXJ/tiPLkPTpMYTzYmc+Pt19Q6kLeE7LyZE9mj6f2 244tYB3zcEf3DubM54lV9z343J+aG3SNeeLrnmMk5qStBrWdzDEfDTNs5rOO 8PzD4VsXQXPOpL6Imifoo1V+kS9zSPW6T9fmCrLusdx4L/MuV61yXeZl9SNT yl3+PYd+VmHugg6d7ez+h/lCsnq/OjeeZ0mXgqyn8+fcWrfAgVnHd0ttIHPq jSmPz8/heTbWxTGLec2X7nWjmOM1ep++x3xaRUX9wmyeZy8eGCtn8LxTlwVO Ye68sD/Fhvm0j8bCh648z9J8Py5nXlmy70Q489LvBy/NYR7QYGiqy/zThDe1 tczp2rUr/jNL0O99zjiqfcf3PqGUVjL3aVx7eiLzLSM1Wwvm6ZftB4YzLzYu evfHTJ5nexSpBcyeud1dOcylIeUfHzNfddvwMIj5/aS0pVr/73f8Of4d/h++ Dr4uvg++L34O/Fz4OfFz43Pgc+Fz4nPjOeC54DnhueE54rniOeO54z3gveA9 4b3hPeK94j3jveMc4FzgnODc4BzhXOGc4dzhHOJc4pzi3OIc41zjnOPc4x7g XuCe4N7gHuFe4Z7h3uEe4l7inuLe4h7jXuOe495jDmAuYE5gbmCOYK5gzmDu YA5hLmFOYW5hjmGuYc5h7mEOYi5iTmJuYo5irmLOYu5iDmMuY05jbmOOY65j zmPuYw9gL2BPYG9gj2CvYM9g72APYS9hT2FvYY9hr2HPYe9hD2IvYk9ib2KP Yq9iz2LvYg9jL2NPY29jj2OvY89j70MHQBdAJ0A3QEdAV0BnQHdAh0CXQKdA t0DHQNdA50D3QAdBF0EnQTdBR0FXQWdBd0GHQZdBp0G3QcdB10HnQfdBB0IX QidCN0JHQldCZ0J3QodCl0KnQrdCx0LXQudC90IHQxdDJ0M3Q0dDV0NnQ3dD h0OXQ6dDt0PHQ9dD50P3wwfAF8AnwDfAR8BXwGfAd8CHwJfAp8C3wMfA18Dn wPfAB8EXwSfBN8FHwVfBZ8F3wYfBl8GnwbfBx8HXwefB98EHwhfCJ8I3wkfC V8JnwnfCh8KXwqfCt8LHwtfC58L3wgfDF8MnwzfDR8NXw2fDd8OHw5fDp8O3 w8fD18Pnw/cjB0AugJwAuQFyBOQKyBmQOyCHQC6BnAK5BXIM5BrIOZB7IAdB LoKcBLkJchTkKshZkLsgh0Eug5wGuQ1yHOQ6yHmQ+yAHQi6EnAi50f/lSP+b KyFnQu6EHAq5FHIq5FbIsZBrIedC7oUcDLkYcjLkZsjRkKshZ0PuhhwOuRxy OuR2yPGQ6yHnQ+6HHBC5IHJC5IbIEZErImdE7ogcErkkckrklsgxkWsi50Tu iRwUuShyUuSmyFGRqyJnRe6KHBa5LHJa5LbIcZHrIudF7oscGLkwcmLkxsiR kSsjZ0bujBwauTRyauTWyLGRayPnRu6NHBy5OHJy5ObI0ZGrI2dH7o4cHrk8 cnrk9sjxkesj50fujx4AvQB6AvQG6BHQK6BnQO+AHgK9BHoK9BboMdBroOdA 74EeBL0IehL0JuhR0KugZ0Hvgh4GvQx6GvQ26HHQ66DnQe+DHgi9EHoi9Ebo kdAroWdC74QeCr0Ueir0Vuix0Guh50LvhR4MvRh6MvRm6NHQq6FnQ++GHg69 HHo69Hbo8dDroedD74ceEL0gekL0hugR0SuiZ0TviB4SvSR6SvSW/wUIbv0j "]]}, Annotation[#, "Charting`Private`Tag#2"]& ], TagBox[{ Hue[0.1421359549995791, 0.6, 0.6], Directive[ PointSize[ NCache[ Rational[1, 360], 0.002777777777777778]], RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[2]], LineBox[CompressedData[" 1:eJxNnHlYjm33tu/ruidzRKVUFJK5MhSFJanIFBERKVNI5owVIQ3KTIkoKjOZ qWhAIZIiU5IIRSKRim89d+/x2773H9v+eF6P6r7WdZ5rHWs3cPceP1uUSCRl conkv18b/teILKrrTgT4SshqfEW9GvPHwIv9/uPHj0oWf/mtJIPpa2KvMB8U MhrnVippSl9qVc6svTzrZvJnJe1sovDr4CchZ0MKPvdOSfeK7pc7MU+evMHt xCslSa/scAlijt9TNeBkvpIstzlnJjMPX6zW4sJDJS330Ov/nfmJz8S81LtK OjXgXayRv4QU2pM3PbulpPdqx1tNZZ6z4bJG1TUl6X1Y5BfObB+g5691QUmT kvp+SWfWWGN3Y+gpJYXt/OPym/lxr7qUpceUdHfercweGyT0IallwIlDSpIM 2dJ/JnN3n7n/Pu5TkoXGqKN7mC2yK7r32qGkJWWt1O8xfzeJk6wJVtLx1Gd+ f5kn1e1a8SBAScX7Dn4x2yihEOdHGzuvV5LOIo+pc5mN26/tsHmlkibYdM06 wJx+745tmbeSQnQq+ucwX5rw9Yuzp5Iyvl08KguQkK7uwBb33ZVUd2eN+gBm nad/o22mKanfQfL3Yh6/4OCBjIlK8lqm+HqEObJkY83IsUqKG/Fg6lPmj47G ic/slVTYfmdWk00S8k1UT5lvrSStamfzIcy2r3M1ZFZKGvtA79gy5gWe8sTY fkraGvNOPYG5x77xISN6K+nWquP+r5gLLRZF/jRWUs0Y768tN0uoW5RWQbyh ksw695s2nHnjMu1BbrpKml/7J2s1852bI9L0NZUU+/iW+Rnm9teD3N6pKell /JZjxcytUm63PNNYSW18R7XW2iKh5D4/7/tKlTTKSX2DA/PkNTohE+sVtLlb wVc/5txcazuzXwpKlhyadpH5/MgtNW0qFVT91OPeR+Z28coD9Z8V1Ot0Vwu9 QAlpjqvqVF6ioLkBFcccmb9YbtpeVKig6CmXWm9hzn9R8/RFgYIKeq/dcJ35 nBhT+SJXQS0VQyu+Mjd9+eR50QMFjXilcO24lT+PWd+2lt9R0IbEB/ecmT9M m/W7/paCrm/daRHKrG911EDjhoK+T58cd4t5dUuTv6aXFNS9n36bn8zXl+0I dDqrII+mJRu6Bkmo6NXUK+uOKyjq7fEKV+Zp23oEnohVUP4Vb9edzN6+J769 Pqig5mH97t9hPjdmyxfN/QqynVVrUcuc2nuNz8SdCvIdmBrXO5g/r3kjtkaE KuhKy8A2s5jdXdO0321RUMWHURv3M/8Ycb2z2QYFGSerf3vA/MqjVdyWtQpy 21XgKoRIqMnZc7uLVigowvPQ/X7M9c7BZUMWK+jxkFkD5jPvi4k4enS+gppo dos/xNzsefG1FrMVZF1e0eYJs2C5rLPvDAWtTbu0URkqocxyt7ffpyjowv61 3yyZ73y4V7rQSUHli4ZOX8z8r6TArHyMgjoNVz44ypw+6UbS4hEKcm2XPeA5 s/+Yk35/hiloT+XO+ObbJHRryecVQYMV9PDuZA1r5kGf0iL0BihIeUg/YCVz R8fA95f7KGjI8pJvJ5iXHN85YWIvBa0aeWL6G+Z1tvaFv40VdK7D4getwyS0 N7W1/5GOCvpU3W+gPfOzT/P6jNVXkEF2bfw6Ztml9O+CtoJcYlM1zjMfMEm4 eq21gnauDgx4zywsi/Fb2UJB98eOrtQOl1BWqK21RWMFSY1azxjDbLTGpPav VEFWdQUPNjIvbSM7du+vnJbnHhp4hblI6jXwQI2cTifMSihjtj6vf3lxlZze +3bT7LBdQj/N89QdKuSkP/FbgBPzR+dxDt0+y2lS98uVW5kz57q6tHgvp3Bh 3YxkZrLLHvjrjZzuPhuaXcns6ri6tOSFnCRnlJZGO/h5G2s99Vm+nCw2ZSe4 MD/wbLnjYY6clrjs0gxnttJ/EnDvvpxOmEzZlM6s33tDr/t35FSsaP/9F7P5 /rahOalyave6ZEaPnfx53XBo34skOU24cCLbjTnOtP2oT1fkFBq02HIP8wXx zNG6RDllzOh/PItZ7jQ7qs0ZOdX3q9P8y7zVd04v0+Ny6tcsbZPZLgkZZD6f OP6onBYVB36fw+zu/LX5qmg5xV0d7XaAeXKXF44xkXJ6E9b64SNm79rnuo/3 yElr9nNL2W4JLZ9gOl+2Q07jLKOPWzCfmNGtn1WonLa2mq3lxSz5qbF6VaCc Uku7bT7CPGWDg+m1jXKqSf72PZ+56p/xlL/r5WS2+7Jbkz0SKvmiXm63Wk7z 5697OJg5fvDy93uWyymWrK2WMT8el0IfveX0SrPRiXjm3OJ5NYMXyKnNl2yt V8w5yu9NIufIaXT6rs0t9/L7Ubdwcc1MOW2OmPLDhjkp6YqRq6ucUrzbz1zN HHRFzfj2ZDlVD3//8DTzfPn6xaZOcuqte9KqmNkwOar2yFg5zf2++ITmPgmZ NVa/rekgp8OZ/ds6ME/S25IZbiungkN1m/2YNXokCM2t5dRqRdqPC8we03ou DBskpxEOW2d+/I9v5kjbDJDTRoMxj3T3S8jEdkLGwb5yuv6r9SBH5rtX1h7v biKnH9nPT2xmFuM1zyZ3l1P3o9FtrzPHzqvOmdBFTrPWzN7ylXlV4x9NvhrK KWpc9yrDCAntsfk8OVRfTvlGlTOdmQ+uvnm5l46cmtdffhTC3DF2aod8DTnZ Plk36BZzu9Gnd/i1kpPfceuTVczuIQmKXs3ldMWvkXbXSP76vtmuLWokp28T H25xZd4SEFi2VyYn4x67q3YwL7y6aIKjRE4zRRf3O8z2sxVn1epkFFHQPucP c+011z+Pf8ko98z7Qb0PSEhpHmS6/4eMmmw+edKDec/RmHHuFTIaNnWJ9n7m 7Y2zJpiUyWitqXngA+anMR3MxVIZXVTWV0mi+Hl+kVv9rFhG5a/T3Psx/xjc Ivx8oYw6X9ya48mcvUZRF/ZCRq7BYwYfYs50qBqw+KmM9rq1OZXLvG2NxvCJ uTJ62P+FtvKghPrmntIe/FBGyuaHAy2Zv2mJF7vdk9GQd7N/ejOnie4t292R 0apr3T2OMtv20e+uliajc+GVOQXMm7tvkyhTZPRp9pXBzQ9JqNi2yTbxuowM rdafGsqslvjzgXBZRi7qw3RWMut4XEySJcpo18dGW08w+7U6N7npGRndT3n4 s5B5fC/ngxonZCTbs9ujdTS/z17pBnaMk5HVApfHdszlH1ep94uR0YqhHYas Y26dXmo58pCMTmt9OHWO2WDF53/ukTL68OWkznvmHVGKqX57ZaSfsWSr9mEJ HXa/MyJ6p4ycI82rRzN/WH41My1MRuGL6z02MlfUe+d9CpZRpm3648vMnw9u 8mwTKCOJXtCQMuYFHjs3WQfIaMCPMafbH5FQz4wBhsv9ZLQkq007J+aKPe2H HF8roxPRL7ZuZXZVfnn21kdGxSsOVycx1+8f+0lvuYzajZozq5K5n2aNt+ti GTkZ9sjtHCMhl7DoeYcXyij0d+UQF+aHo+sffZgno9sPr5wOYzZ6lhNjMltG 9UfXt0tn9nj16vX6mTLqv3ZY0C9mc4uP6x+6ymiRY+Nf3WP581ua7GfoIqP4 Lo9muTE/EXoWrZ4kozf1u3N3MwdfbBSVN15GbfNcKIs5cqDxObOxMhp3osOZ euaSp3O0dzvIKMj/Qzuzo/z9y47N+20no9RJp4LmMNe4phW62cjoT4+lvyKZ z9443vcBychMajH7EXN+o+FPBg6S0YLn9bnSYxIKHRtw5dQAGcWeTScL5odr nQsN+svo1eagMwuZHSZetYk0k1GbaWN1jzCPXH24VKO3jEabaQTnM0c4tcjY 3V1Gmxu9/NU4TkKBerJnmsYySik8PHswc1l2oF5UJxn9ujjnyVLmvnqxuzsZ yKh3SI+h8cxBazwGnNOT0byZ38+8ZP6ieNFoiI6MDptf1W0ZL6Fl4e0kjzVl 9Ly5b7AN89pA0p3TWkatSob9XsVcK852+asmo5HXG885zZx7LuFKRDMZbdz+ 6Mlb5k75vUwtGsvoxpw9QzUTJJQxTD/juVxGP6ymnh3JfNTliJevKKMerQ30 /Jgn1r3vZvRPSrM+fQi+wBwcrFeTUyulgzdP/S5lPlO0Lt/3t5Ty9yydo3uc n4cxVsm9f0qpxUKLvHHMB3buO/2uUkq21n+Hbmael58dG/lVSn5tM85eY94Z a3DQqUxKV74G6X1l/vSxYG+rj1L6ljE2xPAEn7fLrMIel0ip6wGNmknMz20i /Xe/ldLMJS/nhDCrF9ECl0IpRdodybvJvKEywKHjSynl6s21rmIe/eOafsUz KTWt6nHO+KSE2hy2Kk7Ok9Kwe9/1XJkrvszbFf5YSusOXw3ZwezfOLr3rIdS urjSt+Y2cyNH64uW96X0ZZTN3D/MQWOv6WtmSqlzxyb5vU7x3/eK18IfGVKa XvPI2oPZ2O1B5JNUKe19tOfcPub9VsPjL6dI6dGxqfoPmNtPdQiPuiEl5TqD UMlpvh8UOo3bfFVKNL60pi/ztZoXpYsvSWmV8em5nswOZVMmzEiU0vm/S/MP Ml/4PW77uLNS+pRnMSyXOcvTOsrmlJQMT/49pzgjIctNF5ZbHpeSy4YMfUvm RoE9tPrFSWmXc3CoN7MizmKDaayUHvQc9yeW2Us+55zJYSnJZJrzCv7jS8Nj zA5KadCLl/nNznK9Pr3AyTxSSivOHRk2lHlb1qKMwfukdGbL3PMrmHekfayw 3y3lc3/P9ieYXXquzJu4Q0rt+/wILWS+ufyy9+wwKTk3vvZH/Rx/XvIdbvqE SGn7G995dsz1Li9vhW6VUuYlm6drmfs+b7b06GYpCaFNbM4xL/ocnJOyUUoD 3HPOlzCbfxZfvPST0lKLve21z/PzUNkptHadlE60mLZtNLNjbmyJ3hopvSsx qN3AbNmm31trHym1u1E67zLz64rtfvOXS8lpx+mnn5kNHJYm714ipdC5y2za J/J58dLe/amLpHR70IDECcxP3FNaVC6QUn3rf+23Mn/uekqvo6eU+n/O2JbE bOrbOd15jpS8bwXXfmNu7fW9LsxDSvF7x3l2vsD/fsTrzEw3KRUt1Hw2hdls 4MVO8ulSajvslU0Yc0Yr2xY2U6XkqB2TmMbc1nt2wObJUgqqmNvhF3Nol9IN WROllHa7Z1j3ixK6uCtG2XKClP4c+FE7g/lUyBL1KeOk1GfpNc/dzCs9TA4f HS2lBfZ+zzKZXUqTz3wfKaWj+sOH1zM7TK61HGYvpVdVTS6YXuLz3rwHw/cO l5LG/ZwOc5g7mWvdK7OW0ugje8MimcePybgzjKS0xWda3UPm1odSBhwaJKWU 0YbzpZcldGz1jw61A6X0q+PHZ+bMb3eNX+NiIaXef04PX8h8rzZ7WFI/Kc3L WXbhMHM3bZe1HfpI6UjcAIN8ZuPjX/QDTaT0fN2/sMZX+P1+fUOPbz2lpD7h dt0g5mmnWsVM7S6lkV1D5i9lPmR0YH2WsZQC/o0riGP+o6OfPMBISjfyNW1f Mq+9GTX9VEcpVZ18dUHtKt+HQ9q5GRhIqcfGGAMb5vX9jtzcry+l2ZPnha9i zj3df626LtezXr3qTzEH65VuD9OW0lNZ1fy3zBbFN/820+J69vJagcY1CUlD ctK2tZGS3Xk/25HMgfndXrZU53oWOPyiL/PlE8XD96pJ6aprU8MLzGntWgj6 zbme9XkcXsrccsbtJglNuJ412Vff7jp//dmGM/s24npWNG3BOObTr63FdDnX s8uGzzcxu3WyKZ8g5XoW+tH2GrPuGDu9UgnXM48zF78wv9Pz3rXur0g2A5Yb Gt7g84dn0ag2dSKtUxu4fRLz6bZpdmdqRLr0/l99MHON3qCNI3+J9OXG7QU3 mduuWvfnY5VIRjtDnv9g/tjj9Jmg7yJNn+doZ5zE91Hbv1E9vom0b7DWpWnM z3IPpz/+ItKjNq8NdzDXv7zbYXWZSI3KYrbfZh4yPyHR8JNIlDrvbw1zqe9q n4cfRFq9r9fCXskSqm613GtdiUjnvaqeuzO7qz3Z2aNYpM/DrtvtY3Z1evK+ 8I1Ihjr+l+4zR526MGvXa5GmfhveUZLC96lHF5uPfCnSrjtNd/RlNpqu/UZ8 LtKDqMd/5zEPftP5WfJTkWTL9i08yPwuuUPVmjyRBo1wffH4v9+3Hd93YK5I K9t3tFfc5Pt6rGxv7SORzvz8eGkgs/gyQOtmtkil98909GYe+lDvyqb7IrWP Wb4jlvl6H8Nlo7JEmrxq4L9nzCf3Fo/QvCvS9jESr2a3+OfrlDigOEOkrE53 XhCz4f4PdC5NJKE2xH4F85OpT139b4k08LHj5ePMTu4vwsaniLQ0XqtTIfOB /qNzjZJEOrn+9Q71VH7/G4cY1V8T6d2E2H+2zEtHfQ/KvyKSbjdPr7Wp/9XX 4j9nL4nkJOn98izzij7JPqEXRNr2tMq+hPlp/vu/88+LdPvU9ctt0yQ02z01 zOGsSH83+ncazbx17+XOvU6L1H+K7c4NzL1KeqapnxTJu3czyWXmFd473GsS RIqX53p9ZnZpNlpeHCdS0ct9L/XTJeRp9TDhwVGRtBNdR0xg9u6xyeFajEiO WzteCWQ2S3xTFn9YpODpnzolMfcaOWHr/kMipfU9u/Mbs6PGhPYhUSLVNlkh 6ZwhoeSnTmf9IkXq83bgoinM4ZWP+q/cL9LCK5JX25jj5gy6uGivSEe33RmR xrw0V8vIc7dIrz1Cr1QzJ81/GTx7p0gaA8d37n5bQgF18rce20Ua07LtrhnM 9z5pdpkVJtKWD68lu5lXdgmfOidUpJtJsYsymTtbVq6bHyzSr52er+qYtQak Bi3eKpKJZ++Rpnf4vp62yX/VFpHmDfl5ZTZzKyF9xsZNIh3RuNE5kvnUcZlR 2EaRnpf573rI7PfzyeMD/iKpp9kK0rsSmhGTNPOkr0gO+5t5mzMP+uaQl7RO pIBFua8WMOtFtzTOWSNSks3+kYeZm36JnPp+lUhVOtOv5v33+7vXedWtFKln ZUejxpl8H860n6axQqTZdz/tGsSs1n+3kckykQ4dPCssZe7/r+reqCUiPV22 wjuOWeu6aL/AWyS1kZavXzArvCdFhXiJZNdBcFDL4vPT3uA7pxeI5F995+ow Zisty9uPPUW6+iDUaBVzXxv5vl9zRaqMGb/7FHPWi8CB7eeI1HV1W/Et8yOJ xxn7WSK5jy301rjH9cfaonKZu0iRnY++HsG8bscJ4YibSE9qPR18mTsMnV74 aLpITXN7X0tkXqao2Sxx5XqW8NOolHnOT4NfZlO5nvne2N3uvoS6+G0wmTuF 65nTBnEcs+PiVJODziJ97Wa3eBOzZkVodd5ErmdC88KrzAtXb/dv4STSjGe5 Dl+Ybd+tzh4xnuvZ6f3XDB5IKNXp98st40TKCZjeZRKzm33SidtjuJ65dNoT zGwX5GOhGC3SUJPP4k1mb9PXAfYOXM8U5xb/YP4afyQkdIRIia9WFHbJ5s97 9JoxuXZczxItR01jtm3d/r62rUgdg4Tr25m17O0kHjZcz2bc7XKb+cbdU+Wn rUXa3W/bnhrmFLcm4X+I61nTCdJeD/k+10n3g/0QkeTFbZe4M+vOjv62fxDX s6uFhXuZwy6OP/3ZkutZ2NFR95l7Fv/UGTyQ69ms+df/MS+uGWGxy4Lr2UAT 476P+Peplexzf65nrar3zGOu6qu23rof17PSG9KDzAu2NYqJ6iPSjuQNSx4z n+ybvuS3KdezXXZv5Dn8/h2hKJtoIpI4v/nogcxz9CKbXerF9YyeXF/EnGRq n6/RU6RlmhHGsczTzF8OW9Wd61n59L3P/vv3m7V3ftVVpJK0TrJmjyX04HpR c2tjrmcRn5cQ882VX+ccNxJpove5N8uZ9Q5qzVTvzPVs+MrRx5lfne9Ru66j SHfaWd14zRww/V+fTwZczyqFruq5fN5e7N7EuYNI5pl399oyaxd0XX9Hn+vZ oW2ytczfj3ULMdcTKWH5hKVnmVc1sexzoh3Xs5HaRe+YiyaYLdfX4Xpm8GZ0 2yf8+Sj/OGp3W65nv47eGMW83cUiqakW17Ps+V03PPmvv117a5OGSOmxJvsu MRvYN3f515rr2epq2Wfmsw4OW9aqi9R3XNJS/Tz+eo132dS05HpmtLFoPPOn vPRdq9REOlZnNyaQeaVz8tKa5lzPcpsn3WB2z3QrWttMJM3jT7p+y/uv3739 5b8mXM/8IvZ1ypeQpH1vj82NRQqcOEM+hVl/jcHKZo24nnXvvGwb856To1rv UYj0WygrSmWmRvsGtJdzPSs4N6aa+VV5aekJqUieZ1YmdXsqoZikLnoWItez TVbdZjAXvBlScEci0gsXcf8u5oVpOm2d/wmkbpopz2QOy419+bFeIAdl2LI6 5pF+dw3W1QkU8HrCW5NnEupovuxTy1qBki5oj53NfHHOHtP4GoGqgt4kRTA7 +OjVDP4tUE+3Y90eModk1w4uqBZoTv8F+8UCrq+ZBuKynwIdamaqMGdumbJh qFqVQM+Kq5ctYK6pb1F36rtAateS3kYzd3yQbDKqUiD78I1j85jnzwwoLK8Q yH+2fXKj5/zz/TRRFv5VoGuWLboPYl4Y0OOI2ReBKlvl7V/C7Gv178KzMoG6 fYxQxDGfV79r6ftZIPeUGctfMK+vXG9u9EmgA7s7F7d4IaGSc/pxj0oFejK/ bOwwZt02x7as+SBQs6Hnk32YbTKbFxi9F8hGy6f7KWY1j0kRee8EWv/FKqKI ee3M9VkBxQJdSheVGi/5v2+0cW7ftwJ9jchcPoI5qWbW0g9vBDJaHFa8ntlK 0eVTRKFAM2ydxiUy60y5d2/Ma4H26+qkfGAeXOSoKX8lUM73N93bveJ645l6 L+mFQI2zjkWMZXaI1itd8VygodELlJuYVzRdON+kQKA1K0xXXGV+2erChPKn AiU6/CouZ+5ZWXPkeL5AZQbJ4wxe8/0r1d5pXp5AHX9vTJnIfHRJgqfxE4Gm PbTvEcx8OdPw7afHAu0+2iIyhVnqnnbtVI5A2WvylD+Y+53e+X3xI4HkjpEr uhRKKL08Orj/Q4EGd3F7N5X5Qt9f/vUPBFpZ39lxO/Nkz7i82/cFOvukLCWD udXgpE3h9wQqPX6+Rw1zo772212yBOrg7xPZ8w3Xs/0u1UaZAk2eNKiRO/Pz zbLLVXcE2tFDunIvc9Zr54fptwXKErPe3WOOGzV38O4MgcTnYY7/mEuG28rn pAtkedbpZp8iCY2QNjYckCbQss06Pecxnw/I2NU8VaBTU4sio5hzg8KmvLsp UIlpXKPHzH8j1y+9niKQXqOFK+Vv+c+rT3i9M1mgiYWmJQOYna4ZRy5MErhu /3JcxKzcpRFvd0OgO8HJN2OYXVoESTtdF+ifW0DPZ8w6Cw6eEa4JZG4+4kDT Yj6PHvWKL7oi0OLmao2JOWmRxpdblwVKeJe3cjmzqcV535hLAr29FlmSwJzS efrUzRcF0t7uNv71f6w+cKPnBYHGzzG61eodP7/hHt/HJAoUbFXe05bZoajm RL/zAqWrJx5YwxxVq3tS75xAtR99Gp9l9gr6Uqk4K1Dfm4N83jFffhvqW3la IK890vdaJfz5bKo37vUpgY4tyBo/innc9Vuz750UqHBo+C1/5l1jD6RcPSGQ ZtuJvS4xX3yaMyXhuEBjv+pEfWLuI9/SPyJBoMCMosb67yXUfkDRhJB4gW5F xvmMZ871kZ/3jRPo9+KF77cwX1qoO3rZMYFM7cwm3GCumTuqi+dRgTz1ft+q YJ7smjzYLVagmB/JvTp9kFB28b6dk2MEepEVEDWZ2bG33HD8EYFaHx7RZBvz Pu3e5aMOcz1bqbYqlTlDk77ZRwu0aVT++5/MXQZ49LQ9xPXM8MCEbqUS+tEr I8bmoEA/f7ulTmeuovCxNlFczx4Z9d7FPNyx0mz4Aa5nx8qj7jLLXmiNsovk erY2sUkds7zcJHJkBNczx1WrTD7yfbLnAt2x+wVqaTz4wyzm1wU/Hzvt43r2 V+oUwdzlhuT61L0CbcjLSs1mrjFLeuKxh+vZifDe4id+HnpP0ffaLdB3/4kH +zM/79E4wmcX1zPndk0XMM8x/2sdsFMgj55vV0Uz33k/v932HVzPpPEfnjDn T9locGi7QHnPFzo1+sw8eJXT6XCuZ+fM0qyY22T6X0gOE2j4lt+9lzAHnc0Z 9Ggb17NpKQePMS/te/D721CBLpttavqC+ae27uOfIVzPGo1c3aJMQonHAgqa MHd5o1ZqzexxqEkjg2CuZ5fynXyYvUZ+nG4RxPUs5EDaSeZli5xejdvK9Wzm TJMi5jKHQL/5gVzPLLocalMuoYToa3abt3A9a/Gl6QjmuYc79T2ymetZSeLq 9cyT6wWblE0CXbi+qvQ8c/yrkJWvAriebR888QNz3fO6e7UbBeo0V5au84Wf X9l20mWeNuieyVjmR2/8nw7aINCe1tsPBTAHuTYNdfPnevZpYrOrzBeKFrht 8hNIcavdmnLmywPejD/uy/Vs79vSDl8lNPZYjPuj9QL5LIyfOJG5/t6PsOp1 XM+svdKDmOfdaPlMn/lj2z6mKcyZX80H2q/lelbx+9B35lHDEq4sXSPQlNsp zbpU8Pej9vCYQ6u5nh3YtGYqs2fSzL/3Vgl0b8nIj+HMM0K73fntw/XMvuWk DOZXOZbHujBb6j9N/83cfPTTSOeVXM+qDpj2/MbcwTJu6wquZ/dmRs9k7pl+ 8s715QK9P9yl+V5m00bza78s43rm82XNPeZdWleHGTJPGn3h41/mxEUFh5yX cj3ruHpSn0r+8wqbNwtbItDdmsEZc5k9Aw8E317M9eyRzCyK+e/LDO2/3gJZ xN2LzmGOiMy+as68eN325vLvErqaXTNn6SKBjo+ftHYAc2zWto5nvLieGet+ 8mL26/bwy+eFAun8ezsphtk591+GMfP4/PiMp8xGpXMT5i4QKOSkl1nTH3x+ yXHYFz+f69mGPoeHMA8yr9z+0VOgOuea5suZFZJDu7sx9+11c20C8/FR+494 zeN6Jtv86RXz2FVGV87P5Xr2YqRzqyoJndEIz6uew/XsXMvbw5mLy9vWWDFr Bj41W8NMNU06bZrN9cw16vAZZoO5p5wezBJoax/3Fu+YD++wCdZgvtXYeJ3W TwlNkrTLmOEhUM2bL58cmFvN9hFOunM9u3zB2Z95dcSRob9mCjQ/dPXti8yX o94G2DDHuA/p84m56Q6/uzvdBHppIT+iV83P07X0psUzuJ6p3W8xnrl4ZfVY M+ZR77ev28Lsauu2K2A617Mbkz5fZ36ePCI/31Wg5B26kyuYvwfVtunK/HNu 8e2Ov/j8siDFcf00gXoNTugzmflun5fBuVO5nrVZdCSUWTcj8qYxc/TnPmqp zAWNbCv8XLie3apZ95M59Vdn7YIpXM/23fzc9beE/oUGWJky23ttnjyd2S4z fnLIZK5nwxzu7GT+dfzlwg/OAl3XbtX3LnNXk3mrrJm/Vzw9UsucPGHvmuhJ AnW/E6VmUiOhCfKzS+sncj2Lcl8/i3lwt9oZ05ijlhqX7Wf2jEgfmuTE9cz+ 6+RsZtO2jlp6zM3bX7wj/OHziHP5G98JXM9+ru7bn1m94nXk2/EC+d4fEjOf Wd91kd1w5stH5C2jmdUkH0qOOwpU4XN//RPm/W22LVVj7jJmR5myVkLV509W rBgnkFsn5ylWzCvuBE19PZbr2R/du4uZS1p7XxrO/DinuO8x5rrusXVnxnA9 i0+Iec6cstDLRJvZev2ili3qJHStrs24TaO5nk3o62vNPO5ukcu3UVzPuv4p W8n8aZXWOFfmsn83p5xkbrb2X6/7DlzPnm6++4bZ91th9QBm11MO/drU/5en qI07PpLr2cZWsfbM+2wPDNZhfjj5Wcv1zK8/iMkhI7ie9T7oe5552RIfg7/2 Ag2Re5S/Zw6YP2jBEmafl8YuOn/5vla9P+K9nUDnzn+9O4ZZ81n2SRdmVR6O edSs9kdybIWGPBzz7uCcVXbMqjwcc6vbHc1uDhca8nD/+P6gPfWBObMqD8e8 U/2q7XkboSEPxzw9ee3h7syqPNx/vx/zoSBumNCQh2O+nmZRYcisysNJuM7s OF8cbS005OGYZ1WEJ+oxq/JwzFFd1KdHDRUa8nDMoz+uKGnHrMrDMZcM/m0T RUJDHk7g52Rnvq8esyoPx/wvesSO6CFCQx6OecnS8LWGzKo8HPNAt7dWcYOF hjwc8xHZ6rxuzKo8nMjniIHhQ88NEhrycMxabacF9GdW5eGYHUo1I5KthIY8 HHOUYfWG4cyqPJxUoNWLeg96aCk05OGYG+/+leXMrMrDMceu3dileKDQkIdj tu8inejFrMrDMWuePulYM0BoyMPJ+B5ielp3C7MqD8d8t9j8UmtmVR6O2bFy jU6MhdCQh2M2DD3qYMqsysMx2714a5dqLjTk4eQCLfo5vcV4ZlUejnlmie2h d/2Fhjwc84o96dUrmFV5OOYWz+s1GzOr8nDMetP0/kb1ExrycAo+58TYnzRl VuXhmBPFY3p3+woNeTjmYYcmObkyq/JwzBnT/cdU9REa8nDMfhXDmoYyq/Jw SoG2XE0N6sSsysMxX3zeNivZTGjIwzFf6Dw305lZlYdj7q2XteW7qdCQh2PW +TxFGsasysM1Ekhjap9B3ZhVeTjmf4Vefe6aCA15OOZ4/w7vZzGr8nDMx4rd HKXMqjwc80zLYT4xvYWGPFxj/jodX0y0Zlbl4ZhtfczLi3sJDXk4ZvOg+QM2 MavycMxlHzdYGTGr8nDMumuDqzJ7Cg15uCb88zwa7raQWZWHY75mf8CvJbMq D8c87/alcZd6CA15OGbNH+9zXZhVebimAlkZmsoFZlUejtlW58CH+O5CQx6O OaGt0cqxzKo8HPPQnNzEX92Ehjwcs4Hn4QOHmVV5uGYCnfAP7T2SWZWHY27e bZdXVVehIQ/H3L/ijFM0syoPx6yRW/BuJLMqD8fsOqaRzi9joSEP15y/v1P7 VMcyq/JwzM0Wj/FxZFbl4ZjNAkZF/esiNOThmB+1aj/rDLMqD8ccZ3A525VZ lYdrIVD9cElBc2ZVHo55z9HPG1KMhIY8HHOHWrd73syqPBxzn2Ojzxkwq/Jw zHdjIszyOgsNeTg1fq9H9xgXyKzKwzEn/C5XWjKr8nDMozNvTq7oJDTk4ZiT P28depRZlYdjNmzcPXUKsyoP11KgJzGBT9WYVXk4Zh8tP/87HYWGPBxz/Plv yeuZVXk4Zp3E69v6MavycMxOU69//WIoNOThWvH3rf7+mzhmVR6OOUZ2f4Yb syoPx3xe3Omlw6zKwzEPufVHmW8gNOThmOUjCntuZ1bl4dT5efrTptCBWZWH Yy7ZtVKrEbMqD8fsPexFQUYHoSEPx9z1qqbBRmZVHo65zkSsGMKsysO1Fmjq tqVD/7YXGvJwzI2nD9JKZlbl4Zh7VJt7r2NW5eGYE9aZ21sxq/JwbQS6Ud/y SJ2+0JCHY85dF7EqmVmVh2PepojL9mVW5eGYa9KaRhOzKg/HXKQ8XCYyq/Jw GgKfjywSb+sJDXk45nf5Jyq3MqvycMy5e7ITRjGr8nDM2kt8nrZkVuXhmEdf 9Vudrys05OE0+XM+JWV7JLMqD8f8+1vTdm7Mqjwcc/c3Q7WMmFV5OOalzgM3 lbcTGvJwzNXLctwuMKvycFoCjbQrOrmGWZWHY+7w1XaWNbMqD8f8+HDx1ibM qjwc876MnW2f6AgNeThm3zpz9ShmVR6uLdfngReXz2ZW5eGYd2d/HtybWZWH Y9Zaecu7RltoyMMxf17cTpHBrMrDMb/a+k4SzqzKw/GvPzuJM1z4V1Ue7v/7 Ff8c/x7+f/hz8Ofiv4P/Lv4e+Hvh74m/N74OfF34OvF14/uA7wu+T/i+4fuI 7yu+z/i+4+eAnwt+Tvi54eeInyt+zvi543OAzwU+J/jc4HOEzxU+Z/jc4XOI zyU+p/jc4nOMzzU+5/jc4znAc4HnBM8NniM8V3jO8NzhOcRziecUzy2eYzzX eM7x3KMOoC6gTqBuoI6grqDOoO6gDqEuoU6hbqGOoa6hzqHuoQ6iLqJOom6i jqKuos6i7qIOoy6jTqNuo46jrqPOo+7jPYD3At4TeG/gPYL3Ct4zeO/gPYT3 Et5TeG/hPYb3Gt5zeO/hPYj3It6TeG/iPYr3Kt6zeO/iPYz3Mt7TeG/jPY73 Ot7zeO/jHIBzAc4JODfgHIFzBc4ZOHfgHIJzCc4pOLfgHINzDc45OPfgHIRz Ec5JODfhHIVzFc5ZOHfhHIZzGc5pOLfhHIdzHc55OPfhHIhzIc6JODfiHIlz Jc6ZOHfiHIpzKc6pOLfiHItzLc65OPfiHIxzMc7JODfjHI1zNc7ZOHfjHI5z Oc7pOLfjHI9zPc75OPfjHoB7Ae4JuDfgHoF7Be4ZuHfgHoJ7Ce4puLfgHoN7 De45uPfgHoR7Ee5JuDfhHoV7Fe5ZuHfhHoZ7Ge5puLfhHod7He55uPfhHoh7 Ie6JuDfiHol7Je6ZuHfiHop7Ke6puLfiHot7Le65uPfiHox7Me7JuDfjHo17 Ne7ZuHfjHo57Oe7puLfjHo97Pe75uPejD4C+APoE6Bugj4C+AvoM6DugD4G+ BPoU6Fugj4G+Bvoc6HugD4K+CPok6Jugj4K+Cvos6LugD4O+DPo06Nugj4O+ Dvo86PugD4S+EPpE6Buhj4S+EvpM6DuhD4W+FPpU6Fuhj4W+Fvpc6HuhD4a+ GPpk6Juhj4a+Gvps6LuhD4e+HPp06Nuhj4e+Hvp86PuhD4i+IPqE6Buij4i+ IvqM6DuiD4m+JPqU6Fuij4m+Jvqc6HuiD4q+KPqk6Juij4q+Kvqs6LuiD4u+ LPq06Nuij4u+Lvq86PuiD4y+MPrE6Bujj4y+MvrM6DujD42+NPrU6Fujj42+ Nvrc6HujD46+OPrk6Jujj46+Ovrs6LujD4++PPr06Nujj4++Pvr86PtjDoC5 AOYEmBtgjoC5AuYMmDtgDoG5BOYUmFtgjoG5BuYcmHtgDoK5yP/NSf43N8Ec BXMVzFkwd8EcBnMZzGkwt8EcB3MdzHkw98EcCHMhzIkwN8IcCXMlzJkwd8Ic CnMpzKkwt8IcC3MtzLkw98IcDHMxzMkwN8McDXM1zNkwd8McDnM5zOkwt8Mc D3M9zPkw98McEHNBzAkxN8QcEXNFzBkxd8QcEnNJzCkxt8QcE3PN/5tz/m/u iTko5qKYk2Juijkq5qqYs2Luijks5rKY02Juizku5rqY82Luizkw5sKYE2Nu jDky5sqYM2PujDk05tKYU2NujTk25tqYc2PujTk45uKYk2Nujjk65uqYs2Pu jjk85vKY02Nujzk+5vqY82PujxwAcgHICSA3gBwBcgXIGSB3gBwCcgnIKSC3 gBwDcg3IOSD3gBwEchHISSA38X85iv/lKpCzQO4COQzkMpDTQG4DOQ7kOpDz QO4DORDkQpATQW4EORLkSpAzQe4EORTkUpBTQW4FORbkWpBzQe4FORjkYpCT QW4GORrkapCzQe4GORzkcpDTQW4HOR7kepDzQe4HOSDkgpATQm4IOSLkipAz Qu4IOSTkkpBTQm4JOSbkmpBzQu4JOSjkopCTQm4KOSrkqpCzQu4KOSzkspDT Qm4LOS7kupDzQu4LOTDkwpATQ24MOTLkypAzQ+4MOTTk0pBTQ24NOTbk2pBz Q+4NOTjk4pCTQ24OOTrk6pCzQ+4OOTzk8pDTQ24POT7k+pDzQ+4POUDkApET RG4QOULkCpEzRO4QOUTkEpFTRG4ROUbkGpFzRO4ROUjkIpGTRG4SOUrkKpGz RO4SOUzkMpHTRG4TOU7kOpHzRO4TOVDkQpETRW4UOVLkSpEzRe4UOVTkUpFT RW4VOVbkWpFzRe4VOVjkYpGTRW4WOVrkapGzRe4WOVzkcpHTRW4XOV7kepHz Re4XOWDkgpETRm4YOWLkipEzRu4YOWTkkpFTRm4ZOWbkmpFzRu4ZOWjkopGT Rm4aOWrkqpGzRu4aOWzkspHTRm4bOW7kupHzRu4bOXDkwpETR24cOXLkypEz R+4cOXTk0pFTR24dOXbk2pFzR+4dOXjk4pGTR24eOXrk6pGzR+4eOXzk8pHT R24fOX7k+pHzR+4fewDYC8CeAPYGsEeAvQLsGWDvAHsI2EvAngL2FrDHgL0G 7Dlg7wF7ENiLwJ4E9iawR4G9CuxZYO8CexjYy8CeBvY2sMeBvQ7seWDvA3sg 2AvBngj2RrBHgr0S7Jlg7wR7KNhLwZ4K9lawx4K9Fuy5YO8FezDYi8GeDPZm sEeDvRrs2WDvBns42MvBng72drDHg70e7Plg7wd7QNgLwp4Q9oawR4S9IuwZ Ye8Ie0jYS8KeEvaWsMeEvSbsOWHvCXtQ2IvCnhT2prBHhb0q7Flh7wp7WNjL wp4W9rawx4W9Lux5Ye8Le2DYC8OeGPbGsEeGvTLsmWHvDHto2EvDnhr21rDH hr027Llh7w17cNiLw54c9uawR4e9OuzZYe8Oe3jYy8OeHvb2sMeHvT7s+WHv D3uA2AvEniD2BrFHiL1C7Bli7xB7iNhLxJ4i9haxx4i9Ruw5Yu8Re5DYi8Se JPYmsUeJvUrsWWLvEnuY2MvEnib2NrHHib1O7Hli7xN7oNgLxZ4o9kaxR4q9 UuyZYu8Ue6jYS8WeKvZWsceKvVbsuWLvFXuw2IvFniz2ZrFHi71a7Nli7xZ7 uNjLxZ4u9naxx4u9Xuz5Yu8Xe8DYC8aeMPaGsUeMvWLsGWPvGHvI2EvGnjL2 lrHHjL1m7Dlj7xl70NiLxp409qaxR429auxZY+8ae9jYy8aeNva2sceNvW7s eWPvG3vg2AvHnjj2xrFHjr1y7Jlj7xx76NhLx5469taxx469duy5Y+8de/DY i8eePPbmsUePvXrs2WPvHnv42MvHnj729rHHj71+7Plj7x8eAHgB4AmANwAe AXgF4BmAdwAeAngJ4CmAtwAeA3gN4DmA9+D/PAj/8yLAkwBvAjwK8CrAswDv AjwM8DLA0wBvAzwO8DrA8wDvAzwQ8ELAEwFvBDwS8ErAMwHvBDwU8FLAUwFv BTwW8FrAcwHvBTwY8GLAkwFvBjwa8GrAswHvBjwc8HLA0wFvBzwe8HrA8wHv Bzwg8ILAEwJvCDwi8IrAMwLvCDwk8JLAUwJvCTwm8JrAcwLvCTwo8KLAkwJv Cjwq8KrAswLvCjws8LLA0wJvCzwu8LrA8wLvCzww8MLAEwNvDDwy8MrAMwPv DDw08NLAUwNvDTw28NrAcwPvDTw48OLAkwNvDjw68OrAswPvDjw88PLA0wNv Dzw+8PrA8wPvDzxA8ALBEwRvEDxC8ArBMwTvEDxE8BLBUwRvETxG8BrBcwTv ETxI8CLBkwRvEjxK8CrBswTvEjxM8DLB0wRvEzxO8DrB8wTvEzxQ8ELBEwVv FDxS8ErBMwXvFDxU8FLBUwVvFTxW8FrBcwXvFTxY8GLBkwVvFjxa8GrBswXv Fjxc8HLB0wVvFzxe8HrB8wXvFzxg8ILBEwZvGDxi8IrBMwbvGDxk8JLBUwZv GTxm8JrBcwbvGTxo8KLBkwZvGjxq8KrBswbvGjxs8LLB0wZvGzxu8LrB8wbv Gzxw8MLBEwdvHDxy8MrBMwfvHDx08NLBUwdvHTx28NrBcwfv3f958P7nxYMn D948ePTg1YNnD949ePjg5YOnD94+ePzg9YPnD94/eADhBYQnEN5AeAThFYRn EN5BeAjhJYSnEN5CeAzhNYTnEN5DeBDhRYQnEd5EeBThVYRnEd5FeBjhZYSn Ed5GeBzhdYTnEd5HeCDhhYQnEt5IeCThlYRnEt5JeCjhpYSnEt5KeCzhtYTn Et5LeDDhxYQnE95MeDTh1YRnE95NeDjh5YSnE95OeDzh9YTnE95PeEDhBYUn FN5QeEThFYVnFN5ReEjhJYWnFN5SeEzhNYXnFN5TeFDhRYUnFd5UeFThVYVn Fd5VeFjhZYWnFd5WeFzhdYXnFd5XeGDhhYUnFt5YeGThlYVnFt5ZeGjhpYWn Ft5aeGzhtYXnFt5beHDhxYUnF95ceHTh1YVnF95deHjh5YWnF95eeHzh9YXn F95feIDhBYYnGN5geIThFYZnGN5heIjhJYanGN5ieIzhNYbnGN5jeJDhRYYn Gd5keJThVYZnGd5leJjhZYanGd5meJzhdYbnGd5neKDhhYYnGt5oeKThlYZn Gt5peKjhpYanGt5qeKzhtYbnGt5reLDhxYYnG95seLTh1YZnG95teLjh5Yan G95ueLzh9YbnG95veMDhBYcnHN5weMThFYdnHN5xeMjhJYenHN5yeMzhNYfn HN5zeNDhRYcnHd50eNThVYdnHd51eNjhZYenHd52eNzhdYfnHd53eODhhYcn Ht54eOThlYdnHt75Ye7mJ//z0MNT//8AilTczQ== "]]}, Annotation[#, "Charting`Private`Tag#3"]& ], TagBox[{ Hue[0.37820393249936934`, 0.6, 0.6], Directive[ PointSize[ NCache[ Rational[1, 360], 0.002777777777777778]], RGBColor[0.922526, 0.385626, 0.209179], AbsoluteThickness[2]], LineBox[CompressedData[" 1:eJxEnXdcj2/bx32v6zuQLUJGKTtlh9CJrAjJLltKISMrM3sUIoSE7L0lGUX2 3oVEJFmVrcTz+V2nz/08/9yv9+1xl7q+x3WO9/E5rIcG9PBWChQo4F64QIH/ /lP+X0Hhudrp5EUrndjTeIFBAQ8qszv8P84Y8SzHlG8SEe/HKLngx5PmtCye axJ3ExqNtbfWiYSuZzIsfphEoYjclKHgRoPuZVl/NYk2Y+I7rwUv32TqVTfH JIJcFsReBy8I3Vq2+SeTOFqhS40CVXVip93Hhh3fm8T77JKrG4FfGuz29Xlr EraXHysjwcVq7Jrpm24SXhs3jt0IDqq6Z09QmkmsnjDs+V2wb7FpDstSTeJm p1pdjDY6ET1veJGtz0zCaJUV2xz8e8shEZtsEq2+H6sRAH5h2HP9ziOTmHwj aPVW8JO7G/Zl3jeJg9FCTQJX3X03Tb1rEm+nGMcVsdWJGofWjq5yyySsut14 LsCWIc27tLhuEv2qrewyETxnqGlm/ysmEZbX59Ru8KmkzkrQRZO4drdSzefg kNK9k9afNwll16vVparpRNyJwL+nz5mE08zdagfwstffJ704bRKBPQPGTQMP bWnXynDKJPbVbpx6EOyUOrxnnRiTSC+Q1+U1uKt3zskex0yi0uP4U+Wq68Ta jKr+0w6bRO/9C2q6gUfkuvptP2ASy+Z2WRMM/ro/7vidvSZxuV8p/QlwVujl Lvm7TOKvQ9K4d+DSWxLs6+wwiabGqNTKNXTihG9+//5bTWLss2FuHuBBL27d WbLZJHYfqRW3ENx/xpLlpzeaxMtFWTVPgzvZz1+Ttd4kKgw6viYbHNvfPN0m wiR6NJ6mr1YTnBYa1G+1SSw1az2+H3hM5Y69V6w0iQsvjS9CwTtT1k2+stwk fsfccDsPnuzzJEUXahKNlq2M+w6+PHXIohZLTGL08L616tTSieyOCydNWWgS O5pXXjsI7DFr287j80zieYnX+nDwpxalLL8Gm4RFxu7xV8A/y9a+03CWSXQ7 E/DiNzjQov2lwOkmsWhV4671a+vE3dPxv09MNYn4kXlx3uDZv76Oz51kEr+c E2qtB4c2bFXTOdAk6pdduPYW2Mnlp+X8cSbh96GLQa2jE1smz3K7McYkos+X muAIFiH1TpuPMomnEUkv/MHRR3x9Bo40idIBUV03g7+HzO+6e4RJdGk3/PQD 8AH79LHfhpnEPMvatQvZ6UTZim9uthliEmdysta2BP/qlDE8bKBJfLt83DAe 3KxSx8YvPU3CPmrahB3gMX6+rRr0M4kRga1fPgEvmrhr1rzeJrHJ1dSteF2d 8Mvx/fnYwyQeW9083Ra85G/hXXbuJlHix8raU8DhDtmhc7qaRKebfSP2gfWz gnYndzaJ4K2VjS/BN/oWya3fySROTX09oYy9TuSEF5y1tL1JfO6252UncP0p 9xzftDWJOtXHdpsJjjp606ZNa5MY9rvxmSPg9sMHttnUyiQi7+XVzgDfK5W5 Mt/JJB7sSoiwdNCJmkfvmQ9oZhJFZy00dgebb5t9+UwTk2jXyy1wHjjtQN89 VRqZxMw6pdNOgs1MCafn1DeJE7rkbh/BDzpZ/XljbxJZj6POWNfD8z4jZXQX O5OocWB4nd7g5qUHmx2tZRKD59VetwTskFb8UYUaqGf9s43nwAl1et2ca4t6 Vu9E4Bfw64iI7I/WqGem6Wk16uPvN2/r3K8K6llK6+5e4DMLz568WBH17Kjp 7Arw0MGBXg0roJ4tvlnnIjih0O1a0RYm8WHQqnW/wPEOzaxKlUE9a9LPZN9A JxxfV3KeW8okBhSpMnEoeGPU2/nfiqOepb1OWwPe62T46lvUJG6d3NP9Orho fuqilMKoZ8vHnv0L1i9Ob+tR0CScvZvYNWqI5+XdHNtrBtQzp9/rfMHHllWr 3UY1iUMlz5s2gjM6OvWMK4B6lrFw4l3wL7cG0Y3/GIX1WbdXhkY6fF9TSx/O M4p+4aXdm4Ob/Z65s+4vo1jpl3x2DLh7/pEBe78bxTWxyW4reNzPeY1rfzUK 1cJ7/WOwSzFv+z05RuH0sXbBIo3xeY+/0KFOllEEXsieKMBnPpcM3v/BKPat O/EqEJyaEZ9c751RpAdMd98N1ru0cT+eYRSV27c5lwIubVYwo3m6UfSuWLBu qSY6sX3zvPUJaUax/PPN9e3Bhy/X9u/0wiguX1lVcBq4VfTovvdSjKLApn6T DoJLHY4f4vXUKJpOrPL6FXjI/bULMpKMYlzndPdyjjoxq73PpQmPjGK39d5z XcCh27da6R4YRdqPsXWDwQ6ZCeHL7xpFhVtNNhwHN/VxrFrltlF4bPtd8B14 4L2pVw7eMIqlQecnVW6qEx+a/V3Q+ppRJHZf9LoHeEKhVgMeXDaK39W79lgI nlFwv6vvRaNonF86Pg7cuv+FrvnnjWL0/eS62eAeM376roo3ih27N22wbaYT vTonRtQ+axTPZ3kX6gc+8TMq5XycUVj0rjM5FNzfXOfoFWsU3exyXieAuy8c tu37CaNYpMT0+A5eFu5cbeUxo0hImh5fuzmer6RisfZHjOLXgTb2g8A9OnUe dOOgUTSYXzByFXhe4wAL//1G4ed5q9AV8DmXby8K7zWKrfXDJ/8G50/qG7d3 l1E8NfVPr+eEr29rvsNth1GYP6/i4Q2+9nvr5uytRtHlWHr8OvB907w94VuM Yv6Svfa3wK231bvQbJNRnBk8LlJpoRPPF1Z/lxppFN+bOBZ2BNc6l1Z54Xqj sC+aP9kfXGp/2mCHCKPweXU+fRN4b+FtB5NWG8Wm2EUeD8Bv32wrPHeVUSQt 75pQsKVOuO8YNs4+zChKjDB3aAmOVwa9erLMKDq1eBI5DlzOrOzgRSFGEVxq c+Ed4AI2BTOaLDGKU2+9pzwBr1eOT36z0Ci+nK3zplgr1O8TkSXXzjeKOqtz PNqCW0Y5H+s41yiG+8ckTAYvHFN5UN5so4hsPcNhH3iG/amSB2caxUOLthtf gKOahl8fNt0oin4qaFbGGfWvuX1I+SCjaJ94a0onsH/Dwh53JhvFzPXhb2aA +03aU2XRRKOIGdu/55H//nxnWI6YYBRZ7a3OvwFfP93mSu5Yo6hZ6Y2DpdAJ uz9i6/ExRjH4y96N3cBL9CXmjBtlFOuujjObB06PbTjc3s8o7m5ynHoSnN+3 XqcPPkZReFL+mw/gMqOX1NvrbRRtulzoad1aJ/bdvVTef5hRTKu6+HwvcIsj fnq7IUZx9GfXekvAvxfnZX0caBQfbplHnQWvt/n79JCXUdhuf2L2BZwfkXc5 sL9RDJi2eWqNNvg8e0w+2qyvUaxxH5HhCXYp9Gvj315GcauGXa8V4CsJpoWX PIzC9CfnfCL4wZ3aY5a5G4Xzg5h6v8CbkzJ79OlmFFP2zIiq21YnKl290cja zSgOzW5bZCj4aKpn6Q+uRpHZu1DQGrB+Z5VPMR1Rz+rezrgG3vt9c+K89kbR X13d6y84/7Pvmh4uqGfJ/S80dNGJO0V0w6zbGMX1g1b1fcGNdV9q5Tijni14 ExUJFslX3iW0NIoWXvuK3AVfziyyfZUT6lmD8UGGdnhf3e/Ud0Qzo9hfsOnb ZmBTcGF9c0fUs+f5vcaALWo/2VmsMerZ8QsXosGPurm0fd0A9Wzp4vqPwX3P Pnh4qh7q2ZBum8za64QhxGLQSnujuOJYpqgADy6/7rmfHepZsadBgeBrJd54 uNQ2imavN7/dBe4wYunZyjVRz06N6J0Cbt2nbOXcakaxZ4VdYskOqAd+5uMf 2aCejfhcvz04b0zpU0etjcKy5clNQeDgGVu+hVVBPSs9s+hBcOT3LrbjKhlF SGbbaa/AHeZua+duiXp2rlCmRUc87+aO/RqUN4r81bd7dwHXebVqoLkF6tmo 1YmzwREBrr1+mBvFmDaeDY6DlwW/a/G0FOpZOevNmeCPNfRl4ksYReqnN0Ur d9KJmSdrpGwvhnp2cd+0HuDY2+nhIUWMovuG8ZkLwCHdbzsFFkY9G9e0Txy4 2vCJd70Kop51+JOYBT45dWSv9kbUs0qJDWxd8f22b3m5nh717OvizX3Bfolz qldUjML/WrdioeByjW6ML1gA9WxzmekJ4PEV9u39lm8QzyY9zfwGXtD6+J1X eQZh7ralT+3OeN5OBr2898sg3Gx8Lg4Ez727POX8D4OY/8uu4Sqwe7VFiUe/ GcTZ2583XwY3Wv5j9fYvBvF9+8liv8Gx9uPdI3IMwmH6zOn1uuhEeZ+Q70uz DMKnh8u74eC/z5/Mm/3RIDbXLNx3Hbjn7M95E98bRNKf2xdvgotO8fUclWkQ JR+ubqi4YT3b+F70sAyD6LTXc0sT8KBRF+96phvEnGDr4v7geiWSMnq+MohT fTKmbwL79N38uutLg/hSd/+7++DCZ49d7pRqEHX0E/oW7IrfR97eFe1SDGL4 k6aXWoBnFKvk3OapQUQe+tNwHDik4aZ7zskG8XBB4pbt4Crvrrq2emwQxQYs Kf4E3ORzo50tHxpE+4bdZxTrphObukzJaHnfIGYVKvu+DfhMczsz57sGEZP6 tO9kcP9WmSVb3zaI7ONbLu0Fjy3fMa/tTYOoGeLT6AU47+bLSx2uG8SQoXWj zbvrROLGboFdrhrEuqZfincC2xWuo/a4bBD3isXOmAHWPSg6oe9FgyicPvP9 YXD7vLALgy4YRNs4l35vwIZz7l99EgxiWljhyxXcsV/bmKEfd84gjvncadQN XKjHp69BZwziQ8s10XPB55MKJM6PM4hq5l4lToKD/E6NC4s1iAHvrGd+AE+Y eSJ/Y4xBrInPeG/VA+vXqyt89h43iFtr9vfrBfZ3Tj8Qe9QgTKMnXF4MDi3e /f6VwwYh2jZrfBb8bOfoB0kHDWJK+b/Rn8EWR58cztxvEIezEkvU8MDvt1wj /7y9BpF5cclMT/Dd/LIFiu0xiKqR3T8sByectxprvcsg+o8v2z8RXNmQdarx DoNY1fHZ5Z/gmVFVXrhuM4jrlaMb1+2pE1O2dU8dHG0Q+m8+W4eAg3ytTk7e bBAtrtctuQa8enJdv+VRBjFxy5eZ18C915f9tjPSIPZPjv3wB7ziQVDfhPUG 8cZtVv+GvVAfvX+tehphEJVt213xAdteqr/z+xqD6JNbuEkkOG/vhbBSqw1i +Z07W++A3xu6eTisMogrO9aUNPTWiaX5E953CTOIAjO8ZjXr/V99vtfPf7lB NPOo+nE02HZ5kagloQYxrtbb/tHgA1EJMXuWGsSev/uvPAIfabJqx/XFBvHq 4YQmZn3wPEZX9fu40CAs9zXb5gx28i6plFhgED3n/C0ZCA5qqRvTcJ5BhPS9 OGsX2M06fH+fOQZx0X7px2fg386j4qfPNoh8vbtnyb46MVFntyN6pkE0eVr2 ajuwrXHSwKvTDWLM4WdNgsAXq398mx1kEDsXRm87AG4R2Khd+akGkTrAt9Qr 8HDHrPFtJhtQZ+xnW/TDvz87ftyoiQbRvfDXj53B1v3cWq+dYBCLX8R6zgbf G9T05flxBpFwYtbVY2ALu+ruWQEGkRvSzjETXK9i3IqKYwyiwTCz7ZX64/dz ccMm11EG4d/sbqke4FVfRs2Y6mcQW4uvnb0AHLH7fq3dvqhn6V6fToHDrCZu Sx5hEGVOV/XKAv+9/P1DYW/Us5Vvr9p46sTidn+UlsMMYoHvAce+4CeB9d8E DEE9axW4PQQ81qfJmq2DDOKHefPSCeApw4+WShqAevb+7+xv4G1vu3oW9TII 34SLn2p5YT2142BA2/6oZ2uXeg0E35g7vVtQX4NIHu1+bSW4R5RX7uHeqGcu Fk0vg8+2/xHwrqdBuFZI2Z4H/qZ8PWjjgXqWHV263gCdCAjNjR3gbhBxl3yD h4PNHh4JjeiGehZpnxUB/vA7sfYDN4Owm/DV6ybYzSt5RYkuqGedTl3TDdQJ r5kR59xcDWJjldlNm4BLVd17YmlH1LNv7Xb4gc2an5p4rT3q2Q0z803gQR/G /C7UDvUs+m7wffD0leNdXduink1Zm2UahPXDyTGDlrY2iJNdBwxoAZ5fpajT TWfUM1ub62PB607+eFa8lUHUynvbdDt48u4kF48WqGd3D+xIBmd36j9+bXOD WL8z0LzYYJ1oZ1vD+1lT1LMZzee0Af/+mlmxqqNBmPUskD0JfGaP2zrfxqhn tS8N2Au2H5GffLChQUwvEHI9FXxl6rbnP+qjnj1yb2Y+RCeOj/y0Q9QziI/7 LHZ2BO95v6DBEnvUs7kp5jPACW/KBz+wM4iB/bbOOQzuOcFjZZU6qGcOI7PT wclPUr39axnEbYPDwApDdeLUWv+8mBqoZ8++Xu8Kbtxraw9DddSzI6eazQU3 yGro72GLerZo9s4YsPX4ay7RVVHPBrYv8wH8uIJ5ao6VQbxrVGSu1TCdGNH7 bLM2VVDPzO5l9wT/TpjUc1Ulg/B8uXbgYvCZ2u/t0y1Rz2IG3DgD3hx69Ypj BYO4EWrT/DO4k0W89dJyqGfDM3dWH64TmTYzmqWWNYiWzQ+W8QRbOB8s3qgM 6lmJiXOXgw/ZGLYtLm0QB940z7kA3h9X93tqSdSz0wUG/QQXtEoyOJYwiCqr Lt2w89aJ8Iij95YVQz0bGdJ8CDh5Q4BXRhGDWOHcY9dq8PdbcdHCDPWsTLmy 18CTDR23ry9kELoPKXP/gFu0Thz2zYR6dn5rToMROuF65EVKd6NBjI8YOcgH fOKEW+n9etSzMQ43N4CnPIlTC6uoZy7fmt8Buz1+esBHh3pmGbdL74P6HD7Q /NJfveiZM7tsM3DDGt8aVvujF6GX288bDR5+t3vR+b/14uLGIp+3gHcqNpvT c/Xiz4R7gx6Bw/pU+tD+l140cY24WdgXX39dTvauH3oRYDXQyRk865z7AbPv erHzu83uCWCzD1k2AV/14sWNzLK7wKUCZrrf/6wX5bYenPcMfDbxYJOmOXrh PnXi5xIj8X5b3eT+xiy9WNzNaXA7sMOJi9X1n/TifDXdralg3xol6vt/0Ivc vEtOB8DvylzNufdOLxreC9mdBm72ZKuvU6Ze+O/qYWHhh/fDT4/V2zL0YtvM cvM7g6OtQicXe6MXz3o+/zwLfLiuWnzqa70oU2fb4GPg5tX9PF+n6YWbzu/W W3C20ySv7i/1YsFjhxaV/HVi5fWnJc+k6sXZ/d92u4PvenWbVvu5XvyYG2ex AFwnen5ExDO9qNc/eP4p8J0pDUeanuqFb70OXz6Bg98W/TgpWS+2GIsOsRml E6NtrtlkPNaL5Gf3bvUBl1tQqWjfR3pR6mhEixBw47Vndl19oBeuiwfuiQcv Mw3+7nRfL+YOsi33Dfz88KlvB+7qRVzjd/NrjdaJmPVzd1S9oxdfzQ59GQAe mj224NpbemGXNnHISvCZws0si9zUC++TTrcvga39Vz4Pvq4XG5fpWuaB255u 2OPnVb14NPzyHocx+H3duz8x4IpeFHMKLTccvH53rU4Zl/SiQ0mPBRHgTN8P 1wdd1ItZGeW+3gB/HHg/P+mCXpw883yILgD7EXXN8x7n9SJ71bbbjcGzvr8f fTNeL2r5+bX0A7fVhe7teE4vhop6e6PA78zrr008oxfry34vdx9cuPOKeq1P 68X9D3ELTGPxfKYPnXz2lF6YXQj+6gS+6TbEv0WsXris6zB0LLhoWZcicTF6 MT2g6J1t4PgfF/o1P6EXx9vdb5kMbvlgncepY3rx0XLd3qLjdGLqsZm/mh/V i+qfB5ZvA359pU7n04f1YuAV24WTwB4j+3dsdUgv1ka9+7oHnGqemB1/QC9u Bx4amgq+Nq6qi8t+vSjYedKd0uN1YoibQ5sre/VCWLdo1RH8asO2d1326MXU H7p908EDprRoeW+XXhy+ebn8YXCE7eFmfXfqxbutoQvTwV8Knkl9vl0vqgZ5 fCs/AZ/fYxUcRmzTC8/u5Yd1Bb95Oq/Gp2i9WFU99c4csIvniSuTtujFjd/b WsWALRr5lSqwWS8M9/32vQdXXuapXxKlFy1316tgFYj1aUy7KPONejFp1veF PcEDq75O3bRBLw70Ov1tEXjQyM9X6qzXi4w6c4adAWe52vU7GaEXVZSOd3PA 4/a6rWi3Vi/6JhV1rj5RJ46Flxpzf7VerDhwf19/8MPGjp+HhOvF1XnrKiwH W72aXDFnpV7oPActugDOKxP2YXaYXjSvX+37D/CVUc5DS67Qi/Gm98PsJoH3 OM+IXqYXe1MO3R0MNp7s2rJRqF68OjrJeTW48ZZa0ZeW6kXFJS32XwVHrg3d 228J6tlgxfIP+Ge2Y7+Pi1DPmlxZ1GAy9rs13uwJXoh6VmTZ9xFg++Rem8su QD1L8xi+YfJ/v2+XZvvm6YVjbPl7t8HFU8ZObDMX9Wx5qrN+CtZLVhE9k4P1 Ypf39v1NwVvipzwaOxv1zMnfcjR4aom7uQVn6UX5UvUXbwFPnD8oYcsM1LO3 378/BKecTKvlNF0vlpw9PbzwVJ0Y6VO+0cMg1LPwOfdagWuNO58aMFUv8vw6 iglg/+RIO7MpqGetix3YCd58yafCzkl6McrigeUzsMuctF1tJ6KefVy3uEQQ 1o9Tbjx+MUEvUi4M+uECHtksfcfM8ahn66t5TwU3nPShTKVxetF17Pt7+8G3 1Gjb0wGoZ+0PizTw2OSL9zzH6MW5ipMPlJ2G/UqJcla/R6GefW5RsTP4Snrf Ihv9Uc+uKktm/ccnOq5t5Yd6tunKj6Pg+vpd8S98Uc8mLvN+C5491nHRXB+9 eNK55/2K07G/io/5WH0E6lnVCq3dwUuSM7OvDdeLzj9TD8wHH0tcFhYwDPXs 1vaKp8CBe31umw/Vi9Pb/Jd8AtdKbrzn1GDUs6D6P6vO0ImDp05ZDxmkF3Xd f3j3Abd/HtO44EDUsxpn7i8FT//yKf2gl15E5c9pHQ8uc926QV9P1LP7HQ9+ BWf1LlVB118viu8pVqnWTJ3I2T1n456+qGezHywZAH7/o9Hpnn30Ynbv9T/D wPNWv5/4txfqmd3gEZfA1j99r+3pqRc5SvUHueCbxwNie3ugniW/b+0wC38+ /3wbtQfq2cHDB4eB67S0HXGoO+rZ/MmVIsBeD/vYDOyGeubZcukNsL+3VVCR rqhnDdRfBWbrRKtqrf3iuqCeFbw6ojE4edSML36d9WLG82UPRoJbHosoY+mK enasZ5sosOeq3neud9SLT0sqHLoH/pYQZDOjA+rZkBeVTMF4/1lcLebQXi8G Oe5Y6gR2WWpY+dIF9azoqF8B4EcNv+4Lb6sXd17V99kGDujQb1DHNqhnp348 SAJvtvy167fQi9YrzrQpOgfry2oRiw87o56NmHuoNTjgZ24Bn1Z6caRFp8qT wF06vilWqSXqWaniIXvApTMqH73vpBc2mQ9+PQd/uDjy45LmqGfn1vuUnov9 wdelZ9o004vw1YMfdgBvj3a1yXNEPfOv3nY6OLGif+VjTVDP2nw4dAjc/vaR A6Mbo56VO1I5HXzaJeN+jUaoZ58mh5Sfh/1V9VuhaQ304mBiy1w38P3mdZ9t rI96tl71nQMe4HvtbL96emE17urDE+DgI/6NyzqgnnVY3vY9uIzTY+f7dfUi rFKvw1Xm4/ttfT9lhR3q2ZcKVXqCE22rF+9WRy+Uay9CFoHtB625X7Q26tnm HbmnwdOWvKt9s6ZeTJg0yjcHvHVApnloDdSzLg0eVVugE4329wtzq64Xr6v+ bNsf3NRf2VysGurZrzOHl4Gr7dwj7tjoRa/bc6tcACeElp+wsirq2fZOoT/A pUeWdexlrReXphXPq7MQ74fNviHlrFDP3B/6DgYfiXk8/lll1LOaGx6Fgxd0 r/NucyXUsz+DXa6Cf9Ws89m7IurZg+pH8sHFK25aUscS9WzPhyoNFmH9Zd3t aE551LPgI6EjwOlu6qiT5fSiR58peevBle/NPTbLAvWsbquRt8GX8iJCOpTV iwuq/rG6GPW/kdnX4mVQz5KvujQFb1K3vksqrReNDi0/Mgp8unCtsdGlUM8W 9LLaAv5WcMS8USX1YruX5bKHYIfkqjUcS6CeNXiZV2gJ1g/ja/ZViutF2UI7 R7YCd89wtrhVFPUsddTj8eCkEQ2Gry+iFwuPN2i3Ezzd6WorHzPUs6U/jzwF z7x+c0ejwnrxc8hZqxJL8f1GFIpUCqGeNZ23zAV8WbSvfNekFyOLuf6eAg6c 7lZ3sxH17HVxv/1gG6vMKwEG1LNTDx+/BM+yfJXtrEc9C9vQrmwI6v1Uw/YS KuqZz5CjrmDLwRXSX+r0Yl7LGtazwJtLfDh0tADqWemPy46CHTNcCi74q4pv mUd+Z4BNnlnv+v5RRd34KX4VQ3Wi5J/jfe3yVTFiTauk7mDrGcPcC/xWRdQo ffv54LhN5x88yFXF4zbXjsaCDR2j0nb/UkXx8iusP4GPjU8ImvVTFR2zei2v ugz7oSY/Inv9UMXsi5b5vcFTLhXuZPddFbEbXvotBVuOvjxT/aaKnHE7k86B y4f9bPn0iypqdxzd/is46cjIBUc/q2Jo5YbHai7/rx696ROSo4oNX39aDwDv ntD8iHe2Ku5fO7s8DHxtdf3VzlmqKLJlXv5F8Na4tQUqfFKFy2RX/1zwqIym X79+UMUMtxLJ9ivw9Ru/DLjzXhXHbR61Hwb2eOI1Yd87VXz6teHYWnC36lP+ LMpURY07Q6reAN8O/ltixFtVDNpRY0WBMKwPA87taZuhiojpH/MbgcMXz7tu /UYVd3oc9R8J7rHAckKBdFUUqjU1eSN4REP3LamvVNH6b6sO98Dlp3zudS5N FUEP9ceNK1HPe95YsemlKo7svVbVCZyZttd99gtVvA9esSIAfKnnwIghqaqw 6dv7z1Zw5LdDw9s+V4WXfcVRSeCJtcadqJaiinB9WnKRVfi8jh4VWvCZKm4+ 2dmhNTi919jM909UYTg8+vhEcFaY67XbyapotbChzR7w6YwrDseSVDFpwK8V z8FdmsSWX/dYFQcbnvtTKlwn/gRmLpz5SBUZheaP6gCed7RG0PCHqrB64fpk Gvhm+TbZrg9U0e9EiY6HwDkZxnf176siLOTR8dfgWpNcfMrfU8W1oZE25Vdj P9voqo/uriqUZkPD3MBxe4e9z7ytCqfiNf8Gg0dMS8u5d0sVE9I/jjoB3uRp Pu30TVXsizv65B3YvOKVBTtuqOJ12NSOVdboRM1tN8zDrquikq/zCQ9w8uds 2+nXVNGrlcF2Efh4ZX2Mz1VVLDO/HnYafLnXw2seV1Rx6d2Kv9nguSkNB4vL qvgb33t0tbXYX5bKmlT3kioc11Z82g88deSjYpYXVTF2dFrHZWCL0bE1CiWq YlfbXSfOg/XxPgk/zqviZfkxtj/AVywPP32ToIry2Q1X1onQiU/dvSc9ildF j0u//g4Cf23fM+zSOVUsiTw3Ojziv/tpN7uYs6q4MH7+0yvgD/Ordth1RhW/ O3bulA/+XTz65brTqmhUpWRM/XX4eimReUvjVDH62yPbEWDR/lX4zFOq2H49 cuV68KS4dvvHxari+ZahBW6D354Pd/E+qYqyU2qOUdfjffxrc/9+Maro1vXT U0dwWEmnLLcTqlhoe6zTKLDVw4ZK2+OqiM+dGrMZHGTjtarpMVX8vONc7SHY /fO8aPujqqi/07Cq0AbsJ91mOVQ7ooqRM64XaAWO6l2xecXDqoj2CBszHry3 Xd3zpQ+p4kmtPs92gFv5zr1sdlAVpQtUcn0KTrbO7qQ/oIrOj9JiikdiPfje pVP+PlXM27ermgs4p6fHxe97VXF6zphVU8BG5eOZ7D2oZ30b6faDG+x/1eD9 btQzh9wxL8G1qxeyfbML9cwQ/6zMRrxfeziEvdypik1P57u6gmfXqRmUsgP1 7HDnkzPB7c9ffJ68XRUlFpWsfhS8yOnJ2UfbUM8GPl6VAY6461jhwVZVBDfa qKsYhc/n/UPZd6NRzwoPC+gOVndatLmzRRWfX9RMmQf2T2xV7PZm1LOYT66x 4KhTP3ve2qSKYaHHTn4Ef7crV/ZWFOrZsKDqVTfpRPT9APdbG1XxoJkI7w0O m3bPeDsS9ayEUVkK9jaWbnJngyravbkecA48zE+fenc96tnpsJQv4CFHpuoe rFPFiZV9OtfcrBOx+e02PopAPfOtFOsFbjK7xZHktahnzq+qh4ELzaknUtao 0ocDHx30rf3L1ar04cB5iwdeSg9XpQ+3RSeezXc++26VKn048IQP/vbZK1Xp w4G/+cWU/R6mSh8OvP78t0m/V6jSh4vWiRVXcruqYM2HA3/wXh9VeLkqfThw xNpd3qWWqdKHA3cY82trhVBV+nDgocWG9LMJUaUPt1Un8g8enW+3VJU+HPh8 1MWaTZao0ocDpzfzbyMWq9KHA5f9OuWe6yJV+nDgMR4XknotVKUPtw37+5zK vYYsUKUPB44NGtxh9HxV+nBg/4NeB6fOU6UPB9499G3Igrmq9OHA54KSUlfN UaUPtx3v1xzdri3BqvThwCl3m6UfnK1KHw4c1qLX2rOzVOnDgbsPq3X25kxV +nDgKkuX9kuZoUofbgf2W2buIz9OV6UPBz7brdvH/Gmq9OHA9g8804uBNR8O fKdmF3erIFX6cOD0rG/1GkxVpQ+3E5+P5/bzXKao0ocDXzp1w7XPZFX6cOAW g7bP85ukSh8O7BWzrP7Miar04cANEga6rwxUpQ+3C/Up5P2rHRNU6cOBLVqa ZcaNV6UPB/5sCB98d5wqfThwAXsv14yxqvThwLuKNt+RH6BKH2431qvF9YHm YM2HA187sOJonTGq9OHAHkEnhrcdrUofDjyxZJeFnqNU6cOBg6vVtAz0V6UP twefl6nWVqF+qvThwGteFluzY6QqfThwaZfL0+N9VenDgdtHWD944qNKH24v nrc3Xzd8G6FKHw7cx7XcgxJgzYcDn/k4dLqdtyp9OPC1ovvCOw5XpQ8Hbvfz WkXvYar04fbpRLEia83nDFWlDwcuFZsxbdMQVfpw4Kazw3ucGaxKHw7c70tg xNNBqvThwHWPD3bLHahKH24/6v9Uh3HlwZoPB36hxqrNBqjShwOXqv1Q389L lT4cOPiuZ+BUT1X6cODAbNse6/ur0oc7gOc/tGBUXD9V+nDgqPjnfVL6qtKH Az8/NGvW3z6q9OHA4WsumFcFaz4c2P7UHIt2vVXpwx3E/idw9ULfXqr04cCF 7B8MD+mpSh8OLAZbHDzkoUofDlwn3HHEwx6q9OHA+UOLLsl1V6UPdwjvs4nj KliBNR8OXHRBC4v23VXpw4FHeXWYPaqbKn048NO7fr1WdVWlDwf+cmvWmlNu qvThDmM922VQ27QuqvThwEXc0zwLgzUf7vB/662XqQ06q9KHAycNdrzt6apK Hw48+GpcrfmdVOnDHdGJjhM7Zh3oqEofDmw4daJKcgdV+nDgIb9TT6lgzYcD jz20Md6+vSp9OPD0flfr9W+nSh/uKP79i1uYLXBRpQ8HXvTqTrcjbVXpw4HP lx3853kbVfpw4O6vLpQtAtZ8uGNYv1o8imjWWpU+HPhM2Nh5PkKVPhx4YsvR yaudVenDgSuU3bE2sZUqfThwaLVvZ7+0VKUPdxz1YF6jbjZgzYcDn+zXqqNH C1X6cGDvpx92z3VSpQ8H3utWIfBYc1X6cOAu6pYd6c1U6cOdwPtkgGdrC7Dm w4F3XLdx6dRUlT4cOO76gwPTHFXpw4GvZHYMPtBElT4c2CK+f9zLxqr04WLA P157lQFrPhzYrd15706NVOnDgTsF3Hw4o6EqfTjw2g4v9x1poEofDnzkQNK7 jPqq9OFO4n29ctnySmDNhwOvyE5Z71FPlT4cOPDuliJLHFTpw4Hd3I6/jrdX pQ8HHr/4S9WfdVXpw8XqxP2TjpcdwJoPB/5sOeCuj50qfTjwnQLOrTfXUaUP B355/mTZ5Nqq9OHAuuvb3UuBNR/uFOrb8pc5nWup0ocDz13V4cf8mqr04cCV fI8Oia+hSh8OXH5vgfp51VXpw4HnmMy8m4A1Hy4O693GB/LHVVOlDweumnsx d7+tKn048IYa9l7vbFTpw4E/RZ63rgHWfLjT+P7aD+o8vKoqfThwiOWLpC3W qvThwAVtrK+lWqnShwNHj/lTuTJY8+HADpV6Pvaqokof7gzeh/3/fN5QWZU+ HNh/QPK4p5VU6cOBQ/0TPCzBmg8HHv1wZYRnRVX6cOB+P2uJSEtV+nBn8flv Ocw1pYIqfThw9YqWMZXBmg8HNi9jv2BweVX6cOCSMVNiosup0ocDh0Y+dk23 UKUPdw71bFQNUROs+XDgIkkua/3LqtKHA5feVKT7wTKq9OHAc5d6+n0xV6UP B46cUOyNI1jz4eLx/TdTLkwvrUofDnzhWmnd+VKq9OHAVtZWm01gzYcD72mt 3+xWUpU+HNiy5cYC4SVU6cMlYH/ncCXhSXFV+nDgrq2HvrIGaz4cWNne0Xtk MVX6cOCR6/p2OFxUlT7cf+wbsPhXEVX6cOexfvDxq9MGrPlw4OLfq9ddaqZK Hw68ffacZQ8Kq9KHA4fP6N+tMljz4cCrx4QE+BZSpQ93AfXzxbdPRwqq0ocD b/MLvJlvUqUPB/58ML1wJ7Dmw4FPDqixM9yoSh8OXNvOIvqFQZU+XCL2F89X 5tmBNR8OvLr1lKNT9ar04cAT7bdfvaSq0ocDxyz80dIcrPlwF/H+a+5WYqii Sh8O3Mt5njikU6UPB76xNujWnwKq9OHA8d2LnXIDaz4c2Cq4krrxryJ9uEt4 fl0X7P7wR5E+HLjq4+r7W4A1Hw4cMyClaGi+In048JxKi66n/FakDwduNNjw xh6s+XCXdWLa1IYDZucp0ocDf7mUXe9eriJ9OHDFQ5ZDbMGaDwfusGPlx0m/ FOnDgZfbNnp09acifbgrOpF48HmFSmDNhwMPfTQ2buwPRfpw4OB6V2MSvyvS hwNfG3SpeHmw5sOBhxfvcGH0N0X6cFd14uOXWvfOf1WkDwf2vu7WohxY8+HA 1QaE6cZ8UaQPB7479b514mdF+nBX//OfPkdWAGs+3DWdWJl4a/y4HEX6cOC0 hHZbr2Qr0ocDB75tYm8F1nw4cEiT4NJTshTpw4GHH1U97nxSpA93HfUwYOOH mmDNhwMfm1P3RfBHRfpw4K/FV9V9+kGRPhx4WOv9DxqBNR8O3NzV8+Gy94r0 4W7oRM8R0x0y3ynShwNbP8lKawvWfDhwxOfwrKhMRfpw4BqGzr1y3yrSh7uJ /URATuneYM2HA3tE+NQ5kqFIHw6852PIhmJgzYcDB75BqXqjSB8OvEs3bP6V dEX6cLfw+7t07081sObDge9fCLgz97UifTiwY1j53JevFOnDgRNuHpwmwJoP d+s/36ZUr01pivThbuPz2NRqwZ+XivThwJdvxBYbCNZ8OPCSDWc/nXmhSB8O bOdfrHplsObDgdcUWnxsZqoifbg7OtG2S7H1qc8V6cOBm5WY+UiANR8O/LPZ yZHRKYr04cCjj0d66MGaDwd+MdEsfMQzRfpwd3Xi3cTXta8+VaQPB/aJMZWz A2s+HHho216ey58o0ocDF629/+vnZEX6cOBDc7Je9QZrPtw9vN/8f9eMS1Kk DwcuW/jYhSpgzYcD91ny/ei8x4r04cCjqmz7lflIkT4c2FHdGN4NrPlw93Wi 96SEeccfKtKHA1eIz7lqCdZ8OPAk+2LD5zxQpA8H/lzmR4/M+4r04cAb74as 6Q7WfLgHWA+eP2h/8p4ifThwgR7C0gqs+XDgnA+VvRbdVaQPB/YuaJeTfUeR PhzYoUrHJ/3Amg/3UCd6HPGwuHBbkT7cw//6kRx22YE1Hw7camxcyJpbivTh wBPikhILgDUf7hHeLxd8uvvfVKQPB65ds5PDoxuK9OHAu0MHDGkN1nw48Puo +W/2XVekDwf2LBJ9thxY8+Ee430bsipz3jVF+nDgC8nNfXKuKtKHAx89McVx IFjz4cBbM+v2v35FkT4cOLGV0+2mYM2HS9KJfQuD1+y4rEgfDtx6w8uD5mDN hwMf7NXCcu4lRfpw4D4R45NyLirShwMndPLOGAzWfLhknVja61uHO4mK9OHA g/apuc5gzYcDv2g7Lv/gBUX6cOANZav0sAJrPhw43+bTjxXnFenDPcF+e+y5 Tzqw5sOBu+sDm0xIUKQPB3758cOt1/GK9OHATZzNTvYGaz4cuHbxQzlXzinS h3uK9//U09OcwJoPB06OLNn7wFlF+nDgyKgVs63Bmg8HztlRIS/8jCJ9OPD+ tBUXC4I1H+6ZTqTMeZA6/bQifTjwidOXOuXEKdKHAy+92lEdAdZ8uP/+/I1T kaenFOnDgcN6BQ/vDtZ8uBR8Hj1zzS7FKtKHA7u1XqS0AGs+HLh9zyIdj5xU pA8HLpDu86wmWPPhnuPn0WH6uU0xivThwNkPaueUBWs+HPhyRs9xy04o0ocD z0996mwEaz4c+HTlLV4zjyvSh0tFvTBbcPn7MUX6cOAHxUbNDgBrPhw4cnWj hW+PKtKHAy8rnvB0CFjz4cBbsz7PeHpEkT7cC/w89+4d3Qus+XDgNWdu7Ll9 WJE+HHjfZsfGrmDNh3vxnx9ys8jFQ4r04cD2T8bWF2DNh3uJ97+jsjXuoCJ9 OHDi+GFDHMGaDwdWLSaNOnpAkT4c+MQhy0QHsObDgR1vN/bdt1+RPlwafv76 HX1rgTUfDjz/tdvqHfsU6cOBexuLV7YFaz4cOFW5/nnLXkX6cOBxE4eVtgJr PtwrrK/yYmdF7VGkDwfOa3TIsRJY8+HAARdqOEXuVqQPB050VZZYgjUfDnx9 rLXthl2K9OFeo96kjChkCdZ8OPDJZseabdipSB8OHFX//TFLsObDgcuO/xgU uUORPhz42+7IpZXAmg+XrhOHFz95E7VdkT4cuMeFRSFWYM2HAw8tvHh69DZF +nDg1NJnTtiCNR8ObLfG6LRzqyJ9uDfY33TqUKg2WPPhwF7pg633RyvShwNP qtZ4bj2w5sOB9yVutz+2RZE+XAb2V7PCbZqCNR8OPKT0qyGnNyvShwO/bjUh U4A1Hw48NqH6qYubFOnDgd09U++7gjUf7i2ev5szm9yJUqQPB2795M3LXmDN hwOfavvr4dONivThwM4315YaCtZ8OPDq5tvWvo1UpA+Xif1M9wLeAWDNhwN7 3QsN+r5BkT4cOHaBfdIMsObDgXc0SJxhAGs+HDhnQz3/0PWK9OHe4c8X9dpc Bqz5cGDdOfNKUesU6cOB+xu6v6wO1nw4cKWqmR8ORijShwPHPE1wbgbWfLj3 OrH4Z1zy+bWK9OHAT1vFnuoC1nw48I3ADWmP1ijShwO7DHZxHwLWfDhwxqXV xg+rFenDfcDnZ8w4ZTJY8+HAiyvEuihgzYcDf1/R9WZouCJ9OHCX1aUjy4M1 Hw6se595aPsqRfpwH/H+7nnUrAFY8+HAPVa77zu7UpE+HHjr6B0rO4M1Hw4c FbXqbFKYIn04cP23uQ4jwJoP9wn1qdDZN19WKNKHAw+OP5sWDNZ8OHDba89t SoA1Hw7s8Orv7qjlivThsvD8XlIn1gVrPhzYpu6NeaeXKdKHA1+/0zy5M1jz 4cBRvvXHPw1VpA8HvrknrJs/WPPhsvH9dWk5Li9EkT4cuGWBso+XgjUfDvx1 Sv7simDNhwM/HfFwzP6livThwO+nzNrcCqz5cDnYD3ullLmzRJE+HHjomTu3 hoA1Hw68vJ3T9S+LFenDgftt/FN4AVjz4cDC/3doObDmw33G+8CjbM+9ixTp w4Hr5dYd0Aqs+XDg5D+2u+8uVKQPB75cIMXRG6z5cODbkY6Ffi1QpA/3BeuN 0WUrhYI1Hw5ctojnBGuw5sOBRxfLMDsxX5E+HDi3YOQbV7Dmw4HjQj3VF/MU 6cN9xe/PzjR0Iljz4cDO42crZmDNhwO7vdv1evNcRfpwYLNKQws6gjUfDjx3 Rejom3MU6cN904mmV4qYDwdrPhy4cruEvNxgRfpw4JD5IbYrwZoPB3Y0dF9W C6z5cGCrlh+bJsxWpA/3He/rre1s+4E1Hw5cbF/z7jmzFOnDgbte3n96MVjz 4cD2w2aPrArWfDjwnneresfNVKQP9wP7u4tX5/YEaz4c+Gw/NefjDEX6cOCQ glWjFoI1Hw7crb5pqTVY8+F+oh7VC4+Jm65IHw4cPWCPTW+w5sOBU4vXuZ09 TZE+HLj/uh+xS8GaDwee3CnnVXWw5sP9ws9/1K8u54MU6cOBf7rmfB0A1nw4 8KPap57+mqpIHw7comtj3Rqw5sOBi39t690ArPlwuXhe+lw23Z6iSB8OHH54 81t/sObDgf82PmwqBNZ8OHCzsk+G75isSB8OnDnr99+2YM2Hy8PzuvFX0stJ ivThwJvCj2TNAms+HLjR4oIulcGaDwd2X//s4emJivThwCdfFd/uCdZ8uN86 MWfG3MO5gYr04cBW08vlrQNrPhzYLftgcDOw5sOBi2XUbpc8QZE+HPjASL92 U8GaD5evE8dndJtTHqz5cODXtnF5seMV6cOBmwxYdrg/WPPhwPes9mzNG6dI Hw5cakTW3Uiw5sP90YmJVZxbtAJrPhx4q1NQWupYRfpwYO/twYnBYM2H++/P 2zZJswFrPhx4+K8pTpcCFOnD/cX6YnvtO75gzYcD59rYbTYDaz4cuFvngXsP jFGkDwe2ytqS4w7WfLgCinj6/PH4b6MV6cOB89Jf2K8Daz4cuNCNjdVagjUf DryxZ1bvl6MU6cOBezufOD8frPlwOkWkdbjvWxus+XDgH9VqdLrtr0gfDtw7 dOWwQLDmw4Gv1P0eUx6s+XDgqkcbtD/np0gfTsE69mLNYt5gzYcDVyoYW9wM rPlw4C2Wia6HRyrShwM/3lD7XB+w5sOBH1rdHPXHV5E+nKqIC61CPLaDNR8O /GR+xwldwJoPB/afk3b9i48ifTjwi9PNB2wAaz4cOC62fo22YM2H0yti06+d td6PUKQPB3b/NWP4KrDmw4Hj6oc/dgJrPhw4y+L6nNfeivThwA6V1BGhYM2H M+DPD1QMbgLWfDhwUpOf91OHK9KHA9+tMGngYrDmw4GVM5OsGoI1Hw78bNqT 8inDFOnDGVEnjgS7LgRrPhz4+okuR+qDNR8O3D/F0v3ZUEX6cOBVE29XXwjW fDjwjusdGjYAaz6cCXWrpveklCGK9OHAA+6YshcNUaQPBz5kKLG5EVjz4cDd jAMXvBisSB8OnFnkXnQIWPPhCiricvcu35qCNR8OfMewf0b6IEX6cOANXg+c VoI1Hw48bk60gzNY8+EK4b255UffDwMV6cOBG744GrMOrPlw4PVDYzp3AGs+ HNiyU5r5twGK9OHANQ+bl94K1ny4woqofdy+vTtY8+HAy0aVOPDXS5E+HPj2 +3WuB8CaDwee47LXcgBY8+HAPvNtrYuANR/O7L9zzfT+cZ6K9OHASR9uXfED az4c2NYm3q8CWPPhwC2GrBPX+ivShwMH7mruGgTWfLgiqDM/5i6sDdZ8OLBF 514/n/RTpA8HfhC5LHIpWPPhwFNeFw9sAdZ8OPBAi9iZH/sq0ocrivdwTb/T UWDNhwP7FVLrdgdrPhw4eNewOzqw5sOBX3z233G0jyJ9uP/+/H7eAW+w5sMV Q11t+CXTAqz5cOAmufX7XOutSB8OXK9oxPfpYM2HAw/ubrjiANZ8OLDNjn7X 03op0ocrjs9TVmCBNWDNhwP3NXP06QTWfDhw16RZf3/3VKQPB1YaOlw9BNZ8 OLD5D9vE4WDNhyuhiMJ/RXY5sObDgYfZDnO76aFIHw58yNn/aTBY8+HA22o2 W98ErPlwJRXR4MS+xe97KNKHA0ee3b57M1jz4cBhFvrcXmDNhwO3WLMzyAys +XDgIcXH1klwV6QPVwr7vD4ti0wGaz4c+HCbrIp1wZoPB7bf7j3gVXdF+nDg /B6zb64Daz4cWFhVGd0drPlwpcEvrVuYwJoPB17q59v8bDdF+nDgwmH3fCaC NR8ObFlbJNqBNR8OfMAsrNvrror04czxdYpsLxQJ1nw48DzV67MHWPPhwMOu ri5UBKz5cOAGjg26Jbop0ocDt65R8sJ0sObDlcFzPLGUd2Ow5sOBJ+SXafyp iyJ9OPCmqLwGO8GaDwf2aLp14GCw5sOBv+79EFMerPlwZRUR/Sym1f3OivTh wF4HX38OAWs+HLiimceD9mDNhwN/TkpLKwDWfDiwjT6wcpyrIn04CzzHQW8W TARrPhx4VJ0KFeuBNR8OXLNwVsq7Tor04cAXzNrd2A7WfDhwz5q/3wwGaz5c Obxf+3+tWxGs+XDg4VuKbnncUZE+HLh6fg2xCqz5cODN423MuoE1Hw58ptAL nRlY8+HKY19zs6Xt5Q6K9OHAvW5VHD8XrPlw4AeVBrx3Bms+HLjl/efLf7dX pA9XAe+3QnMGxYI1Hw48LLV6/0lgzYcDB03ZP6shWPPhwGN+f7ud3U6RPhw4 ZO0L1wNgzYezVMS9ILdsf7Dmw4GLPKsYXwus+XDg3G/2pzJcFOnDgccVHP58 O1jz4cBT+kbaDQdrPlxFvDfqndxWFaz5cOB6L9a2f9lWkT7cf3zGstRmsObD gTdVtTUNAms+HDhsXFi1ymDNh6uEf3dJl9EpbRTpw4F9x1R8HgnWfDiwPj93 shdY8+HAd5rEN68I1nw4sIjsUv1Za0X6cJXxeT02u3kkWPPhwIOLtpzsBdZ8 OPBbp6HPKoI1H67yf+dOd0amCEX6cOBvK0ZWiQJrPlwVfD4MRfMHgjUfDvz7 3QbFCqz5cODkvO8OL50V6cOBu/76My8arPlw4Nh94brhYM2Hs8L7KCNiezWw 5sOBW8/9MDajlSJ9OPCTIWOH7QbLfDg8x6MNM/zBMh9OEevWhZypC5b5cHi+ Xr6xzW6p/MuHw7+307cjR8AyHw71LTXCZyJY5sOh3sQeadMULPPhFNH4p41L XgvlXz6cIuYn3vQ/C5b5cPhcuIfFBoNlPhw+x0+71W0Hlvlw+Pu73l0qCJb5 cPh5FGy74IaT8i8fDuu6Ps39V4BlPhy+r5+HJ/YEy3w4fH77L91eDizz4fCc /NiZ+6y58i8fDs9fj8zALWCZD4fnNbee+QiwzIfD73/J4KTaYJkPh9/Ttn4J Wc2Uf/lweM5y828dA8t8ONSldg66ILDMh8P7w+12H2ewzIdTxKxX5+7pwTIf DvXsddq4a02Vf/lwinB1qtB4BVjmw+H7ftqhYm+wzIfD93XZrUZFsMyHw/rM rFjvNEflXz4cvt/zfrt2gWU+HOpGyfaVA8AyHw71sM6cmMZgmQ+niGbddIG/ myj/8uGw/ru63eMCWObDKaLCF/feS8AyH04RifXfTnMHy3w4/Dt+uiaWA8t8 OHw+r3g5vGis/MuHw+fcvsCZnWCZD6eINRctRgeAZT4cPgeOC5wdwTIfThFn m9s3+ttI+ZcPh3X/qs+ul8EyHw7Pm/mJucvBMh8OX3ej5/M+YJkPp4gqlS/1 twLLfDj8HFYm/XzbUPmXD4evZ5p08jBY5sOhnq4OXhcElvlweP5HPN/QFizz 4RTx/VDAuSJgmQ+Hn29cOf2jBsq/fDjU3SenR24Cy3w4rP8mOGf7gmU+HH6/ P+eubQCW+XCKKPBp9KDf9ZV/+XCK2Pr6RYdLYJkPh+d1Znz3FWCZD4e/Nyp7 an+wzIfD3wvoecEWLPPh8Lnve8cuq57yLx8O+yBTxxOxYJkPh8/x6E2D5oFl PhzWXUtO1ewGlvlwWE8EzChZASzz4fCeb3mjfLqD8i8fDp+HaktbHwLLfDj8 /ZFRi6aBZT4cvo7Xu0/twTIf7v//k/89///49/i/w/9dfh1+XX4f/L74ffL7 5r+D/y7+O/nv5s+BPxf+nPhz48+RP1f+nPlz5++Bvxf+nvh74++Rv1f+nvl7 53PA54LPCZ8bPkd8rvic8bnjc8jnks8pn1s+x3yu+ZzzuefngJ8Lfk74ueHn iJ8rfs74uePnkJ9Lfk75ueXnmJ9rfs75uWcdYF1gnWDdYB1hXWGdYd1hHWJd Yp1i3WIdY11jnWPdYx1kXWSdZN1kHWVdZZ1l3WUdZl1mnWbdZh1nXWedZ93n e4DvBb4n+N7ge4TvFb5n+N7he4jvJb6n+N7ie4zvNb7n+N7je5DvRb4n+d7k e5TvVb5n+d7le5jvZb6n+d7me5zvdb7n+d7nOoDrAq4TuG7gOoLrCq4zuO7g OoTrEq5TuG7hOobrGq5zuO7hOojrIq6TuG7iOorrKq6zuO7iOozrMq7TuG7j Oo7rOq7zuO7jOpDrQq4TuW7kOpLrSq4zue7kOpTrUq5TuW7lOpbrWq5zue7l OpjrYq6TuW7+3zr637qa62yuu7kO57qc63Su27mO57qe63yu+7kP4L6A+wTu G7iP4L6C+wzuO7gP4b6E+xTuW7iP4b6G+xzue7gP4r6I+yTum7iP4r6K+yzu u7gP476M+zTu27iP476O+zzu+7gP5L6Q+0TuG7mP5L6S+0zuO7kP5b6U+1Tu W7mP5b6W+1zue7kP5r6Y+2Tum7mP5r6a+2zuu7kP576c+3Tu27mP576e+3zu +3kOwHMBnhPw3IDnCDxX4DkDzx14DsFzCZ5T8NyC5xg81+A5B889/ncO8u9c hOckPDfhOQrPVXjOwnMXnsPwXIbnNDy34TkOz3V4zsNzH54D8VyI50Q8N+I5 Es+VeM7EcyeeQ/FciudUPLfiORbPtXjOxXMvnoPxXIznZDw34zkaz9V4zsZz N57D8VyO53Q8t+M5Hs/1eM7Hcz+eA/JckOeEPDfkOSLPFXnOyHNHnkPyXJLn lDy35DkmzzV5zslzT56D8lyU56Q8N+U5Ks9Vec7Kc1eew/Jclue0PLflOS7P dXnOy3NfngPzXJjnxDw35jkyz5V5zsxzZ55D81ya59Q8t+Y5Ns+1ec7Nc2+e g/NcnOfkPDfnOTrP1XnOznN3nsPzXJ7n9Dy35zk+z/V5zs9zf94D8F6A9wS8 N+A9Au8VeM/AewfeQ/BegvcUvLfgPQbvNXjPwXsP3oPwXoT3JLw34T0K71V4 z8J7F97D8F6G9zS8t+E9Du91eM/Dex/eA/FeiPdEvDfiPRLvlXjPxHsn3kPx Xor3VLy34j0W77V4z8V7L96D8V6M92S8N+M9Gu/VeM/Gezfew/Fejvd0vLfj PR7v9XjPx3s/3gPyXpD3hLw35D0i7xV5z8h7R95D8l6S95S8t+Q9Ju81ec/J e0/eg/JelPekvDflPSrvVXnPyntX3sPyXpb3tLy35T0u73V5z8t7X94D816Y 98S8N+Y9Mu+Vec/Me2feQ/NemvfUvLfmPTbvtXnPzXtv3oPzXpz35Lw35z06 79V5z857d97D816e9/S8t+c9Pu/1ec/Pe396APQC6AnQG6BHQK+AngG9A3oI 9BLoKdBboMdAr4GeA70HehD0IuhJ0JugR0Gvgp4FvQt6GPQy6GnQ26DHQa+D nge9D3og9ELoidAboUdCr4SeCb0Teij0Uuip0Fuhx0KvhZ4LvRd6MPRi6MnQ m6FHQ6+Gng29G3o49HLo6dDbocdDr4eeD70fekD0gugJ0RuiR0SviJ4RvSN6 SPSS6CnRW6LHRK+JnhO9J3pQ9KLoSdGbokdFr4qeFb0relj0suhp0duix0Wv i54XvS96YPTC6InRG6NHRq+Mnhm9M3po9NLoqdFbo8dGr42eG703enD04ujJ 0ZujR0evjp4dvTt6ePTy6OnR26PHR6+Pnh+9P3qA9ALpCdIbpEdIr5CeIb1D eoj0Eukp0lukx0ivkZ4jvUd6kPQi6UnSm6RHSa+SniW9S3qY9DLpadLbpMdJ r5OeJ71PeqD0QumJ0hulR0qvlJ4pvVN6qPRS6anSW6XHSq+Vniu9V3qw9GLp ydKbpUdLr5aeLb1berj0cunp0tulx0uvl54vvV96wPSC6QnTG6ZHTK+YnjG9 Y3rI9JLpKdNbpsdMr5meM71netD0oulJ05umR02vmp41vWt62PSy6WnT26bH Ta+bnje9b3rg9MLpidMbp0dOr5yeOb1zeuj00ump01unx06vnZ47vXd68PTi 6cnTm6dHT6+enj29e3r49PLp6dPbp8dPr5+eP71/9gGwL4B9AuwbYB8B+wrY Z8C+A/YhsC+BfQrsW2AfA/sa2OfAvgf2QbAvgn0S7JtgHwX7Kthnwb4L9mGw L4N9GuzbYB8H+zrY58G+D/aBsC+EfSLsG2EfCftK2GfCvhP2obAvhX0q7Fth Hwv7Wtjnwr4X9sGwL4Z9MuybYR8N+2rYZ8O+G/bhsC+HfTrs22EfD/t62OfD vh/2AbEviH1C7BtiHxH7ithnxL4j9iGxL4l9SuxbYh8T+5rY58S+J/ZBsS+K fVLsm2IfFfuq2GfFviv2YbEvi31a7NtiHxf7utjnxb4v9oGxL4x9YuwbYx8Z +8rYZ8a+M/ahsS+NfWrsW2MfG/va2OfGvjf2wbEvjn1y7JtjHx376thnx747 9uGxL499euzbYx8f+/rY58e+P/YBsi+QfYLsG2QfIfsK2WfIvkP2IbIvkX2K 7FtkHyP7GtnnyL5H9kGyL5J9kuybZB8l+yrZZ8m+S/Zhsi+TfZrs22QfJ/s6 2efJvk/2gbIvlH2i7BtlHyn7Stlnyr5T9qGyL5V9quxbZR8r+1rZ58q+V/bB si+WfbLsm2UfLftq2WfLvlv24bIvl3267NtlHy/7etnny75f9gGzL5h9wuwb Zh8x+4rZZ8y+Y/Yhsy+ZfcrsW2YfM/ua2efMvmf2QbMvmn3S7JtmHzX7qtln zb5r9mGzL5t92uzbZh83+7rZ582+b/aBsy+cfeLsG2cfOfvK2WfOvnP2obMv nX3q7FtnHzv72tnnzr539sGzL5598uybZx89++rZZ8++e/bhsy+fffrs22cf P/v62efPvn/mADAXgDkBzA1gjgBzBZgzwNwB5hAwl4A5BcwtYI4Bcw2Yc8Dc A+YgMBeBOQnMTWCOAnMVmLPA3AXmMDCXgTkNzG1gjgNzHZjzwNwH5kAwF4I5 EcyNYI4EcyWYM8Hcif/lUPzLpWBOBXMrmGPBXAvmXDD3gjkYzMVgTgZzM5ij wVwN5mwwd4M5HMzlYE4HczuY48FcD+Z8MPeDOSDMBWFOCHNDmCPCXBHmjDB3 hDkkzCVhTglzS5hjwlwT5pww94Q5KMxFYU4Kc1OYo8JcFeasMHeFOSzMZWFO C3NbmOPCXBfmvDD3hTkwzIVhTgxzY5gjw1wZ5swwd4Y5NMylYU4Nc2uYY8Nc G+bcMPeGOTjMxWFODnNzmKPDXB3m7DB3hzk8zOVhTg9ze5jjw1wf5vww94c5 QMwFYk4Qc4OYI8RcIeYMMXeIOUTMJWJOEXOLmGPEXCPmHDH3iDlIzEX6X07S v9wk5igxV4k5S8xdYg4Tc5mY08TcJuY4MdeJOU/MfWIOFHOhmBPF3CjmSDFX ijlTzJ1iDhVzqZhTxdwq5lgx14o5V8y9Yg4Wc7GYk8XcLOZoMVeLOVvM3WIO F3O5mNPF3C7meDHXizlfzP1iDhhzwZgTxtww5ogxV4w5Y8wdYw4Zc8mYU8bc MuaYMdeMOWfMPWMOGnPRmJPG3DTmqDFXjTlrzF1jDhtz2ZjTxtw25rgx1405 b8x9Yw4cc+GYE8fcOObIMVeOOXPMnWMOHXPpmFPH3Drm2DHXjjl3zL1jDh5z 8ZiTx9w85ugxV485e8zdYw4fc/mY08fcPub4MdePOX/M/WMOIHMBmRPI3EDm CDJXkDmDzB1kDiFzCZlTyNxC5hgy15A5h8w9ZA4icxGZk8jcROYoMleROYvM XWQOI3MZmdPI3EbmODLXkTmPzH1kDiRzIZkTydxI5kgyV5I5k8ydZA4lcymZ U8ncSuZYMteSOZfMvWQOJnMxmZPJ3EzmaDJXkzmbzN1kDidzOZnTydxO5ngy 15M5n8z9ZA4oc0GZE8rcUOaIMleUOaPMHWUOKXNJmVPK3FLmmDLXlDmnzD1l DipzUZmTytxU5qgyV5U5q8xdZQ4rc1mZ08rcVua4MteVOa/MfWUOLHNhmRPL 3FjmyDJXljmzzJ1lDi1zaZlTy9xa5tgy15Y5t8y9ZQ4uc3GZk8vcXOboMleX ObvM3WUOL3N5mdPL3F7m+DLXlzm/zP1lDjBzgZkTzNxg5ggzV5g5w8wdZg4x c4mZU8zcYuYYM9eYOcfMPWYOMnORmZPM3GTmKDNXmTnLzF1mDjNzmZnTzNxm 5jgz15k5z8x9Zg40c6GZE83caOZIM1eaOdPMnWYONXOpmVPN3GrmWDPXmjnX zL1mDjZzsZmTzdxs5mgzV5s528zdZg43c7mZ083cbuZ4M9ebOd/M/WYOOHPB mRPO3HDmiDNXnDnjzB1nDjlzyZlTztxy5pgz15w558w9Zw46c9GZk87cdOao M1edOevMXWcOO3PZmdPO3HbmuDPXnTnvzH1nDjxz4ZkTz9x45sgzV54588yd Zw49c+mZU8/ceubYM9eeOffMvWcOPnPxmZPP3Hzm6DNXnzn7zN1nDj9z+ZnT z9x+5vgz1585/8z95xwAzgXgnADODeAcAc4V4JwBzh3gHALOJeCcAs4t4BwD zjXgnAPOPeAcBM5F4JwEzk3gHAXOVeCcBc5d4BwGzmXgnAbObeAcB8514JwH zn3gHAjOheCcCM6N4BwJzpXgnAnOneAcCs6l4JwKzq3gHAvOteCcC8694BwM zsXgnAzOzeAcDc7V4JwNzt3gHA7O5eCcDs7t4BwPzvXgnA/O/eAcEM4F4ZwQ zg3hHBHOFeGcEc4d4RwSziXhnBLOLeEcE8414ZwTzj3hHBTOReGcFM5N4RwV zlXhnBXOXeEcFs5l4ZwWzm3hHBfOdeGcF8594RwYzoXhnBjOjeEcGc6V4ZwZ zp3hHBrOpeGcGs6t4RwbzrXhnBvOveEcHM7F4Zwczs3hHB3O1eGcHc7d4Rwe zuXhnB7O7eEcH8714Zwfzv3hHCDOBeKcIM4N4hwhzhXinCHOHeIcIs4l4pwi zi3iHCPONeKcI8494hwkzkXinCTOTeIcJc5V4pwlzl3iHCbOZeKcJs5t4hwn znXinCfOfeIcKM6F4pwozo3iHCnOleKcKc6d4hwqzqXinCrOreIcK8614pwr zr3iHCzOxeKcLM7N4hwtztXinC3O3eIcLs7l4pwuzu3iHC/O9eKcL8794hww zgXjnDDODeMcMc4V45wxzh3jHDLOJeOcMs4t4xwzzjXjnDPOPeMcNM5F45w0 zk3jHDXOVeOcNc5d+98ctn9z2TinjXPbOMeNc904541z3zgHjnPhOCeOc+M4 R45z5ThnjnPnOIeOc+k4p45z6zjHjnPtOOeOc+84B49z8Tgnj3PzOEePc/U4 Z49z9ziHj3P5OKePc/s4x49z/Tjnj3P/OAeQcwE5J5BzAzlHkHMFOWeQcwc5 h5BzCTmnkHML/zfH8N9cQ8455NxDzkHkXETOSeTcRM5R5FxFzlnk3EXOYeRc Rs5p5NxGznHkXEfOeeTcR86B5FxIzonk3EjOkeRcSc6Z5NxJzqHkXErOqeTc Ss6x5FxLzrnk3EvOweRcTM7J5NxMztHkXE3O2eTcTc7h5FxOzunk3E7O8eRc z/+r6cyjekr/OO6anudJCGk0xpLIlqaiElHdFqkUKkuSYoqaJKJEP0IiS0kK jRlZSlGWIVvWQrKOSmPCNIgkWzLJksbvYz7Px3+v45zO4Xvv8733eHm/qPNJ 3U/qgFIXlDqh1A2ljih1RakzSt1R6pBSl5Q6pdQtpY4pdU2pc0rdU+qgUheV OqnUTaWOKnVVqbNK3VXqsFKXlTqt1G2ljit1XanzSt1X6sBSF5Y6sdSNpY4s dWWpM0vdWerQUpeWOrXUraWOLXVtqXNL3Vvq4FIXlzq51M2lji51damzS91d 6vBSl5c6vdTtpY4vdX2p80vdX+oAUxeYOsHUDaaOMHWFqTNM3WHqEFOXmDrF 1C2mjjF1jalzTN1j6iBTF5k6ydRNpo4ydZWps0zdZeowU5eZOs3UbaaOM3Wd qfNM3WfqQFMXmjrR1I2mjjR1pakzTd1p6lBTl5o61dStpo41da2pc03da+pg UxebOtnUzaaONnW1qbNN3W3qcFOXmzrd1O2mjjd1vanzTd1v6oBTF5w64dQN p444dcWpM07dceqQU5ecOuXULaeOOXXNqXNO3XPqoFMXnTrp1E2njjp11amz Tt116rBTl5067dRtp447dd2p807dd+rAUxeeOvHUjaeOPHXlqTNP3Xnq0FOX njr11K2njj117alzT937/3w4f/i+ehn+uc0ohj4ccFvrU1HXnBn6cMA6vfOO r3dh6MMB+8Wmn/dwY+jDAXv43d3Y0Z2hDzcNnq8/XzKq8GDowwG3/eNIUvo4 hj4c8NykTwXTPBn6cMDvWjce6uPN0Ifzg/vV+f3c5xMY+nDAXhl+nw5PYujD Ad9YuWRcjA9DHw64VfahuY6+DH044KxnY6e292Pow02F+ykoX6dyGkMfDnhe 8NAtmQEMfTjge5GDn86dwdCHA1476t/WNoEMfTjgLyVNL7VmMvThfL/6NlFZ d2cx9OGA0/fdHrgvhKEPB5z6T9jSxaEMfTjgScW/7HALY+jDAZt1P72xezhD H24K3D/G/Tzr5zL04YDLA4Y9uhDB0IcDNpjiYb91AUMfDvjFm8KIsCiGPhxw kFX9fIdohj6cD5wHkRajui5m6MMBF/d79exNDEMfDtiQL/S/uoShDwccpRhn 745l6MMBf7YLK1yynKEPNxk+X4O0A5PjGPpwwDE2Srh5PEMfDnjEzE6tO65m 6MMB6+/uHfoqgaEPB3xkaGr29bUMfbhJinowo+hE7nqGPhywYXK7jHVJDH04 4Lym8imzkxn6cMDrWxa8cE9h6MMBv2DjvE1TGfpwE+F5Lu9iis5mhj4csOHl wTlNWxj6cMCWMz+m3k9n6MMBb6yI8SnaxtCHmwCfz7Yu73J+ZejDAW+O/iE0 OYOhDwccE9LrZPROhj4c8KKs8Q+m72bowwHHZug/dMti6MN5w/Mcqz9lmc3Q hwMuutBrnsFehj4ccFlLl1bauQx9OODX31nMbs5j6MMB6+XfO1x3gKEP56Wo f+XMqag8xNCHA07qMP72lcMMfTjg2XY1BwvyGfpwwOVXNwbnHWPowwEviD3e sv0EQx/OE/48oaciUgoY+nDAFypbXVp1mqEPB9zG63VjzFmGPhxwt+21GhHn GfpwwOy8Z2NwEUMfbvxX/ynlYsBFhj4csFLRfoFPMUMfDthYa9A3XiUMfTjg S9vHRbpfZejDATfffHR59HWGPtw4uD+7ujQ73mTowwH72tZ1sr/F0IcDPmtt 3NaujKEPB7zDfVGtzW2GPhzw0LcWOTZ/MPThxsL1+Pyqm+2fDH044ETzHeV2 dxn6cMBLtXvYOdxn6MMBv2rO2ziqiqEPB6x17miJ6wOGPpyHogb77Hwy9hFD Hw7YrGNl7YTHDH044ICw4rKpNQx9OODXluW7A2sZ+nDA7ReFTA2rY+jDucP3 zfK3zVEvGPpwwF/+vhe//BVDHw64a3Bi0/p6hj4ccIHJfM/0BoY+3BhFtUh+ v3nPPwx9OGDPvmsu5b9j6MMBryxLrrrwnqEPB9zjZMyj8o8MfTjg1fbHSh83 M/Th3BR1/vf78961MPThgL+zuDFfsxVHHw449FJcv+6tOfpwwKOdbUrMNDj6 cMAnF/800Zlz9OFcFbVvUFSZnyZHHw44cfytEZFaHH044IJbNWmJ7Tj6cMCx J/tX7dHm6MMBv+qv8W1hR44+nAs8/654PvK+DkcfDjh9rtvE97ocfTjgQY9T /XX1OPpwwAm6VlOGdOXowwGPXpk1yrMbRx9uNLxfNrkbRvTg6MMBr1i6612K PkcfDrg5vPOpfAOOPhzw+FDd+Xf6cPThgO0nd+n5qS9HH84Zfv6s9ed6DuDo wwFf6/jU28mIow8HPL3rz3+HGnP04YBZol7AJhOOPhywz7mKP06ZcfThRinq nXFOjk+GcPThgPWM7uVoW3L04YDFCi0NayuOPhzwgNuuPrOGc/ThgEvq2u1J HcHRh3NSVPXuledFNhx9OGBL5Z+BDXYcfTjg0nZKoIEDRx8OuOVtyBYvJ44+ nOPX83nnpXhnjj4csEaO/usTLhx9OOD8B1M7v3Tj6MMB97h6w8LAg6MPB7yz ss5r8jiOPpyDolaUGoVv8OTowwFfKRIJl705+nDATm0+bv8ykaMPB6zhHZ0/ 3IejDwfckt5cEunL0Yezh/ezPl/u/+bH0YcD/ry2uf6VP0cfDnjkkVAN4xkc fTjg/WWXu84O5OjDAX87Z51Z3kyOPpwKP9/HzPVlMEcfDrimwDzIJJSjDwe8 TqNjXEQYRx8O2PhfNfNYOEcfDvj6GYcrn+Zx9OHs4LzOSWlQF3D04YCnLMzV XxPF0Yf7+vvmWt6l0Rx9OGBna5PErjEcfTjgjGFp1wOXcPThbOH8MjnV6VAs Rx8OOCG8Z0Dzco4+HLBNht1Rl5UcfThg9fivnbau4ujDAW9rfSz6aQJHH84G nqf6aNYOXcfRhwP+rm2X6WsSOfpwwIWtAx7f28DRhwP2zA6MMEnh6MMBP3ua pbUylaMPNxKuF62sQ5WbOfpwwDoHqqebpnP04YAHnq/umbCNow8H/HdCv+cP fuXowwHbZ5ldHL6Dow83QlFvi/jctF0cfTjga58zd77J5OjDAfsa6mZ7ZHP0 4YBbFvqcztvL0YezVtTzTu8eauVx9OGA4y3n6s0+wNGHA/ZyHRNw4xBHHw54 e6V2gckRjj4c8IY0u76bjnL04YbDeZAQmNV0nKMPB+yrq1j5FXD04YCPf8io unCaow8HPHHMpXSjcxx9OGCvpR9CUgs5+nDD4M/re3FsywWOPhzwUs0DbiHF HH044AVtbKdVlHD04YBfDv+y2v4aRx8O2L988ZVDNzj6cFaKOizYqrf+LY4+ HLBpXVFachlHHw44aU9mL6WCow8HvMw5+PKCOxx9OOAZt7eurq3k6MMNhc/v cOEMv/scfThg291zfMqrOPpwwIdLjGa7PuTowwHv2Rm/raiaow8H3LmtZq11 DUcfzhLuZycHz2O1HH044Ae1hXfNnnP04YDPvu204sBLjj4ccEHhxdGD6jn6 cMBO2jNNchs4+nAWihrxId7SqJGjDwc8vuXItLwmjj6cxdd/n47N+eEjRx8O 2HDo4s6Hmzn6cMAfPYbstvyXow9nrqi1LiMmnG4l0IcDPrqhr5HDNwJ9OOAu z+MMrzGBPhywxtoaR29NgT7cEPi+b3mwpkpLoA8HnDeCNYa0F+jDAW/PeLbq XQeBPhyw1ZMedit1BPpwwIWmw3vpfCvQhxsMz5Ntbg3crSfQhwP+cXqkn/n3 An044LMJ504WdxfowwFbWzvaTdEX6MMBP0lPf/PKQKAPZwY/b9DEmysNBfpw wKbVHe5831+gDwds3Xl62/yBAn044MalVXPcjQX6cMAVrr3+fWoi0Iczhfc9 UXQmbrBAHw64+qBPrr6FQB8OWDdrecnZoQJ9OOAB+eW604YL9OGAy3XqNrWM EHIfDs6/IH+HHbZC7sPB+Zd/s4+DvZD7cIo6eFG51VNHIffhFLUhTXPZemch 9+HgfdGn3afBrkLuw8Hnsyxm390xQu7DKWqa6ZukuLFC7sPBef5Fa6+xp5D7 cPC80xDy4U9vIffhFHVN1N5l8ZOE3IdT1PDQENshU4Tch4Prq4eL5aOpQu7D wfXkWhuU4i/kPhxcL92f3nSYIeQ+HLwPmdTMexco5D6cojYlrhq7b5aQ+3CK uvtISLD/T0Luw8H5nWh2RjdMyH04Rd0VvczjRriQ+3DwPub0oduqCCH34eD+ NrcdYBcp5D6coi7/2Dj/00Ih9+HgfeRM4efji4Xch1PUSD3ny5FLhNyHU9QP XYxKzZcJuQ8Hz7Mjdbo1rhByH05RvZdl5RyLF3If7uv/R0pYuChByH04eP5Y PGPNyHVC7sMpanTwvSolSch9OEXNqfo5+kqykPtw8PfZ02XSxk1C7sPB/V6d FDNls5D7cMC+ujV90oXch1NUV5NVW+q3CbkPB+fv0nXJZ7YLuQ8Hz+MPfy9d t1PIfTg4j0NafH0zhdyHg/NoV5HJoGwh9+EUtT6pxL1lr5D7cHC9Hzh9rDRP yH04RZ31yS10z0Eh9+EUdWtt79n/OyzkPpyijp3ZcNLrqJD7cPB5PAiaMOiE kPtwcL/aGNuyU0Luw8H3yZOmhQ/PCLkPp6inj0d+OXNeyH04eF7uPKly2wUh 9+EU9VTlmNYxxULuwylq3I8i1veKkPtw8L6WaO0+8rqQ+3CK2v+3rXP0fxdy H05Re+8rq/6mTMh9OEW9V/bL/rrbQu7DKepDlnu99I6Q+3Dw/LTrN7XgrpD7 cHA9xge1y/xLyH04RQ3R/p/phgdC7sPB+2Xv3NyYaiH34RRVu//e2JAaIffh FPURM94/+ZmQ+3Dw+Ru/Mnd5IeQ+HLyPJGV2sX4t5D6coibvEBN/aBByHw7e dwLK6w0ahdyHg/Nr7NlavfdC7sMp6p8L42w6fBJyHw7O71l/NYgWOJ+KHU8W A7f675em+n+3WI43 "]]}, Annotation[#, "Charting`Private`Tag#4"]& ], TagBox[{ Hue[0.6142719099991583, 0.6, 0.6], Directive[ PointSize[ NCache[ Rational[1, 360], 0.002777777777777778]], RGBColor[0.528488, 0.470624, 0.701351], AbsoluteThickness[2]], LineBox[CompressedData[" 1:eJws3Hc81Xscx3HObxxNySiVJC2zgVDKVwOpFEpoSRIqLaWIFhUtUSEiWmjS UIooyizRkpE2UklWQvd9f99z/7mP5+Pea5zz/X3O73fv637UXNbbrhJJSUnt 7yMl9f+f6R8yxOCuU/nb3iJi6X98lwj+FHRlz/+eUNLfZGe3mKgs2dzYt4+I DJRfs6KzU0wWTjBeNh0eGRnQuP2vmByR+VfoA0dk6Na1/RGTx9U5xpfhrO9L Zm9tF5N/N0Mu1sBtsfVKLa1iYnhwvqJiXxGJtrs727tFTDasUNo7CxafSq77 /VtMEg0rG/3hQ73PNG5uEpP3fRKWpcJeNn7OzY1iovxpddEXuGrQUOMtP8XE Nl1n0mBZEfkxytO39buYhIT+vjgPPm5qNmJbg5g8crurGAifnhQ0saNeTP6a 7Nx7B07+MyBlR52Y6MvP/NUAa3hWhP/7Kibr6nouV+snIvODUqr3fBGT8w9K ihbCA+fvOMZ/FpPqEycnhcATKlQuh3wUE6W1SxIzYZnp23RlP4jJvGnDlX7D N66tG3i8Rkz2D6zdO1pORFoW1HgovxOTrB9Xfi2G9TelDo+rEpP2nM3LQ2Ef 28fTRlaKyfho4+IcePGc7vxLb8XEY+O/SX/gvg9N7kwoF5MEi9xEnf4iMk/N tU/6azF5q3JQyQV2/mifb/ZKTOSb5weehPnDbd/yX4jJ7AKlpgJ499UxW2zL xCTwTOXyf/C+j0WuFc/F5P7WhGI9eRGZXPY43bVETFrmuE92h8eN+7P1x1Mx 0VHXTYqBHe6YR20rFhO3P7+VnsOcQZgaUyQmcc/uBnIKIvLRN1P2SIGYvD6/ s8kY/uVxdaVyvpj02zHT2Qv2/T5D5fwTMbG07fU0AZbvdDUZ/1hMdo95Pvk1 HBbxKysjR0zudp9M6qUoIj2Li5OtHolJ04slAwice7Pyz+tsMdG8NDzIG566 SfrqqiwxWbm7tikRHqKv+uR3pphEL7rqXAXr6CvP3JMhJi90vJ/KKYnIsrTS 0XL3xaQ3O8nEHL7TZ+z6M+liMvPtvyRf2ClMbvC4u2Lifz13wDV406WlWllp YnJ738Ggj7BRQWvc/Nti8mOJze8BA0SkwTNr2/ubYjJab8CKOXC+QuytTTfE ZHmPqqe7YLHTZns2VUwi3yWY3IKfv1ZffPK6mJTcck+ug6dNDH805pqY9Dik O3DoQPx8Y84fvXdFTKa5NAfZwn3XTnlgfVlMfI3Sf++DBxaY2n5IFpMbfXet uAerKIVabk0Sk2+fZj77CYfq9k/omSgmI+71mjJCWURudiYti7sgJkuOPU92 gI97Tw7QPy8mJ1ZHDDwMS59Ilio4KybFU5buy4b3r674vDxBTHgF9eYW2Esq Vaf1jJhMra9doTlIRK4H9H9zKE5MfLKuPlsGt/Z6/0k9VkyunfSeEg6HVUov uBcjJrVrJ116Am8f6zjSLlpMhk2XUu6EiXWhw7coMXFUfrxv3GARUTxs8mNv pJgc+3mw2RW+Y3Xs85AIMSnItXGJgn0br0y9fUJMRDEDSoph/aatf+YdF5PJ m6qmiIaIyMynJYr1YWLibXn20kQ4pM+Z8MBjYnJ5qIfyGthhev4m1VAx+dys uz8O9u8z/kb6EcyzwubmMniCwv0F9ofFxD4+3UVGBa9nz3mLmg5invnsKjGB LS8/TT8SIiZP5ppP3QgPfai6UysY80y99+XzsKvK6HN5+8XEqOO58lvY4FS+ hts+zLOSiP19h4pI99AGWTZITJIuLG2ZBnvHbLZP2It5tkN9pQ98ss/MLrJH TAbZ1ZVcgs/5zGRrdmGeaVybWgMPqHdcs3OnmBz8531ZQRV/PWD1BNUAzLOX kwbNgsc62jk+2CEmnZekDvjDBRdFNcv9MM/2PG5Jga8lOD2W8sU8czi08gts coj0TtiGeaZr+3zQMBH5fj0qZboP5hk70HQebL969u3PW8RkQEXV5b3wsH6T Bx3wxjxLOTvoDswqWVdpbhaTA/s9DjTAj757/CveiHm2dGzrMDURGaXkvWvj BjH5o9eyciHcMsDWWXE95lnPe8+D4eaguti768TEs2aXaSZc2alqsmwt5tlt 8ytNsJN6hSGzRkwqDvUePHo45leyVFiiB+bZytIDi+EVs7daWbuLyRzjyNaj 8NNCtRXNbphnsstcc+DQP7UvT60Sk4zP6qXtcPbllEQzV8yze3WmOuqY509W lNe6iIlu2LUrK+Au/XerQ1dgnrlvGXwStv0mu8DIGfNs6uTgAvhMXfnpmmWY ZwrSbd1wq5H6zOClmGffHrvqjRAR9YbnsyYsEZNZ2YdKV8OXVYsuVThhnkXY khi44E+bZ5CjmKSvG3i1BF6ZPHn/WAfMs+nVg7mRmA9r/KXe2ouJ1qBzwcZw fcDZV4ELMc8aPdrWwR8mHO8xboGYxDweuyoBXlJlEFVhi3kW01L6Cl5R7RW0 30ZM+my+R3qNwvUbN/Kp3nzMs1m7r5rCLeFkc421mASoWgzxhhcZXfA+PBfz rKV3SCJc039K6aQ5YvKzsLStEja78e1grRXmWULkKrnROG+pkfEnZ4mJ87Zl ZTPhSzc05WdaYp5ZjzDzhd1dDtT8NheT5yPqr16FF3tH9jg7E/Ps77UhH2HP RLMjtjMwz55vCRkwBt/vsaeXaDrm2cXJ7bNh9/iOpFQzzDN/abddMCv/hqwk YtJg96TsJiwrVT9BwRTzTPOwWR2sZz9gV+4UMVkqZXdNRUNEVve2GONjgnn2 aqCKLdww3FlLY7KYPL1cHbIPnnl2VnCFMebZ3nPt6bD+mXqzI0ZiYuro6fYT vm2gudDMEPNs7LgX6po4Dwd+Pmw2EJPrXKuZA7w+T+1goj7mWcW9a4fg01qJ V5boiYla6m6VbHjabw9NuQmYZwcsDrbAkz2spR+PE5OwZX3+aGiJyIEakwl+ YzHP9MvclsHTbg3JGKcrJkyvqBdh8Kk5L+O/aGOevV827QlcpmBdE6OFeZY2 4vpfeEqQ1zY7Tcyzw/Uq47Tx8w8d6tlTA/Ns5fWDrvAAjxm3skdjnk3a+icS tmzPc9w+CvOsn8nqYlh9dfii8SPF5OgX6ZfSOiLyz/Hg1Tp1zLP7T6ZNhEcG RC5LGC4mUuGHr3vCxcEJqxerYZ552A2Ng4eYHMtXGCYmG02VD5X976VzAp8O xTxTfPdHrCsi9zLuRRxQEZMP386tNoFzDZ8w04dgnj30fLkBrrpin9c1SEzs IsdNPw/v6mX7+Y4y5plX6/Vy+M+MeCfvgWKSM+P+0L5jcZ4XaY8ZNwDzbNCe Q9PgGMuKuQ2KYmLwy6JjK2w9+mRhogLm2ZM+7pfgmp4z41fJi8mF02Uv38Gb 5UueDu+PebY5arrCOFw/HqoLavphnlktT7GEM0wHj4+VxTwbNlLVHzZ9dmnV kr6YZ631h1Jgu8V3fw3qIybZRdc7PsP7x2q/LO+FeZaw1X3QeJzHMw2yUT3F ZMJ2k1fW8L0eH+MdemCezRPN2Au3P28LGSgjJmdH5qWkwXlu8oVveMyzv4dV G+DMqUNdojgxUSi1OzxsAj4f3kjNd2IxzxKV/y6AJ2ScPT6YEZOggHfuwfBh v59jq6Qxzxacf5UB51wuUouTEpNWzTUzmmC+Sd1zxT+e6EqPTx2lh6/XXCUz opsnq1+3qi6Gi1d/7PrSyZO4K/cPH4VZTmVW8l+evNm75+8jOP7o5vp1HTzp 52Tp0Q73Lnv2fvwfnswa1/e1tr6I9D87aGxrG0928y9mrIDfV5iUprfyJL0y KvUEzLqoFu5s4UlT6vJhBfDy4ZeUZzbzRCt45JFuWLN/fkbP3zxxXf7t7wQD EWnUdUkr+cWTGIMUj9Xw/oDlfEQjT1728nkdDfeTTU5e+pMnfT6YzCyBf7Zq nhvxgyfmd0Q32IkiUrigsOlbA08CjuQNM4aD5nmfvPGNJ2muR46sgycryR71 q+fJz0kLOuPhKTWBldPreDJGbpDnK7jP98yA3rU8cf767nVPQ8zTwAtbXn7h SVTG+ZmmsKh1RHbsZ548D19zYzPcFaW+wv0TT3p6jldLhL1KDi6c8JEn00jb kUr4mLRFbOd7nvgpZXT2M8L5Oj118pMantxo2OM5E16hskQ77B1PGh5avtkO /5EK3ri0micjovqaX4Xln1/tqVHFk6XrX9z4AJsPTWtrruDJyZmn1AYY4/57 90Gj7Lc8eTrY+ehseP0pxeLD5TwRN43s2gkn9De95fSGJ6Z53zxvwq6nfjWO fs2TbbEpb2rhafVKu1pe8uS6t4+5yiQRefgw0uXRC57UWU25aQMvbHCOPFbG EzU1Zvg+2MnQUc25lCdObXlH02GlHWu6dJ/zJKz4SNcP+Oap3drdz3hSeHbB GvXJeH39gq4WP+UJ4zuofBEc1WfF3tPFPDGZX2N+CA6a1Z28rogn3qMu3MyC T+pajJxayJMrnWuGt8Djc0Y29S3gyefS8aEaJiISrBwoV5PHk6FJbV1L4aiZ c/amPOGJ/c6MNWHwiNXuFnsf8+Towr3lj+Gr5x4uXZjLkydasyz+wr7aMx+P zuGJlEj21tgpeL7Rf7ur4yFPjN+8GO76vzvWHC7O5snGq6dCI+EPjz59O5PF k+RA5+4iOLVKN8b7AU8+OI1aKz0V13eMfqxlJk8Gj28oN4A9ltb8GpLBEztx qoUnXLR3SMSvezw5VOVzKxaO8Cs7/DidJzk3pqiXwcp3fr6MvsuTrmDmmNgU r9fNxes33uGJgXN+92R4d5O0k0UaT7wmHl27AW7vLDqhcpsnF3ovfHsOnrHq 4vDmmzx592GQZTl8NMdPqvAGTwbcrbnVh+B+557+2IRUnsw/ekF9GuzfdP/q 9hSeHFi19thWuJ/yvwCb6zzJnjzhXzK888vnOI1rPPkj1772HeyrvEROdJUn E2oz3sqb4fNg25yyt5d54pm519ISHlAS//nGJZ6cPT7r9g7YodXc8nAyTyo9 ZUek/O8no/66JfFEwezlsc9w4yjtbpLIk7kDov8pT8PzjNQ0m8EXeRL03Xmd NWxqbtfccp4nmY9GVeyBjzRZfS05x5PWqAbLNPgMr6B5+SxPxm5Ivf0NHnYw 6v7+BMwz820jhk0XkR6hj2NXxvPkzJCpYQvgJO19JaZnMM+aGKlgOHLnI5sh cTyRy89flwHfuuox/M9pzLO4oxW/4JFfV057FcOTPVsWzho1A58nS0+n3IjG PJs9OM0JfjFHesOxUzz5rfZ+xFH4RLuv//oozLP2C2GP4AvJLeVzIzHPnq6V av//n7+5JEg7AvPs3AQv7Zm4n/OK3tnrJOaZb3uFM7zF8HRe/XGe9LXJnHUC Xu0z17kgHPNsdGBaPvw8OsI8OYwnO7tmjeyG85VX+4Ucwzwrkw2fYC4ie9dd 7PYM5Ulj0kup1bDdoBkls49inu2K9oqGzySPadQ+wpMV9isqn8F118iyvocx z7RHW7EWmEcPfQY1HuRJqeh7mhGcvufuiNIQzLPy1JHr4OCTv3bcDObJ9Gvb wuPht5d6qUccwDwLmir9Cnb2+a3ku58nNxez63ta4ue9edxh6T7Ms/EFlVPh d6MqvpIgnoyUCbXaDBtGpOaMCMQ8q1545yLs94r/KbMX8+zm4FGV8LT7j9y+ 78Y8C3kf3m+WiCiMfqlVugvzbMVF6Zmwa+eoqWk7Mc8M163fDoeOOX86JgDz rI9e1RW4Mnay1R5/nqR8bLf6AHs5vpruvgPz7G7mHSUrvB+OK0Ks/XgyPDRw 1Gx42YU8FQNfzDM3q+M74cXz2rsGb+dJuEk/0U34jUelJrMN86z/q/W1sHH/ Fefqt/KErYuuGjIb52fNJs/SLZhnD1bMtoHnnOncke7Nky0nRt8NgvNqvlUk bMY8W/N9VDqc7qq9/+Amnnwxu3H8B7zFMznAeyPm2cDtIvU5ItLL0Pbh0g08 WfRj6oZFsJVSP1uL9ZhnOWz1QTjdqURnvBdP8k4VzM6Co5buXDh4HebZxtC7 zfDrgB753FrMMwv70Rpz8fqNXHyg0RPzTGXIiaVwdIZzeIUH5tnv96IweOV9 vv6xO08+5l/c8BjmY4wPpa7GPDuzrroDflT1eXusG08WbNWbM9ZaRLb1aE8N WYV5NufP3ZVw3JUlhj6uPMkd/mB0JDxnuZTYdSXmWXvgiSJYI/2Zmo0LTyY+ s2Kk5+H3dU7bP3UF5tn5fhsN4K6Os0bazjy56Peq2gMebLxHf9ByzDObmDmx 8M2SqX4yy3gycIxLeimsF/C4d9sSzLPu0WPE83H/zPJ1nxfzJPjF9xOT4eE6 9bIvnTDPkm8wG+AfT5bvznHkSceu7RvPwQsu2U256YB5tsj03Rt4ws3U6ecW 8WSNDje3jw3uR3M9jh+3xzxjCtPNYOWCVWODFmKelYeO2QoPTAlX2LoA8+y6 /clkePvGmumr7TDP9g1h38FmMsYZDrY82bfkw0Z5W5zHbSG7rGwwzyYkvrOA BxZnHzaZz5M2Ga+5O+BhikWfdOdhnr3Tu3cdDlh9MkjNmifut/6M+QzLve+z QWEu5tnBByeV7XC/dV71nHgOT8pXBLHWcO+qO2p/rTDPjGZv2gO/ufO49scs nlj1lau5Dcd6TfzzwRLz7NOrud/gZ5NabF9b8OReesw91QWYd86NLYXmmGeh LhoL4JjRih+yZvJEe/WYiAPwxpr5A27PwDyb8oPNgNVqQk9cms6T0/I3N/2C XfY8XBI/DfOsbnvNyIX4ehplayPMMM+yTK2d4CMm13MPE8yzk9z9I/BvTYvV gaaYZ2sLNR7BVe5BNn5TeXJn2rGINrhrg0PgpimYZwMXcdr2/3/+X/nnYcIT jZ9DNjvDfnWbHq2YjHmW+6HmOMx6nXjmOIknp6ITrfPh/p9FI2yNMc82et3v gnvXJmZZGfGkl6W+5oRFuP9X2nJ+uiHm2dCOCDe4RnFhqclEnuxofsBFw6Kw iRYTDTDPCoI2P4OjTMTsOH2efD8z+z3jgPNbfFNGUw/zzEdunhHsLdJZOGIC T5bNfX1/Lewft7Ru6HjMM/XTmvH/20s/V3kcT579cYl8CbuZxtUqjMU8KxnD 93QUEa3ag3b9dHlCLvzYPBXOmFHL9dbBPNtx8/0muKdhwj+xNuaZre+8i3D7 hYuE1cI8G0MyKuAVe77kSWlinv3jtPo5iYhixpzIrjE8WfyyMHIGXDo/72rH aMyzS8f47fCMKRa920fxpGj3Iu8rMHsg7XrLSMwzB5UP753+f7/EMb9H8GSK 7sd5SovxvLh2xNNf6phnbFKGFbxNt8u8cThPrr710toJm53Zyf9Uwzy7rh91 A078FNX7xzCeqO7v4GvhAyMmOX5XxTxbmuU9ZImIhB+xbmgYypNQvX0f5sO2 i3JzG1Qwz3rMmR8Eq9w99LlhCE+ka+Qy7/7v5rDZ3wdjnt1+rfUDnmn9uO37 IJ5sOnQ6avhSfN7JK9b/UMY8c1kpXgQXHF83vHEg5pmRxpaDcJNG5plfAzDP ZH9+eAC/GNvi+lsJ8+zzzfnNsGEP6fUtiphn93wzxyzD9TK0JLNNAfPsGNFe Cs+snr+gQ54n3av5U8fgofc3ju3qj3k2tUj8GC4erzZfCl6vELalA76UOfc2 I4d5Vr/oo+5yzOuvn1eI+/GkJkvFZiV82fCNbS9ZzLOIj5kR8Jup8sGyfXli sy5JuwieEh7EKvTBPJu+/pSUM85PiUruwN48eahsIGMAV0YUFKj0wjz72bHF AzYO9VVU78kTvcdZH0/Dcm5Dzo/pgXkWs8+mFN5WGLtdV4Yn5zbNecCvwDzb 1himL8Y8s+yvMxnW15D6NYnniaLqm1Pr4RPx98PNOMyzltMy5+DoJAU/Sxbz rHDl1jewrmzbhXkM5lm8xqfeLiKSdd52wCIR5pnPTxsz2MJcqWiZNE/GWd96 sMXl/+fncbluUphnI/x0kuFzI46J1v/jSHwHia6GG8eOCvTp5kh5Cd9DfqWI DKqpnrWriyP9LxZttYBDNZLtgjs5YuUf9skPNuJ94sP+cmSvnYPtdXjtFn29 mA6O3NMYmvUJbvN7LnPhD0ea/33UUXbF89OIKcOvt3NE+1VS9Fx4lb/bzvQ2 jqy6vL7HHrgrxmRYbitHTu8x8LkN25y+ypa0cOSVw99P9fCU2EvaFc0c6Ts2 21Z1lYh05gyP/PKbIxbc/iw7WNuEsWhq4sjOijm6B+AcPRPj7l8cuZPSP+Y+ PPD9fa+ecOP+Nz1+wWUB3l+VGjmisSzWZ6Qb5uEc27PqPzmyQt/1syNcFDoz YdwPjpzqqWl3BJY6MeXTlO8cKav5mfUQ3pmk4TG7gSO90m7ptsF71f+Mc/zG kRmH/WK0VuP1Who9eXU9R3asNOvpDK9P+3dgSx1HbhmLtx2HdU4qKgfWcuS7 bPHnPHiAa9G3sK8cGfUlzK4LvhMqL53whSPL7jtkj3fH/V7oW4eUzxyJCBs6 1g32r+73O+sTR565f4o5BZe3n39W8pEjMqbJPZ/Bi12Df9R84AhR3LCN8RCR +OTkeb/ec2T7N4MvhrCv058maTgl+6/dWvi9eNWb/jUcqY/Izj4Dd8yu+qf+ jiPDvfaPfQnL59p4GFRzZPGMuad7eOLrKaUqWFRxJHyQfK+psFHdd2nHSo4U Nb7ZtgkOrW8et6aCI9yT2C8X4IDi2/H+bzky5bTrggr49yz1BaHlHNm6WfOh 7Bo8bw/RtDz7hiNXZzWOnQGnyNzzv/2aI19Vb5/eBtu8yG3Of8UR1Va/Xldg tTmTrlS95IhDkdn297CPmczFXy84Epog/qq4VkTuhqh+4OD8bcULrOCFzIZl g8o4Ij0v/GEA/Ohg3eCxpRyZNNJx3A14d48dg2Y858imv0Njv8J9Vw9wcizh yKXnn3oNWSciP8MvvfV6xpGPF5O3z4fPBo6JCXzKkSEBG74GwhcnBMSeKubI ggUTF96FN8fEvL9exJHDmp0Pv8NbcjevelLIkVyph+OGe+Hz8fZvjeoCjnS/ 2h9rD5/x6z22JZ8jE6/M7X0QXjXmqndveP1eed8HcGRZXod6HkcSHcu//oYd ouZkT37CkZqxcQvHrMfrdUojz+4xR5T5VY+WwOFd82TX5nLEplJz/DG4rOHa ycAcjoSkNsbmwpqRxstOP+LIwwO3e3fA4/SrVt1+yJG/y3b46m4QEaeOkCvP sjmiZzCt1gVuH6NnUJfFkbW9ZOwjYH3mcacIPve++FEh3Pe5HqvygCNVaeHj pTbi/L1bO9swkyOKRxzj9OGsnStKbTI4Yu2q2scDvikjilp7nyP7Jn32PQ1v fzk1bv89jjzod6n2OTzEXOZzQjpH2r5ssOc3icjWB9aemXc5Mi5jYs4kePgl 0di3dzjiHt45fj2820dBrzUN88zjYdxZOC3Ce2t/+K3pgT5v4HN75f/o3sY8 U7L2671ZRGrT3qfPvsWR2Q3ydQSuvvXsnvtNzLOH5fZb4Ejm6d+gGxy5HxmX kwRXaRX7nk3FPPNaNaEa1snMMMpO4YjOTK0z/b3x+1iHGry7jnk2+FcfC9hm q8HGrmscif11288PPlp6+ttg+NWTHXXX4HNc+rlJVzkiGztt0Sd4/W3fGMcr mGfeMrkDt+C8hJaUbrvMkV1WTyfMhWumX7aIvIR5Nuz4md2wb1B3R1oyR361 Ova9DV/te6fhdRLmWbHqjnp43+n8Ie2JHHE5+7lu6Fac12b1gwPhU9svLbKD p1ekGRpfxDybtzF3P2yssnW40wXMs1GGevfh7yHzZvudxzzr7DzTCC/6o58a c44j/qUP+470wf3ZtAGLMs9iniUe2OEIi6d/Na5J4MiPAOv6w//73QknETxq oYLDQ3hcl/zdEfEcWa71NrcVnhhsu9DiDOaZ9Bk9rW14vTZPG+sZx5GS16vi l8NTrr8wPxyLeXZVS/Y4PNG4I/r6aY6YBf7akQe39Tqn+yIG88wprb4TTtN8 1N0WzZHUcf4O47eLyKgYy95D4Hp++uNVsNeakYvIKY6oV8non4K1Eq3euUZh nt14Gv8U3uiWdC44kiPHg4/LMr4ikp054eLVCMyz5U7+hnDfp6+/lJ3EPJs4 7Nsa+M6t4JV/TmCe9f7icAbeH22sogpv/XDp8Qv4WtIb+ZnHMc/ubNTv4Yfn z74OFmvCMc+OGCZMgZ91JaYdC+PIsFVdspvgkVfvu945hnk2+ZH/BfjA4kDr d6EcOSYX/O0trGj+y5uH879aO8ruEBHz1ObXOkc5IspUeDId/lG702fhEcyz 42/1t8EGhoF2/oc5stnzTMJlOOZH05rzhzDPiFu/93CLa0ZW8UGOfFLSDlD0 x/N88wub1hDMs++/vs2CF//VVFWFFz5KcwyAoyqvj7EMxjyL8n+SCmv8W+S1 8QBHHq+fbvAVXvpUrvHUfsyzmT3ODg7A73f32ZWcfRwxHPKs33x4scHeiz+C MM+ajgcEwsPvqlQNhBPznBruwIHZodbTAzHPYoc5fYeHPiv+u24v5tmWL0/U duJ+0u3xp8g9HLGdfdnAHj4tt7ZHzm7MM7VNZ0Pg90uue/zcxZFHbYZyD2Dl t4HcYPhvcVfAb/jP0IpK850c0T/3qGH0LhFxzz33c1MA5plvsNMSeMeasilx /hw5P39eXijsc8PhSeEOzLNRihNz4YLpow61+3FEqevt2T9wryc6h0bC1mVn 5HR34/Pym/MTW1+O7E9y2+kC+61KmbJrO+bZTu3vJ+ET9f1+XtnGkfaFTU6F 8KaJGysqfDDPtO/k/YMXyeSIesIeooCJ+ntEJFn9r6vRVsyzN9PPucN182RE q7dgnl3t0f80fNmhqvyEN+ZZ0LOdz+GzfdY25GzGPFt84ju3F5+/0y4YN2/C PBu/ePEkeNYz/2x1+L5YLd8Lvn300167jRxpqfoy8SxcuLJo194NmGc3L597 DR8aO/rOjfUccQvZ1L93oIgwFV80Pnlhnjkb7SKwpW3XSwX49cTu797wlqAl 92euwzzrk7M4CU52b63cupYjlh+D86vg3s33DRPXYJ7dnWfYP0hE7qsnFJV7 cuTuUcXz5nBlW0R0L/jXqor+fvAh79BzUzw4omkSv+sa/Cne/+t6d8yz/qt/ fIRbDtq4JqzmSHSt9pKB+3B9Tese9NIN8yyzKX8OvOjtll4ycO8Tdwx3w+Ge yQaTV2GerQk4fwteLHskyssV88xshnw97F/b3zBhJebZgJ67h+4XkVRlrb6v XDDPvj/7YQsnFOQN7QmPzjmxZD/8ZlS1+9QVmGenFhfcgwuWLm3Y5MyRyA1q Ro1wSYJR0sXlmGfmX8+POCAio3Vc4iqXcaSHyhV5R7jesOipHGz2e9Puw7Ci yMPQYilHfPONfmbDu55qlu9YgnkW172kFa7+yNxMXcyRb1tyCjSDReTeoS9P ap0wz+aEGC2Htw/IVVCFlwyffyEcnvfq2KmFjphn7YoKebCVqqnjIQeOFD+t 2N0Jz5jzYP6jRZhn5+N/jgvB52E6u7vDniNT/VYvXQVfK5KuHw9vtdEpjIKr viQe9FjIkWujfxs9hf03NayKX4B51nXngugg5kdl5rZyO8yzFwEKhrDOif45 crBD8ow9a2A9ubcWVraYZ7t6NsbBEXlidq8NRwrsS5a+gCcaHmm/Nx/zTOdk ocwhEblSuXxkyzyOTGaWGE+BF5isD9GFN5erXdwIT626OtrdmiOXr31VuADr W8l1xc/laA8H35EL7lk5h6M93GE8X+TKzFeChR4Oru/cUzx/Nkd7uMP/92L1 ew5acbSHgwuXjN/weBZHezi47ZHVCWlY6OGO4H5XU6PJxJKjPRz80vDBvm0W HO3h4PTIf7Y3zTnaw8G+nZX2jTM52sMd+f/fJ1qFacNCD3cUzxenjTmPGRzt 4WD52bHXzk/naA8Hn6z2PPZhGkd7ONhIOSxZFRZ6OHhaFv93iRlHe7hQzJuY e3tOEY72cHCi71mzN6Yc7eHgfZophkqw0MPBRTtfuy6YytEeDk6y6ZEfNoWj PdwxnHdfY9fnJhzt4eCz5U4T+8FCDwe/m+dsOm8yR3s4+OtDk51HJnG0h4MT Bn9sKTbmaA8Xhudhc/OzfWChh4Pt9Rz3zzXiaA8HX37ZN+GwIUd7ONh9hNPv 4okc7eHgNmVdv76w0MOF4/e/6W88z4CjPRx8qXmybqg+R3s4uG/NYsfnehzt 4eDMgJL0/rDQwx3H/WPlIdsFEzjaw8HhMoHDTo7naA8Hn1ZMGvFmHEd7ODhd +eeyQbDQw8GbdWc9WzKWoz3cCcy3Dclb4nQ52sPBv6R42w86HO3h4Leiea4j YaGHgxNOb7vsrs3RHu7/v/53i+ZlLY72cCcxX2dPqv6pydEeDs7LuPNEDxZ6 ODho/6cvPhoc7eHgzJrrk++P4WgPB1exco+lYKGHi8B8ntAeNHM0R3s42Oyy o1/IKI72cLBS2pgLz0ZytIeDm6IdeEVY6OHgnxcqo51GcLSHi8T7OTrR7Yw6 R3s42GLDVbcvwznaw8GrXn+I1oaFHg5Wv23Eb1bjaA8Hq3qcPX93GEd7uCgR MZmv5CsFCz0cfOFp4F4LVY72cHCh1YfsI0M52sPBS3WHG7xS4WgPB1t/MaxS gYUe7pSIPP2glL5qCEd7OHhuRGrhlcEc7eFgb99uudZBHO3h4DH8j0NTYaGH g/emeZvsV+ZoDxeN66HvvmElAznaw8FXjyoaK8NCDwdnZintcxnA0R4ObtLy F19W4mgPFyMiK5eZZLQocrSHgx1rLS6awkIPB5svDc8NVuBoDwfn2fUf+EKe oz0cfHbVndihsNDDncbz7Njtjh79OdrDwca2lpY35Tjaw8FGG5TX/OvH0R4O VhpXk20FCz0cbDk5dM5JWY72cLEisnyqSq8PfTnaw8E963y7dGChh4MVfsSo +/bhaA8HL2N8/B/35mgPB79/39lTHhZ6uDhcjzOHFy3vxdEeDq75/jbrck+O 9nBwSsyguj89ONrDwasGvJxhAQs9HDx3VHfZcRmO9nBnRCT/ePDJD2KO9nDw 9PFrDo2DhR4OHld88lYAz9EeDu45Rap/McfRHg5e4BAdPxgWerh4XO9/Frt6 shzt4eB53QZOdxmO9nBwfwuVvTKw0MPBrmncu0UijvZwcKHBx3UXpTnawyXg 57uUNLZNiqM9HFzBzR1hAQs9HLxZL3t2xD+W9nBw96iO81+7WdrDwZUvv00w goUe7qyIOBuFNB3oYmkPB5fMyv9U3snSHg5eIXO6hxYs9HCw0ZY/zjv+srSH g12Pl9YXd7C0hzuH92ftkIuqsNDDwcdlCk9s/MPSHg6e7V16+1E7S3s4OO3B qJ5KsNDDnReRDV33jrq3sbSHg39O22dxr5WlPRwcmrh9fF9Y6OHgw7NC5q5o YWkPB3dPvxx9s5mlPdwFEXl9p2ywDCz0cPCXwubixb9Z2sPBL84yqdeaWNrD wUM9m58wsNDDwcqz78k6/GJpD3dRRBq2zAm+3MjSHg4OHxKjLw0LPRz8anOs nP1PlvZw8PwbFsMu/WBpDwe7Kx5yloKFHi4Rz6evl5cu/M7SHg7mjdO2XGpg aQ8Hz/XfZyUNCz0cnFKXPX/RN5b2cHDg46UHrtSztIdLEpHyZda/GFjo4eD9 UgcOOtWxtIeDR3R226fUsrSHg9nzF+1kYKGHgyfbbN29/CtLe7hkfN47Lq+5 /YWlPRx8SnnRhr6w0MPBB37ajHf7zNIeDrY3maGe+YmlPRx8ZeVwcyVY6OEu 4fm/sCbK6yNLezh4RPXmoU8+sLSHg+X5kjJVWOjh4NGpdXe3vWdpDwf72d0q eV7D0h7uMt7fpaMHasFCDwcnWeiHBr5jaQ8H9wgpMaquZmkPB6edaZQzgoUe 7gruj3sGDw6rYmkPB2taHFnYUMnSHg6OrWh+YA4LPRx8d26KU3wFS3s42GXU nZGdb1naw10VkSG/uoYtgoUeDhab+MxJLWdpDwdXRAxM7AMLPRxcF/FKz+MN S3s4eGDp+Z85r1naw13D80m1b8UwWOjh4KWOVm07XrG0h4NHvJOZXv6SpT0c vKbfpUwDWOjh4KajIz3DXrC0h7uO88Wsm/mzjKU9HLxbbuv8ObDQw8E5qwwO JpWytIeD712Oa+FhoYeD35xIOur6nKU9XIqIyJVZOD4sYWkPB38cuN52GCz0 cLDlUAW/gGcs7eHgBzFaZZVPWdrDwdPnJztNhoUeLhXXS1ug3KlilvZwcLnt 9bb2Ipb2cLD1KLU+DrDQw8FRhkU2aYUs7eFg5XkXcpVgoYe7gc8zw3PuWwtY 2sPBuzPTJ73KZ2kPB3vdqJ48ERZ6ODiyll17Mo+lPRx8asLwwtYnLO3hborI Tnctx0Ww0MPBGSsVle48ZmkPB0+UeimtDAs9HKw/ZPkQ31yW9nCwR2Tiqooc lvZwtzDfFl2oMoGFHg42I3MDYx+xtIeDiXGYoxQs9HCwro7nUpeHLO3hbuP+ QKbgaE42S3s4ODP9QuMoWOjh4Pv6LTuDs1jaw8EunslTGh6wtIeDH9rc05gH Cz1cGu4PPg6ZkZrJ0h4u7f/n1ZxDirDQw8GDm84z2zNY2sPBP9akJVbeZ2kP B9ce+O5HYKGHuyMiA+ZO8T93j6U9HFyeGX1ZBhZ6uP/9pavHunSW9nCwbInD ied3WdrDwRn7460nwkIPdxfvl0qxQfQdlvZwcFtCiZUULPRw8Abt+MOr0lja w8GGJXrdBbdZ2sPd/f/+0j9mHCz0cOl4firc7H7yFkt7OLjTqZdL502W9nDw a2/jYBdY6OHgpEm/q/JusLSHg+eV6DiPhYUe7h7uhxdXy55MZWkPB8dzHQ2d KSzt4eBh7VvaVsJCDwcrOluMLbzO0h4OXr925fEJsNDD3cf1YP1g1KlrLO3h 4F7G879Iw0IPBw936VXmcZWlPRxsKf2l4fkVlvZwsNP8l3qTYKGHy8D7f/Dp xYTLLO3h4GONjy17wUIPB8/MuqHkfYmlPRz8zyREriqZpT1cpoisvmRqbA4L PVzm//++Jv/wtSSW9nBwmO8QWWVY6OFgu/W6GXsSWdrDwen+zRENF1nawz3A /V7Lyjh7WOjh4IJRm8qyLrC0h4Od3RT0tWChh4O9e5DsE+dZ2sPBmavrfaVg oYfLwryvkFmx5hxLezjY6EHo5ldnWdrDwWabfFLNYKGHg3UWpKpcSWBpDwcr Ppl4ayAs9HDZIqI2tmNbYDxLezj4QNMv98YzLO3h4CPb5YOWwEIPB+/WXVCc F8fSHg6+459kZgALPdxDfJ6+lPkQH8vSHg7ecWH11b6w0MPBlS73LvidZmkP B6vv/FNQG8PSHg7O2ThgsD0s9HCPRETvRs+IR9Es7eHgDxl5U8fDQg8Hm/W1 6B93iqU9HJw13E+uDyz0cHCun5OJXxRLe7gcEbkZ/TasLpKlPRxcy/9ScICF Hg6+MT384eMIlvZwsNPb29EGsNDDwYMX2pw5d5KlPVwufn7iUCIPCz1c7v// vTdba+8JlvZw8Kb43alNx1naw8G5xkddXWChh4O37HtnVhrO0h7usYgsUnG3 mgYLPRyscXJoQGoYS3s4+ERIe+VwWOjhYK2T39zCj7G0h3uC82T/fTALCz0c fNjz91/vUJb2cHDj5t/8l6Ms7eHgi4ofTRbBQg8HpzSnnc47wtIeLk9EvqWt 1pgECz0c3E+m9t2lwyzt4eA7R3WzVWChh4MX/B1XfPQQS3s4WPfPJ0YECz1c Pu4Pjckq74Ms7eHgznVGv76EsLSHy////496dNERFno42CTo1YGiYJb2cHDX i9XHTWGhhysQkam/1xakHmBpDwcrRFdojoKFHg52Dk66FbWfpT0c/HxHkWcf WOjh4BqDSVa797G0hyvEX99aa9cSxNIeDr7OFO/3gIUeDrZJqPpcFcjSHg6e M6ifly0s9HBwt77TsCd7WdrDFeH+NCOlczIs9HBwwa7eTMoelvZwsPtcZ71R sNDDwQ9/JxyO3s3SHg5unVkgJwcLPVwxft4BRQ/27WJpDwfLm8ZGdO5kaQ8H V4dNjNoECz0cPKshJKc2gKU9HCw76pjycljo4Z6KyPkhppEv/Vnaw8Fjr4aQ ObDQw8H70j36P9rB0h4Onqhe2mcSLPRwz0TEp/DuhBQ/lvZwsF6k0u4xsNDD wf/WV7fH+bK0h4OHTBafGgALPRy89eM+16PbWdrDlYhIwgI7BzEs9HBwpZ/L lp3bWNrDwT0sk++1+bC0hyv5/78XDdPaAAs9HNwZdu9R7VaW9nDPcX/QtiFo BSz0cLBz8cQNb7ewtIeDW3sygXaw0MPBWkmFWUXeLO3h4NkJ+0aZw0IPV4rz 2KRx68FmlvZwsP/JS2uNYaGHg8cckZ57YxNLezj4Z7mavQ4s9HCw8g7RgYsb WdrDleH5ZlvUBzVY6OHguBeVq2I2sLSHg70iHsoNgIUeDg7KJ1+OrWdpDweL t8z92BsWergXIpJ4vlrmgBdLezj4gnu9PQMLPRz8tMitOGAdS3s4eMuHWWs7 1rK0h4N97wXrbYWFHu4lPi/XDFFvWsPSHg7O4dsnecFCDwd7nuvvV+/J0h4O 1l3i8tENFno4OMSiavNHD5b2cK/w9Xdv13aGhR4O3j5Kp0+VO0t7OHjPgh+K TrDQw8F9tG6Yv17N0h4O7lu4MW4BLPRwr0WkxX7YsFI3lvZwcHLTzbx5sNDD waGPRkYVr2JpDwcHNLofmw0LPdwb/D7x3in5rizt4eAR0qZ/LGChh4NfGme6 P17J0h4O3rmt9t8MWOjhYJNvNzIfubC0hysXkePZSuenwUIPBwdoi29kr2Bp DwcvW+ZXS2Chh4OZgx4zs5xZ2sPBiV+f5JvCQg/3FvM6+dCWB8tZ2sPBn3tf tTSFhR4O7jAfPv3BMpb2cDB//J2rKSz0cPCMcZVXHixlaQ9XgfsVx75DCSz0 cPB467W3spawtIeDybyGzWaw0MPBprGBjg8Xs7SHg2cHaLlNh4UerhLzRu91 VI4TS3s4uJgNaJ4JCz0cPMtIaesTR5b2cHC50smhs2Chh4OX1//+XuDA0h6u Cs9b3SM/zYGFHg72ix0u/WwRS3s42F+5ZoYNLPRwsFXmgmtl9izt4eDVVVuJ PSz0cNW4n80zaX+zkKU9HKxfFvNqMSz0cLCvzeGK6gUs7eHgSVGs2AUWejg4 QPqPw2c7lvZw7/C89MH5uTss9HDv/u+RJmxosGVpDwer+LgabICFHg4+8b5h WLMNS3u4Glyveg8nbIOFHg7WKnjr2TmfpT0c3M7r5O+ChR4OTra6NpeDhR4O zmhb1B48j6U93HsR+b5RJb8vLPRw7////+daH4Rbs7SHg5+4vKkcCAs9HDzk Yrpq7FyW9nBwtV34AXVY6OE+YB6WOgxImsPSHg7ee1S6SBcWeji4umXvhZuz WdrDwWGbX12YBAs9HOzi87Moy4qlPdxHnL+NuQMtYKGHg1eUWocUz2JpDwfL 99mjtgAWejj48/GF1W8tWdrDwUerH2StgIUe7hPO+/K0vFoLlvZwn/7vBye0 roeFHg4+8nX0rDZzlvZwsMu7w9kBsNDDwbOanJbzsNDDfRYR6Zig4UdmsrSH g9c6sr2UYKGHg8MTiwfGzmBpDwdflHkzexQs9HBw2x/lc1ens7SH+4KfrytY zRAWejh4RsTQnAfTWNrDwUdmPT1oCQs9HHw56ui252Ys7eHg8D6OIU6w0MN9 xf2Utlr2R8LSHg4eHFA9ZB0s9HDwuEP7T7easrSHg5tr+k/fBQs9HPxB7NOn Jyz0cLUicvBwcmf4VJb2cHDEv7P9hsJCDwc/anCclTiFpT0cXPPp4YUJsNDD 1YlI2baXYzJMWNrDweGTDjyzgIUeDh6d8fxU6WSW9nDwheOJIUthoYeDDe2Z uNpJLO3h6jHfI9+83gwLPRzs+WuowT9jlvZwcFRH0e0QWOjh4F9zypcowUIP B5fumTQ6wYilPdw3fD/Dr4q6sNDDwW/Fr8akG7K0h4O/hnYtN4eFHg622Ljg XulElvZwsJ/l80nLYaGHaxARNs2z+psBS3s42H3ZgAvbYKGHg3XeFx/jYKGH g998CIwP02dpDwc3ivVeqsJCD/cd56XlqfYVPZb2cPBau3mJk2Chh4OLnyRb 5E1gaQ8HH/37uqc9LPRwsHpk8a+P41naw/3A+22xp3MjLPRw8MrbDZpSsNDD wXlHGf8j41jaw8Ebd2c0DYGFHg6ON5Y7dGksS3u4n/i8XN1iOQkWejjY/Z6z Rr4uS3s4eMaXWToOsNDDweNPXVzwVYelPRysFbIhbiss9HCNIqLqGd2Hh4Ue Dv7yY2jcCW2W9nCw+dNfdiNhoYeDmzJ7at/SYmkP90tEgrc5j54JCz0cHHqj buZLTZb2cLCfxun9q2Chh4Pjj29saNFgaQ8Hz7i+1HsfLPRwTfh6Rg6qA2Ch h4MD6hd9vziGpT0c3D/QrtoIFno4eFCOWVP+aJb2cPBsT2WNxbDQw/3G56Ph 8z0No1jaw8FeDcv/+cNCDwePn3M/VhYWejj4gXKVc/xIlvZwsK7y3Zl6sNDD NYvIBlmLubkjWNrDwQse+vssgoUeDt7bbpdTp87SHg7esz1Lbwcs9HDwtT7p uX1hoYdrwc8XYOgbP5ylPRxsdmKsjT4s9HBwpEqU1RM1lvZwsNRHTzcnWOjh YJnU6HPfh7G0h2vFvHYYzu2GhR4Odjzbsl8BFno4+INLb51EVZb2cHCI29Lm ybDQw8FdAe+qng1laQ/XJiK3/IPrVsJCD9f2/74C2wHtKizt4eAfPuNWH4KF Hg72GjS4fBgs9HDwuF8y624NYWkP147nteeNw61goYeDjcPyO6oHs7SHg6t7 hDRvhoUeDvbtp9GvByz0cHBqwOm5sYNY2sP9wXnUqb6sBws9HLyu/b1OvjJL ezh4yN24kmWw0MPBGbP7nmgeyNIergPz6dAIvxBY6OHgBMfyPcNgoYeDJ4aq X749gKU9HLxItqN1Diz0cHD4bbuVH5VY2sP9xd/vNvrXdljo4eA5/9ac6QcL PRx8ZuXAjRcVWdrDwRlb1FdOhYUeDq4fGLj1pQJLe7hOEdEYP/7SWljo4eDJ Z9WkWVjo4eBTC+Zsi5ZnaQ8H+2sl9tODhR4OLu2rXVDQn6U9XJeITPvy9JwL LPRwsPap/Wc65Fjaw8GX5OdmhMFCDwcfNFH6qwkLPRy84F+546N+LO3hunE/ anG0fDEs9HDwFCkd32ZZlvZwcJNS8uTDsNDDwTe2damMgoUeDj4sP1TtQV+W 9nD/cB5eiWY6wEIPB4++nhD8qw9LezjY+1jzjxBY6OHgn54/vUfAQg8HK+qG DM7szdIeToohCsX3PiyChR4Ozp3kV/CrF0t7OPi654PSg7DQw8G9bXb+HQkL PRx890PKjKyeLO3hpBkyQ9H6qhMs9HDw52oro5YeLO3h4ICJcR+OwkIPB8fI T7uiCQs9HLzZSzMyV4alPZyIIe9N5511hoUeDl67++LTv2KW9nCwmY7moAhY 6OFg/alPgybAQg/HMOTBtRC5pzxLezhYFGCf4QELPRz88PyYYA4WejjYfUS7 dzzH0h4Olm6/t2sKLPRwLEOmqq65XM6ytIeDN0d1tm2BhR4OPum2emV/WOjh /v/79yf8uMqwtIeDz3eei5oNCz0cx5Bzeatca0Us7eHgW98rrINgoYeDf3t1 OwyHhR4OVpyfs+eBNEt7OHjziRFFS2Chh+MZws5QMuiQYmkPBy9eEZoRAQs9 HJz0O3iVASz0cHC6dId22T+G9nBwR9hr+Y2w0MOJGbLumvIgWVjo4eDby9NM r3QztIeDZa9cDJwNCz0cPC/+fW1dF0N7OPiL+ZK1B2Chh5NhyLvEvrKjYaGH g6tKf5bkdjK0h4MHP29NcYWFHg72uj4olYGFHg6eFmD7POEvQ3u4Hgw5ZXlC dhos9HCw3NC3a993MLSHg9/0GVi3CxZ6ODhttHngMFjo4eBeOxZPzfrD0B6u J0PyBs8b4AwLPRy8ZeBAWSlY6OHgcYFXRp5pZ2gPBydt5BcTWOjheuF1aVa+ VtPG0B4O3qv6Tm03LPRwsKbM3BtqsNDDwYMeOa182MrQHg6uXfVv/EpY6OF6 4/XmJ6iysNDDwVPu12meb2FoDwc/Pq2y0BwWejhY81HO6a/NjGQ/HENeznjF BsN0PxxDHk2eFaIJ0/1wDNmdraBb9JuR7IdjiE7j2MZ1MN0Ph+/z4ViJLEz3 wzEk7Mb4ZylNjGQ/HL7OTr7BDqb74Rii7CIe3fqLkeyHY3DfqbUrEqb74fD+ 13i0TYLpfjiGuNy5e6iqkZHsh2NIvUp/sgum++EwH8Z5yqnDdD8cfr9+d6Ue /2Qk++EY8qqypY8HTPfD4bymDTDuDdP9cAyxylbcc+0HI9kPxxD7IV9rbWG6 H44h/Lc961q/M5L9cAxZNr9G9hRM98PhnK1vfTYFpvvhcD7W3b/yvoGR7Idj SJyXRlIQTPfDMSQ+Qv+hBkz3wzEktO/L9uJvjGQ/HM7fH+m5m2C6H44hDTtT M5Vguh8O5zSvau69ekayH44hsX99O5bDdD8cQ/aY7c5hYbofjiHmj75eSqpj JPvhGLIj+fx1a5juh8M5Vkst/V3LSPbD4XWyZftHwXQ/HH4+93CvqTDdD8eQ vqH2tR+/MpL9cAxpbZ6xMxim++FwXnMW6o2F6X44hpRr7mJffmEk++Hwvi66 1+QL0/1wDLH26e4aBtP9cLie0smoJ58ZyX44hgyYv33NOpjuh8Pv4x5XLA/T /XAMOaOXPCf9EyPZD8eQuR9Da51huh8O8znJKl4M0/1weB9uP9169SMj2Q+H c2Kq4LEQpvvh8P769N/W+YGR7IdjSHdo1tmzMN0Ph6+TrdhgBdP9cAwZNaWH TdN7RrIfjiFqk8JKo2C6H44hpj8ubjCD6X44zOdQM626GkayH44hOfb2omMw 3Q/HkLbtVS1GMN0Ph8/H8U+59+8YyX44XAdpqhOCYbofjiEHp+f7jofpfjiG ePZ7+K68mpHsh8N5dpBesQem++EYQuwDujVhuh+OIRdmjrtTVsVI9sPhfLn0 PbIDpvvh8L7Xye4aCdP9cDiPA7SPPK1kJPvh8D5pOd3xgel+OIZErTjWPQym ++Hw+nfkORdUMJL9cAy5p9devRmm++EYcsVaabsKTPfD4Xo8OGjsk7eMZD8c Q8I1O6U2wnQ/HM6PV+qPQTDdD8eQPxH67TnljGQ/HENq6rerrIfpfjiG9Eze vkwZpvvh8DmirHXv0RtGsh8Oc2dHkJ4XTPfD4Rwp73oyEKb74fD9Dfr7PHrN SPbDMURDSW+aF0z3wzFkgujtGGWY7ofDeSfdmjmvGMl+OIZUKEdYrofpfjjM iZfRuwfBdD8cQzLvM69yXzKS/XC4DgY+nrkRpvvhGDJG/23JEJjuh8P5dTD0 yXvBSPbDMeRw6Qsjb5juh8P72ZCkOAym++FwDn5f6VNUxkj2w+Hc6b8Ztg2m ++FwrjtV542A6X44zOuoHZElpYxkPxzmu9Pnzh0w3Q+H9++IzQ4NmO6Hw+sU dEfp1XNGsh+OIcmhckV7YLofDtf5P7uYsTDdD4fzPsJnf2UJI9kPh+vPZtPh YJjuh8P19Nbk6kSY7odjyNl+T+s+PmMk++EYsn6WCjkG0/1wuB8oV0uZCtP9 cJj3CmUmDU8ZyX443K/ZjvkYBdP9cAwxqB14zgKm++HweakTs7OlmJHsh8PX 25605SxM98MxRGaE0T4bmO6Hw/u7zzTlXxEj2Q/HEObv7dYrMN0Px5CItyfs l8B0PxxDLHaVlfSE6X44hqywWL3qbiEj2Q+H73vQUsEdpvvhGGKc7FWlBNP9 cP+/fiVZuQWMZD8cvk69W6Y3TPfD4b4kb/QrdZjuh8Ncau8pU5bPSPbD4XV5 K16wB6b74XB+SxTTx8N0PxzePyPtSe/zGMl+OMwvn2kvQmG6Hw7XU8O8AwSm ++EYotc1277xCSPZD4efr5fu1DMw3Q+H77vju+l8mO6Hw7m/tXuxFEz3w2Hu DvoQev0xI9kPh7khz9c4w3Q/HEN+cZ8t5WC6H44h+5y2FmbnMpL9cLiP256y ehNM98Ph+xccVlGH6X443NfcEX0vy2Ek++HwPlwRvwqE6X44hlQqHH9jANP9 cPi8cIxr/vKIkeyHw7n4OkwzEqb74XD/qd1v+yyY7ofD+T3p+r7jISPZD4fn oXDFlZdhuh8O5yF8UPdSmO6HY8gCdk2qLEz3w+F9c+jemZ3NSPbD4TqUKnLb DNP9cHjeWFfoNhKm++Hw+SrfvPN1FiPZD4fz6TYlNRim++Fw3b6J7ZoM0/1w uD7eybr8eMBI9sPhc/DX/ndnYLofjiHb93ZvsYPpfjhc133WjORhuh+OIZfE ud/vZDKS/XAMya5jnq2B6X44nGcd1fyhMN0Px5Dpc/pWPs9gJPvh8L5n54mD YLofDr+njPkcI5juh2OI32n/pG/3Gcl+ONyfd7mpxsF0Pxyu9wt/rtjCdD8c Q7QH6CzkYbofDvcjT9sV0u8xkv1wOC9zFnxfB9P9cHid5Q2r1WC6H44hQ89G fn2Zzkj2w+HzY+eGHiEw3Q/HkE2at6dPhel+OIaYaKw42XSXkeyHw+ss5SF9 Eab74fB8aZAbuBim++Hwz1mvG9YPpvvh8Pq8cHiRc4eR7IfD15+788x2mO6H wxya/iZQF6b74XB9mS7e/TGNkeyHw7wt/nciEqb74fD3+WQ8nAvT/XAMsSk4 KGZguh8O98O2Lq53bjOS/XAMmRRnVL4Opvvh8Pk7lXdTh+l+OJz/zIc9y28x kv1wuB9IXfXkCEz3wzFkV9KX6Bkw3Q+Hcz1xyoGOm4xkPxw+7787H7oO0/1w eJ+dZyW6wXQ/HEPujPxRMQSm++FwX1JqPrrsBiPZD4frtMsqJBim++H+v39q YglM98MxpL+WfkRrKiPZD4fnVWcZsysw3Q+H62Crm8gVpvvh8DrImFfgCVCy H44hpamxhc9TGMl+OMzT/u5lB2C6Hw5zNyeqyRSm++Fw3+GupdF2nZHsh8Nz bYyCz1WY7ofDnGPmVq6C6X44zC+TIgcVmO6Hg78FN7y4xkj2wzFkzQ3/iEMw 3Q+HOWoU5zgDpvvhcJ8+7MuEzquMZD8czmE/K/WbMN0Ph/vwlIeaa2G6Hw7z Lcli1giY7odjSPDZkoDKK4xkPxzeJ8uFhcdhuh+OIatmFOvOhel+OJyLaeOS OJjuh8PP27hlUuZlRrIfDs/nnSc+bIXpfjh8XiociB8L0/1wuM+um+5Te4mR 7IfDvNDOXhkP0/1weB+Otrk5wXQ/HM7V4+pd8jDdD4dzs9crpSiZkeyHY8jA gNj2IJjuh8P16+lmbwrT/XC4DqQzC9qTGMl+OMyxjpiFqTDdD4f3W/Zv6xqY 7ofDz9Xx7OpImO6HwznfKu//LpGR7IfDdUgyVkTBdD8c7osUc5fYwXQ/HEO8 bg336gPT/XB4/d8Vn3hykZHsh8O5s8ss2w3T/XC4Ll98G20C0/1wDPk+0jqs 9QIj2Q+H96tnVf8UmO6Hw32vZWjSGpjuh8Pz7vnl9qNguh8O57BumvL784xk Pxx+j6rxTdEw3Q/HkJRZI97bw3Q/HM5jh9wXOZjuh2PIxPQmqeJzjGQ/HJ6n FmWOPwDT/XB4HePWbpsO0/1wOIcuLS+6zzKS/XAMmbFhvkU6TPfD4f7y1JZn W2C6Hw7n5NaSdeNhuh+OIVvDu4Z9T2Ak++Ewn3rOr0+E6X44hjQ2zs53hel+ OMzhoXUZw2C6Hw7zc41qXmU8I9kPh8+P1C9fI2G6Hw7n/ulElYUw3Q+H6z1a 7C4H0/1w+Pxvm59XfIaR7IfD98vqOTUEpvvhcI7faOebw3Q/HM6V6jUPBqb7 4fD56hOsmhXHSPbDMeR07o36HTDdD4fr5vvIQmOY7ofD+/vqdVZrLCPZD4f7 XPfswhsw3Q+HORXy9tsGmO6Hw/3H6MFqujDdD4fvq+W35ttpRrIfDl9nT1NB Ikz3w+HzYdB2UzeY7ofD6/OBz1eH6X443H8Whq9+H8NI9sPh+zweMDgOpvvh 8OfHIR+XwHQ/HM5/9qesQTDdD4fX+ZLKjTfRjGQ/HObdDp30kzDdD4fPD63e rxbAdD8cXvebKbw8TPfD4dzIKc15foqR7IfD/ebU8ReOwnQ/HM6J0V8Fa5ju h2NImdTayN4w3Q+HeXvSb1xhFCPZD8cQl79qVcEw3Q+H86y3KNYSpvvhME/M 5L3FMN0Ph99H13rZ40hGsh+OIXnd/5YEwXQ/HO7P7g/bMAOm++Fw/7EpMYKB 6X44hozTOlr2MIKR7IfD8/zvIvU9MN0Ph3NT4XjADKb74RjytVFHWhqm++Fw n2NudiTrJCPZD4ev+/3g2F0w3Q+HufeX+2wK0/1wmBtBF6/+O8FI9sPh+kxw P/QApvvhME89zQJ2wnQ/HK6ndo1AU5juh8P99epBsf+OM5L9cP+fk55FD2C6 Hw7nYMnvPrtguh8On6NqRSsJTPfDMURp+uFiKZjuh8Pz3Gfd2dnhjGQ/HD4H tJMqd8N0PxxDHKY0754G0/1w+LmJzGQGpvvhcF6WVYlzwhjJfjg8l2atqf2v qLOO16ro2jDsh5lNd0hLSUg3UhsQDtIcOgWlu7s5gKR0d7eASAkI0o2ENNIC It0S3+LMut7v/cff/SqH5+xn9syamXtdd4Rox4eT9X/yqstlRTs+nOxb7JRb VrTjw8l8W+7zKAcnhJQPJ/vViLK5Rop2fDipN5++61xBtOPDid5b4mAs0Y4P FwqO5grlPTY+pHy4T/NS6Z/GiXZ8uFBQYu3zktVEOz6cfC/5Et5KINrx4WS8 FZo06/SPIeXDyXv7omOLKaIdH07q0DXzv64j2vHhpN6cn7pgctGODyfPJ+5f X10aF1I+nKyXxa6EzxHt+HCynnaIP+Bb0Y4PFwo6Pei0PZ1ox4eT+efDyzi3 xoaUDyef9+HMLktFOz6cPCe/1v1Woh0fTtaL6am7fyna8eHkzz96kPDhmJDy 4WR/2/DXPetEOz6czFP5Bo/oKtrx4eR721+wcUHRjg8n9Ub7M2FvRoeUDyff R//wr7eLdnw4+Xurr6gxULTjw0n9Khu50qIdHy4U/LTm95VGtOPDSX3xpPvT g6NCyoeTerP9zUpjRDs+nNRPQ0Lbqop2fDjZ1085XiSRaMeHkzo4RvGjf44M KR9Onme5sM4zRTs+nNSbP9/O0li048OFgsXb4z9LJ9rx4ULBiKO7Ttz+IaR8 OFknqz/cuUK048NJ/bB1wq72oh0fTsZBz0Vn8oh2fDj5fO9T/vdiREj5cDJu dz3Lt02048PJ5y6YYeAA0Y4PJ+vz+YWXS4t2fDh5vz9vW8kX7fhwMn+M7Hb8 yPCQ8uGkPp+w+bvxoh0fTtatzdlj1BLt+HDyeQcc3Z1ctOPDiW7545irw0LK h5O68lX71otEOz6c1I+bmtRtJdrx4WS9zt6kXg7Rjg8n7//NZu2eRoSUDyfr ZcuWEzaLdnw4mV/KNTnYT7Tjw0k9Fr98gtKiHR9Ovte6ydr5oh0fTt73dfvP Hx0aUj6cjMc1VepMFO34cDJ+7y77u45ox4eT+fXN4ZGpRTs+nKxnfdcVvzkk pHy4UPAwVvXQCtGODyf//pslFzuIdnw4+RxnluzJL9rx4eS/q1Zx59vBIeXD yd/fZNzhXaIdH07+ubrl3eGiHR9OvsdLJ5JVFu34cDJ/T/utbiLRjg8n7/G4 XKsuDAopH07Wk/afxZsv2vHh5N/f7BLRQrTjw8n6tahQrByiHR8uFJxr+u2i ZwNDyoeTcXv6RqVtoh0fTuqBddv8waIdH07m8Q1/nQ4T7fhw8vwnV1gfV7Tj w4WCQkmezzs7IKR8uFBw8dmZebNFOz6cfD9Pbq/7XrTjw8k6fjrt6WyiHR9O PlfDvvZp/5Dy4eR9qv2kwlbRjg8n+/uRfeYPEu34cLJu7Y7nlxft+HAyDxxd MSCeaMeHk3Wrdyn/XL+Q8uFkHZ1xYv5c0Y4PJ+tVlMoVW/QLKR9O6saIDTan aMeHCwXh716fetE3pHw4ef6lkq/bIdrx4WS9yB177jDRjg8nz2Xp4dmVRTs+ nNRLQyqvTiLa8eFkfVg29uiVPiHlw8l89Hro+yWiHR9Ovof6WUt2EO34cPI8 N/eYUFC048PJ+HnV7PmH3iHlw8k4sv+2PCDa8eFkX3fGf/CjaMeHCwU9q64d VFe048OFgk1tLmRKJ9rx4UJB2RRDLt3rFVI+nMzDNRcs2CDa8eFk/k6Qu1df 0Y4PJ+91pczffi3a8eFCQSlvUO04oh0fTuaj3Pka/9kzpHw4eV7ni/SYJ9rx 4WScvh8zt5Vox4eT72VxpnN5RDs+nMzvZ96l/a9HSPlwMk9Mi9V7r2jHh5N5 51WFG2NFOz6cPC9vY4M6oh0fTuqcQyVvfy7a8eFCQb2Gfw+43z2kfDj5OScX Zdko2vHhZD/zVYcb/UU7PpzMdxtLrg4T7fhw8h7VSTA8gWjHh5P6MLjc8VK3 kPLhZP0dO6P1EtGODyfva5PSXTuKdnw4WZ8unRhTRLTjw8n7k7HoppBox4eT +a9p/0fHuoaUDxcKpuz4sfB00Y4PJ+/F920nfCfa8eHk+Q6O8Ta7aMeHk/Eb 9n2XV11CyoeT/dffnd/uFu34cPJcpuacOEa048OFgoWjJhap0yWkfDgZB++m Pk4n2vHh5L3LXGDzg84h5cPJePqmxdjNoh0fTtbr+Rm6DhHt+HAynjq0aFVZ tOPDyfh8nbn9Z6IdH07q7CFNB9/sFFI+nKyXdWIvWSva8eFk3P+W7nxv0Y4P J/OpPytFWdGODyffx6DO7eKLdnw4eT97zz12qWNI+XDy+culLLFMtOPDyXtR /PqOLqIdH+7//8n/z3/Hn+Pn8HP5e/h7+Rx8Lj4nn5vfg9+L35Pfm+fAc+E5 8dx4jjxXnjPPne+B74Xvie+N75Hvle+Z751xwLhgnDBuGEeMK8YZ445xyLhk nDJuGceMa8Y54573gPeC94T3hveI94r3jPeO95D3kveU95b3mPea95z3nnmA eYF5gnmDeYR5hXmGeYd5iHmJeYp5i3mMeY15jnmPeZB5kXmSeZN5lHmVeZZ5 l3mYeZl5mnmbeZx5nXmeeZ91gHWBdYJ1g3WEdYV1hnWHdYh1iXWKdYt1jHWN dY51j3WQdZF1knWTdZR1lXWWdZd1mHWZdZp1m3WcdZ11nnWfOoC6gDqBuoE6 grqCOoO6gzqEuoQ6hbqFOoa6hjqHuoc6iLqIOom6iTqKuoo6i7qLOoy6jDqN uo06jrqOOo+6jzqQupA6kbqROpK6kjqTupM6lLqUOpW6lTqWupY6l7qXOpi6 mDqZupk6mrqaOpu6mzqcupw6nbqdOp66njqfup99APsC9gnsG9hHsK9gn8G+ g30I+xL2Kexb2Mewr2Gfw77nf/sg3RexT2LfxD6KfRX7LPZd7MPYl7FPY9/G Po59Hfs89n3sA9kXsk9k38g+kn0l+0z2nexD2ZeyT2Xfyj6WfS37XPa97IPZ F7NPZt/MPpp9Nfts9t3sw9mXs09n384+nn09+3z2/ZwDcC7AOQHnBpwjcK7A OQPnDpxDcC7BOQXnFpxjcK7BOQfnHpyDcC7COQnnJpyjcK7COQvnLpzDcC7D OQ3nNpzjcK7DOQ/nPpwDcS7EORHnRpwjca7EORPnTpxDcS7FORXnVpxjca71 v3MuPffiHIxzMc7JODfjHI1zNc7ZOHfjHI5zOc7pOLfjHI9zPc75OPfjHJBz Qc4JOTfkHJFzRc4ZOXfkHJJzSc4pObfkHJNzTc45OffkHJRzUc5JOTflHJVz Vc5ZOXflHJZzWc5pObflHJdzXc55OfflHJhzYc6JOTfmHJlzZc6ZOXfmHJpz ac6pObfmHJtzbc65OffmHJxzcc7JOTfnHJ1zdc7ZOXfnHJ5zec7pObfnHJ9z fc75OffnHoB7Ae4JuDfgHoF7Be4ZuHfgHoJ7Ce4puLfgHoN7De45uPfgHoR7 Ee5JuDfhHoV7Fe5ZuHfhHoZ7Ge5puLfhHod7He55uPfhHoh7Ie6JuDfiHol7 Je6ZuHfiHop7Ke6puLfiHot7Le65uPfiHox7Me7JuDfjHo17Ne7ZuHfjHo57 Oe7puLfjHo97Pe75uPfjHpB7Qe4JuTfkHpF7Re4ZuXfkHpJ7Se4pubfkHpN7 Te45uffkHpR7Ue5JuTflHpV7Ve5ZuXflHpZ7We5pubflHpd7Xe55ufflHph7 Ye6JuTfmHpl7Ze6ZuXfmHpp7ae6pubfmHpt7be65uffmHpx7ce7JuTfnHp17 de7ZuXfnHp57ee7pubfnHp97fe75uffHB4AvAJ8AvgF8BPgK8BngO8CHgC8B nwK+BXwM+BrwOeB7wAeBLwKfBL4JfBT4KvBZ4Lv4nw9DfRn4NPBt4OPA14HP A98HPhB8IfhE8I3gI8FXgs8E3wk+FHwp+FTwreBjwdeCzwXfCz4YfDH4ZPDN 4KPBV4PPBt8NPhx8Ofh08O3g48HXg88H3w8+IHxB+ITwDeEjwleEzwjfET4k fEn4lPAt4WPC14TPCd8TPih8Ufik8E3ho8JXhc8K3xU+LHxZ+LTwbeHjwteF zwvfFz4wfGH4xPCN4SPDV4bPDN8ZPjR8afjU8K3hY8PXhs8N3xs+OHxx+OTw zeGjw1eHzw7fHT48fHn49PDt4ePD14fPD98fPkB8gfgE8Q3iI8RXiM8Q3yE+ RHyJ+BTxLeJjxNeIzxHfIz5IfJH4JPFN4qPEV4nPEt8lPkx8mfg08W3i48TX ic8T3yc+UHyh+ETxjeIjxVeKzxTfKT5UfKn4VPGt4mPF14rPFd8rPlh8sfhk 8c3io8VXi88W3y0+XHy5+HTx7eLjxdeLzxffLz5gfMH4hPEN4yPGV4zPGN8x PmR8yfiU8S3jY8bXjM8Z3zM+aHzR+KTxTeOjxleNzxrfNT5sfNn4tPFt4+PG 143PG983PnB84fjE8Y3jI8dXjs8c3zk+dHzp+NTxreNjx9eOzx3fOz54fPH4 5PHN46PHV4/PHt89Pnx8+fj08e3j48fXj88f3z99APQF0CdA3wB9BPQV0GdA 3wF9CPQl0KdA3wJ9DPQ10OdA3wN9EPRF0CdB3wR9FPRV0GdB3wV9GPRl0KdB 3wZ9HPR10OdB3wd9IPSF0CdC3wh9JPSV0GdC3wl9KPSl0KdC3wp9LPS10OdC 3wt9MPTF0CdD3wx9NPTV0GdD3w19OPTl0KdD3w59PPT10OdD3w99QPQF0SdE 3xB9RPQV0WdE3xF9SPQl0adE3xJ9TPQ10edE3xN9UPRF0SdF3xR9VPRV0WdF 3xV9WPRl0adF3xZ9XPR10edF3xd9YPSF0SdG3xh9ZPSV0WdG3xl9aPSl0adG 3xp9bPS10edG3xt9cPTF0SdH3xx9dPTV0WdH3x19ePTl0adH3x59fPT10edH 3x99gPQF0idI3yB9hPQV0mdI3yF9iPQl0qdI3yJ9jPQ10udI3yN9kPRF0idJ 3yR9lPRV0mdJ3yV9mPRl0qdJ3yZ9nPR10udJ3yd9oPSF0idK3yh9pPSV0mdK 3yl9qPSl0qdK3yp9rPS10udK3yt9sPTF0idL3yx9tPTV0mdL3y19uPTl0qdL 3y59vPT10udL3y99wPQF0ydM3zB9xPQV02dM3zF9yPQl06dM3zJ9zPQ10+dM 3zN90PRF0ydN3zR91PRV02dN3zV92PRl06dN3zZ93PR10+dN3zd94PSF0ydO 3zh95PSV02dO3zl96PSl06dO3zp97PS10+dO3zt98PTF0ydP3zx99PTV02dP 3z19+PTl06dP3z59/PT10+dP3z8cALgAcALgBsARgCsAZwDuABwCuARwCuAW wDGAawDnAO4BHAS4CHAS4CbAUYCrAGcB7gIcBrgMcBrgNsBxgOsA5wHuAxwI uBBwIuBGwJGAKwFnAu4EHAq4FHAq4FbAsYBrAecC7gUcDLgYcDLgZsDRgKsB ZwPuBhwOuBxwOuB2wPGA6wHnA+4HHBC4IHBC4IbAEYErAmcE7ggcErgkcErg lsAxgWsC5wTuCRwUuChwUuCmwFGBqwJnBe4KHBa4LHBa4LbAcYHrAucF7gsc GLgwcGLgxsCRgSsDZwbuDBwauDRwauDWwLGBawPnBu4NHBy4OHBy4ObA0YGr A2cH7g4cHrg8cHrg9sDxgesD5wfuDxwguEBwguAGwRGCKwRnCO4QHCK4RHCK 4BbBMYJrBOcI7hEcJLhIcJLgJsFRgqsEZwnuEhwmuExwmuA2wXGC6wTnCe4T HCi4UHCi4EbBkYIrBWcK7hQcKrhUcKrgVsGxgmsF5wruFRwsuFhwsuBmwdGC qwVnC+4WHC64XHC64HbB8YLrBecL7hccMLhgcMLghsERgysGZwzuGBwyuGRw yuCWwTGDawbnDO4ZHDS4aHDS4KbBUYOrBmcN7hocNrhscNrgtsFxg+sG5w3u Gxw4uHBw4uDGwZGDKwdnDu4cHDq4dHDq4NbBsYNrB+cO7h0cPLh4cPLg5sHR g6sHZw/uHhw+uHxw+uD2wfGD6wfnD+4fHEC4gHAC4QbCEYQrCGcQ7iAcQriE cArhFsIxhGsI5xDuIRxEuIhwEuEmwlGEqwhnEe4iHEa4jHAa4TbCcYTrCOcR 7iMcSLiQcCLhRsKRhCsJZxLuJBxKuJRwKuFWwrGEawnnEu4lHEy4mHAy4WbC 0YSrCWcT7iYcTriccDrhdsLxhOsJ5xPuJxxQuKBwQuGGwhGFKwpnFO4oHFK4 pHBK4ZbCMYVrCucU7ikcVLiocFLhpsJRhasKZxXuKhxWuKxwWuG2wnGF6wrn Fe4rHFi4sHBi4cbCkYUrC2cW7iwcWri0cGrh1sKxhWsL5xbuLRxcuLhwcuHm wtGFqwtnF+4uHF64vHB64fbC8YXrC+cX7i8cYLjAcILhBsMRhisMZxjuMBxi uMRwiuEWwzGGawznGO4xHGS4yHCS4SbDUYarDGcZ7jIcZrjMcJrhNsNxhusM 5xnuMxxouNBwouFGw5GGKw1nGu40HGq41HCq4VbDsYZrDeca7jUcbLjYcLLh ZsPRhqsNZxvuNhxuuNxwuuF2w/GG6w3nG+43HHC44HDC4YbDEYcrDmcc7jgc crjkcMrhlsMxh2sO5xzuORx0uOhw0uGmw1GHqw5nHe46HHa47HDa4bbDcYfr Ducd7jsceLjwcOLhxsORhysPZx7uPBx6uPRw6uHWw7GHaw/nHu49HHy4+HDy 4ebD0YerD2cf7j4cfrj8cPrh9sPxh+sP5x/uPzkA5AKQE0BuADkC5AqQM0Du ADkE5BKQU0BuATkG5BqQc0DuATkI5CKQk0BuAjkK5CqQs0DuAjkM5DKQ00Bu AzkO5DqQ80DuAzkQ5EKQE0FuBDkS5EqQM0HuBDkU5FKQU0FuBTkW5FqQc0Hu BTkY5GKQk0FuBjka5GqQs0HuBjkc5HKQ00FuBzke5HqQ80HuBzkg5IKQE0Ju CDki5IqQM0LuCDkk5JKQU0JuCTkm5JqQc0LuCTko5KKQk0JuCjkq5KqQs0Lu Cjks5LKQ00JuCzku5LqQ80LuCzkw5MKQE0NuDDky5MqQM0PuDDk05NKQU0Nu DTk25NqQc0PuDTk45OKQk0NuDjk65OqQs0PuDjk85PKQ00NuDzk+5PqQ80Pu DzlA5AKRE0RuEDlC5AqRM0TuEDlE5BKRU0RuETlG5BqRc0TuETlI5CKRk0Ru EjlK5CqRs0TuEjlM5DKR00RuEzlO5DqR80TuEzlQ5EKRE0VuFDlS5EqRM0Xu FDlU5FKRU0VuFTlW5FqRc0XuFTlY5GKRk0VuFjla5GqRs0XuFjlc5HKR00Vu Fzle5HqR80XuFzlg5IKRE0ZuGDli5IqRM0buGDlk5JKRU0ZuGTlm5JqRc0bu GTlo5KKRk0ZuGjlq5KqRs0buGjls5LKR00ZuGzlu5LqR80buGzlw5MKRE0du HDly5MqRM0fuHDl05NKRU0duHTl25NqRc0fuHTl45OKRk0duHjl65OqRs0fu 3v9y+DSXj5w+cvvI8SPXj5w/cv/IASQXkJxAcgPJESRXkJxBcgfJISSXkJxC cgvJMSTXkJxDcg/JQSQXkZxEchPJUSRXkZxFchfJYSSXkZxGchvJcSTXkZxH ch/JgSQXkpxIciPJkSRXkpxJcifJoSSXkpxKcivJsSTXkpxLci/JwSQXk5xM cjPJ0SRXk5xNcjfJ4SSXk5xOcjvJ8STXk5xPcj/JASUXlJxQckPJESVXlJxR ckfJISWXlJxSckvJMSXXlJxTck/JQSUXlZxUclPJUSVXlZxVclfJYSWXlZxW clvJcSXXlZxXcl/JgSUXlpxYcmPJkSVXlpxZcmfJoSWXlpxacmvJsSXXlpxb cm/JwSUXl5xccnPJ0SVXl5xdcnfJ4SWXl5xecnvJ8SXXl5xfcn/JASYXmJxg coPJESZXmJxhcofJISaXmJxicovJMSbXmJxjco/JQSYXmZxkcpPJUSZXmZxl cpfJYSaXmZxmcpvJcSbXmZxncp/JgSYXmpxocqPJkSZXmpxpcqfJoSaXmpxq cqvJsSbXmpxrcq/JwSYXm5xscrPJ0SZXm5xtcrfJ4SaXm5xucrvJ8SbXm5xv cr/JAScXnJxwcsPJESdXnJxxcsfJISeXnJxycsvJMSfXnJxzcs/JQScXnZx0 ctPJUSdXnZx1ctfJYSeXnZx2ctvJcSfXnZx3ct/JgScXnpx4cuPJkSdXnpx5 cufJoSeXnpx6cuvJsSfXnpx7cu8j/XCir19/FzNRbOP8cHO9oHGoZ//9oiP9 cKITP5ydoU8c4/xwomPe6/M+R1zj/HCivy2ROtYN0ZF+ONHli46vNDWecX64 OV6QNPe13RXiG+eHE124U/K2H0VH+uFEFwkvX35jAuP8cKL35Opdr3VC4/xw ohc13zI3TSLj/HCzveBgjYSfnREd6YcTXa7RpH0jExvnhxNd727YspJJjPPD if6+cbEdL0RH+uFEP/2yv786qXF+uFlSH+xKOvy7ZMb54USv/TFJkeSfGeeH E30+7vDPT4qO9MOJHrq5W7ERyY3zw830giz24ZgSKYzzw4nu1udDgpeiI/1w oitP23BkTUrj/HCij99Iuq15KuP8cKKr3Cl0JXVq4/xwM2Q9ypm+wJ+iI/1w oo9UuLF7XBrj/HCilx6PGBqW1jg/nOhi1ZL2ifK5cX440WlbL1qyVXSkH266 7Gc2FbZd0xnnhxPd/NyNWdnTG+eHEx3WaW2LO6Ij/XCie2Ve3mJ+BuP8cNM/ 1ZeXZ9XPaJwfbpo8v1l1bZJMxvnhRCfdnGXpCdGRfjjRpVbX6zvqC+P8cKJX 5n09rGxm4/xwoq9ES7A/Shbj/HBT5flfW1d0u+hIP5zoYSNu3emZ1Tg/nOiD O7YcyJfNOD+c6O4Vv7r6SHSkH070xf+6Z1v9pXF+uClesHBOr9WtshvnhxN9 0avaLFMO4/xwop9EseE3REf64URv77Sy+7ycxvnhRHfN+c2JhrmM88NNlv1N 8keNU+Q2zg8nek6SFRnPi470w4meFD3i86l5jPPDiR58eUx4zbzG+eFE7xxw clvCfMb54SZ5QdxrDer9ITrSDyd61fOiOcfnN84PJ7r0xv5FqhYwzg8n+lXy nH3jFjTODzdR1puM9Z8dEx3phxO9+mzchWMLGeeHE107X70RlQsb54cT3atc uUVxihjnhxO9MOXNF8dER/rhJnjB378XGzjuK+P8cKL/qtqkZNWixvnhRC+6 UL9g/GLG+eFEn+9TpNkfoiP9cKJXVI9xaGJx4/xw473g6MBzzWqWMM4PJ3p4 tvWFkpY0zg8nenmfRaXOi470w4meMvvXITMD4/xwokvvsv81LGWcH+5HmS+S T1yZtrRxfjjRU6+2mXBDdKQfTnSiinN/WlLGOD+c6ChzipjWXxvnhxNdIWmF idnLGueHGyf7p3eXaz8WHemHE71t+sfwjeWM88OJPlvot+G9wozzw4kunC3r 02LljfPDiX61p8KUqN8Y54cbK+9nwzyd9ouO9MOJ/qza/SGjKxjnhxN9/92Q Y9UqGueHE/1+X/RqSSsZ54cTvSXByJiXRUf64cbI/qFCgvcLKhvnhxNd4sra zK2qGOeHE12zWMdROasa54cTvebyt5leiI70w4kuWGjc61+rGeeHG+0F0w76 0YZWN84PJzpfgothFcKN88OJzjEl4d4ENYzzw4ludnlnrwuiI/1wovt3edB8 QU3j/HCj5P29s3x061rG+eFE/3Q06v08tY3zw4m+uy3a4LeiI/1wor+u9Fu1 PXWM88ONlO8jbcl6Y+oa54cTXfXPCTNr1TPODye6d7J9idPWN84PJ/rXMXcO 3BUd6YcTffVmaOOGBsb54X7wgkHHs13o19A4P5zoJF7rQmGNjPPDib5f6Ojx BI2N88OJzpzju3mXRUf64USfXFh4xbJvjfPDjfCCw40aPejSxDg/nOjzX1xt VaKpcX440QsPH0wT8zvj/HAjPu1Xv4z7p+hIP5zo/ncTFlr4vXF+uOFe0CDe uBkdmhnnhxM9qc3KAkWbG+eHE13nYvdY0VsY54cTfbD0hxRnRUf64US/GF29 2cKWxvnhhsn+ZEH/vzu2Ms4PJ3pMt/GLi7c2zg8n+vKrabNitTHODyd6e4aF Ry+IjvTDiY79fHuh5W2N88NFyPzc6uXlHu2M88OJ7j6s4fay7Y3zw0V8Oq95 fzZxB+P8cKJDl+5kvSU60g8nekyuzFt+7micH26ovA/fHx00tJNxfjjRm368 NbRGZ+P8cKK/OdF/d4YuxvnhRI8vvbTIc9GRfjjRi+K0e7C3q3F+uCEyv9W9 cmFKN+P8cKLvVY3utexunB9O9MoM/zUr3MM4P5zoOtH3ejF7GueHG+wFXQp2 vnRJdKQfTvSU+/EfrellnB9OdN/m64sP6m2cH07023+aHAjvY5wfTnSsAznG ZOprnB9ukIyPMl+MeS060g8nuufPdQ8c6WecH050v7ani8/rb5wfTnSrfYsf dRlgnB9O9Js0ly6XG2icH26g1PsXI0zKQcb54URfb7iu9SPRkX440XMStIux d7BxfjjRh1vsvzV9iHF+ONFpThz7r/1Q4/xwA2R/s3t8lTIRxvnhRKffmvrK Z8OM88OJblBg6LKHoiP9cKJPbD2xZu9w4/xwohsdT/B45gjj/HD9vSDrxzod Ov9gnB9O9IzL67KUH2mcH050g/+ypU07yjg/nOhmz89Ufyk60g8n+kWzHbuO jTbOD9fPC2Y/fNp2yRjj/HCiCxSKqNF/rHF+ONEP7w7sWWuccX440eU2PD+X 40fj/HCik5R70s2ON84P11f2kw0iqvwlOtIPJzrT2u3Ntkwwzg8n+sT75Zsn TDTODyf6YNy6YW0nGeeH6/vpvuh8orKTjfPD9ZH946wiqdNOMc4PJ3rLLyO/ fyM60g8nOu7xc3dOTzXODyd69868y9ZOM84PJ7pzixWLR043zg/X2wu+XF7h r2YzjPPDie7QNlOdYKZxfjjRX8wuHzvVLOP8cKI3Z9vz4ZXoSD9cL1lvYi3O eWa2cX440QWLvJ21bo5xfjjRxdedKTd2rnF+ONHVu5bO1WaecX64T//9yPBa YfON88P1lP3G+0RbMy4wzg8n2v9rSn1voXF+uE+6zN9FromO9MOJ9konq7Nz kXF+ONF13uTfMHuxcX64HrL/H1W1Yt8lxvnhRBdJ3SN9/aXG+eFEl7m0uVCR Zcb54UQvep5h9GfLjfPDiR4+51Cq16Ij/XDdpf6Ou+XBuRXG+eFE9xn24e3m lcb54URfK7M6bPoq4/xworuPP3mq12rj/HCiO27qM7veGuP8cN28YLHZtvir tcb54UT/eGrOPyl/Ms4PJ7p6jwKd34uO9MOJ3lhlfIG/1hnnhxOdY+eOwrvX G+eH6yrr35fH+izaYJwfTvT00PH/hv1snB9O9NVfTvzaaqNxfjjRdzdf31bx F+P8cKIXD030Jucm4/xwXeT7ntatR8LNxvnhRA/umTjfS9GRfjjR6Vd5uS5u Mc4PJ7rHb1Xa7NxqnB9OdKpy0W8v3GacH66zrJ9nS8wb8atxfjjRG6N7M9pt N84PJ3rXwKanqu8wzg8nusFf7SoW2mmcH0503D/yRUv9m3F+uE5Sj4T2v/N2 GeeHE/06S74C90RH+uFE1387as2J3cb54UTnzn+l+abfjfPDdfSCbNOLNJ6z xzg/nOjTD36aGrHXOD+c6Envq8Zrt884P5zo9TOzHqyx3ygfzgvqzqi0u+gB o3w4ed6nD77NcNAoH072M1nWdot9yCgfzgvm942d64Vox4eT/fqmZ1mvHjbK h5Pxsq9r8wNHjPLhpN6fPfv6uqNG+XBesCzvgLkzjxnlw8l4jcgyO+K4UT6c 7IcmrbrY4YRRPpw8r5bJ6tc7aZQPJ99fjH4pvv7DKB9O9rOj76XMdcooH84L aoU6NU5x2igfzgu2jkp7w5wxyoeT9aRU9GVPRDs+nBekq/TVmitnjfLhZLye 2ff80J9G+XDyvKL/2n/TOaN8OFlfUmUrv+i8UT6cFzz7JkPN8ReM8uG8YMCx TQv6XzTKh5P19/7z3G0vGeXDSb1779+o9S4b5cN5wYKkGxKHXTHKh5N6e1/1 1gWuGuXDyXpZ8crHDH8Z5cPJ+uU3P5/wmlE+nLy/9d88jXrdKB9Oft7KlVWf iHZ8OBl/zUY+vHbDKB/OCy68XnLi5E2jfDipp67Gf7brllE+nOznxl+su/62 UT6czM/jE0VdeMcoH84LkjU7+s/Ev43y4T75kZIkj7hrlA8n88Pmjz90v2eU Dye/f6NZRVveN8qHk/19hje56/1jlA/nBQNXZG1d8YFRPpzsL6YUv1X8X6N8 ONnvjC+7MPdDo3w4ed6VwhdleGSUDyfjfUC3v5M+NsqHk/3B9e0dYj4xyofz gr35ihX5INrx4bwge7FQ2NOnRvlwXvBub/rpd54Z5cPJfD93VfZLz43y4WQ8 zFkb7eQLo3w42V/MLvb5vpdG+XDyfvRvMXDbK6N8OPn+MhZPv+61UT6crC99 /4i+9I1RPpwXtOueP9/st0b5cDIebM8FE/8zyof7dN+7ssbId0b5cF6Q4trV bwa9N8qH84LHub6I6PnBKB9O5ruME7yOH43y4byg5Inc+1pEscqH84KwckmP No5qlQ8n89OS8GR1PKt8OC/IGe/V0qohq3w4L5i1InHf8tGs8uGknluwfVIp Y5UPJ/NV1ihPvrJW+XBSX/V6PDG/b5UPJ/vhI3N754xulQ/nBQlapFqSJYZV Ptwn/2CfJBliWuXDST097fDh1LGs8uFkPJ5Mve+z2Fb5cPJ9TBoWLXEcq3w4 2S+USDQyXlyrfDipXwudD48VzyofTvabf99u6se3yoeT/f/OyptCCazy4bzg WJ501aIktMqHk/pue+dc70U7PpwXlL1arebbRFb5cF4wN83Jna8SW+XDeUGh GFE7vkhilQ/nBWdyvWj2LKlVPpwXPM26c/6TZFb5cFJPTm6f/vFnVvlwXlAj UZL7D5Nb5cPJ31dl/6t/U1jlw3lB6ucTK/6b0iofTvTWMbcfpLLKh/OC8Dr7 9j1IbZUPJ/P7uCoPHqSxyoeTei3jV/X+TWuVD+cFy2/NiP3wc6t8OC8oNX+g fZTOKh9Ovq+c78s9Tm+VDyf7kXYZjz/JYJUP5wXjivmzn2W0yofzgmg/bF73 IpNVPpzsP4uHxX79hVU+nBecqnZw7dvMVvlwUk/uqDT9fRarfDgvaDrkzsEo 2azy4WS9W7osiPalVT6cF8QstPCjn90qH84Ldnx918TOYZUPJ/Xe3dE14ue0 yofzghYl591NnMsqH07GT4f8+5LntsqHEz2v0b00eazy4bygm5ejVsa8Vvlw sl4d2xg9Wz6rfDipv4v50XLnt8qHk/psYsGwggWs8uGkPkpS61Sxglb5cLK+ Je2+pEwhq3w42f/dXb6rQmGrfDhZH297GcOLWOXDyfPrMOVEva+s8uFkf3Sv y56mRa3y4bwgz941H1sXs8qHk/mmU92ILsWt8uGkPmo1rHrfElb5cDIfZgtr GVHSKh/u0/e1bt/YwCofTur1rKfbTStllQ/nBd8N+b3hgtJW+XCy/l0bP2VV Gat8OKmvr1VLtulrq3w42U9kTnJjV1mrfDj5eU0evzhSziofTur/r16Enwuz yoeT96VDwTc3ylvlw8n7umX/3YffWOXDyfO5siXdfxWs8uHk+SxJu9ivZJUP J/PF9TidEle2yoeT9bTl1GHpqljlw3nB50mO3spZ1SofTub7Y7vHFqtmlQ8n 80mvUYMqVLfKh5PxHr3IjrrhVvlwUr91vlamZQ2rfDj58+snJe5R0yofTuaz w81zDatllQ8nz3tf68mTa1vlw3lB3o0byiyuY5UP5wU1V9UovrGuVT6c7K8O fDt4bz2rfDipL3Pcj3e2vlU+nLyf0ey92w2s8uG8IN+A/bFfNbTKh5N68mSJ vtEbW+XDeUHKIkPyp/jWKh9OxsPbRYWzN7HKh5Px22TziBJNrfLhZD+57US6 6t9Z5cN5QaVvo/jNvrfKh/OCeWsaFurZzCofTt7/GK83jGpulQ8n9dSV273n trDKh/MCO7vImA0trfLhvOD77fb+/lZW+XCyXuxoMulSa6t8OC9InKnBD4/b WOXDecG5ATEOmXZW+XDyfjUaWCtle6t8OJmv65/MkaeDVT7cp/PE+OFhHa3y 4bwgVqHw3xt1ssqHk9+3zcoB3Tpb5cPJn2+WfcToLlb5cLL/vPbPpYVdrfLh 5Pef/67ftm5W+XBe8EvbLm1OdbfKh5P1KGHTxfd7WOXDyXhtfTlbqJdVPpzU T1Vfv0/Z2yofzgsaLz2YukAfq3w4L6hSr+moKn2t8uFk/1nvzzKt+lnlw8l4 nFu0wpD+Vvlwsr5nWTJn9gCrfDjZz7/7osTmgVb5cPL8Mp/98tQgq3w4Lyi9 fU+Lfwdb5cPJfPGnfRR9qFU+nKxH0zbszRhhlQ/nBX99cenvYJhVPpwX/LFx ct1Gw63y4bygSc9nSfuMsMqHk3pvVawM036wyofzgpFTn/TbONIqH06e75Ct GU+NssqHk/n4954pHo+2yofzgns/BY3jjrXKh5P9wcosj7OPs8qHk/Uuxdcn K/5olQ8n9V/7ZR/ajLfKh/OCQ8lb9h01wSofTj7vrGnlVk60yofzgpY9Kzc5 PMkqH06+/0JzDt6fbJUPJ/vpDrMGxppqlQ8n38fGhsOyT7PKh/OCpStfXKg8 3SofTuqZ1336d5xhlQ8n63elqJ0mzLTKh5M/32jO+p9nWeXDyXz39/el/5xt lQ8n42dt6/Rv5ljlw8l+aeCe6qnmWeXDecGK7MNPlpxvlQ/nBTHG75/7/QKr fDiZv0bP2D5ioVU+nDwvmzjb6kVW+XAyfz+t8PfJxVb5cFLPlavx/MUSq3w4 GX9RSldPucwqH07qwS+yfwiWW+XDyX7uwBf/tVhhlQ8n+mW58mNXWuXDSf1+ csHtn1dZ5cPJ79er0umLq63y4WQ/kbxhAm+tVT6c1Od3bs/L+pNVPpwXxE/+ cUD1dVb5cLK+Pt2+tvd6q3w4Gd+/5s+1cINVPpwn73XfKEd+tsqHk3qh+bL0 zzda5cPJ+v/u6JTUm6zy4WR/9zRq/bDNVvlwUv9tbNCx8xarfDiZn7c8Ojtr q1U+nBdM63t67P5tVvlwsl8Ymmrak1+t8uG8oHWja09S7bDKh/OCX2fnn1t+ p1U+nBdsuJJzdrffrPLhvODGnlv/zN9llQ/nBcPfth17bLdVPpzo/BcHvf3d Kh9Onlf2svsz77XKh/OCtYt/b1Rrn1U+nBdkbNkqbOh+q3w4mf/KVhq6/oBV Ppy8b8kjElw7aJUP92n9z/Q07mGrfDgvmJozLFOJI1b5cF4w7JsPK9sftcqH k58Xp+nQOces8uHkefUdtvbYcat8OFlPZg7O/uGEVT6cFyTt1/Z9zj+s8uG8 oH6heumanLLKh5P984Mm0yectsqH84Lff5/+3Z4zVvlwMh/dTzroxVmrfDiZ v2Y+eZz5nFU+nBcsTFjyl/rnrfLhZD84M8mxsRes8uG8IPfg0YV3X7TKh/OC cmk2v3p+ySofTvZPf6yNmfWKVT6c7LejjOzc6KpVPpzUj6kbZp/4l1U+nMxH c0oUPXDNKh/OCyZEDZv77rpVPpzMxydH18p70yofTtbPGRmatrpllQ8n9d3L jLvn3rbKh/OChhFLu5+9Y5UP5wVx/t05IPZdq3w4eb7XIi6XuWeVD+cFRZPG +7Hvfat8OPl+qnab+vM/VvlwXnCk5pGn/zywyofzgkcvsy3O+NAqH07ep3gr VzZ6ZJUP5wUjBnxrpz22yoeT9zvnd5tPPrHKh/OCbAkP7Yj5zCofzgu+Tb8q ednnVvlwUl9+l/bIwBdW+XBecP1SsVPbXlrlw0m9tShFrpevrPLhpB47feJ6 njdW+XBesODHrvfbv7XKh5OfZ1J/s/I/q3w42T+1vPn+zjurfDgv+PD8SvSM H6zy4aReeJqhTdOPVvlwsv9efTTdvCi+8uG8YGzfR7muRPWVDyf11I5Fk1OG fOXDyc87H6Va/Wi+8uG8YGeJNN/NML7y4WR9b5HoyHnrKx9O5o8/Xo36LLqv fDh5v2PcXFA3hq98OC+IN/9BvBkxfeXDyfPNlf3shVi+8uFkfWqw9UmKOL7y 4T7tn1c1bxjXVz6cjK+SKfPMjecrH07mh9Zpa16L7ysfTur/RCePp0/oKx9O 9gcxyy5onshXPpysJ5mnHlme2Fc+nNTT5S9VfpDEVz6cjOc62bPkTuYrH07G +9cL6nf7zFc+nBcMihV+e0tyX/lwUo+uqX3wfQpf+XBesK/QgVCZVL7y4eT3 3/HrtB9S+8qH84JUjSpFHE/jKx9OdLEJhxJ/7isfTr7PkQtbNkjnKx9O1oMB 0xsvTO8rH84LPtYbvfZeBl/5cF6QoeWkOnky+cqHk/3i64P1en/hKx9O1pfW X/+yO7OvfLhP/XNp2sTM6isfTt6fYR161cjmKx/OC04nrnJt9pe+8uG8YGal swvuZPeVDyfzzS+pduTO6SsfTurna8Xy9s3lKx9O3r/WVaLuz+0rH07++2et syXI6ysfzgvmfLl8TcN8vvLhZD46mG708vy+8uFkPvjh0e/PC/jKh/OCTQWy 1SpVyFc+nHz++fdLjSvsKx9O9uuLvhl5qYivfDgveJC+yZdZi/rKh5N6JXZY lp7FfOXDSX1fO9mgfcV95cPJeIxyP2/ikr7y4eT9SnQ++D7wlQ/nBa0WvF2x oZSvfDgZT/vbdPDK+MqH84I2y0uNC//aVz6c1KfdpsdYVNZXPpz8+e9+uPas nK98OC9Y9XO2RGXL+8qH84LFG6YvmPqNr3w42R/9/M/ouxV85cPJ35ew+Kmv KvnKh/OCOoWXdhtb2Vc+nBe8mBR0vVbFVz6cvE/zMh3PV81XPpyM56sdho2o 7isfTubTKwVmXAr3lQ8n70/eyTFy1/SVD+cF9wcs+jOilq98OKnn2vaPcrG2 r3w42W+sLDoiV11f+XBecPjNqzbD6vnKh/OC1WmPrrpU31c+nIzPB398k7eh r3w4L3hZOEPZkY185cNJvXXvwpxrjX3lw3lB+D/xahZu4isf7hOv4K+W45v6 yofzgmoHml64+52vfDgv2L16/fJSzXzlw0m98+bu2ZnNfeXDecHxI+maPm/h Kx9OnkfFHhWqtPKVDyfz48ooE5e39pUPJ+tvhkuFQm195cPJfuFd2mKN2/nK h/OC58Puzd3a3lc+nDz/ZOFNknT0lQ/nBV8k7Taocydf+XCyf/u39cdjnX3l w8n4SlrlSrauvvLhpP6MXzTFD9185cN5Qe2WFTfd7u4rH84L/l03Y32Znr7y 4byg2Jgg9sJevvLhvOCnhfX3R+njKx9Ovo9l3rVv+/rKh/OCXPVq1Putn698 OBlvA1rmTTvAVz6czA/367UdONBXPpz8+55lo10b5CsfTuqdOGXfB0N85cN5 QbfZXWsvHOorH07WhzQP4kUb5isfzgsKzDyUtcVwX/lwUo+kzrz44Ahf+XBe kOb3tAO/HOkrH07mq9XHt40b5SsfzgtSx6xa5+loX/lwsh4l3l6z9lhf+XBS 38bJ8/O2cb7y4aSeLnOoS9rxvvLhvGBUnPmTIib4yoeT+eH4yST3J/rKh5P5 42mPN1Un+8qHk3rx8ZoSm6b4yof71B814Xaqab7y4bwgydhiD4dO95UP5wVB lSN1/5nhKx/OC3rnqpepxixf+XBeMPFy1Jq/zvaVDyfjPdb1Wxnm+sqH84J1 AxKeHzPPVz6c1ENRNuR4Od9XPpy8vy0v3f52oa98OC+IOmVllMOLfOXDecHk bkUH5F/iKx9O6sl3KxrPW+orH07Gf86EC2Mu95UPJ88z6fjyPVb4yofzgs8O lwy/sdJXPpwXxG1X/Lcqq33lw8l+JsuSH39d4ysfTubvgpP2ZPnJVz6c7AfP ZWgwdZ2vfDiZH+p3rR1tg698ONk/Jp77S5effeXDyXzcZlev6xt95cN5QeHD L+dV2+QrH84Luqxq9OWuzb7y4eT9m5ggZe6tvvLh5PuIk6vj/G2+8uHk820+ lTnBdl/5cF6QI3/yskN2+MqHk/U0f9oDz3b6yofzghJdoq5tvstXPpyszxsv vzm321c+nBfEPHZsZYU9vvLh5Pub9mTXjr2+8uGk/n3XrFie/b7y4WS8/Pt1 6iUHfOXDecGT1mu/T37IVz6cF9zsszPeuMO+8uG8wBSYmC501Fc+nIzXLeVm 9DrmKx9O6u/cb3o8PO4rH07Wz9P7tzU76SsfTvY3N482u/SHr3w42Y+tzdI9 /LSvfDiZv8a++ufQGV/5cF7Q5GbtQ6X+9JUP5wVV0zWLs+2cr3w4+b5/L7Yl 7wVf+XCyXlX6cGjVRV/5cF7QM3x/6UyXfeXDyfvSZUP6eVd85cPJfFfzWuvk f/nKh/OCn39q/9nka77y4bwgepleOePd8JUPJ+/vpdSrR930lQ/3yS/Wb4K9 7SsfTubzYeuvDrnjKx/OC7K2uTTp49++8uG8YOWbZOv73fOVDyf1w1fDCr69 7ysfTt6HkqUy9nrgKx/OCx5+0abPy3995cNJfZYiTZHuj3zlw8n7Vr1vk+eP feXDecGY2PMfd33qKx9OxvPMlfeePfOVD+cFs2psrdjtha98OC94Nfd+0hcv feXDecGufxtW7PHaVz6c7H935Lz36o2vfDip36YPeNz7P1/5cPL7J2rb9N07 X/lw8nxOJiw28IMfNB7U4sLF2F4QJfJ/0YP/A8vPGsA= "]]}, Annotation[#, "Charting`Private`Tag#5"]& ], TagBox[{ Hue[0.8503398874989481, 0.6, 0.6], Directive[ PointSize[ NCache[ Rational[1, 360], 0.002777777777777778]], RGBColor[0.772079, 0.431554, 0.102387], AbsoluteThickness[2]], LineBox[CompressedData[" 1:eJws3HdYj2//x3H6XIO0h6QdSkZRQlanjIqGQilKKtlkRVEZSUKpJBqUQlmh 7ERTEtmkEpFZUcoI9X19r/O6/7mPx+GHfMb7Os/79zzeet6rnBdKdevWbYlc t27//zf9Tw+yeb/jfj9HCflyveBAd1im5aLJ/74eZn92aBdPJt/elJIIa2y6 3eTWyZPglIm9KuEsj4Gzw//x5OJaPlAyQ0JONy5+d+EvT5pt770fBct+3ppU 94cnBrpxs5bDnurLg2Tg+T/mFKbCTyx1t1p08CShQnvYU9i2f0K232+ePDj6 LqWnk4SMib7D7v/Fkx6BJ3tNgG9PO7e94CdPJjr6B66BL+hPNvr6gydBA0Z+ OA57vwv+oQlf+PNnVjVc4+nyZVo7T748LCiUd8bv9y7lA9t40i9z57DJ8NLC 0uknvvNkXoj94Y3wGacZl5+28mT/LGWZM3Dv93OnMfC9QVWBb+A7LvWMWQtP 2O5HPqjOlJDIzTXvF3zjyYTnvrOnwVeGT/q27ytPAs4MKgqBnZzl9W418yR7 +7dhOfDX6xaBX5t48sHt0uEP8G3767+0Yd1hm2U0Z+H1/LjniEMjT+ZwVkEz 4O6rTqwI+cKTmBr+Yxj8tFjic/YzT+5cuDf7KlxcmRj66hNPpHbFFTXB3IaF RXLwmPluw/VnS8iy9HnGlh95stZc54gLPM8y8NaqDzw51atBZjf8cmRuYOp7 nrx7czLoJhy0gXN/2MATrSv+H7////u/LV4gBc+OGuky0EVCVsY+iTZ7x5Mo 379F8+BaR6sG37c8KR1TODwGTtc8teBAPU+6FCKOlMBWzTxb9oYnoz7Yy3bA 9687Vf5+zRP/G8qbjF0lpDl4663BcGZc1UdvuNZ43wuPOp68WXLEJQFeWB6g tu8VT9TJwuK7cIO9cXBhLU+cew827TZHQqZfye7ZXsOTyMZvR0bAytJteYZw UeEl2SWww5S2A+7VPPlzcPOmFPjgiqyEvS95MmKV1aeHsGaEzM1bVTxZPqWH K+cmIQeSesu2veDJMY37xWNg+3O3thrCtS1xpqvg3g8kWnOf86R3mVtqOuzM Vb2KesYTx8M6ci/gr/Mtbhc+5cnOdQ2bZNzx83/RevbjCU9uTTv1icBXroT2 Ggz/0l3tuh4OqHJdNP8xT4b/HFmS9f+vex35FPeIJ0vu/TV9Bev4OMaWPeTJ 0fTCVKW5+L788Frw7wFPXgZGyFnDkWb3XExh5RkOmzfBm033rllUyZPpBiqf s+Flcom5yfd5Eva3yvUdfORto+ajezzJe3SkpM88vJ6VIad4uD1zoZk9HNdq 4zW+gidDQwenbYW3LJ88du1dnvjNbpG7BEt7LR2XVc6Tw4Mvb/4Mq7Tk+NTd 4cnz7sGftT3weZ3S97wqLP/Cas5M+Nq2A/3tynhic7ZH6U4465Fe/rbbPNkS dt8sD87zvBh8tZQnV933p32D5ztP8/lWwpPWYe7yAzwlZOvLqpWG8CBeN9gN jhvgkepZzBOf2obPe+FtPvd+xhfxJCnn1JxCOL+k3/p7hTx5smt16Q/YLNSt DwvLeI0aMXg+3s/iRW/GFfBkysh/afPh9nLrB+tuYZ7JFMnvh2PLW9+dvsmT S/URwWUw/3eBTkM+5tkVhy9/4dxDUaFasGG0ittwLwlZV7eadbmBebbwZelC OEWaPR+Vx5ODY1NHJMLd3Sduu30d80zR7+h9uFFWN7Ab3PPjYAXJAgnRW5wY b3EN8yy/JXgU/PpU1vM1VzHP9l/+sgyu07K2PH0F82xpsFsqbM8sr2i4jHlG Jt1+Aj88rhiqA/dX62ne01tCdjkMd3W7hHnWdP/oeLjH1OJZcRd5El+0X2EN 7F5VtOFeLubZIfeQ4/C/2Ua3eJjz1218CX+Sbh5qlYN5NvW9m7yPhOyw6VWw +QJPNmievj0JPucVFHj5POZZ62rzjfC14yNcW8/x5GPZqPTT8NJVZu5DYd0j /xTewG0K/tsWZ/PEbX1RiKqvhEjevq1MP4t5Nn1Xoy18fkKEVd0ZnpTrObqH wBEhLi/7wlK/VMouwDs7rRNcTvNk7P2X5h/gPpougbGnMM8yUtM1FkqI2sig LfdP8uR0kJ/iDLjy9JnT0vC7GUNCw+Dfbz79m5qFeWbY2ngFvjF64LrtmZhn /y67N8HnVL3lb53APHscXKbnJyGPX+2r/HucJ7ezJo10geP/nMm1gLtCe2ZE wg+eXMgPOMaT0S6Vijfhu08ONuVkYJ4NiQ/9Do9c5DaxJZ0nWVJzmwwXSYjJ 76arxvCbF7pz58EWvx1dlx/lSd/s92X74CnPN6qfTMM823F6ZAl8mvHu9jGV J7vnrsn4DQ9tY2QM4KLho5WMF+P1VJ87zvcIT/7ynaHe8L4vHjFHD2OevSpq OgD/ruN6vUnhyYrcXXPvwtGrHLN04GORjne6YFWV4cs9k3nyykt11IglEnLZ 5tjMlCTMs1HVGYthJvLY/JpEzDPZNKUU+Nvswfs04J1v/bY8hJ8MHtbgfgjz 7OqQZnYp5sueM56JBzHPolvnjoGf/07+W5WAeeZ35c5K+ODPn/nq8NJxIaPS 4TjpK8fcDmCeKU0+9hyWv/rs3KF4nlR/7KksswzP80j711X7Mc9uVm4hcHiP 3iP6wnbx8c3r4O95Rqfd4zDPls2dlwUXmm2zSYrlyY2JeuW1sEZHn541MZhn ah9GKS2XkO2HPzRpwsbNp49NhevPffjhsQ/zrHiN8iY4sFCp/5FonhxJHL01 G/680Hv96yjMM//O5rfwcJMHn/VgBevieX1WSMjJnNlhPnsxz7Qiy+1g6cjG icf28GTrd8fRW2HvaVH9PuzGPLujevwirBs1wsgIbj1SrfwZlvn2wnlZJOZZ QNpW7ZV4/2XWp57ZhXlmt+irM2yzRUrpWwRPkvWHeuyEP34OOmEKP/nVWn4d ntn43Gv9Tp7IVl4Z/Q2WM1CecCUc8+xYyPH+qyTkxxgDyz87eBKyabKKG2xZ Ke07Ab7kJL1tL7wu4trprWE8+Wr44GsBHCBrol6yHfOsM97jBxzMeWf1gL2e zL07yB+fFy17D7ttmGcn9Szmw7p/P43Yt5UnD7d8OB4HP3U0HfZkC+aZ6xmV MvhGiY5jH9hq6Nptf+GLMqdj5oVinkksvg1bjefjkwc/U0N4klPV6bEQbq7c ubUhGPMsu/juIXjnuXLjQXD/8EiL+3D9oLiulZsxz+bNOCG1RkI2tL38nrMJ 88y0t+ooWK44qdfvIMyzHjXblsEFTpVTJ8BcXdq3I3CHy6pj2wN5YnlxkecT eHXUesM7GzHPdg+t6LFWQoxzqyvk4HMLvluMh8N3JMXP2oB5NurqidWwVsHZ rYkBPNGTC1U9DjcYyMe8Xo959m7y9pew5sZLRQZw7DXpFrl1mM8bDquvWId5 tu+B5yR4xsdbsTlreSJZdKBiA2y9T82kYw3m2fh5Y07DaebJzQRep6yf+RpW S7V5uHM15tmnD6qq6yXk1MHez+/786Th5pnttv/7U1eXKqx1YG1LMHzGs3O6 xyqeuCy3mH8BjinudT1jJeaZVVfFezj0k5594wrMsz4lYzQCJORD8hipEXBX c2SmI7wl2/HlpuWYZyUzeofB0767Py1axpPVSb3DrsC7xrp87wVnra5paYTL 540dMWspT+qtj87X2yAhr4YwB5OXYJ5pL743G67ZdlK7YTFPZrYNHRsJ644a WDYU3l3+PTMftu23YX/AIp4Up17t/R0epx+z/aYf5llAaJjhRjwPFfzje8Dm 9lNa58Le5bLlTgsxz/r18toHnzXx1Uvy5cnx3w/uFcPfdVYkvfPBPKs8MPY3 7LtZf7QxrHZ8XtbQQAlZYxjyc4M35tlmfTVv+BETVFWwgCcRzh/DDsAbf8u/ 6gXfGni2tRxO+GLBunjx5HfnWq8uOKOwxSF1PubZU4v7ZkE47y0afv2zJ+bZ qa6xi+F9Ra225vDRrSVZyf+70ORPqAfmmetutYdw/oz6++XzeKJi7LSD3SQh JXOZElXYjlH7bgHveRRd6zWXJzte1nithC2OhfQ57Y55du7o/aPwoJLy9T/d ePIjfPG45/Cf/ivbrWBjD+OTvTZLSNgV74SoOTxZZNamRuCn647OfemKedbz 2o518JgZhlYG8Iu60O+Z/9vqy7Q1Lphnl6YsqIVjJ31cnz+bJ7Z7elUqBuPX HfoUScNbvR+Omwr7eqw3dZ3Fk2ujE04GwRtX/C5Kn4l5JufRJxtW3Xx4wzdn ngxu0A9/C6tEeNqPh32uf/yuFoLzWYzZlEgnzLOYswvs4PRDavOfz8A8W7Su cgv8/SiT1B+WnTBm/EVY73zbr9WOPJmq0u3UJ1jpzpuNNx0wzz6X9NEOxfno W0lfWfjyrd3hznCVSdIrd3vMswNObeFwSNTc4kw7ngxcoeZ9Hd7eu3vFj+mY Z5NqK7/Cjx7taJ8MH1JPH99/C16/yrckbhrm2dfFp+bADeqqZ9/Y8kS61Fh9 L7zulvL4YbBVclt4AVz3qKopxIYnm9Zca2uHee8Ft+5ZY57ZbPEetFVC/oZm 5GrCjdpTH3jCnZYp5cumYp6195oQBwdfmiJ1fQpPPO4+PHUb7vM7Ya40HJ+W oP4XTtaOeuY2mSf3N3jsHLYNz2NL/bVZkzDPHPq1+8Kb1joM/22Fedb/k/ch 2PWZjKItvKHj7IN7sOZ2V6VDEzHPHqybILUd97kDA80/EZ58Oj7m9EjYwTgo 0ALWC+7WdxmcumRq3S5LnrjPLN15BM5YvNPv5QTMM6M97Y/hy3aj5AfDd7uc fHqE4fs4ekbVpvGYZ8/UHo6D3RwriivG8WTc6doJq+GNl4491ILXbUs/fQwu invWtXIsT87MWdL3JbxUzs3x1hjMM2OTCLkd+HUHw1uKsDbb3m4F24eMdfax wDyrvuazAT57O5q9OJon0ee3PDwF57hov+Tg2zunWr6GHee8qZwziifdPGXO qIRLyOGOR+9PjsQ8G/Gory38enmT9j9zzDPpgxHBcGDdoI2OcNZrjx/n4bbt O1rTRmCeXern+x7uvvfn3jYzzLO9nx723Yn5YbxpmjU80yfb0hHGAX9goilP 9lisP7MdDpNPNWgajnkmP1bjCrw5z3wqgf81dNvVCO+qKQmPG4Z5llf6QzdC QoZkTfv43oTHPXqP72y4p0f+0jHw8cXOj3bB78005KKMeVI3oQ/Jh7OWzn30 ZijmmeqrM62wm2XgZXN4xpd0DcNdeL9bVt7YNQTzrGDJrrnwmFsj39UO5klB gsnPaFi9uXywKfx7RbtvMTzuxoD94YN4Yjr5+qNfsM3qiVrVRphnfbeSoZH4 vDr0uW0Cp3+benYBPC45IyZsIOZZqYzmAbhb6uvNVYaYZymPdpXD3kdLI4xh u7UHf3bChxpnXNxugHlm67nQbDfuV2WBUlUDeJKv0//xIrhh21h/Y/hH+yeS DLf47evc3p8nJhXZZx/ANwrXnKnqh3l2dL0mu0dCuIaazSZw6saxkRbwMa07 y3foY545dP+1At59Y3hwtR5PFAfcXngULu6teHY4bPtnz+Nn8NrNC7p26vJk 20Pnib32Yj5aaa1+pYN5dqJPtiU84eYEiTn8PfiV5jpY3ebWxd3amGezMiIz 4S8jkiPqtXjiO2jprxrY4VXFJgs4udswP8UoCWlNsYvep8mTp8/aH0+BU+6r Fn3QwDw7c31iEDy0Ql/NEp66fWv2WTju+4rdB/pinrlZa72Fnx1t0WlWxzwz kd2tFi0hChaZT6bAX9nHv6bDq3vvyUrpg3lWc9BvS/T/70fC4XY1niy44Pkk F749pCTHHj4U0d/qE7x5sPynY7158sjzc7bWPvx7/66a0KmKeWZ+TssZ9uLq c1zgSb0CdofD+Wfn22arYJ69Gfv7Gpzq8baTh3Mvd1/0FS7dtOiJlzLm2d7b T/rF4P629v2dq0o8GeC712oOPPase50S7DFm5rk9sNehfJXlijw5oKCuXQCv TZNZWqKAefb+1e52eMcIyzptmL+R8dsoVkIuFcxYt1Ee8yxu6SJPeMTVsUaP 5Hiyccmwp7HwmD0d/wbD5yx/WN2Glc7sbN0hi3mmmnfuD6wYXcu9lsE8a9yq PSxOQhKP/xgzBnYvtN7jC2stuRe1vxdP4g7KdhyEVe3nSX2Vxjxb+XjRPbhH eUq8LcxMOfS0+37cP+fsscnoiXmmMX/SSNh0jb5GVw+erG/pf34pfCbGXdYd PnP7s/YR+KSpic5FnifvU87teQy/fZg4QwHWXhfQwcfj729KSFvG8cR12rjF 4+B+Ej2l2yzmma7UM3+4Im7YUX247MftScfgdp0CpxAG8+ze3vNV8Daje7ov JTyxSJ+pI3dAQhaYOcqPhFcHqu+1gsMKJmrFSvHkpGNdRwDcMOfItObumGcD ji0+Be8I9U6YBmv8XfqsDl6at0Nyohvm2aNhk1USMC8TJNESeE/mj/M2sFni MwuvLo4Uh+TpBMMTHH5LbnRy5N+sbXvPwy8m+DWpwyMH2/xpgLV/qf0I+MeR ld3llvQ9iNeL76n95C9HTjx//MwBHt1htnA4XHfm0OTtsKtX3N2oPxzpEzb/ wmX4yh09p8YOjsxwH6DbCO+8XdVuC+8a9mWv7iF8v75cvHriN0cKuPN/ZsEG 5eeSWbijJmDJLnjmj+LDPr84Ypoz7vkNOIttulnwkyPLdklNaYXdovp104XT 55ddMEjE98/QZ37ID47UmEfpzoV3LDleW9POERWZWVHRsFfTh6CxsH29+t8i eIa9/qjENo7suFK35Be8tf8Mpd/fOZIfdez5kCTMX/nlMnPgH77LpiyAbU/6 D7jcyhGTscNz4uGh++d49IYXK/7ULYc/LdPOXd/CkdQPeVGdcOLDPKOn3zhS dWPbX9NkCZnnZ5w/Albcb7N0ETypYsXq/V85Mm2p3IskeMHx9ZPamjmyjTyZ 8gAuPEhGzIKv907MYVIkZKXNnUm5TRz53jhfzwJeOFd6jQo8pGhA9Ar46MbO /HWNHPE99OVvGqxhkzro6ReOpKw6v/QZfGPN51xz+OmUDS+kD0vIqqPPPQ58 5oic5viplrDiNu8BPz9xZGqrVO5aOPDGjl5z4NCyMr1MeEP3cQpXP3Lk8uGo 6Br40Z9Qs77wt3Wz/ikcwf1nrt36TR84MnB632VT4MjKpKc17zmyQO/1i0B4 as8lsybAh34em3oW1rx2tuVIA0ce3VuWWw+n7V90pjvcK2O4vloq3i+7qJ0+ 7zgyKehn9HS4Ol5rS8lbjmyeceNfKBxuoJBgCOcabF+WC9/J9arYVc+Rpr82 VR/h7r966ja+4ciAx3LWWmm4L2VysQ6wZ9aTXKe0/78/TvrnX3PkQGiifjhs O6rhgTJcOdtr3zW4LTIvJaCOI/wQg85m+MjIRxFVrzhCpBqX9TuKz/tP3dhx 8MYX56tc4T67068eqeXI+bMbrPfAj87N6pKCP4WNv3gL9h5o4uNXwxH9uZJ+ 7XDChaENd6o54j78zj6jdAkZpjh9x1A4jo/u9IBruG2TYl5y5G7trOWx8GjX ezrtVRxhcvu+LIUflBr2dYPHRb62/gNra+wxvfGCI+u9jl80yZCQvX3bF+vB Z0cu7+cLr97jcWPHc468lzGNOZjx//PolsnnZxzRefuzswJO/KR2ywF2vXpj efdj+Hwvnr8y5ylH9kVvf2kOPwmNGdMHLltoa7MU3v43s3/wE450Hyd/6TCs dSp1SP1jjlgoPe33GF7lttbZGl7zMTGGPy4hw59pHDj9iCMn8726xsJcy/6f ivDb/QYr/OGgoKqADQ85orGs8WUGzEx+p1z7gCOzJl6wqfrfuufuW8F71DZe kj2B88CbUScyKzlS0jS+vxW8wSMgRQ7+VySJDYBHLfY7v+4+5lnina6TMP9C 6u3Le5hn/tEr6uBH26eaToRPTJ1drZwpIcsmDTlyooIjrzU1bG3g3V/PGsnB fb6/vrQZfrTgzsN1dznidOd4//Nw2bqAhOpyzLMjy2Mb4CrJ+SAruHC9abe+ Wfh8fFm7KesO5tn0Xysc4M09rh1SgM3086u3wT4WIU83lGGe/dpuexmW97hu XHebIxn3bS9/gf1mLj82Fa7JkB+gexLz+99ui7OlHFHd9DR2FtxvnOoXVdje KanbLvhOq9S14BKOhBsuWHkDTmBmHG8oxjz7Z1DTAr+f/TPbHv75uNHW4JSE fL37/dnFIsyzkxcuu8P37YiGNrx4y8YB0XDozeebwwsxz1wmxBXBb3pd/NNc gHk2hOn+C87t+zjBFVaUlK8cchp/39MhTrduYZ5VRdd4wTKGNwyN4O3Zs6fF w2s7QjRib2Ke7dC4cuf/Xx+3YsiffI60zX0zoBP+8WKbuy88xPREnOkZCTG5 ee3YvRscWdhjRfdF8IFaeblRcMor01VJ8Lt+wXGpeRx5lvurphLO3fbPXBqW 250/jTmL+9iX3e1rr3PEekHYldFw7Ix+j2qvYZ6NmmawAh5wLP+uNXxFVmF/ Gjypdk79+auYZ2+fdn8Gv2hqVNWEja4lrZLOxvOnYr1f+BXMs30LaifAc/yb H3+7zJFEP8Ppa2HvB06ec+FH45qunIC1GxLZ0kuYZ8o5BjVwwYniO8PgSZ82 7lc4JyEuSuUnky5int2cIDUFLtE5nsnBF+MZ/0C48u7MotW5mGfLymvPwLLK 9ztqcjhiYLVvej38vVXe0Qb27ONytfd5Cbm7ROVWzgWOJDRrGE6Hrwc8s9eB K4vf7A+F89WdfkWe50iPpBNSuXDmzNCbP85hnq1e4f8R7mcwL90bDrQ2e6V5 QUIuxNWn38/GPNP6Pd0JPntEtmAM/Pl7/tUd8FSHFx3Hz2KelYcZXoNDMsY7 KcNzU6fFN8OmmaOLQ89gngUoSPrlSIiyV/HMxtMcqbB75u8KH3tc3TUHZvol v9oNW/UKKis5xZHxvxfY3YL7KiSeMYXXVxpea4ONG0dmHzmJeXasydAoF6/f yen3ZOD3m3LiPeCxLo/5oCzMM+dASSzs9rfM80MmR+YMtFxdCkudNHw0C97X ydR1wK4rPi8oPMGRO0/K7Uwu4n46W0ZuGNz91L5rPvDJ1RHPUo5zZMxWl4EH Yfax2/Ve8BpXzQMVcFnkprzAYxw5NbRe0v0S5uWpj1UfMjDPJJmrzWFL62Rl F1jz5Yq6JfDzNTFLitMxz86Z2R+G06yKqk3hveG/rz2C1SqGLE07ink27+ZA /jLOhwPuqCjAnaY7DoyF/yyMqw5JwzzrOZ3xh5ccC89vSuXIqjqFNRn//9// TbkxDz5x8VndC7gs7MmLu0cwz3Yn28tekZCoOQMUxsJ9vL2vT4RbY3f7nDyM eTZ6oFEAXOco9Vgd3iXXfOAkLHc6zHNXCubZuxymDpaUyHK/kzny51rgGuWr OC9cPXhnMWwWY/naGp55QjfrRRJHli9iHTbD57NTM2zgjPF3r5+D61qV864k cqRWOcaoAZ4Xu/7rQFj1s0uC+jU8n87dmnDoEEccbmmyDrCJ/7esnnD4gfo1 2+D17V3Dgg5y5ObyzNeX4E++nx9/TsA8s1rp8AX++/Zk7Fx4mPqIPJ3rOC8f HLei4gDm2dffRrPg4ycTfcbDaSU3EyJg6Ym31p+NxzxL2sHegNPDMtN1YKU1 09e2wOWHHZr27cc8s1F8MyAP79fVM85S8Hbt5w7usEK3gsdr4zDP2pLzouDS lO3+DbGYZ+Xeg4pgi5vfBrrCQ9MGHvwJZ8RI/pXFYJ5taGaH3JCQXpMuN46B D9vnrvWCzaT4X6f3YZ71C3qzHz7V2aStA8t3WDregQsXL1oQE4159oC98Q+O Wb3ypgTecvzuINN83LendY4OiMI82xxz0A/eaqh0/+NejrQ4u3JJ8LExx0Lm wkZGWusq///1Kxem3d/DEe+u+jeSmxLS9dTcdCKc+DTTcTRcXmZknrubI49P rbyxHJ55e9dMQ7jXthGD0+CyHk57EyM5MnlOx8GnsFZJUL0svNn4Fid9C893 c6mZW3dhnjHh6ybAv2PqX7VFYJ69nF6/Bh7SWy18MWxwXnHGCTjhb6JNzU7M s53Pb1TDLVuWGMyAEzxSBisUSEhOXbBOcThHHpj5HJoMK7s8NhsN95A24gNh af2FPqd3cGTi6+Z1Z2CHbcZndeHAS7n1b+BZlwapxIdx5MKeoBm9C3H+75wV 3xP+7E3yp8EjkjKHh2znSD8LbkgofP6+7qfWbZhn8hWHcmDz6ivXF8H7G2L4 j/AXyfKsmq2YZ9dd12sWSUjeHvMLTjAbq/V2BuxwTeFZ6RbMs8VvZ+yAuz/6 pTIODpiQlX8Vblf/tPJ8KOaZyqohzTBTVfPWAP7weUSifrGEFLlUrk0OwTwr 6OBd4bDq69pK8JyEW+t3w87nUt7tDMY8WxH+9ibcru1f8m8z5tkkO6c2uHm1 ccFaWKqv0s2BJTjPtz1+/mkT5tm350M84MjWuT294LWlKYkx8KMrBbOfBWGe Jfv0KIWv7u92ww5+t8YooAOe/0TZsigQ88z261vjUpyHS39UW8CzdS46+cAy 1zPizm3EPGsPupkAf+2u7mcIl94lQytgu0aHmYc3YJ6lcUndbuN8e3fiXFV4 1MaKHuawwvfG4D0BmGcOsQFLYMWL069L4Mz+c96lwDcWuilvWo951qHl/Ag+ 6aYY3rqOI+oP397kyvD8er9SeSnsdCJr6FjYaMGK62/WciQyeFXSKnitXo8Q N7hwpnnPDHh5yJi5D9dgnhn9CXgBj3zQ5WwLm3UreCdzB9+XVTMXFqzGPHsW 7jwRnnRpWKwFfOy03a31sGNnbNV5f8yzbUrGJ+FrR9ePHQT3dnuR9Ao26np8 +egqzDOTwz2Vy3GfWJXloAHvZH03WMMDnVu64lZinlUbNWyCt0pO3JWBf53/ 6nwO9q8vOb9jBeZZxMVb7+A+DrYXOpdzZInnJmP1u3heHR9ybwOcNmJisj28 f/oyqZZlHHkpzUtvg/sf6ea8FFZ6U7HhEvxe6uP1t0s5Mv1ybMNneE2VJvGA t++dM1OnAq9/eOKrZ0s4kuejXTATvrZ8XsIMuM3inXEErN7qsbR8MeaZwsnk PHjHpkTXyfDC96ukW2Bulez8/EWYZ3nmGwfcw+fT7MKW0fDz2D8NbvB9k7C8 C36YZ0sKZkbB0RUhSkNhG8udBYWw65qUbScWYp6p2pv8hPdHVsvow1e/KKUM vi8hvqEjzif7Yp4VvJD2guOup69SgwcdPLxxP5xwsr9NrA/m2Urf92Vw/JUL Y2ThpMmDZv2DPZ1trSO8Mc/6fisYXon7ScPbFRJY6OHglrrgsyELONrDwVfO KfXs8OJoDwdPuZ0SvB4WergHmMdxfWVa5nO0h4PZnWG5y2Ghh4OjlZ4HfPTk aA8H786UnekLCz0cfO96P9vXHhzt4R5KyOObKm7zYKGHg0sG1mx7MY+jPRy8 ftn60lmw0MPB8/5V93s4l6M9HJwyq1eSPSz0cI/wvP7YObjcnaM9HNzN5MKz qbDQw8HZabpJRW4c7eHgx1emBBJY6OHgp02aq2/M4WgP91hCbl9L2zYGFno4 2DOx8sxlV472cPBv/mjrCFjo4eDkUBWnCy4c7eHglmD9Oyaw0MM9kRDrLbfd z8zmaA8H72e62MGw0MPBq3cVl2fO4mgPB2tFKWcZwEIPB2+K/ZCaMZOjPdxT CVFVG3dBHxZ6OFglRaY21ZmjPRw87fgsPR1Y6OFgo4vyoSlOHO3h4DI7ix8a sNDDPcN55VtFeOIMjvZwcMWA0mHqsNDDwXv9ddsSHDnaw8GFLs8f9IaFHg7O 9nxfGu/A0R7uOe7v8rbPVGChh4Prv3Z0xtlztIeDn0b8JMqw0MPBL7zHJMfa cbSHe4HnF39TQQkWejh4Zreth2Omc7SHgze/2DRFERZ6OFhd4xQbM42jPRys OEu6TgEWergqPB/k4x/us+VoDwc/rZ5aqwALPRy8Z4qGVIwNR3s4eGO1LFGE hR4OThzSNyHGmqM93Eu8f2VjeSVY6OHgdMuV+2KncrSH+9/6Z0yVYaGHg2Ul bU1xUzjaw8E/10woVIGFHq4a7x8bkR0/maM9HJxjV3GxNyz0cPCtWu5pwiSO 9nBwkZ2ZrDos9HDV//eG9p6JVhzt4Wowf9RnlGnAQg8Ht6SPmp4ykaM9HGzh 2/VeGxZ6OHhk69GkVMLRHg5Weq+1RB8WerhazJ8XyxwzLDnaw8EqPhEOBrDQ w8H7dFb5ZU7gaA8HH8jUSBgECz0c7Hxo1+vT4znaw72SkJ17c61MYKGHg2P0 Dt44P46jPRy8sNXEaQQs9HBwdMqGf5fGcrSHg80LlhZawEIPV4ef5y+TmjeG oz0cHNI08YAlLPRw8HxzrWOFFhzt4WCLdbEVU2Chh4MNpqfI3BnN0R7utYQ8 mWux0A4Wejg4wsb7WeUojvZwsG6ustdMWOjh4F5WtlLPR3K0h3uD89aBzjx3 WOjh4D2zTfa9MudoDwd/7f98kzcs9HCw5cmW0PcjONrDwc92ByUvhYUerh6f J/8VD5vNONrDwQO7lWqvhYUeDt5UHxr205SjPRxsfeuA1GZY6OHgMivuUDdY 6OHe4vOhXG69YzhHezg4r7ZWThoWejh41/TxzVHDONrDwdd7vGtQhoUeDl5R cK/9oAlHe7h3mDf6P7S0YaGHg/e9mOOZbszRHg6WjW25NBAWejhY/991w7ND OdrDwTfLcs6ZwUIP1yAhfhlPnK4O4WgPBw8kfXtZwkIPB2fabakpHszRHg5W 2yRVOg0Wejh4VHDy7QeDONrDvZcQd3baGxdY6OFgr1JOudaIoz0cfGXt/Xk+ sNDD/f/rBcn5nwZytIeDG3xWjPaHhR7ug4R4K4wr/2HI0R4O3rKZWRcMCz0c vMGz0JyBhR4O7rlitfxuA472cPDu+bLdlWChh/soIVVNMdKHBnC0h4MXPOgY rAsLPRyscWvSwhP9OdrDwbsDFl8yhoUeDi4+46tzqR9He7hP+Pl0R6SOh4Ue Do7a9Wh0iT5Hezj4X8bYT3aw0MPBX42XnX+ix9Ee7jPu9+/mxcyDhR4Olt8m s+udLkd7OHh96fqDy2Ghh4PLVu2/2abD0R4O7hrn27kZFnq4LzivNL2excJC DwcfnMgV7dXmaA8HH/hdadMbFno4+PQzi/eHtTjaw8GbEy2TDGGhh2vE95+v XXROk6M9HLynTtbOAhZ6OPjm+3vWhRoc7eHg/a/7zJ0OCz0c7BbzeceTvhzt 4Zok5N2NCWUesNDDwbGDFfU/qHO0h4OnpnrE+cNCDwevrNfR7OjD0R4O7rgy M287LPRwzRLi86VtrSws9HDwyYldVglqHO3hYOewlUZ6sNDDwYs2TzA81Zuj PRwc9H3pOHNY6OG+SsjRnK+Lb6pytIeDA3eWnbaFhR4O1hvTwj9R4WgPB5OE hUGesNDDwZ1L9ZhPyhzt4b7h/rJN99haWOjh4MQsT49OJY72cPCC7OdDdsFC D/f/ry/YqawCCz0czEQvUTyiyNEergXnBy7IYBAs9HBwy8Fc54sKHO3h4FBV 1QMEFno4eLZ9wre78hzt4VolJF9xlLcrLPRw8K4R3z7Xy3G0h4P5iPzIlbDQ w8G96lImdshytIeDP8pEyofDQg/3HfefhpA2RVjo4WB2/MZvKTIc7eHgdR9X SwbBQg8H97mxaOilXhzt4eCKfbNXWsFCD9cmIR8sRpXel+ZoDwdPie5hPhcW ejh4wuKSax96crSHg08lL3FdBws9HPyeaZHuDgs9XLuElAa6Pt3bg6M9HJz+ 5OClvrDQw8HOX8+dPcFztIeDjTKSboyAhR4O/nNv1tsCjqM93A/8/DYvdBxh oYeDnZv11tawHO3h4B/JQ2uXwEIPB98f9tPjJ8PRHg7uvzOoPQwWerifeD+C c9KVYKGHg1+1pixOlXC0h4OnlJhPNoaFHg42eRIwMk+Koz0cPLtrnuU0WOjh fuH8ZfDO80V3jvZwcNbgHvF+sNDDwRebi9+0deNoDwdfc+o9ZTss9HDwq5G/ 8hVhoYf7je/3Fj/H1C6W9nDwRiWPH8aw0MPBqZXPc250srSHg62TH+20g4Ue Dv45z3ZN9T+W9nAd+Pt/jFq7FBZ6OFjKMTHy91+W9nDw0+nLr0TAQg8Hpz/O +qsGCz3cH9zn7jm4nvjD0h4OdtF1LRsJCz0cvDU337G0g6U9HGyyZmvTbFjo 4f63VVJaw2+W9nB/8fmT7bF8PSz0cHBpfpEdCws9HDzHsnxS/C+W9nCwaZCa 0wBY6OHgEPcT6y7+ZGkP9w/nw7vrz06BhR4OXnwtpPPpD5b2cPAZpXxfP1jo 4eDcApM3P9pZ2sPBv3Mr1+6EhR6uE/fpl4c0+8BCDwdH6EZWZ7axtIeDNQOS z1nAQg8H7yivSCr/ztIeDt4nq5YyFxZ6uC7MB5MNuY2tLO3h4F56n94Ew0IP By94vHiAPCz0cHC/0a0hqS0s7eHgJRO3Ng+HhR6uG0NuvlFcV/SNpT0cbCiT Kj8bFno4WDXXsOD9V5b2cPC6exkRG2Ghh4PT7JT9pGGhh+vOkJUGq9ySm1na w8E6M3K9jWGhh4NX3Xy19VYTS3s4OGLp50vOsNDDwb1sHndvaGRpDyfFEGnH eO8NsNDD/e8NQ6p6wkIPB0td2b8w+QtLezjYU7qcN4GFHk7CkA6/spsFn1na w8H9bu/eOwsWejg4ub/C6g+fWNrDwQcCnZYGwUIPB1+6NT1QFhZ6OIYh8u0d KakfWdrDwYOU5r4wg4UeDu5UXjzw9geW9nDw9x9aUe6w0MPBby9v7Nn8nqU9 HMuQ3rPWJW6FhR4Otr0jM1EVFno4OEN1wr/MBpb2cHDhKKZyHCz0cPAZ47mX HrxjaQ/HMaTu94QcX1jo4eBJh06V/HrL0h4ONpFNadoDCz0cvMJFfrAeLPRw sFlAZ/DFepb2cDw+Dyv93tvCQg8He5JJvq/esLSHg92/7vu5BhZ6OFguZHoq Dws9HPz860rP5Ncs7eF6MGSHzc/hw2Ghh4Od97zuW1rH0h4O/nDTQH0uLPRw 8NyPJUO+vWJpDweb9ro2ewcs9HA9GeJh3BXXFxZ6OHjMnJgP2bUs7eHg/dHL Z0yBhR4Ozqjec/9lDUt7OFhmcvMCf1jo4aTx+j3YI83BQg8HH4z0LUuqZmkP B+sHrU4aDgs9HPwgM3v77Zcs7eFgH12NrR6w0MP1YkiPL9lx36tY2sPBrspL r++ChR4Ods6Y8ksHFno4eFHWhGmXXrC0h5NhiL+x03k7WOjh4HOWgUPfPmdp Dwc/+3QhPxAWejj4j0WHrwIs9HDw0fHTdU88Y2kPJ8uQq1JHv42HhR4OPpjQ 8fTJU5b2cHC3Xk4PlsFCDwdrLk+rk4KFHg7eWv5BkviEpT2cHEOMR+qOHw4L PRwceXPq7rLHLO3h4IUbXJvnw0IPB3esdPD7+YilPRz85bLh9yhY6OHk8Xn1 rdtvAAs9HBwQvnp6/kOW9nCw1/CXvV1goYeDp2xU/dn0gKU9HPxopU7jDljo 4RTw8xu1tWvBQg8HH7kerXKpkqU9HDxhbLO1Ayz0cPCUG732vb/P0h4OXuT6 rjEEFno4RQbv4zpPNVjo4eC7Qy6/y77H0h4ODojPCrWBhR4OllttbfKmgqU9 HGz7fM/3QFjo4ZTw7329vkIJFno4OCSj8+qpuyzt4eD6cf3yJsNCDwffLKx7 VFvO0h4OLncc1hkACz2cMkO0OhUmKMBCDweP/hgcm3WHpT0c3N1o7R8rWOjh 4OLqxo01ZSzt4VQYMkzzg3QALPRw8DzO87w8LPRwcOEl++VZt1naw8GTpl0Y OwkWejhY79VOndpSlvZwqgzh9pWrbYCFHg7uCg7orwgLPRwcUrpzyqkSlvZw sFtER9AUWOjh4PL68uK6Ypb2cL3x/Ghv0w+ChR4Otn29Ll4FFno4OL9oqmZ2 EUt7ODjhlt9lW1jo4eBuvx74vStkaQ+nxpBdu7cOCoWFHg7un7JOqi8s9HDw QMfjzbkFLO3hYIdipa+OsNDDwed0Lkm+3GJpD9eHIffC9gwJh4UeDt6pFrtE DxZ6OFjnb+G1vJss7eHgca4aunNgoYeDG+wTDn3PZ2kPp86QMNbMMBoWeji4 If1z2SBY6OHgEY7XQkpvsLSHg7sbH7bxhoUeDh6/KNagM4+lPVxfhljox/VJ hIUeDs4MT9YeCQs9HJyWd3L0o+ss7eHghMarfithoYeDF1iWZkrDQg+nwZBR r+52Hr/G0h4OvtBaungSLPRw8J3jOe/rrrK0h4Of9o/auBkWejg4NsFZWx0W ejhNhqgN+vf84hWW9nDwaz7ymDMs9HBw6bz28K+XWdrDwVKzx27eAws9nBY+ v1pzdhjBQg8H2+CgXnqJpT0cnP6Qe+wDCz0c/LtPjFp3WOjhYJ/39asOX2Rp D6eNeb34V/VYWOjh4FP37s2tymVpDwfHT5n/NQAWejg4qyvzgAos9HBw1eAT ThdyWNrD6TA4p8zWnQELPRw8Ivm8VPMFlvZwsLbVpV+7YaGHg49qeUkNgoUe Dt7tdUqn7DxLezhdhkjG75/hBws9HBzT0DuegYUeDtbYa9J09BxLezi4we/l nImw0MPB0ceVX9Rls7SH02NIny3Pl4bAQg8H1xjqK2rBQg8HH3j0tfz6WZb2 cLDHxXEH3WGhh4MzWDbw9xmW9nD6+Pz9nrziICz0cPCc0l/rRsFCDweHpmvu e3aapT0cnHT7dP56WOjh4JYlx7qpwkIP1w/nt0Ipl9xTLO3hYJMeBfkzYaGH g/3X1Yz5fpKlPRx82NKpPBYWeji44qjGClNY6OH6M2Tp81H9HmWxtIeDJ6kd bVwNCz0cHJrsckcRFno4+Gia09XzmSzt4QYwZM+C6DwnWOjh4I1qMo9bTrC0 h4P/dRb9jYGFHg6WnZVjYQoLPRz8w/nZrkfHWdrDGTDEe7RR0xpY6OHg2RMz fZRhoYeDTU45NuUcY2kPB5/K0YicBQs9HFx3sMeY9gyW9nCGDBl7SOlfPCz0 cPCe7+aPR8JCDwf/fL8y73k6S3s4uOvC1SsbYaGHg0MTlMrUYaGHG8iQ00/W f752lKU9HKx+qk5nHiz0cHD2XLvF/9JY2sPBFw2vFB2GhR4OLp+hY0pgoYcz wnmvT0jOm1SW9nCwV+ED6+2w0MPBb6OVv/aHhR4O3lhslVV6hKU9nNH/nx/3 gMWw0MMNYkiuv6uLNCz0cPAQf3Pb04dZ2sPBs95/c3CAhR4OblcLX/QthaU9 HGwyrSU2FhZ6uMEMCS40fjgCFno4OLd0jP7zZJb2cHBXsmJ4ICz0cPD73dl/ NWChh4OnvlQIz09iaQ83BM+3yuH6C2Chh4OzL8g9lMBCDwebVaTHHk9kaQ8H G/o2+dnCQg8HDyj6YN94iKU93FA8r0yjraNhoYeDV3bUzTSFhR4Ozlr4bM3T gyzt4eBHN1ZmbISFHs6YIcT+2EcNWOjh4FTPAMubCSzt4eCOca8yvWGhh4NP mlX152Chh4OXRPnkZB1gaQ9nwpDJhwJn2cNCDwdnpKr1aIlnaQ8HT2mxuL8f Fno42PJFzfHRsNDDwV1H/8bU7GdpDzeMIfZH4qO3wEIPB0/RyDjSHxZ6ONhz Yf/CsjiW9nCwT4XSz+Ww0MPBgUeWTVCEhR5uOM6DxoMPXoxlaQ8H65TZM+6w 0MPBZ25UbuuMYWkPB1vPP6OcDgs9HHz7X/0la1jo4UxxPvq8fHnjPpb2cHB0 gPWIGFjo4eDxbSvlRsJCDwcnXazreBnN0h4OHil74HcoLPRwZgxptY+SHgAL PRzc427x0PIolvZwcM8X5j6rYKGHg2vLak+qwEIPBxe1XGGu7WVpDzcC55UT Rf7zYaGHg5dN6GhmYKGHg+fJuIWe3MPSHg6+6lejNwMWejh4TfqWZ+27WdrD mWN+9rFKSYKFHg721dIKmAgLPRw8uIfcgg+RLO3h4CXDFD33wkIPNxLn1yb9 FWaw0MPBugcto6p2sbSHg1/s9CkIhYUeDo5Q3c0ZwEIPBxsmXvCoiGBpDzeK IcyqZ6VrYKGHg281tU5Uh4UeDnb1Zypv7mRpDwerOvEr/WChh4OPfv6pLQsL PdxohvxKePQmJ5ylPRy8ODfukjss9HDwwaRRKd1hoYeDw7KuxWfuYGkPB4eO UU91hIUezgLnkVOOeT/CWNrDwfFz3D+nwEIPB3dPNR80BRZ6OFijrnZT43aW 9nBw/VrHujhY6OHG4PuXFz5rLCz0cLBGny3V9dtY2sPBIxpGrYuEhR4Ott1+ UtsUFno4WMr5ycuqrSzt4cZi3p4/n7kVFno4OLe7ZYQRLPRw8Mn0jYEPt7C0 h4Mn/HLfHAgLPRxc6lW/Tw8WerhxDPk0odflO6Es7eHgE20Pm1fDQg8HO70z Hd0XFno4ONZ/UFxhCEt7ONjvb27XUljo4cbjPvHlfrAyLPRw8JLUdbJ5wSzt 4eDxW46e9YWFHg5uap61QBYWerj/f79TxIBLm1naw03A+bOXxR9PWOjhYLcw n3oeFno4eJYuU31uE0t7OLhgilqDGyz0cJYMaXY/1E0CCz0cvLU0fOjpIJb2 cPC6r9XLZsNCDwerjo+/3hnI0h4O5tWyNTNhoYcjDLFqGBDtBAs9HKys8EPp z0aW9nCwVjfNzAxY6OFgF+39Dg6w0MPBPZ+4c782sLSHm8iQ55HLK9NgoYeD c0+XZE2HhR4Obkz3jm8PYGkPB2tUW8YegYUeDja/4ZZqCws9nBVDtl88ffP7 epb2cPBRE/NvKbDQw8HbEr4Ot4GFHg5e6vYirHUdS3s4+MebLx+TYaGHm8QQ lcMGntaw0MPBPf+EvWtZy9IeDl7lJ9mcDAs9HGzmcLi/NSz0cPBBXedXLWtY 2sNNxufdTiMrGRZ6OLjN8keYNSz0cHCfZXWrW1eztIeDR45/vCoFFno4eJTB /RAbWOjhpjDE/UDF4e/+LO3hYLPO8srDsNDDwSfvlyhOg4UeDu7YeNW3fRVL ezj48sqjZamw0MNNZUiJXvB4O1jo4WAvZmrRz5Us7eFgtV2/3dJhoYeD7+vv 7+4ICz2cNeblZKVrHStY2sPBG739tx+HhR4Ofvn1pIczLPRwsOaCfJvO5Szt 4eCKQScmn4SFHs4G97GCBU4usNDDwbZJn1dKwUIPBz8fMiHl7DKW9nCwU+Oc GndY6OHgz46jhvCw0MPZMmTo/ad7cpaytIeDf9QO65wPCz0cvOHH5C0ysNDD wRbRcspXl7C0h4N760ZeWggLPdw0nEf0cpcqwUIPB4/rtcvk5mKW9nBwgwvL LoeFHg5eHjzgSx9Y6OHgmb8a3pQsYmkPN50hARMnfVoDCz0cLPXYorsuLPRw 8GbDUqN7fizt4eBrV995B8FCDwc3MrGnDWGhh7NjSFxYOfd0IUt7ODgiN3L1 Nljo4eCfCpWNJrDQw8HevfdvrPVlaQ8HH5n4TGU3LPRw9rhfyccWjIaFHg5O 7CwKee/D0h4Ozt692G4/LPRwsLX55kFWsNDDwW8D//T55s3SHs4B8+xFvdph WOjh4GeVxoZ2sNDDwVV11VM7FrC0h4PHRrwPyISFHg42sJ1+2QUWejhHzId0 rgcL0/1wuI/1Vl2S48WK++EwTwesfbkApvvhcN920pqnANP9cJi/GgrN+fNZ cT8cQ/ayNvtWwHQ/HEPk4gqsNGG6Hw7vx9RA9q4nK+6HYwiXvuxFIEz3wzHE eEj89YEw3Q+H78vC1rPPPVhxPxzm55PQC+Ew3Q/HkB1/LErNYbofjiF/vLQ+ v5vHivvhGJK5y0B7P0z3wzFE8Y+T9ySY7ofDnzc2+VLrXFbcD8eQ15XdNY7C dD8cnt8kNNoJpvvh8PlTUlTpDtP9cAyRuZ+Tec6dFffD4T7U4WPvBdP9cDgf 6GpLKcB0P9z/94tXpTfdWHE/HP59AUeTVsF0Pxw+T1cXbtGB6X44zCO1Aesr 57DifjjMN43awFCY7ofD89A+MsoEpvvhcP8cY5RT58qK++EYYrT00odomO6H w31pifEQAtP9cDg/Fe7d8s2FFffDMWRi94fvUmG6Hw7z53zbHCeY7ofD89ur vaY7TPfD4fl4qNL/wmxW3A+H8/bnUBUfmO6HY8iuOqkyZZjuh8N85GfvLp7F ivvhGJL8dY3nepjuh8P91cBtogFM98Ph8zeGGfF8Jivuh2PI+uv+IyNguh8O 58FRSTYWMN0Ph9fPcsvSz86suB8O9wdvzeQkmO6Hw+dx+PJaO5juh8P9atxy 404nVtwPh8+Linp0Nkz3w+F+P31VlxdM98Ph9Vi7LFQJpvvhGOKoLS1fPIMV 98MxpLjW+ux6mO6Hw3lzsp6HIUz3w+E8+yFWo8qRFffD4f7veuhTJEz3w+Hz YTT89jiY7ofD/anVJbfZgRX3w+H+N4U/nwrT/XAMUbgy4YYzTPfDMcSu7vcL Bqb74fA8n2HOXLZnxf1wDPmS1jRhCUz3w+G8sURnlwZM98MxZMX42/X37Fhx Pxz+/Itvpm+B6X44hmxatKzYFKb74fDzNXrZNUxnxf1wmA/V+W8TYLofDvOo YmvkNJjuh8P9ye04+TeNFffD4fPQ14g7B9P9cLg/ZXLV3jDdD8eQDyljb6rC dD8c7of7iy+U2bLifjiGyBscvrgJpvvh8Ho3Fd82hul+OIb02mn+6Y0NK+6H Y8i5PY3q8TDdD8eQY4nv3Wxguh8Ozw973aw/1qy4Hw7zkxzgs2G6H44hfRWn rPeG6X64///3SqNWVZjuh2PIjVuWIXemsuJ+OPz7X4apB8N0Pxzua7btRcNg uh8O5+eTe4PfTWHF/XAMuZcybepBmO6Hw/wpHKhtB9P9cAx5dak/2w2m++Fw ntEc+ydnMivuh8PPE7u422KY7ofDn3ctS0UTpvvhGMyFP6MeTGLF/XA4P2W4 LQ2D6X44PM8zC06Nhul+OIYcf2fyt9GKFffD4Xz3J3VuGkz3w2HeRymWz4bp fjict6xCrKVhuh8O5/+rbx/nT2TF/XCY/wcnrFoL0/1wuE9u360+EKb74XAe 0779qIaw4n44nD/lmhNjYLofDt/v339XT4Xpfjicl8K+uf6xZMX9cDiPzS6x OwfT/XD4+ZU3zlgI0/1wDHniy/r0hel+OPx535aEVU5gxf1wDCn0OJobBtP9 cDifzTr13QKm++FwHwzeOvHreFbcD4fzwha9wxkw3Q/HkAdcRE93mO6Hw+t5 9fx2eZjuh2NIP6skmZJxrLgfjiHl0yZmBMF0PxzmWXDqtGEw3Q+H58mOi10N Y1lxPxzOn7LBRUkw3Q+H52XB93gnmO6Hw3lheu8NPEz3wzHkt9sbvxtjWHE/ HENaE5wWroXpfjiGnLngs8YIpvvhGLLQVSWqzoIV98NhHpl5XYmH6X44vJ/t k1qmw3Q/HJ6H0/NGS8F0PxxDst6WRF0ZzYr74fD6r/D4vhKm++EYcuVgqN8A mO6Hw/NNxehj9ShW3A+H3x/jsjEWpvvh8P27xajZwnQ/HEOmOQ0r7hrJivvh GKL+42noJZjuh8P3y6vVdgVM98Nh3k3cpt8fpvvhcN6139az2pwV98PhPGr+ tTMGpvvhGPLidImULUz3wzEkYZGUajeY7ofD9039qPnlEay4Hw7Pl4A035Uw 3Q+H+6rZv7QBMN0Ph/sKc6GpxowV98PhPJiaZ70fpvvhMI/y1M9Nh+l+OIZE ypUaSGC6H44h7+zyT10zZcX9cAw5YNw1YQ1M98MxpHrpjtdGMN0PxxD7q/b7 3gxnxf1w+P0PZzkcgul+OIb8XZ7Q1wmm++Hwek1Sau8B0/1wON/LFtbeGsaK ++FwXwtPf7IRpvvh8Pf75VQNg+l+ODwvFzc3fjRhxf1wDJlk7SSXBtP9cDgv 3Hgx3g2m++EYsjp86yZFmO6Hw3nU0+b2HWNW3A+HP6/bIL1tMN0Px5CgQf12 jYHpfjjMg4PDulqHsuJ+ONwvezhuPwXT/XD4fozcpOoL0/1w+Hnrz1/UhOl+ ONzXy7/6PB3CivvhMO9PD9eNgul+OIZEWa/7PBWm++Hw+szLLewazIr74XD+ OtmceQWm++EYktqik7IapvvhGDL1++Qjg2C6Hw72d89+O4gV98MxRH+Qx71k mO6HY0heve3v2TDdD8eQufO0zORhuh8O3we3J0FlRqy4H44hOSnLHmyF6X44 3Ne+1JmNhel+OJzHexgfaxvIivvhGBJzybn/WZjuh8P8uz7t/CKY7odjyKca JTs9mO6Hw3277kTbS0NW3A+H530Ed2o/TPfD4ft0ePAqB5juh8N5+pPyxB4w 3Q+Hz9vQPN1CA1bcD4f71gg9uc0w3Q/HEOcSy54jYbofDvfXEypK3waw4n44 fB8ykgeehOl+OIZ8DHti5wvT/XAMua14NUQbpvvh8HxUtc5/0Z8V98Ph9Zmz qVdcf7GHg+eecPaz7y/2cHD93Tv3+f5iDwfHxtROLuwn9nCwZnFk2eZ+Yg8X hPuayX23Uf3EHg7emZrxq0Vf7OHg22+lj53WF3s4+FjpP89F+mIPtwnPg95B Bvr6Yg8Hzz+6+U+NntjDwZWjpF4l6Ik9HMwc5+8764k9HGybt+uurJ7Yw23G eXPajmdlumIPB5vo/mzeriv2cPASuRoVS12xh4PfNQyz6dARezj464bWiIs6 Yg8XjPPbAa3n/jpiDwd/V8o2HaIj9nDwvlvpSR+0xR4Olqz5pZiuLfZwcFpH VrynttjDheC+YXzRoK+22MPBt173LnmqJfZwcNv7u/4xWmIPB19XfWhkryX2 cHCAVb9vPbTEHi4Unzerm0XFmmIPB9s1pWVs0RR7ONi0T1nsOE2xh4PTEo2j fmmIPRwssXt0IFdD7OG24D7GnDvtryH2cPDCpOLKIRpiDwdP/yzT7VNfsYeD 2+7sGH+sr9jDwTXKQyIW9BV7uK34/qT9rdPqK/Zw8DKHtskv1cUeDtZok798 QF3s4WCdlXYjZ6qLPRzMHTxeKK8u9nDb8Hmy15hX0Ufs4eA7y05I7eoj9nBw 1X3rS1P6iD0cbDrrd4BUH7GH247zUNWVyTfVxB4Ovj5uu85mNbGH+//X583m LdTEHg6OUxvyt7232MPBXvZM54XeYg8XxpDDtS9l/HuLPRy8LvP0wKG9xR4O DooKcPqsKvZw8Dl/850nVMUeDt4x7P0dX1Wxh9vBkMfZO9T1VcUeDn79QCGg TkXs4WCvgLC6ZBWxh4PXbK+d7a4i9nBwenWfKjUVsYcLZ0ijt9mSp8piDwfn /DPi4pTFHg6+v+939gxlsYeDN3U/4ienLPZw8FJztUEVSmIPtxPPD6X5HbuU xB4O/hy69rm1ktjDwX99nApYJbGHg52Pt18uUhR7OPimscf1rYpiDxeB82JD 2F1LRbGHg51ylnz8pyD2cPDkrT2U8hTEHg7+MtrTJkhB7OFgy+JFu0criD3c LoacltWv/iEv9nBwr26Roy7Kiz0cnB6enLpWXuzh4KF7XXqbyos9HHyvK/fg Nzmxh4vEvLuba5gtJ/ZwsFaNc9EKObGHg6119ywbIif2cHDIDg/dL7JiDwer dRS9yZIVe7jdOD8tz8teLCv2cHB7xaRIQ1mxh4NVpF1Xv5cRezh4usp332My Yg+3hyG6NSoLfWXEHg7e7Xx1dT8ZsYeD2xbXRtb3Ens42Ewx5FxaL7GHg+PG H6z36iX2cHvx/r8eqKfbS+zhYKXmIcvrpMUeDv4zJ63osLTYw8FJqtsNPaXF Hg5e3acyQUta7OGiYJdtKrU9xR4O7lZyKCW5p9jDwe1uSmbzeoo9HHyo16cn Gj3FHg7OfNB3e3UPsYeLZsiM1IzxST3EHg42XbOdmdtD7OFgrwm5z/v2EHs4 eME/s8svebGHg40zu44m8mIPtw/P79EqSe682MPBTidWHunLiz0cXPW117mX nNjDwbEynyoSObGHgy/+kvrhzok9XAxDWrJdBmtwYg8HLzR+s7yaFXs4OMv/ yLUkVuzh4JK1USrzWLGHg0eZnwrSZMUeLpYh3y60NtYwYg8Hz/myYFkKI/Zw 8LTa9nYPRuzhYNWIU3u0GbGHg4O/hJrUScQeLo4h+bz/qyMSsYeDw2o3HvKS iD0c3L4iwUtPIvZwcNa1MrN6KbGH28+Q7JKeyulSYg8H745x7fSREns42EIv u72/lNjDwQYbZX83dBd7OHhM4qoeJ7qLPVw8Qx7uftRvcXexh4PznMymG3UX e7j4////41Ehn7uJPRxs5F9/41Q3sYeDU58M6rmim9jDHWDI7AELvYy7iT0c vGxJVNHXLkbcD4f7dGa66XmY7ofD5/dz2pk1MN0Ph/PC6PARI2C6Hw73mUT7 2+2djLgfjiFNfdsXXobpfjjcX4oCFQJhuh8O54WUF6VjYLofjiFvLsrt+vuP EffDYX72VnfNh+l+OLyfd9uGbYHpfjh8fl4f7m0F0/1weD98VHowMN0Ph593 gTNb+pcR98Ph+/thtlwETPfDMYRlNPtNg+l+OPx6SdokGZjuh8PfN/bdqvv/ FXWW8V3l3BZmyCHBrTiDu7sUDcwwuHtxd7fBobhT3GFwdxjctbhT3L24611z dtZ775f3t26ZyvnnJDvJ2s/65jk+nGcfd7+zbCK08OFQLwRPfl4NWvhwno3Z /Wuh+NDCh/Nslnpxp1356jk+nGeTl736fSa08OE8e6Vy2U71oYUPh/E9uGl4 cmjhw6F+fZOy190vnuPDYb+waXD0xdDCh/Ns2muD17SEFj6cZxf3SR6UCVr4 cJ6ds6JG3BefPceH82ytfqkur4UWPhz2L5GDl3SBFj4c/n3zboPyQgsfDvX+ srctP33yHB8O+9PH3+vsgBY+HH7PIhNq9YcWPhz2H/uWNrLQwofz7JBRtruC Fj4c9tsb60458tFzfDjUN9Vf7R0FLXw4/P4jf36sAC18ONRX7YYGxoYWPpxn EyQYMOLCB8/x4TA+ljy5Mw1a+HDYr+XbXyoIWvhwnu1119uaDFr4cJ7ddnR9 rrvvPceH82yZSAe2LYYWPpxn02zLV741tPDhME5+Rn6aBVr4cFiPPhec9Oqd 5/hweH4HD/y1CVr4cFgPBy/SvaCFD/fffcbVc4WghQ+Her1Gw+U/33qOD4fn uCb36APQwofDetyvWq/h0MKH82yHBzs6lYMWPpxnp0Ru0y0mtPDhPBsQPSj4 /BvP8eEwfuKOmTMNWvhwqPdLfNkfBC18OLxHO/95mxxa+HAY/8sHZ7//2nN8 OKx/Wab1WAYtfDjPHulw42g7aOHDYRxPqZouJ7Tw4Tys42/HvX/lOT4cfs9s u3/bDi18ONSXr9YM6g8tfDjMTwUORC0JLXw47I+zfZqvoYUPh/H+taw98dJz fDjMD6H/Pp8ALXw4zPfHii6sAS18OHw9WVizxNDCh/Ps/U/Dc94K9xwfzrP1 g/+MvAha+HAYJ89iPm8FLXw4/Jz6969mhRY+3H/3B3vPvXnhOT6cZx8mmn9p K7Tw4fBc9w560Bda+HCYf7M0+WmhhQ+H7z+2aBoNLXw41DNxAqqfeO45Phy+ z4tb4yZCCx8O80ileRdqQgsfDp9Dm0ppk0ILHw71bqcXA+888xwfDs9nco9H S6CFD+fZYlEe124HLXw4zEOq2MWc0MKH8+zPf3vV+/jUc3w4/D5BIeE7oYUP 59ntKUeOHgwtfDj8frZu7tLQwofD/Pf6t4fRoYUPh+/XcuDC8088x4fDunD9 dNsZ0MKHQ708PLxoQ2jhw2GeW3A1aVpo4cNhfWgyznv22HN8OPy9KsrnddDC h/Nsq31lPvaAFj6cZ0efL/urMLTw4Tz7tnuUgIjQwofDc7o/NNexR57jw+Hv rrM9aDy08OE8mzhg8fga0MKHw3tTqeSpJNDCh8P+o0xIgrsPPceH8+yM4uPb LoMWPhx+Xpf8xztACx8O9XfyEbnzQgsfDu/xsP5Lvz7wHB/OsyGPEqTbDy18 OMzXwVXWjoAWPhzG68wMJStBCx8O467TzDvxoIUPh/r/j0Wjrt/3HB8O81C9 kkUXQgsfDu/x527fWkMLHw7jtGG+QzmghQ+Hdef8kOkf73mOD4d5aEb9Hruh hQ+HeebDrgZDoYUPh88558Iq5aGFD+fZ+ROiVIoLLXw4z76s87pm2F3P8eGw 3lys3noBtPDhMF+WzTWsFbTw4bDuRhi+Oju08OHwPEtWvvXhjuf4cHgP6o5O shta+HDYj47P22QotPDh8PdlK7+xPLTw4bAuDTwRIwBa+HCe7XxuY7drtz3H h8Pz6vjz/j/QwofD+7h4VcM20MKH82zo3n/v54QWPhx0jJTdPt/yHB/Osw9u 3I2+75bn+HCYZ/p+XT8CWvhw2A8FtmpUGVr4cNhPtEyXKCG08OGwn6qa+/qt m57jw6Geqjhm+VJo4cNhflyRbVBHaOHD4evbEzTNDy18OPwdp/+o9POG5/hw qBcKb/zzCLTw4Tx7s3qjUuOhhQ+H9aV9mSq1oIUPh3XtatsWyaGFD4fP6eXB oY+ue44P59lGEauuXQstfDjM++1i3esJLXw4z24c+D1FcWjhw6E+nRa/tYEW PhzGs6mz48w1z/HhPPs58/4EM6CFD4dxVLdS/8bQwofDOH3xPTwjtPDhsJ8v Gtr6TZjn+HAYl8s2hW+HFj4c5v+hW/sFQwsfDu9XjrPxy0MLHw51mP65LQBa +HAY582Ktrxx1XN8OIzXJWOSLYEWPhyeZ6ZHtzpACx8O62eFcivzQwsfDu9b xy0Df13xHB8Ov0d42kbHoIUPh3ki07QyIdDCh8PnNkQXCYIWPpxnJ9TrFpgG WvhwqE8CrtkXlz3Hh8O8F61gtS3QwofDz1s+usMAaOHD4XMuf2ZSaWjhw+E5 1VYHYkMLHw77hdxpv4Vd8hwf7j8/Uo5ii6CFD+fZHQ9SjWkPLXw4vF/Dv9zN By18OKwXYzaV/HXRc3w4jN+gimuOXfQcHw7PNehQqknQwofD5/8u/oJ60MKH Q50+rnjGdNDCh8N+PqTYjpcXPMeHw/dtE7vWNmjhw6FO6L/x22Bo4cNh3BVK vao8tPDhUO9GadA8PrTw4TD+ajXOcPu85/hwWF/HZXq/HFr4cFivf98a2hVa +HBYbzuqVUWghQ/n2RLvYk7V0MKHw+ec8PLIs+c8x4fDfFau1vBZ0MKHwzzz fey45tDCh8Pznd1rXnZo4cPh+c0M2P75rOf4cPi9Wza8eQBa+HBYX3vUjDYO WvhweG/yfyxZG1r4cFhPkhUbmgpa+HD4vnMzn3l+xnN8ODy3TNvTbIUWPpxn k+R/PHgQtPDhPNuy4Man5aCFD4fnuiRhvfjQwofzbNl38S7fPu05Phz24zOW Ba2EFj4c6o1op550hxY+HMbHweBBxaGFD4f9UOCRVFGhhQ+HevjRlJMXT3mO D4dxWvLFoPnQwodDfXD0eLG20MKHw3r6KrPOBy18OMw7+WNc+XXSc3w4zH8J Om4IhRY+HMZ59PJTp0ILHw7PZco/wY2hhQ+H+Tdzp95ZoIUPB11xQ++PJzzH h8P46NtiyH5o4cNh/5F71LSx0MKHw/ryJvGm2tDCh8N+u2D8sNTQwofD5zHy 78gvQz3Hh8P63KREie3QwofDfqFUhyFDoYUPh/G15cvpytDCh/PspHwP0iSF Fj4c5q/SmYMfHfccHw7juNPxpxughQ+H+T3n3qD+xz3Hh0P9HifKpTLQwofD OJq6uE48aOHDYd/wx4SHt/G/wof7///l/5//jv8dvw+/L38Ofy5/D/5e/D35 e/Pv4N/Fv5N/N58DnwufE58bnyOfK58znzs/B34u/Jz4ufFz5OfKz5mf+//G gRsXHCccNxxHHFccZxx3HIcclxynHLccxxzXHOcc93wP+F7wPeF7w/eI7xXf M753fA/5XvI95XvL95jvNd9zvvecBzgvcJ7gvMF5hPMK5xnOO5yHOC9xnuK8 xXmM8xrnOc57nAc5L3Ke5LzJeZTzKudZzruchzkvc57mvM15nPM653nO+1wH uC5wneC6wXWE6wrXGa47XIe4LnGd4rrFdYzrGtc5rntcB7kucp3kusl1lOsq 11muu1yHuS5znea6zXWc6zrXea77rANYF7BOYN3AOoJ1BesM1h2sQ1iXsE5h 3cI6hnUN6xzWPayDWBexTmLdxDqKdRXrLNZdrMNYl7FOY93GOo51Hes81n2s A1kXsk5k3cg6knUl60zWnaxDWZeyTmXdyjqWdS3rXNa9rINZF7NOZt3MOpp1 Nets1t2sw1mXs05n3c46nnU963zW/dwHcF/AfQL3DdxHcF/BfQb3HdyHcF/C fQr3LdzHcF/DfQ73PdwHcV/0v32S2zdxH8V9FfdZ3HdxH8Z9Gfdp3LdxH8d9 Hfd53PdxH8h9IfeJ3DdyH8l9JfeZ3HdyH8p9Kfep3LdyH8t9Lfe53PdyH8x9 MffJ3DdzH819NffZ3HdzH859Offp3LdzH899Pff53PfzHIDnAjwn4LkBzxF4 rsBzBp478ByC5xI8p+C5Bc8xeK7Bcw6ee/AchOciPCfhuQnPUXiuwnMWnrvw HIbnMjyn4bkNz3F4rsNzHp778ByI50I8J+K5Ec+ReK7EcyaeO/EciudSPKfi uRXPsXiuxXMunnvxHIznYjwn47kZz9F4rsZzNp678RyO53I8p+O5Hc/xeK7H cz6e+/EckOeCPCfkuSHPEXmuyHNGnjvyHJLnkjyn5LklzzF5rslzTp578hyU 56I8J+W5Kc9Rea7Kc1aeu/IclueyPKfluS3PcXmuy3NenvvyHJjnwjwn5rkx z5F5rsxzZp478xya59I8p+a5Nc+xea7Nc26ee/McnOfiPCfnuTnP0XmuznN2 nrvzHJ7n8jyn57k9z/F5rs9zfp778x6A9wK8J+C9Ae8ReK/AewbeO/AegvcS vKfgvQXvMXivwXsO3nvwHoT3Irwn4b0J71F4r8J7Ft678B6G9zK8p+G9De9x eK/Dex7e+/AeiPdCvCfivRHvkXivxHsm3jvxHor3Uryn4r0V77F4r8V7Lt57 8R6M92K8J+O9Ge/ReK/Gezbeu/EejvdyvKfjvR3v8Xivx3s+3vvxHpD3grwn 5L0h7xF5r8h7Rt478h6S95K8p+S9Je8xea/Je07ee/IelPeivCflvSnvUXmv yntW3rvyHpb3sryn5b0t73F5r8t7Xt778h6Y98K8J+a9Me+Rea/Me2beO/Me mvfSvKfmvTXvsXmvzXtu3nvzHpz34rwn570579F5r857dt678x6e9/K8p+e9 Pe/xea/Pe37e+9MHQF8AfQL0DdBHQF8BfQb0HdCHQF8CfQr0LdDHQF8DfQ70 PdAHQV8EfRL0TdBHQV8FfRb0XdCHQV8GfRr0bdDHQV8HfR70fdAHQl8IfSL0 jdBHQl8JfSb0ndCHQl8KfSr0rdDHQl8LfS70vdAHQ18MfTL0zdBHQ18NfTb0 3dCHQ18OfTr07dDHQ1/P/3w+zvdDHxB9QfQJ0TdEHxF9RfQZ0XdEHxJ9SfQp 0bdEHxN9TfQ50fdEHxR9UfRJ0TdFHxV9VfRZ0XdFHxZ9WfRp0bdFHxd9XfR5 0fdFHxh9YfSJ0TdGHxl9ZfSZ0XdGHxp9afSp0bdGHxt9bfS50fdGHxx9cfTJ 0TdHHx19dfTZ0XdHHx59efTp0bdHHx99ffT50fdHHyB9gfQJ0jdIHyF9hfQZ 0ndIHyJ9ifQp0rdIHyN9jfQ50vdIHyR9kfRJ0jdJHyV9lfRZ0ndJHyZ9mfRp 0rdJHyd9nfR50vdJHyh9ofSJ0jdKHyl9pfSZ0ndKHyp9qfSp0rdKHyt9rfS5 0vdKHyx9sfTJ0jdLHy19tfTZ0ndLHy59ufTp0rdLHy99vfT50vdLHzB9wfQJ 0zdMHzF9xfQZ03dMHzJ9yfQp07dMHzN9zfQ50/dMHzR90fRJ0zdNHzV91fRZ 03dNHzZ92fRp07dNHzd93fR50/dNHzh94fSJ0zdOHzl95fSZ03dOHzp96fSp 07dOHzt97fS50/dOHzx98fTJ0zdPHz199fTZ03dPHz59+fTp07dPHz99/fT5 0/fPPgD2BbBPgH0D7CNgXwH7DNh3wD4E9iWwT4F9C+xjYF8D+xzY98A+CPZF sE+CfRPso2BfBfss2HfBPgz2ZbBPg30b7ONgXwf7PNj3wT4Q9oWwT4R9I+wj YV8J+0zYd8I+FPalsE+FfSvsY2FfC/tc2PfCPhj2xbBPhn0z7KNhXw37bNh3 878+HNeXwz4d9u2wj4d9PezzYd8P+4DYF8Q+IfYNsY+IfUXsM2LfEfuQ2JfE PiX2LbGPiX1N7HNi3xP7oNgXxT4p9k2xj4p9VeyzYt8V+7DYl8U+LfZtsY+L fV3s82LfF/vA2BfGPjH2jbGPjH1l7DNj3xn70NiXxj419q2xj419bexzY98b ++DYF8c+OfbNsY+OfXXss2PfHfvw2JfHPj327bGPj3197PNj3x/7ANkXyD5B 9g2yj5B9hewzZN8h+xDZl8g+RfYtso+RfY3sc2TfI/sg2RfJPkn2TbKPkn2V 7LNk3yX7MNmXyT5N9m2yj5N9nezzZN8n+0DZF8o+UfaNso+UfaXsM2XfKftQ 2ZfKPlX2rbKPlX2t7HNl3yv7YNkXyz5Z9s2yj5Z9teyzZd8t+3DZl8s+Xfbt so+Xfb3s82XfL/uA2RfMPmH2DbOPmH3F7DNm3zH7kNmXzD5l9i2zj5l9zexz Zt8z+6DZF80+afZNs4+afdXss2bfNfuw2ZfNPm32bbOPm33d7PNm3zf7wNkX zj5x9o2zj5x95ewzZ985+9DZl84+dfats4+dfe3sc2ffO/vg2RfPPnn2zbOP nn317LNn3z378NmXzz599u2zj599/ezzZ98/OQDkApATQG4AOQLkCpAzQO4A OQTkEpBTQG4BOQbkGpBzQO4BOQjkIpCTQG4COQrkKpCzQO4COQzkMpDTQG4D OQ7kOpDzQO4DORDkQpATQW4EORLkSpAzQe4EORTkUpBTQW4FORbkWpBzQe4F ORjkYpCTQW4GORrkapCzQe4GORzkcpDTQW4HOR7kepDzQe4HOSDkgpATQm4I OSLkipAzQu4IOSTkkpBTQm4JOSbkmpBzQu4JOSjkopCTQm4KOSrkqpCzQu4K OSzkspDTQm4LOS7kupDzQu4LOTDkwpATQ24MOTLkypAzQ+4MOTTk0pBTQ24N OTbk2pBzQ+4NOTjk4pCTQ24OOTrk6pCzQ+4OOTzk8pDTQ24POT7k+pDzQ+4P OUDkApETRG4QOULkCpEzRO4QOUTkEpFTRG4ROUbkGpFzRO4ROUjkIpGTRG4S OUrkKpGzRO4SOUzkMpHTRG4TOU7kOpHzRO4TOVDkQpETRW4UOVLkSpEzRe4U OVTkUpFTRW4VOVbkWpFzRe4VOVjkYpGTRW4WOVrkapGzRe4WOVzkcpHTRW4X OV7kepHzRe4XOWDkgpETRm4YOWLkipEzRu4YOWTkkpFTRm4ZOWbkmpFzRu4Z OWjkopGTRm4aOWrkqpGzRu4aOWzkspHTRm4bOW7kupHzRu4bOXDkwpETR24c OXLkypEzR+4cOXTk0pFTR24dOXbk2pFzR+4dOXjk4pGTR24eOXrk6pGzR+4e OXzk8pHTR24fOX7k+pHzR+4fOYDkApITSG4gOYLkCpIzSO4gOYTkEpJTSG4h OYbkGpJzSO4hOYjkIpKTSG4iOYrkKpKzSO4iOYzkMpLTSG4jOY7kOpLzSO4j OZDkQpITSW4kOZLkSpIzSe4kOZTkUpJTSW4lOZbkWpJzSe4lOZjkYpKTSW4m OZrkapKzSe4mOZzkcpLTSW4nOZ7kepLzSe4nOaDkgpITSm4oOaLkipIzSu4o OaTkkpJTSm4pOabkmpJzSu4pOajkopKTSm4qOarkqpKzSu4qOazkspLTSm4r Oa7kupLzSu4rObDkwpITS24sObLkypIzS+4sObTk0pJTS24tObbk2pJzS+4t Objk4pKTS24uObrk6pKzS+4uObzk8pLTS24vOb7k+pLzS+4vOcDkApMTTG4w OcLkCpMzTO4wOcTkEpNTTG4xOcbkGpNzTO4xOcjkIpOTTG4yOcrkKpOzTO4y OczkMpPTTG4zOc7kOpPzTO4zOdDkQpMTTW40OdLkSpMzTe40OdTkUpNTTW41 OdbkWpNzTe41OdjkYpOTTW42OdrkapOzTe42OdzkcpPTTW43Od7kepPzTe43 OeDkgpMTTm44OeLkipMzTu44OeTkkpNTTm45OebkmpNzTu45OejkopOTTm46 OerkqpOzTu46OezkspPTTm47Oe7kupPzTu47OfDkwpMTT248OfLkypMzT+48 OfTk0pNTT249Ofbk2pNzT+49Ofjk4pOTT24+Ofrk6pOzT+4+Ofzk8pPTT24/ Of7k+pPzT+4/cwCYC8CcAOYGMEeAuQLMGWDuAHMImEvAnALmFjDHgLkGzDlg 7gFzEJiLwJwE5iYwR4G5CsxZYO4CcxiYy8CcBuY2MMeBuQ7MeWDuA3MgmAvB nAjmRjBHgrkSzJlg7gRzKJhLwZwK5lYwx4K5Fsy5YO4FczCYi8GcDOZmMEeD uRrM2WDuBnM4mMvBnA7mdjDHg7kezPlg7gdzQJgLwpwQ5oYwR4S5IswZYe4I c0iYS8KcEuaWMMeEuSbMOWHuCXNQmIvCnBTmpjBHhbkqzFlh7gpzWJjLwpwW 5rYwx4W5Lsx5Ye4Lc2CYC8OcGObGMEeGuTLMmWHuDHNomEvDnBrm1jDHhrk2 zLlh7g1zcJiLw5wc5uYwR4e5OszZYe4Oc3iYy8OcHub2MMeHuT7M+WHuD3OA mAvEnCDmBjFHiLlCzBli7hBziJhLxJwi5hYxx4i5Rsw5Yu4Rc5CYi8ScJOYm MUeJuUrMWWLuEnOYmMvEnCbmNjHHiblOzHli7hNzoJgLxZwo5kYxR4q5UsyZ Yu4Uc6iYS8WcKuZWMceKuVbMuWLuFXOwmIvFnCzmZjFHi7lazNli7hZzuJjL xZwu5nYxx4u5Xsz5Yu4Xc8CYC8acMOaGMUeMuWLMGWPuGHPImEvGnDLmljHH jLlmzDlj7hlz0JiLxpw05qYxR425asxZY+4ac9iYy8acNua2MceNuW7MeWPu G3PgmAvHnDjmxjFHjrlyzJlj7hxz6JhLx5w65tYxx465dsy5Y+4dc/CYi8ec PObmMUePuXrM2WPuHnP4mMvHnD7m9jHHj7l+zPlj7h9zAJkLyJxA5gYyR5C5 gswZZO4gcwiZS8icQuYWMseQuYbMOWTuIXMQmYvInETmJjJHkbmKzFlk7iJz GJnLyJxG5jYyx5G5jsx5ZO4jcyCZC8mcSOZGMkeSuZLMmWTuJHMomUvJnErm VjLHkrmWzLlk7iVzMJmLyZxM5mYyR5O5mszZZO4mcziZy8mcTuZ2MseTuZ7M +WTuJ3NAmQvKnFDmhjJHlLmizBll7ihzSJlLypxS5pYyx5S5psw5Ze4pc1CZ i8qcVOamMkeVuarMWWXuKnNYmcvKnFbmtjLHlbmuzHll7itzYJkLy5xY5sYy R5a5ssyZZe4sc2iZS8ucWubWMseWubbMuWXuLXNwmYvLnFzm5jJHl7m6zNll 7i5zeJnLy5xe5vYyx5e5vsz5Ze4vc4CZC8ycYOYGM0eYucLMGWbuMHOImUvM nGLmFjPHmLnGzDlm7jFzkJmL/L+cZJebzBxl5iozZ5m5y8xhZi4zc5qZ28wc Z+Y6M+eZuc/MgWYuNHOimRvNHGnmSjNnmrnTzKFmLjVzqplbzRxr5loz55q5 18zBZi42c7KZm80cbeZqM2ebudvM4WYuN3O6mdvNHG/mejPnm7nfzAFnLjhz wpkbzhxx5oozZ5y548whZy45c8qZW84cc+aaM+ecuefMQWcu+v9y0l1uOnPU mavOnHXmrjOHnbnszGlnbjtz3Jnrzpx35r4zB5658MyJZ248c+SZK8+ceebO M4eeufTMqWduPXPsmWvPnHvm3vt+OOgtLw/dfQ/t++GgV2SJPLXlb1r8cNAv 0z9oeBXa98NB1/xVv3i5iFr8cJ/wvC72zL8L2vfDQZc6nO/P7EqLHw761tu5 rRdA+3446D39Ny2K62nxw0GnHdHnw1Bo3w/3UdnTOT81+ATt++GgP87JdrNN JC1+OOhqL1N1uwHt++GgE5W5mqKy1uKHg/52qsb9/dC+H+6DspkWz96d12jx w0FXe7V+7TJo3w8HvejijK1JImvxw0Ef6V370jho3w8H/ch7E/W3KFr8cO+V XTWnTe3u0L4fDrpY68M7HkP7fjjoUhMi56sXVYsfDvpxYIEjp6F9Pxz0yYk1 O5aMpsUP9w6//+5W2bZC+3446O5PuqjM0bX44aAjFf379Vxo3w8H3e3hgPdx Ymjxw0E/iT461nBo3w/3Fu/37bklvkL7fjhoM3LP6I4xtfjhoEflff3sHrTv h4PeE6dA09qxtPjhoGtWnP76BLTvh3uD+SF+/Gk2thY/HPSbGZurbYH2/XDQ t3Wf9JnjaPHDQXsT2sSZD+374V4rO6vJiIB4cbX44aCbrLuSdRS074f77+sr Gjb4Ce374aCjB6dc0i1Aix8O+mfbVN5TaN8P90pZO71Fn4bxtPjhoFMVemMu Qvt+OOjeI46tLhtfix8OeuGmV633Qvt+OOg+79oWyZdAix/upbKt+hXLsAra 98NBVxvaMVOqhFr8cNArS/wqOR3a98NBN3v+vluMRFr8cNBft1XfNQTa98OF K9vxXorfv0L7fjjovxY0mNw5sRY/HPSkLHFSP4b2/XDQD3YXO9YgiRY/HHTd kGfDLkL7frgXyk65k6he+aRa/HDQex+dKn0A2vfDQY+9HaNC4O9a/HDQ+czN VuuhfT8cdL9ZxWdnSKbFD/dc2dWXAx/Ng/b9cNDTvpwpkyC5Fj8c9IwS+uA4 aN8PBz09/E6NSCm0+OGgfxVp/rMftO+He6bssU5T9r6H9v1w0D2O9JjRPqUW Pxx0rODoox5A+3446GwP6ofUT6XFDwf9Knu7DRehfT/cU2V/LC78tEJqLX44 6PGjzhc8DO374aCbpsy7oGgaLX446ENrmqfYCu374Z4oO6Zn663Z02rxw0En 3fdHi2XQvh8OusnZr1lSptPih4MOCw+JOhPa98P99983ivFb3PRa/HCPlY3S oUusMdC+Hw66V8MD+bwMWvxw0IP6ed37Q/t+OOimsYuEfoT2/XDQD5t1KNg5 oxY/3CNlG++fs+cptO+Hg97W7XT9Zpm0+OH++/oRHXAT2vfDQQdFKne3VmYt fjjoAv3nHD0L7fvhHiqbsG/EI+WyaPHDQS+vMOjGIWjfDwed0SaJVjyrFj8c dMvFF6tuh/b9cNB7j21anyebFj/cA2VT/9iZYS2074eDjjHpzdaM2bX44aAn Xq3TcBG074eDLpf6Y7LkObT44aA77D/1YQa074e7r+zOyA8eBuTU4oeDHlW+ 6Mvx0L4fDnrXzZsxo+bS4oeDPh0QWnoYtO+Hgz5WUs+MkFuLH+4e1sN90yL2 g/b9cNB97w0c+gna98NBZ4xwJHm3PFr8cNCLOnc49xLa98NBXx7TZ07bvFr8 cHeVLb7yzcBH0L4fDvpV2it9m+bT4oeDHlszx8Rb0L4fDrrKtJ+7gvJr8cNB RytZNuIVaN8Pd0fZlJsDGlcvoMUPBz2yTNPLZ6B9Pxz0xXqBLSoU1OKHg05f fm7049C+H+62soHdJ50sFajFDwfdKF+yJQegfT8c9IDwEtOKF9Lih4OO991b sAva98NB59vf9kBgYS1+uFvKTpjb68dWaN8PB93ibY6qeYto8cNBh6SasXsD tO+Hgx4xbnPJHEW1+OGgq80cdWc1tO+Hu4n5YnnS6ZmLafHDQU9M0anlcmjf Dwcdr9nISumLa/HDQU++2q7yYmjfDwcd91GyNqmtFj/cDWXzv104ewG074eD Dmz+61HyElr8cNBvFhUoPxfa98NBn05c5VjSklr8cNA3s1dsOAva98NdV/Zg hTwxEv+hxQ8Hve+mvjQd2vfDQW+qcHJLgj+1+OGg40UauW4qtO+Hg/7UtdiB eKW0+OGuYfyr9+GToX0/HPSi1GtyB/ylxQ/3ny7eceIkaN8PBz3lWGETt7QW Pxz0rKxJpodA+364MNRr12PYOGW0+OGgx5ZKGjEE2vfDQV+6/tfN2GW1+OGg X8aaem4itO+Hg45TI+rt2OW0+OGuKps46apIIdC+Hw6639W+peKU1+KHg64e YfC8EGjfDwddw+yNHbeCFj8c9NWmheZMgvb9cFfw80d+sgEVtfjhoO+9+vpz MrTvh4MuGKvs5XiVtPjhoNc1fHRkKrTvh7us7IFaV84mqKzFDwc9rnPK99Oh fT8c9Ml0R3ImrqLFDwd9+/XJ4bOgfT8c9LEKgR+TVtXih7uE+m1LrIFzoX0/ HHS5pTVSpaimxQ8HHW9u9JsLoH0/HHT8hEU2pq6uxQ8H3XfS4wWLoX0/3EVl k40PWJG+hhY/HHSXUYdCl0P7fjjoKd6vSFlqavHDQZcedDRoDbTvh4N+0z/1 8Ry1tPjhLig7Z2C8qhuhfT8c9Bez8G3e2lr8cNANZ51Z8y+074eDPrrjn+BC dbT44aAvhf/eZTe074c7r+yFbaV627pa/HDQ6/5JOfsgtO+Hg46QY+Plv4K0 +OGg1ZOfWUKhfT8c9Nwa0WZXrKfFD3dO2fo/rqc5B+374aB7tOtxpEZ9LX44 6MMZbwRfhfb9cNAX9sarW7+BFj8c9Kmdacregfb9cGexPi6PUb15Qy1+OOgJ ca/0fALt++GgI40Yurl9Iy1+OOgDk5NEfwPt++GgSx2d279HYy1+uDNY/9bH jfIV2vfDQb+53X/tgCZa/HDQnR7e76CaavHDQTesVrb0SGjfD3da2anbNhaK 0UyLHw56+sq0ZSZB+3446Mk7F3VK2FyLHw66+cC8G+ZA+3446Cmjr0dP3UKL H+4U9nNd5wYvg/b9cNATTg6Im62lFj8c9OkcQ3dthPb9cNDV8mwcVLCVFj8c tO4Uo9EeaN8PdxL7576zav/ZWosfDjrx2wZtQ6F9Pxz0jvb1p1dpo8UPBx17 +Kxbl6F9Pxx017DfbYO2WvxwJ7Afifhk531o3w8HnXZ+hGpt22nxw0FPKd8u 4hto3w8HXXFp1lO92mvxw0EnqlR2409o3w8Xqmzne4c3DOugxQ8HPVgtOxG9 oxY/HHTGam9+TYb2/XDQ7zutqJS0kxY/HHSmXxf+XQjt++GO4+9Z2KNw5s5a /HDQlX9OCtsA7fvhoP/YmnNSYBctfjjoJZ2qt9gP7fvhoPOf/VWtbFft+HDK th9QqN45aOHDYf+TKvKAut2048Ph5zfpsPMutPDhlE3zqGNA2+7a8eFQv9eN M/wttPDhlN3dom5A3x7a8eEwn24pv1P11I4Ph+f/7kX/sdDCh1P2xokS9eL3 0o4Pp2yFF5Wqz4MWPhzqhd8St8zwt3Z8OOxfdi6evB5a+HDKzj/y8Xpgb+34 cFjPLwYUPwgtfDhlt0+JsLtCH+34cMqe37a/5mVo4cMpO/ptvSiN+2rHh8P+ 5v2FK0+hhQ+H9aFL9v3d+mnHh1P2Q/LOh39ACx8O43P93Acj+mvHh1N26PWd yeMO0I4Ph/Wy1pluc6CFD4f9W9iN++kHaseHw/dL/LTjBmjhwyn72/nP8YoM 0o4Pp2ylHbEvH4EWPhzqubH5NlYdrB0fTmEL0X7FDWjhw6E+ub5tZ6tg7fhw ym44nfLpW2jhwymbd/byXAOGaMeHQ731s8bUKEO148Nh/dqaOd5UaOHD4ecH Z1+bcph2fDhlo6Zu0Ww1tPDhlA2odSFPweHa8eGw/t/un+IQtPDhMN8MapO+ ygjt+HCYP77PKnMDWvhwymZNkHB465Ha8eEwv4fcu/UeWvhweN/zRaw+eJR2 fDisL4f73IsxWjs+HNazyFXHzYIWPhzW46OjqmcYox0fTtnQY5nybYYWPhz2 V5fy5S4xVjs+HN7HbRvLnYYWPhzel0JLBtQbpx0fDl/PEPf0E2jhw+HvKfez YM/x2vHhUN916bhXTdCOD4f5uHWrJiHQwodTdtXP8OQpJmrHh1M2T0TzeTW0 8OFQ3/7x74tCIdrx4ZRdHKJ+HIMWPhzqtb2vM9aepB0fTtkjc4d0fggtfDi8 TxH2X+g2WTs+nLL/bF9TLeIU7fhw+PvnVQqfCC18ONRTQ5cvSjFVOz4cPs8S +3qshRY+nLJLV85qVnSadnw47K9mFOlwElr4cMp+v79yUr3p2vHhlH3a/NmF Z9DCh8P69+FXzj4ztOPDKZuj8+sVUWZqx4dDPbB+X7GZ0MKHw/o5qcerjLO0 48OhXnkbsGsbtPDhMH7XLVhcZrZ2fDh8vstSrrgKLXw4zC/bZxxvPUc7PhzW 68Mx9Bdo4cMpG3P10Iaj5mrHh8P3rxzxQuJ52vHhlH07aUyzldDCh8N+uE66 2IXna8eHw/gaevHqCWjhwykb/H3u7voLtOPDKdtmyfA94dDCh1P2W4vJ1wf8 ox0fDv8+3fF4sRdqx4fDfvJk1rb/QAsfDp9XyYPXcy/Sjg+n7JWuIW0OQQsf Dvun0nMCai3Wjg+H/f2qJ2GPoYUPh99vdN9dvZdox4dDfXCh7s5oS7Xjw2F+ 7jLy8lxo4cNhvaoZPWbOZdrx4bAed3jW5AC08OGUjbgyw/kay7Xjwylb9/ux ho+hhQ+nbOFaF0yfFdrx4ZSttbL8qegrtePDKZv9Rf5186GFD6dsktiz1uRe pR0fTtmS0focOwwtfDi8bxeu/6qzWjs+HOaTxoeqv4AWPpyyuZcXPDRwjXZ8 OOzPFhetGrBWOz6csn9Vuvp1KbTw4ZRdOz/G/kLrtOPDKbtx8r1Fp6GFD4f1 K339RU3Xa8eHw36++sC9H6GFD6fsnsRVP4/eoB0fDvvrnpcrptioHR9O2RNt 4u3bBC18OGXfvY1Vucwm7fhw2M8EnP56A1r4cMqeOVH9YJfN2vHhUA+mWLpc b9GOD4fnFzd05Wxo4cMpu3/ZoeM5t2rHh1M2+cNZkY5ACx9O2aZnqzas9692 fDhl63R+eeE1tPDhlF1xskfL4du048Nh/xH+Iv7v27Xjw6E+uFnn3gZo4cMp m27JnhOld2jHh1N2UpU0529CCx9O2f7Px3zotlM7Ppyym4N/5Iu6Szs+nLIP 0vSfvABa+HDYv96MFbPAbu34cHj/9+5Ycgpa+HDKfrwaHNR8j3Z8OKznRTpk /QYtfDjUH18HJJ20Vzs+HL6eYXeGTPu048Nh/biUteo+aOHD4fdJcmF67f3a 8eGUvRtty7eX0MKHU3bg3iv9hh/Qjg+H+rKCTZr8oHZ8ONQXJ95d3gItfDjU fzU/rat4SDs+HH6eV2XpQ2jhwyl7/G3EHf0Pa8eHw3gqEv95/CPa8eEwv/8Y E7gWWvhwyras3n7JX0e148MpG6vBzuy3oYUPp2yzwAGXeh3Tjg+H/WXkHTNj H9eOD4f383m3viughQ+nbJja0KdkqHZ8OLz/3XtOvw4tfDjUN02On+t+Qjs+ HPYTr9ZminlSOz6csu3+yDp/GbTw4fDvh/yVu8Qp7fhwypqrEe9fgxY+nLIF Wrfc0P20dnw4ZXs16Dk35hnt+HDKHrpbYNlyaOHDob5Juf50ybPa8eGg/3wQ cBNa+HDK9ukT1rPXOe34cFjf30z5FOe8dnw4ZXNdTjptNbTw4bA/qdutWukL 2vHhsP6vWpD1HrTw4ZQd8n152v4XtePDKXtxYEihRJe048NhvmzdqOMmaOHD KTvracJ9lS5rx4fD+hm4L8czaOHDYX0a22D3sCva8eGwv07yoXWqq9rx4fA+ Jh2beze08OGUPXskQ5K6Ydrx4bB/r30qxQdo4cOhvtXBf4Rc044Pp2zOOOWH ZbuuHR8O42tjtofHoYUPh/c7Y45mLW9ox4fD57O+xq+IN7Xjw2F/MWbR9vnQ wofD+PiUclKRW9rx4VAP5z8/Mgxa+HDYT4zeNbfnbe34cMqWLfDwbMAd7fhw 2D8NrJp6A7Tw4fC+LNeTKt3Vjg+HevRzlJQvoIUPh/G/ufHJUfe048MpOzx9 7OkZ7mvHh1P2+tRkgw5DCx9O2cYVxo9o9kA7PhzWuymt1vz2UDs+nLK/71j7 Zj608OEwn0dpU6PYI+34cKjPz8y+dANa+HDKlq5XoUffx9rx4fB8vg3Mk+SJ dnw4jM/fisTeDi18ONTzu4dFq/NUOz4c6oXgpuk+QQsfDuNr4ZUG055px4fD /qXrs835nmvHh1M2aZkFmS9BCx9O2YV//9zT/YV2fDhlW9SL2jVeuHZ8OGU7 ljn+x2Zo4cOhHpxh89Z4qR0fTtkmS3v88R5a+HCYj0926DLllXZ8ONRDLbPv yftaOz4cxuu5XZkuQQsfDvVWu+Sbe7zRjg+H8T2lToMEb7Xjw+HzXdk53b/Q wofD843VPnqdd9rx4VDPpq0S9wu08OFQ/1dMXWDWe+34cPi8wh/3KfxBOz4c xkebpTdvQAsfDvv9DM0aDfioHR8O9cH4NBFSftKOD4f1J1L43v3QwodDvfbx 0Lxmn7XjwymbPnT9nEhftOPDof56vmX7Mmjhwyk74mjYh7JftePDKbvteKqq L6CFD4fx3njyifHftOPD4X37mqdFru/a8eFQL5goyS9CCx8O7+vnhB97/tCO D4f1sFjL8MQ/tePDKVus0he1G1r4cJi/Z10ObPxLOz6csvOmqwkqgnF8OGXb 7hqmlkELH+6/96fp9HK/GceHQ71cZ365l9DCh8N+cH+JZJMiGseHw+efp3Ks /Mo4Phzqw0ynUl6DFj4c9oMp9lcd4BnHh1P25OScC1NHMo4Ph/VGpYp7FFr4 cJgPw6f/004bx4dT9v65WVViG+P4cKj/cudIsQVa+HDKrgkJihEU2Tg+HJ5X 19RJf0ELH07ZkXXGllkcxTg+nLKRQ+dOLRvVOD6csvEr1o/4Clr4cPj5bU6N nxLNOD4cxuvSj4UKRTeOD4f3bcJNfQda+HDKxl0z4u2wGMbx4ZQtNPbrjywx jePDYX+6vXCm89DCh1N26/4q3f+OZRwfDs87b/HbyWMbx4dDvfBP9LaHoYUP h/E7c0+89nGM48OhXl0bdDtuXOP4cNgfdHt0fDu08OGwn+rb6mLjAOP4cMou aHD/p4lnHB8O9eDaRmXXQQsfDt9f39tUK75xfDhlL33vVOwntPDhsH5nifV0 SQLj+HDKHs16eFPFhMbx4ZQtMmf6vA/QwofDepNg7Iq5iYzjw/23Hi2/WCqx cXw4ZS8vfJPiJbTw4fD+veswZloS4/hweP9Ppk5YPKlxfDhl556Of/AxtPDh 8H7NrTBh4u/G8eGwn791sm9gMuP4cMo+zztn5D1o4cMpm7jMvi1jkhvHh8P7 sbeYypfCOD4c/t6SybrcghY+HJ5/vya/RqQ0jg+HeiBBnLW5UhnHh0P9sTtX /+vQwodDvZ/sePthqY3jw2H9f3ijX440xvHhMP8e6LomDFr4cNhvt5z4c0ha 4/hweL+CC3fOns44Phzel2O9I4ZBCx9O2ZkvqmwZkt44PhzW04VHRmbPYBwf TtkIC+70C4MWPtx/n8fikKEZjePDKfuzUqKjOTIZx4dTtkyXEsmuQwsfDv9+ d7opwzMbx4fD83oZmiV3FuP4cBjP+/I/uAktfDjMv2867h6V1Tg+HObL4r3/ zZfNOD4c5su29c7fhRY+HOrPPEljjs9uHB9O2SgN9rQtlMM4PpyyWVeUe/II Wvhwyo66cXj45JzG8eEw/nbl+8vmMo4Ph/kn1oL04dDCh1PWzo2acVZu4/hw ynbN3rdc6TzG8eGw3o/7NO49tPDhUD8MGfb2n7zG8eGwnt7O/HflfMbx4ZS9 0z48+Q9o4cNhvvx6/tHK/Mbx4ZStXOfumToFjOPDKbupVvJruqBxfDjs145O iLQFWvhw2J8OKFytWaBxfDhlD1bKsC9OIeP4cJh/Y9atvA9a+HD4+uTLvzoW No4Pp+zfW5ecS1bEOD4cnnflk4dOQgsfDuOhYJWwvkWN48Mp+2+FArGyFDOO D6fs4tYjWl6DFj4c5oM2f90eVdw4Phzen+x9egda4/hwqGenZcz3FFr4cPi8 h9SOO7OEcXw4rFeXo8cpW9I4PpyyfbtVyvUFWvhwqI+Lp+624g/j+HDKzkk+ /nLdP43jw6He+zK9XtRSxvHhsB/bWiriTmjhw2G8Fp8b2u4v4/hwyn4fuHjz 76WN48Ohnm/aZN8paOHDKXv7fFj4gDLG8eGU7b4voGjOssbx4fB+JY6/9i60 8OEwfs7ct5PLGceHQ711ftiHP8sbx4dD/Z3gt5MfoYUPh/35+HqHllcwjg+H /UqO2beCKhrHh8N4eX04SYxKxvHhsB4cv/v3XmjhwymbasP7z10qG8eHw/56 oTc7bRXj+HDKLpqZsNEVaOHDYf0MyVNqdFXj+HDKxhvZsGLRasbx4bBe9ZvX 6zW08OEwPjp8ObiounF8OGWbN+iRu3YN4/hweH8rJToYtaZxfDjsh/940mMP tPDh8PWSz8t1rWUcHw66SoaS6Wsbx4fD/Nh9Yb1r0MKHw/Pb1nT6+DrG8eGU /Za244eSdY3jwymb+XBoj0/QwodTNnDJgESrg4zjwyk79vyEm43rGceHU/Zw Pe9w/PrG8eGwPlW5dzoUWvhwyk48kOPbwAbG8eGgD74tm6+hcXw4Zau1yrXz GbTw4TDeD7yptKCRcXw47EeeB0aq1dg4Phye15dYt6I1MY4Ph8/f6xO2H1r4 cJg/Mgz41KupcXw4PM9+qQtmb2YcHw6fX4oOsx9ACx8O73uO5qlmNzeOD4f3 MTRGaNUWxvHh8PnH7jw1ckvj+HCYb1OHDNkLLXw41Ldpek3p2co4PpyyKQtk PJattXF8OOy3glcmfwgtfDhlb2X1ZsxpYxwfTtnQ+oXz1mhrHB8O82fhWu+i tTOOD6dsuXdBlw5CCx9O2UHrKl/r2944Ppyyj+cUipi3g3F8OOyXnqaq+AJa +HDKhhyKtnNxR+P4cKi3Gv4s36CTcXw4ZVc9/fUrfmfj+HDQMxJcOQ0tfDhl Ey4oc25EF+P4cNgv5Zvz0nY1jg+H/c/EhDm+QgsfDvX7k32TNnUzjg+H+bPX vMQduhvHh8N89PfWg+l7GMeHw/udPlbIHWjhw6F+27928KyexvHhsJ8bNntq jV7G8eGUzb75+smYfxvHh0O9Mr5HhuPQwodT9mutTkuG9DaOD6fs/qpn/irW xzg+nLIxD82O9gVa+HDYn72/9m5TX+P4cMreyzz5V8d+xvHhUP+vD82eub9x fDhlX54ZMfghtPDhlH118eynBQOM48MpuyX66pD6A43jw6F+OJyicqJBxvHh 8D5Wzp3zIrTw4TBevj/NO3GwcXw4zA/JKjaoEGwcHw7zq266IvIQ4/hwyvaM kSPxYWjhw2G+HLlj9eChxvHhlC1+JmrzYsOM48Mp+7FQ+uLfoIUPh78/fUCx bcON48NhP/TiSuMeI4zjwyn75FmfZblHGseHQ70xKGLc19DCh1O2VPQeC9aM Mo4Pp2z011ertRttHB8Of8/4vJkyjTGOD4f3qdz4NI+hhQ+nbNTRL0osGWsc Hw77gU01hzYbZxwfTtlcOc4+SzXeOD6css9aNO1xB1r4cFjvD8RNO3+CcXw4 fF7rH39sMNE4Phzm/3mPw38PMY4Ph/3y10RRbkALHw773zzBZWZPMo4Ph/lg V6bVQZON48NhvEVOkDfJFOP4cMpuHF3xThi08OGUjbX98vqZU43jw6H+jbpt Sd1pxvHhlJ3x6dOexNON48Mpe+XLnO9h0MKHU7bd2DUNZ80wjg+n7MUsOR8G zTSOD6fs65pZJiadZRwfDuvx6CWNbkALHw71QZkl1efONo4Ph/ESL1f7hnOM 48MpO6FT5RUp5hrHh1P2y20d7S608OEw/z5vELJwnnF8ONRTiesVaT7fOD4c 6vf3XvT0C4zjwym72msa4Qm08OHw+V/5O/HKf4zjw2F9+FK5dvuFxvHhlM3x JXx79kXG8eGUzd+qbok30MKHU/bExRnhmxYbx4dT9uzFjXt6LjGOD6fs1G9r NgcuNY4Pp+yFWxPPfIcWPpyy6+M3jbVvmXF8OLxfBTN2H7LcOD4c/t67T3/8 tcI4PpyyZ1avWR11pXF8OMxn+fsMOg0tfDjUM7/X6j1plXF8OLzvP0tPr7Xa OD4c9p8Dal1LssY4PpyyG4qNLHkbWvhw2L/dv39m0Vrj+HB4nrE7B7deZxwf DvVhpzxB2dYbx4dTdsfSvLXfQgsfDn9P4z69/91gHB8O+8ky0fb322gcH07Z p1FfZiu5yTg+nLI/ambaZzYbx4dTNijsYK9T0MKHw/74r0M1Jm8xjg+H9aRS rtp1txrHh1P23NI4A1P8axwfDvOz1/7kQ2jhw6EeS1a6+OptxvHhUB+tWnGl 63bj+HBYD1vPmhq4wzg+nLIvYqTsHWGncXw41OtBJYKPQgsfDvu/qJE2jN9l HB8O89XtLpFq7TaOD6fs5pnjBybbYxwfDvXh9yYpHkILHw71TujbB6v3GseH w/4qtPTZ7vuM48Ph9z/U6m6R/cbx4ZTNM7BuokgHjOPDoR45nKbHKWjhw6E+ a3bq09SDxvHh8P6ma7Cg4SHj+HDKDr4W1jHDYeP4cMo2qlau2Wto4cMpu6vh lv7bjxjHh8N+6XyqPcFHjePD4fMNnpa2wjHj+HB4HqWSbIh/3Dg+HOrBN5ua 3YYWPhzmw8Zti6wINY4Ph/W9/Z+Fu50wjg+H3+9tmcZFTxrHh8N6eWbAKnPK OD6csvPvv/j9PLTw4TC/xJy1ec5p4/hw2H/lHte11Rnj+HDKjs5zqlbus8bx 4TD/fGzc5Ae08OGUTdGs8qRj54zjwym7rfH8p5PPG8eHw/oTVrtVowvG8eHw 9W0Do2W5aBwfTtkWz5Nd/ggtfDisj40Cjx64ZBwfDvWeDrs1/rJxfDhlE5xV yepdMY4Ph89z/b7BGa4ax4dTdtrsBDHeQwsfDvXDyOh794UZx4fDfNthxfRx 14zjw2E/VOr9tKDrxvHhlA2I+n5XhhvG8eGULb9tXZQP0MKHw/OsmL3/gZvG 8eHw+4f2TDjxlnF8uP/8hhOvNrhtHB8O63//wfuy3DGOD6fs6Z1Vz3yBFj6c siVfmkjH7hrHh8P+4PdVTabdM44Ph+9XueTD5veN48Mp7KMvTsjzwDg+HD6/ 162bRHxoHB8O+7leOugctPDhlL2Wf3PvBY+M48MpW794732dHhvHh8N/v6h+ 9uJPjOPDKat7tTgY86lxfDhlD52ZNfAWtPDhUI8cUs3WPjOOD4fx2mlZhwHP jePDYXw/GTu/0gvj+HDKHq2483PycOP4cPh8dwb2fgUtfDhlq1aLlWrfS+P4 cBgfuf54PfGVcXw4jL9+Nx41eW0cH07Z47XueXneGMeHw3h4VK+c99Y4Phzq 1apV/r0ELXw4zKcHjpRf9s44Phx+n6ZHTO/3xvHhUG83rPW83Afj+HCoPx70 //j7R+P4cFjPU/+Z6RW08OHw35dbP2T/J+P4cNg/TTgeacpn4/hwqO/TTl/X 8otxfDi8L8VTDg78ahwfTtmGidv3if7NOD6csjGeDZ59G1r4cFg/X7R+sPG7 cXw4PM8GGWsO/2EcHw71Sd+j4XV/GseHU3bn0Iprs/0yNuxHnSktoSP4/xfZ /h+/kT1/ "]]}, Annotation[#, "Charting`Private`Tag#6"]& ], TagBox[{ Hue[0.08640786499873876, 0.6, 0.6], Directive[ PointSize[ NCache[ Rational[1, 360], 0.002777777777777778]], RGBColor[0.363898, 0.618501, 0.782349], AbsoluteThickness[2]], LineBox[CompressedData[" 1:eJxM3Hk8Vlvfx3HKtS8iiaSiWWVIg1AIG5VEpVCSUpokjUJzSCVRNCAaRIOp UUpSNFCSRhooDVRUEhUp6fmetffvfj3PP/fr/Zz7PqdTl3XtvdZn/fp6LZ+6 oJ2MjEyKoozMf/8p/J88v/TfqFkTZCW8wvCeM//9k/L+Y2pP/ude34qO7YRP 9TijvhmuarrbpgF/+LZ6Sybcu32vxcfapHyv22YNH+Hnj/OrhsHTD8l4arWT 8K7a55Zd/Svld/sV3nOC+1z8ojABvmMfYbYVlrVbmfW0VcrL9Jmacvk/x4xe OQ82bdLo+hVe4uVo8e2PlF9579WWfu0lfNGSw903wmlJyQ3T4A8rh3Ed4Ko1 iz13wiVGMu1jf0t5zclDS/Lgu6sVVbRhlwE/zX7AixonG5xrkfIRf3JSdOQk /Kplxe6WcMGjoK6z4J+p6+OKf0n5vyfHhUbDoxfO/uAGm2xSaiyAn8xfOeZD s5Rf5vLY8ze8bdH5837wSb24kiESCe85rPdwWfi1zGzzeXBacFberiYp3+1Z /9RYuLGn32wt2OlUbdd7sMwd145pP6X8ji1nQmU4Cf/aZua9kfD1Gf6NRvCz KcEJBT+k/O+h5nMWwyuzC9Y5w4ac7P1DcIDZQJ+336X8kpeF5o/huoTExcvh 5PMRqZxUwmsdNVz7t1HKvwybqmEOhymXx+2E1T27bV0ON6fsu9Mdnmhc2ZgM +xrPkU9pkPLbFI/NeQ7rrTVzM4GvvV18X0lewp837Zt965uUb740dLQ1XDBa VccZHrrrZ6o/7DVeMeVtvZT3nn9FIw2+3a/DqBVwolnw1kp4xR6l521fpfwL FbvvqgoSvvtslbBIuPNHpbl2cI6j2ngteMLVx/fXwxED1Lql10n5kL1xo8/C krMdf5nCVxbPTquGyzNlau58kfLfrbS7de8g4f/9qv04HR7c9dPWiXCy3e3m D5+l/PwvZ74HwyO9YzQC4EM3/OdehL37u9pJ4LI48wef4L42stv3fZLyystl LXorSvidkXFP+8Pjxt5Oc4aVH3QzyayV8ps1I7uFwZMfbj5uA2c3TN2WCw+f Waz9uEbKf7vd7cc3+IlpS+ZcWPdw5dwBShJ+v4nUueGjlJ+7+tiDGbCq1nfZ YDh+go/FLrhfVk6+Cvy4z7D0G3DlvZm7Ez9IecXmn92a4QNDSpcOg21LrmzT 74ifx+N9PfLfS/kNycE/POHINmt3J/jCWjuvfXCS3AjvN9VSvm5yx4d3YJ/Q xq0r4AEDn1j8hX0nbMqUgWe3xqUPV8bPW//Sb1FVUj7m8ezuC2Hvlw0WfeEH Kdrb4+HDNmXx595JeenmTz/uwzv6b5DawLzrWa/2nfDrdaze8vitlF+jH/Bw JBwdoagyDz4nO9rSF358tj79+xspX/tMNiMRVg7bNT0U7nf6dvcyuO7Ne1V1 eGZo5HYFFQk/Lfz7q+Ovpfxed+efFrCPc1a2CXxvWPd5q+AwRd3k25VSXk76 +uEJ2CHE8ZAbbPHqmGUFvGN7z5O1r7CeZfpkdOqMv9/nA/nr4NM7hvUYA8tu yqtVhD94Nm1fA6urRPQ79FLK9zbJ/ZkBu6/66zMEnq4UMu8t/MS/8828Cikf 9c7ukbqqhM/7XKA3Bb6T3dFqAnzgeLekd+VSXnb3k4xNcDd/qe5q2HTBgR6Z 8JDBUXkSeJW5Z9hHWPHQ2QWxL7CedR7QpKkm4bvGL9TUhas+fprnBDf/PPMm 5znWs2tnH4XCEVvCsxxhl30BVpfhH+o/DlQ+k/KRPqNP1cGhQZ8iV8AFfDvN fl0k/KOYJdHt4Laud8KmwSmD/Y/te4r1rC6yKRxW7Sq5PRBeftN5fh7sMqh7 S3YZ1rMD3R9/h78anTFzgN8sf22lo45/P7WCna9KsZ6NO37KA3aMc/uyHJ6i tUQzGjaJW+TRDt7ROGxHAXyzpr5i3xMpf+NOU1MLHO9Z7zMI/n04d/6QrvDj eQo5j6X8CP+Qx17waw2HS47wEofxfCycJ0le/fqRlD/WV/l0MVy8arH1Kvhl 8xNNGQ2s98YHe0pg9fsHdhjB9waYKsQ9xHp2zLPZG5b2sJTTh7etG7DgENxS m6J87QHWM6fPjx/B05YG6kyBmwee47luEl5pw8kp1fel/LC/AafN4LFfTcID Ye8no7WWw/MP9n/cAT6a2i48GeY8l+geLsF6tvlO8zNYtpNS1HBYddquBUrd 8fOztT1XcA/r2WCXJzwcmjB5pxu8pV0Pa3+4Qu9r7y/FWM+evz6dCut1fHVz M/zj9HGtSthXq0egGjx465Jw1R4S/qFhsunJu1J+wczhv8bBN/UCFM3hQ8Ob F6yHP1VGfblfJOWfSq8+OQP312t46QUrV4ZYV8PbPu572XRHyttdGH+mm6aE X9C49nM4vDlcuedEeMLAwwq94ew5peHB8O/Z/0wyb2M9M4n/lQWvWpPgZwfr dpyz8BNcM2lFXkWhlPeqGlDaSwt/PtfW91gBx1/+bO0M3zp2JVQOfrL73Jnt 8MVXBm1xBVjPFgb2zIUvj3u4zQAeM9pi5ze4/9XEXjduYT1Tbd+i3VPCb+51 qGAanFVzZ+EMeM/4m+s/38R6dm1XaSQ8o3tn6yB44H4Xmxtwx+Wh6urw7CU9 zjbBmjqaLak3pHys9Zue+r0k/OD+Tz5bwg80Tuz0hPtYpdU9uS7l5b8uadkL d5p5uM0b5m8NX3QHdph2qldbvpRfG99c2grPUimbuBc+t+KqzfDe+HwtVovQ gT+N23J2AWzLL3xxNQ/rWU/7XvHwmIBiY2d45nfliPvw6s/80ZprWM+KSlva 9ZHw/kG3NDfB947ELxoJ9+/qclwNlgTMKVsC746ss0i9ivXMcaBtIiy5s+u9 JRzQ78vZUlh60vhgaS7Ws1/nein0xfeR0pu5PvDH+4ERFvDDFztNZODexy1+ r4QzG0x6xFyR8m7r23ufgN1NXisNhqOmFJWVw7PDQ5Rv5Ej5okG7bTv1wz// Ya/ebrBsm8s5W7j58znLr5elvFlpj95r4LI806Wh8Kq0NxEZcOLQC2k94PSg E7/fwNLevZvPZmM9m+brrd5fwtevXDPVDtYyMHxqDwcoXct9dQnrWftftpvg hsd1xqvhyBdXz52HP6dKrnWAC85s6f0RHhTQ3vXoRaxnW+0jNbUl/BGt979H wiM9Ov2ZDG8JSTlzPwvrmWGZdyhsHungtwBOkU94mg0v6ndvbOsFrGeVc8bU wS8H6QzaC3fPGni+7wAJf2LLLA09eMrOL72nwfJaPl2vZ0r58LnnI8Phjc8c tN3gGyPX/LkGZx2Usa4/L+X/dLRc/B2Om7rNdxs8orr9s0ED8Xl4U36iJ+yb UzTGA1Y0aK2/cA7rWdTu81Hw+j41do7wq4WufQpgl6SDp6vOYj2z0NzVAkfG a2ivhyepvf1jMAjP0w3TUlThbbUnFnvBKrvdzNPOSPm8PN9nMfAMjx6vrOHm /YZji2EZm/jIF6exnvn+Ov8PVtR96rgS9ra51sdIB89bv4t7KMBHu4Xu8oY3 Jq5tTjwl5cu/2rcehNvav3o3ClYt6OTzCNbq9OPlwwwp75BQ9kyiK+G/pOe+ 94a3rEwYawZfvmX0VwbOtZubuQxuN8a9/4F0rGc9B/VNhjd30XcbDhv8+LLr GazZ93hCURrWs7vnWxX1JPwvl8K6ufDhxDU+POybEDHpdyrWswDL56thyZuf V/fAnSbKjUuFtynLjNaH7frfzXwFv1dNvXMzRcoHtezuq6qPn4cXX+d5wNkP XHePg3UnPej486SUbziu+XcdLD97fGEkrLvhrc8Z+MrP6ZEDYa+pJ59Xwbbt Wr3yTmA901k6rttgCf9ihaGdG/ykzfCCI1w7pMW04TjWs7JffYNhdb1J5uHw mPRru7NgI6ehDv3hjcGhf2vhKbvjF+cew3o2fcKSXgYS/lRZZIwr/NVA5cVU +Fpn6eOvyVjP5J6O2w4PNZTTCoM9yxMuXIFfD9iyui8ce3Zuv2/wu4rgipwk Kf9w26Ao7SESPsi2zckFlp9V99cNNnVsKq07KuWtR2QuiYRz3y9atB1eq7D2 xXX4+z8n+b7w+deWdk1wc/iZSzmJWM+y5LL0huL5PDDY3wXuH3G3nyf88sIt 669HsJ55RUXthX8bBWqFwftGTWu7Dc+piZH0g+8pa/m2wkPz+/69chjr2fu3 L4YNwz//lHr7abDFlZN2C+DopBUa3w5hPYtemnUAXho1zCwcPrNoRP/7sM1i 5yXa8EeLlqh2w/F80ftZ2rWDUr5Pl7w2Ezjp2OVfbrDbp1DfJbDGl18u3xOk fHT+hPIjsGvNnrxIuChGZXwp7ByxdZQO3G7p0yx5Q7zfFd/PuxGP9cz2YH8L 2DfO13UW7NfdK3olHPjRo6X5ANaz+kH/jsN9Mw6l74GrC+p8y+F55YN9DWCt g5nlyiPwfLpQ3vxOnJR3XbV2vC0cO2ZIt3lw5Hiri4HwpsUH27fFSvnCXhLt DPhDkdPfOLjtx93oN3Cxu73ECB5ZHPWvixHW586hmg9isJ4dnbbUHv75rs3K B04J1KrYCI8ouLRKAr+Z+G78ebj8VEZm4n6sZ9opFz/ANXsq2o2Gp/5eqq1p jOdHH5s5z/ZhPXs4Ys9keKD+6+JV8M0TLf+2wBOLz4xVhv9syFuaDd+1Pl+S ulfKGzlvrfgCx26tnjcW9tV1sO9rIuGrI8fIv90j5Y//U7nkCqtOfZizAX5V 9lQ7HM4q2rq+G9w14+Cea/C+L14TLkRjPQvxkvkOp59fMMgJ3u6ms2zQSPx6 ukSofonCejbka8VMeL5CqWIY/Evugn0U3BJurqYND6tYe+kWnBqdr5O/W8ov Pmc1oAVe2nWuowd8dLtkr8EoCb9cVXPTr11Yz2YVy3jBSpu/XN0HqxpFL4uB n7g+URwOO3SY/vIuvD2qZFFJpJQPfaM14R+spfvi0WI49+K7SyNMsb51/2HP wT8jUgZ4w9keWg+TIrCezVu29yCc/GXyfCt4oamR7CPY9FYE93In1rNOv5dJ zPD5qHx4cQ387H3eS1PYzaSHvzrcKXfrhGX/+fZC6/PhUn78HofsJLgh4oLm ZDjIu/PAZ3B5iKzclx1S/rLls72K5njfPebwOwxu6HJIloc31ke1DYD1Pnst Xw0nzX6gcjMM69l1nVcpcP1XueFz4ITYrxNewRqHhnr+3Y71bOmF7M6jJfzf BRMT4mGlMesGjhv93/OZx/uR8Jge/L518J7R7hZl27CefZO0OwPLjh2bvArO KixeXgVnztLUUIG/Hox+pWGB593Q8rhTW6X8IL/pDo7wlktBOg6wp33Py0Hw tx+KhTWhUj6ud9XALNjCfN3KbfDDnyn7amHlHUV62rDCvWXtelni/f1Vc8P1 LVjPkoxWTIWvmbS/7QmvW/P71Ta4Yl9t6t8QrGeT8h2uwE1NKfEJ8GftbZfr 4XQPqwOmcP8/DoO0rSR8QUHa8WfBUt7jUef9bjBvWJvnD+87+axdJDwh6ddH Nbhk46EV12Hbrs96ng/CeuYyr/InfGVXyFwn2FJP11GPl/B+Si3nv27GeiZT f3k2PDtqlGokfObphUF74SOaVpv14Y8Z6/bfhsPPdPhdtAnr2Ra+fSt8YuKB EG94xgxu5TBrCX+yuaabFI4eeq9yPhxwpjn3+EYpf1eyx/EArBd4c9kYuN3L 6TklsNKUCUOqNkh58/M9ddrZSPgYq/A/wbBfWNV+E3jV2OCnfeCM2antl8Dr Fxjk5a3Hema0fOURODcpIms23FPR+PWT//77Mocu/12H9eztb0d5WwnfIcSj +CC861J+zmi4r37RJ3O4MHKbzko49N8bjYq1Uv7fPMeY4/CI9klT18EjzVTl ymEPsw4J3eEVKs9XKo/B70+qRkP2GqxnHw69toGLXO64uMFvc+dNDIRnWfco bA7EerZX90o6rLhacWwsPHVxvc4buKHhwCMTONwqK6bLWAnvlX9zydMArGfq 6+Xs4dfV29QC4NbP/KqNsMaCt3fUYaMb3Jtz8Ndxj3Zm+Uv5pXH3Jn6A/aJc PFzh48v2XOkxDt/vdovNfq6W8pVj3HQnw/l+HQfuh7tq9ordAif0sOptDE9u qJLLhifYtg4o88N6djt11Rf44Q8bM384/9DyN33s8O9v0tlDHf7lZzzJFZ7S acHOrFVSfviEP1d2wJbbR99xhRf3ua57Df5wfL9q00opn9S0LbYRHuW3zCcG Lr/nKBk0Hs+LzbcemMBqyap+M+GdZrE2z1ZgPVv7/M1ueObYqhuBcOjkw5Nu wav7nHTqBucOmJ/7C75Y+uZz9nKsZ3909QzsJbzBkl37ZsAGj+tj58Ld6k5N +L0M61lKliQGrp5noZwAH9m03u8uPPSF2Wtz+JmL9ds2+Na0Y1dfLpXyKvrS ySMm4PP+ITB1IzxetiR3Efx5T2ZSLzj42R69g3C7ha6peb5Yz065xT2El/vM vDoHbtzSi5M44Pc/7WalLKznXu1nCrsbRnRMXiLl5w1Le7sUfq6YaT8GTuBW TE6C021M9r73kfKlL42vPoXt3ql92gYrZf7RU3TE93+T/SQdeOyO63FW8NHw p3lFi7GeeW7nVsNG6Zcsl8AXjSeuToH5+Z/vKsFfFdXevYS1byyff9ob69m7 55M7T5TwKx7ZKDrBntmHr46F3x/2ymtYhPVs13z9dfDykSVBe+FH8/UOnIb1 UoImG8MK5t+4Knh+2zr9ZwulvE3ni6s1Jkn4/XY5XdbC6z6uf+cAL4oeragJ Z161dgqCM2v/KV9dgPVsr/TaBXjj7HZ9PGFtnxL9WvjvX2tLWdiD33ug52T8 /Z7mLk6eL+X3d50hnQo/b1qRNBYu+dLLfxscttSj5uM8Kc/drH6XA++z32ge DlseSHOqhzXjHyUMhgOXr7jW30nCey+brvDAC+vZWJPBbnBLmVLoSrhGs/VA BOz/pl6xC9yn8br0OnzxUFvixblYz+5s9/8J3+g50nYGHH14YpXuFAl/f0Vs 4585WM9Wq02ZDVuc7HnmMNzO4cW1PfDRR7fXWMPmfY8Mvg1fltk3udpTyq9u nh//B/YfGzRiO5xRoic/bCq+386Ga+vB75O/+c+HV7uc61cyG+vZuotVcfB6 60aDFfA0pw1TSuD0HQ7j1OBdA23yZJ3xfG95ZcnFWVL+dqvUwARW8LM6PAP+ 97gk3gf2HfX0VauHlB+Vulf+CDzn6Ea9RHjF5hkBT2C//BGhtnCqa+9qqQv+ ekrTpw8zsZ7pv58yGlbxvTU7HO7RLj1vBZzQK+G1ATz1+QqD4/CYJ2uWPnKX 8jtPmyS8gIMOzZT3h2+Gtsoru0r4uijrs93gVvcbATawx3WdBbkzsJ4ND6sO gItsOg2aAy+VTpqa/t9f1/3+sz184pVa/mt42Y7Hj066YT3LfGHQZZqE3xqY nuMAa4QfSRgPu8hvOFs/HevZnAUKG+EcJ5vMvXCYiX7gOfjOgtYbI+F8pYbq 99P+e/5JeV0xTcq3vLs4tcd0PJ9OGKMQBA+/vCF/Eqw+7r6VNuyz22bIFrhy 3pgtd1yxni2QP3gJts459sQXrjC/r/AFnu1ZN6wzrKa6L7CPG54XFmslZLlI eceaGe9dYN36oarucOi13s474BZuYEybs5S/uu99/lW46HbrwGT4p0/6kEY4 fvz5W3bwEOuVBwfOkPCHEscs/zIV65nGyA4z4aEfzw2Mho/UtQbuhstH/Ppk DD+7eeP9TXj6YfXc8ilYz+LDnH/BOy3l4zfD9ismXR/sjp+fwfdDteHgcV2G zoUjgxZsKHKS8jla5Qf3w1Lne0HL4MbGIx3uwrtzZfaowfpFC9a0wXVlMmez J2M9O6L/wXAmfr+y75bPgg/6Nzgvggdt8FBtD5c6XLqeAK80vzAtZZKU79hv 49CH8PJOD09OhMf+sjkk54E/n86nJd8nSvlN9+UVTeGpHo4r4uCLx+6vWQor K6R+tIDr1+37cBQebHhjSZUj1rMp7i5PYa5xf2sYPGdQnxsdZuF5fF6/+CFw 3N/3Q61gm8QFY0odsJ49ST/kB5vdmvVnLayQtlIxBe79ST6vN2wTNHLtS9jA YMHugglYz6b9/aAyG+83KSt8l8CZg2+6jIWj1uhO6wx/abfjxlrYIjvS8ZI9 1rMXk4adhm9sSZg8C551psvhd7Bps5Nne3j/1nJFDU98nwzJWJ86Xsrfn5m4 1gF2tEs/NhnmDBd+3Az/83As/2kn5a3kB7tegB9GRGodhAMrG27UwDnffZfY wGcvXBrWcw7W79M1hTXjsJ6Fbzw8BU6uaBuyG+4711ZpG+wfeyrZGJ4xUmFd Diwv81375Vgpv6fjg49f4REjSs6HwHer9rn2nyvh2yaZTdSF2+e435wOx60c 9ePBGKxnUX2GR8BelwtOBsCrF344nA9Xj3mzqCecMTpD6Sf8zHCb0S1brGeq q9bpekn4nklZHZfAvWpH1syCC875fu8MT8v767oH7hic+j7bRsrv3n/zZiE8 c6hPtSd8e8mO4X/gsS8z6jlYxmbykaHz8Px5crn0tDXWs27qHefDGufO6rvC K7+Wr4uDue7LPFp5rGe3EmvuwQf/HT+QDL+LXzhNdj6ed7ZOq5oA91g5+JYx fOruRtNGKynvbNc43Afe9a37wQPwzp7ZRw7D7zV0Fa3hW983dnwCP5qbuq3G EutZke166QKs9/VxylGwcaJCrTn84N3PpJHw0oAH01bAMrOu2b62wHrmuP/W MVga9O3bNriy30zDF/CbpeFpQ2CNlj6JHRfi+2d8+Iqno7GePfjQ0QZ+bfjV ZhMcdjxjfQBcMelC34Hw9fWratNgt7xypfvmWM+mjJr+Gh5+0lMuADbUabul tkjCL9a1lu8F+7TdNBwPD1+8sVuhmZRPLt2RuAGu2aFqvAyuSJusfA5WP9M2 qyvcJVh9w3t4aavV3mumWM+mV9R298a///7S0oXwVoOj0yfBDkdy+nWCr7Zf VBACq1t823BplJRvejF4xCU4eq9flSc85Gxj4md40m2bafLwom3Zyn0W4/P4 d2bZ2ZFYzzw2bXCBT8y4OmcG/NxwzKcweFS7Bb9kYRWFDm5X4b+aUw6mmWA9 e/2goAH2vLfZ0RkOzto/YqCPhG8cVS/faoz1bOfMo+5w4PZDj47B3+f27bQb rngVdmIirD/q44absLHXme1NRlJ+vvKpT83wHbNO/kfgg9Wr3AYvkfDtd51Y Nh4uyxlVOAcOCvFb3TAC61l024j9MGe1els8PG7RraNF8NZPJ47Zwpsswju1 wT0yFB58MZTyl9ScNhr64vOeHi+Jgetr1T8vhB8ru423gnXyK9wSYPl/VrE1 w7GexRwtfACvTXZqjIYP+C4ykluK93vtsBnm8CMbg6RRsEpq9b3qYVK+Q/fv nZbCSe7zHXfBNvXZG4/CDnMlz0fC6ws2fS6DT70vWP52KNazhDEzOiyT8LEq x9R2wl9WdrhtCbdTPHzTCNYe/9DID1ZrO7e5cgjWs14xSSdhTbVKuzA45sdM lZfwPr8+Wobw/bt9N6ksx/pvH9haYSDlpUc/fh4DJ199U7MVtgo8NWMtLP/H /e1QeM1Ev9un4PX61e9fDMZ61t/U+B3svHZd0xa4tqUtqesKvD910lIbAvd9 eEvFAZ6scdv8ub6Udz8Rvmkz/CN37YoQeM8Gpy+Z8C89w3OD4eKpXd1r4LCI r3+f6mE90315W2ulhP+tdGpaMDz631HjKXDJsyVX9OHVZYuSt8Jnu+kOfqor 5U+lG3TOgdf+eZcSBL8P/r7pK6yXETtcH+7ldvlLv1V4n5s2trBMB+vZkM3u 0+GBOp8WBsG75cbe2Qk7Ooaq6cN3yjuY5MOq3zrfKxuE9ezcw+Qf8FQ+OioI Nt0e01nXT8J38pGZqw+vnOWxeRa8Jn6WxdOBUj5tRL+6aLim7cSAYPidQo17 IVx1q7z7YFjzzak7v+EePZq7PxuA9eyin8nQ1XgeH/x7QAgcEWF6bB78SPed hQF8y+tf5zh4O39q7nNtKf93VMHme6v/ex+YEb0FNu60s07GH9/ffu/vDYGX vXeaaQy/+jKpS3l/rGdXuhYthuXM9i3aCr+OfmlyGK7bkVk4DNbwTjr2GL6r mD78ZT8p72TprSoNkPBNX9ekbIfDugwJMod/e2nqj4Cvf/petxzeFht1ubIv 1rP8yzOPwYG5T53DYcPYzUXP4TLZLy3G8JKlY0d2DMS/T+z99Ld9sJ7ZKh63 hotOb1gcCb/s/kg1AB4T+MPQFO7yLSYoDf7R10j+fW8pP7HQ42slnPXatDYK 3nqwn4faGny/v23/dDR8bVVNkR18yS3qfk0vrGfjT4/cAG8LePV4Hzy09+rj Z+GtvrXveHjRT1O19/BC3/NtX3pK+cTif0Hd12J9SDEZeAB+frTg60TYd8rq GWPhzmt2eoTAd+MXxzVoYT2bNOXuRXjjxS5Vh+AQbY1Rn2HFZ36mE+Cc3y+P 916Hn6+hWxOaNLGePUxSc4FPNYxTSIb1T3oHh8HHplwKmQzP3zikPhceHVIq be2B9cz5h0cD/PjiwbgUuEw35+6A9fjz6qds7AorywSNcoctfg98JQuPezr2 xC740Ir3Uae7S/nNGYpdbsLqOXZOM+FLIY+Cm+EnHRw15eFvbrH1+hvwPBH7 reFCN6xnQ2fNmgNf2TuidC48V9K/eB+saax2Qxk+UFEzqggefDbyyhUNKf/4 3OkTf+HvpkfzveEOYau7GG7E96vU8ZE6bDvbLGQhHDkpou5GV6xnRjLf4mGL MXPUV8AXOhTOegB79ioc3xP+8mZncftNEv6eau72u+pSfsClKaaj4G3T+ceB 8KxIjZO+8NV+U3QGwDHzXnU5Ct9O+7LjcResZ6bJIWWwzsDOzZthqcribwqb JXxEce5yA5j/MGS2JXz3Ud33cjWsZ7k/ilfB1cuTtoTB5/bkmJ6EJa+e9zKB a72DTlbAW512F1SpSvl+VuPUVYIk/DvZW4HRsLu60pYx8F0df2MreO/nR9/W wJ3+JrZ96Yz17Hrs7FNw5sWxT+JhubhZ997ClZFzM8fDo5f1N+sajJ/fnMbD TSpiDwfbBTTvP6Yi9nBw+q+lcVNVxB4O/rDO5YSMitjDwd+NU/NOdxJ7uBAJ /8fLp9qjk9jDwU7mMV0UO4k9HLz0l57TZWWxh4N/PRkYu0hZ7OHgm9KwWnVl sYfbgt/fEke7Wx3FHg7Wn+N3dlVHsYeDR7e0aPftKPZw8OonlcceKIk9HLxG t8+wTUpiDxcq4buY5BYOVhJ7ONja6Jx3haLYw8F9Pf+qhyuKPRws23j4/ihF sYeDp+ns2/Oxg9jDbcWv16JibkwHsYeDOy9bNXpsB7GHg01+Tu/3Q0Hs4bb+ tx8WrpasIPZw2yR8xi9OZaqC2MPBOXX3NGQVxB4O7q5frndWXuzh4Oi6wfae 8mIPB6uturlKWV7s4bbj8/kz4eRVqdjDwWVZFz76SsUeDr5brzhCSyr2cPCo t0d2FHNiDwdX3V72eR0n9nBh+PW8DXDT48QeDn7me/HhC4nYw8HrT+q77JCI PRzc5WHpu1ESsYeDzQac3VAjJ/ZwOyT86fdX+sbJiT0c7OHU9MhOTuzhYLdj syKb24s9HFzV55vzyfZiDwcvlGQMmN5e7OHCJXxA9O520vZiDwc/lDvw6WI7 sYeDZx4pfLWwndjDwfpHu77s2k7s4eANE7a/L5QVe7id+Hmp6Po7QFbs4eC5 +292HyQr9nAwn71zzDMZsYeDjbYuXbddRuzh4IkWi66MlBF7uAh8PvoGSmv+ cUIPB//yS5gdB7MeDl7j/zh/PMx6OLh1UY8hLW2c0MPB8yJXnkiFWQ8XKeGz Bz3VdYdZDwcPWzsuuwPMejhY71b+lCt/OaGHg4c62DYtgVkPBzc63TuuBbMe bhd+Pru5zylp5YQe7j9XfxqwCWY9HKz9a0PTEJj1cPCAWOXHr/9wQg+3W8KX yx3OjoJZDwc3huqmWcOsh4PHzTxzovE3J/Rw8Itig9PJMOvh4Oc9kvNdYNbD ReH9K6JjpQRmPRx8fMES7lILJ/Rw8OFPOabeMOvh4Nlzfgd2h1kPB1cp6ly/ +4sTerhofJ4MbdQ3wKyHgzt1t1ttALMeDt4mMa6sbOaEHg5eaNHBOQpmPRy8 iSt4bA2zHm4Pvh9OzJv1vYkTejh49fzqxmMw6+Hg21vH7p0Gsx4Otpyy1VIe Zj0cvLFj0o/LPzmhh9uL5znZ+KwlMOvh4At+S4J7wqyHgwvTu7g9+MEJPRz8 5Nte02CY9XDwlPCPA0bArIfbh/fDvI4933/nhB4OnvBCrncszHo4eEuvYn17 mPVwcOqz2bZ/Gjmhh4PlJl5bcApmPdx+vH/e/rjHE2Y9HDxx14u7nWHWw8EH P0d3vNXACT0c/H5Qp5kBMOvhYNuIyZk6MOvhYvD5nzula8U3TujhYP9G1dBI mPVwsNP2Pa1WMOvh4Ik+9zc31nNCDxcr4We8v9XxOMx6ODjMZvWJ6TDr4eCe 98rtO8Csh4ND7jU1537lhB4OdthVeHY5zHq4OKx/HuNX94NZDwcPD15nU1bH CT0cbD9+pmYYzHo4+GprTZsZzHo4+Edt37q6L5zQwx2Q8Jtnyn1IhFkPB3c/ tKvWGWY9HJzy+1ozB7MeDjbP36uS85kTejhY0UzRaCnMerh4rE8X+nv1gVkP B2tuqIh/8okTejg48dWwym0w6+HgugH9BpvBrIeDOyadCq2r5YQeLkHCjzzy 6GMizHo4uNgnwtUFZj0cPHXqyxIpzHo4OCQ5z+lKDSf0cPCoDKPKZTDr4Q7i 15djGtAPZj0cvEWrpNvTj5zQw8En+9QV7IBZDwevUI/baAGzHg6Osr9n1fCB E3q4QxL+rWKY0nGY9XCwd3pRlRvMejjYNXB3gRLMejhYNu/Zufz3nNDDwQ2P ElNWw6yHO4zn/X81qTow6+HgdXGns15Wc0IPB3/9XF8cBbMeDnafkP5lDMx6 OLiL3GuNlipO6OGO4PO+eMfEUzDr4eBDxSmRc2HWw8F168yfq8Osh4N33rEy uPuOE3q4RPx5SS5EbIJZDwdv3hLTZAizHg4+ufe9z8e3nNDDwfnbj9QmwKyH gxPO3VjlBLMe7iieL+ZN5CQw6+Hgi18tjl1+wwk9HLzsxB7HZTDr4eBnL+3/ 9YNZDwfHVs/NffaaE3q4JPx6VF5siYBZDwdvzzzlag2zHg4u7VM5vKmSE3o4 OCvdu1s6zHo4+OhJB4U5MOvhkvG87b1VTh1mPRzsYt2lw91XnNDDwa+3NXXf DLMeDv4XoWdkBLMeDpZNOe1W+5ITerhj+PMZHLz9MMx6ODhjWWK+M8x6OPj6 zQ5yCjDr4eDdQdemXKvghB4ONvp9OdUPZj3ccQn/d+sfRV2Y9XDwzLXBayrL OaGHg+t1J9TvhVkPBwfXOa+wh1kPB8v1OPSn7QUn9HAnJHyMRDv6Asx6OHgz 93GYD8x6ONjQr7q8N8x6ONgxqcfusuec0MPBez9tn7gTZj3cSQnfkqTX1Rpm PRyc0E+2tukZJ/Rw8LV8hcIMmPVw8JNSm1NeMOvh4MCLaYe7wayHS8Hn4apV /P2nnNDDwSnWMomhMOvhYD7h0xkzmPVw8IZ+f4u+lXFCD5eK58ehJl9PwKyH gws092nNglkPBw+3UndVg1kPB7c2XootKuWEHg62jlpXvRlmPVwa3rdXzDQ3 gVkPB6/84nbwyxNO6OHgebNXSpNh1sPBr3onb5gBsx4OLgn/8qcTzHq4dPx+ tjhsLXzMCT0cnFCQ120jzHo4WG/CuIsjYNbDpf/3/v5q1qdHnNDDwbs/hHY6 CrMeLkPCd71gWjwdZj0cbH78d5QyzHo42Ea9cE7BQ07o4eA4z3izDTDr4eDS 1/69RsCshzuF57eGaUqfHnBCDwcPbzCXOwqzHg52M+vPucGsh4OX6SqqdoJZ Dwe/7tE4qPA+J/Rwp/H7t+Sp3UaY9XCwZ+DFlUYw6+FgrYNRxz+XcEIPB+81 mVeVBLMeDuaODdZ3h1kPdwbPT9afN3SGWQ8H5y899PzOPU7o4eC5W60tg2DW w8HnP5SdGgmzHg4urncbVF/MCT3cWayvbXfSTsCsh4PDV2mPmg2zHg42SV38 QB1mPRx8QTZ2RcldTujhzuH7tTxNcyvMejhYaV/yw9Ew6+Fgm4jNu38UcUIP B8v2t3DLgFkPB1dfKtebD7Me7jzeP9KmSbVg1sPBk2aeqXtyhxN6OLhSt+rV Tpj1cHBiwLdntjDr4WAuqaziz21O6OEy8fOjFF2bCbMeDnbQ6CvrC7MeDn7T L7SfNsx6ODgkKnviy0JO6OFg/+u5Iftg1sNdwPuJxu7rjjDr4WCr7wYdJDDr 4eA1l2I9rhZwQg8HFxbczfaHWQ8H2wUV9BoCsx4uC78/9tt2fbjFCT0crLtF Uf4IzHo4OD7Keed0mPVw8OxSj24qMOvh4IXnBpy5c5MTeriLWF/CMyYHw6yH g+tu1reYwqyHg/Xy60413uCEHg7WqTq2JB1mPRycGaU2Yj7MerhL+HwNHiXX E2Y9HLxCs/Prsuuc0MPBna4fvLkLZj0crB7y4pwdzHo4WPtmQaoMzHq4bAkv X+uZfjmfE3o4+IrbiYurYNbDwXMDY4v1YdbDwXZpwz9V53FCDwfXTvNTPQyz Hu6yhP/8zn3MdJj1cHCvCx82q8Csh4M3DVMvKLrGCT0cPPxatdoWmPVwOfi8 33T2HQ2zHg7mTs65//MqJ/Rw8KQHCmZnYNbDwSbJE894w6yHg6/u0BvSD2Y9 3BU8z306fLEilxN6OHiDfur4/TDr4eCILLvqSTDr4eDa+jU75GHWw8FLbMxH 3bjCCT1cLn4/1SO/rYdZD/efH/qeN4ZZDwcXVDzfWJ/DCT0cnJH4YGoqzHo4 eM32ycPnwayHu4rf/5Zp3XvCrIeD586u7vDsMif0cHB2nyZJNMx6ONgnNbyD A8x6OFjWK7GbBGY93DUJP+KC8bC8bE7o4eC3CvZT1sKsh4M1Sp6vHwGzHg7u 6F11pu4SJ/Rw8MCxi+pOwqyHy8Pz4X0vIy+Y9XCw7orSUC2Y9XBw5t6cyqcX OaGHg48eU7OJhlkPBw9XrjztALMeLh/fh+bdBnAw6+Hgdgfyj+VncUIPB8dF lxmsh1kPB6+Jds03hlkPB+fIWXl8u8AJPdx1CX9kepRsOsx6ODi2ye7sApj1 cPDoSfO9+8Csh4Ndiqt0KzI5oYe7IeEflt/6sR9mPRx8v1ZS5ASzHg6OWXD8 hCLMejj4yJWjkYXnOaGHg8NmtGwMhlkPdxPvU6fSAkfDrIeDp2tfWNd8jhN6 ONjdoMv28zDr4WB/k6KDS2HWw8Hapx9d0YFZD3dLwiu3H1xddZYTejhYeuyp +hGY9XD//XWZh07uMOvh4Inbuu5Xh1kPB2udSHn38Awn9HAFeL64H2oaAbMe Dj68IvWAHcx6OLjid5f27WHWw8GXXxX4XzvNCT0c7Lsjp2EtzHq4Qrz/LGsI MIZZDwf/bPWWNJzihB4OVjzR+1AGzHo4OLBczdIbZj0cbKc4pqY/zHq423g+ Tj2d8DqDE3o4WHfQVLcEmPVwsNHPwb2mw6yHg/dvtahThVkPB4+cEFJwP50T erg7+PxltZwIh1kPBxeMSooeB7MeDvayW7e1Hcx6ODjZOSjkWhon9HDwlIfn w9bBrIcrkvCzhqnEmcCsh4NrPsScbUzlhB4Otlg09vFpmPVwcJl2j78+MOvh YOe9asMHwayHu4vPz8Bhy6pSOKGHg1dOXXbhCMx6ONhk5732HjDr4WCDsfYe 3WDWwxXj/eTHu6ulJzmhh4OrlON0omHWw8G68osOToRZDwefdZ3UvQPMejg4 w9fxSOEJTujh7kn49Tc8h2yBWQ8Hp9zbVmgFsx4O/iKTv6j1OCf0cLBemYLq ZZj1cPDqPK8Cf5j1cCVYv02Kgg1h1sPBE86Y29Uf44QeDn56NFs9A2Y9HLwk 1LLOG2Y9HPy7pLhkAMx6uPt4n/w5+9K7ZE7o4eCEVU2pR2DWw8E+uVHHPWDW w8HpEwandYdZDwfr7b996WkSJ/RwDyT8O7W59/fCrIeDf1s21znBrIeDb+0K 66oMsx4Ozl+vNr74KCf0cHDCppiQMJj1cA/x56OiUjgWZj0cvCF1k2p7mPVw 8JWbbxblJ3JCDwfbPzcq3AizHg4+O2etgTnMerhH+PU/zTj06wgn9HCw1oWS rhdh1sPBGn7lcX4w6+Hg8shH/YfDrIeDH246d+nrYU7o4R5L8Ny3xiUDZj0c /K5kwO/FMOvh4Ky+l1IGwayHg3VG6s95f4gTergnEn7bjqA+yTDr4eDx+7Jq 58Csh4PVnty50gtmPRx86Xp2zMuDnNDDwcYvt6yLh1kPV4q/flhnkRvMerjS /+4THPfoCrMeDp7RscW9NIETejj47Pm+Xntg1sPBGxp7rnKCWQ9XJuGL7L+E K8Osh4MfGO/MuBfPCT0c3DSi5Wk4zHo4+NF1ow72MOvh4N6zRo+TwqyHe4r/ /RblnQUHOKGHg/9kpj7fArMeDv60RGmoDcx6OLiznvEuGZj1cLDq0n5N1+I4 oYd7hj//zMcLN8Ksh4MVNo55Yw6zHg7WHh/g9TuWE3o4eN6+hXXZMOvhYPu3 asGBMOvhnuPP4/SGniYw6+Hg3+uP3PgRwwk9HHyqaN2KTJj1cPALjY6DVsGs h4OrP7h8GAazHu4F3ocuOZ2u388JPRys2OHfptMw6+Hgp56z3ZbCrIeDX5gu NRsMsx4OntVdb8DnfZzQw5Vjfdq8t1sazHo4uPbryS6LYdbDwfNrFnTXgVkP B4/5Wjzw415O6OHgrJDno0/ArIerwPOtTvjMBTDr4eCnc16HaMOsh4OvnXl6 vmoPJ/RwcErsss9JMOvhXuL5JOH4YC+Y9XDwe8t1AX1h1sPBFXKf77yJ5oQe DtZa2dQ/EWY9HOwjTdjuCbMe7hU+vw7PvveCWQ8H972R6l0ZxQk93Kv/zuNV PhyCWQ8Hn5mm6DsLZj0c/GNj7G8tmPVwlXi/qM2MfrmbE3o4+Fgvz+EHYdbD wTZJsS9mwqyHg0tbZoZrwqyHg6vS0mwrdnFCD/ca70fmIZIEmPVw8J5hbx+4 w6yHgwd3LkzqAbMeDraYN3RTeSQn9HCwySlNr3iY9XBv8Lznv2OSO8x6ODjY NtC2B8x6OPjAoSq+PIITeji4v2LJuHiY9XCwv5qhqzvMeri3El7FsrNvD5j1 cPBJ1cU7y3dyQg8Ha3QflRkPsx4OXvZiQ5U7zHo4+H2FsZYmzHq4dxL+Q8rc WRXhnNDDwVxR24kEmPVwcIcCRfyOcUIPB1cP2O6sBbMeDs5cvfziyx2c0MNV SfjbZjf7HoJZDwfHywbvnwWzHg5+PvVk514w6+Fgt2yjmMowTujhqrGe5A7q fwRmPRw8r2ZTtifMejh42+1R0/rArIeDNaqdW99s54QeDi67cz/tKMx6uPf4 vpZJmesFsx4OvtS1sk9/mPVwsGXM8pqqbZzQw8HZHWZmH4NZDwcX/zsctQBm PdwHrCeyZisHwqyHg0ck6Ll/3MoJPRx8ecZyhxSY9XDwqCJu7GKY9XCwRUD9 OD2Y9XAf8b5eN2jK51BO6OHgr1dOz8uAWQ8Hxy8L2bQUZj0cfGfP0aNDYNbD wXVZHUrqt3BCD1eD778FuTLnYNbDwY+GZo1eBbMeDp6V9D1oBMx6OHi9Q0DJ jxBO6OHgsMvm/S7CrIerxXq23mZzIMx6OPhqrx3Vo2DWw8GhI5Sn/g7mhB4O 9h//8PYVmPVw8KMvJWM3wqyH+4S/31nJPUuY9XDwjb4B7jIw6+Hgwkc9G64H cUIPB6s6/dm9BWY9HPxocMeRY2HWw33G+vtrygcOZj0cbGt759CdzZzQw8Ej Di+bFQ6zHg7WiLcd4AizHg6WvTP2Z0eY9XBf8Lx82a/kwSZO6OHgfv+KT0XD rIeDffQnxjjDrIeDKx783KYOsx6uTsL7bbq1+dlGTujhYI+iS0EHYNbDwQ02 93fMhFkPB+du5BJ6wqyHg/2VPC+83sAJPdxX/PpCnpYdhVkPBweuXPJvHsx6 OLjHMq3hA2HWw8GzFGt8atZzQg8H4yEzIw1mPVy9hF8bUNTkC7MeDu7r+3L8 UJj1cLDCVLnkhnWc0MPBEblWkgsw6+HgkXzk8gCY9XDf8Ly38vPbUTDr4WCt D24ef9ZyQg/37b/z0dLKqzDr4b79N+9j5uIgmPVwcOHJr39sYNbDNeB5qDU8 RgKzHg5eu2mo6Z01nNDDwa23yqvCYdbDwfcW7IyZCLMeDnZstpqiArMerhH/ PirNak8COaGHg2+NO1O5H2Y9HOxjuOicG8x6OLibT88ITZj1cHD3rQ+XVQZw Qg/3He8vPTbPOAqzHg4eenOQ43yY9XDwbfWicYNg1sPBl9Pm2n/y54QeDjbv 8c35FMx6uB8S/kLrqoUrYNbDwdmfaoJGwKyHg5U3OiU3reaEHg4+6ZhSchlm PdxPfF83fv23AWY9HOwl39+Mh1kPB08fZLuhPcx6OHhk7cTCQj9O6OHgdx+t u4XDrIdrkvALr/ZcNRFmPRzcTu7NExWY9XBw/2nbLUpXcUIPBy+apHomFmY9 HBy3fbPOTJj1cM34fjhYktoLZj0c/E7nj+G7lZzQw8GbbnO3jsOsh4NVu9R7 LIZZDwe7pp3/OxhmPdwvCT9soNOJbys4oYeDc/oXTrsAsx4ONrNS67QGZj0c PFDd5IE5zHo4uL+NQey/5ZzQw7VIeOm85oU3YdbDwWVd9lpuh1kPB9/80dbT AWY9HGyYaCrpBLMeDr54wfrH42Wc0MP9xq//ofrnGJj1cLBJ1IVad5j1cPDY vVrfesGsh4N3Bzq2vVvKCT0cvK/CpstJmPVwfyS8ZHbb8CUw6+Hg/EMbpw+F WQ8HPzXNC/3uywk9HBz66PrlSzDr4WBTudCm9TDr4VrxPLNSzpyHWQ8Hz7ps vV0OZj0cHLferOLOEk7o4eDlbnUmkTDr4WCLb27xU2DWw/3F+1HVeklXmPVw sPYTlzXlPpzQw8FVnu8aD8Osh4Nr9fr7z4NZD9cm4YPK1P8NglkPB2vLXo76 spgTejh402RFvXMw6+Fgby/FYn+Y9XDw14pLfmYw6+H+SXi72Z20/3lzQg8H V+5UeXkTZj0c7CDNSQiDWQ8Hz/DrMG8izHo4+N8qGUNVmPVwMniuT42Xf7aI E3o4+OPlZx8SYNbDwYrjL96bA7MeDt7RbJQzAGY9HGzvO/XMp4Wc0MPJcvyC CR0zzsDCfDj8c0zmn10NC/PhOP7PE9dcU1iYD4fn0jtvHrQt4MT5cBxflN3+ 801YmA+H72X7qx13wMJ8OI6f1Edp1CRYmA+H9+53XxerwcJ8ODzHGs9Pfj6f E+fDYd245lN9CBbmw+G5SFvWYB4szIfD57bjwI06sDAfDu+tvZ6X1s3jxPlw HL9KpqtRJizMh8NzqFtl/BpYmA/H8dYlQxUsYWE+HD7nnMLm9rAwH47j96V7 t97x4sT5cHiPmzcxeBcszIfDr+dpVkcXWJgPx/El6YlHu8PCfDj8vu9Usng9 lxPnw+H3o9ev18dgYT4cx59X8gr3gYX5cByf0DZ+9DBYmA/H8QMPpf/8OYcT 58Phzys67OIVWJgPh3UktHJTMCzMh8N7aO+MSXawMB8O64bitwEdYWE+HH5d 31Pknnhy4nw4/O+Dyz7FwcJ8OPw+zlr9fDYszIfDe5ZRaIk2LMyH4/iHp9vf /TSbE+fDcfywNQ0lZ2FhPhy+p80dXwTAwnw4vCclq34ZDQvz4fCe4G7LtYeF +XB4jun4alDRLE6cD4f3YO9Kp92wMB8On1P1ccGusDAfjuPz8lUva8LCfDj8 +WrY/nrrwYnz4Th+bUGZZQoszIfDOhZYFLEMFubD4b30hdY7I1iYD4d/bvx9 yz8zOXE+HMe/mf8q6ToszIfDc8VHO+UwWJgPh8/pQ6XgSbAwHw6/rmK9P11g YT4cx3cNS9xQ4c6J8+GwDmT6SpJgYT4c1pXWyP3e7mIPB7/r3N5gqLvYw8HO R+8W/5wh9nCwmnvVytwZYg8HD/js0HvLDLGH6/jfc3P7UvsZYg8HWztLo1Rm iD0cPG7HdOdnbmIPB+9xbex52E3s4WBN76f1893EHk4Z69TKdkX6bmIPB5/t 45/aOF3s4eCDgwyiL08Xezg41EQ3KGi62MN14vgpbYsC7KaLPRzcc1iNn/J0 sYeDR2xMWVM2TezhYOXYk6EHp4k9HOw2tDp23jSxh1Ph+K/NHuf1pok9HFyZ pFLa4Cr2cPD8d39bs13FHu6//753f4MgV7GHgzVrN8+3cxV7uM743KirJiu7 ij0cfP/o85oyF7GHg0P5x8aHXMQeDrY6/nfHfBexh4Ojt8x4r+8i9nCqWDd3 V9t9dxZ7ONhow6FzOc5iDwcfbgvpF+Is9nCq/z3n7o23dxZ7OHjC/vvdOzuL PZwa1k9Vw8TnU8UeDh7+K9cgcarYw8Hxv5feWDRV7OHgSQ9sZw+dKvZwcIG+ hWzzFLGH64K/b4Fb+rUpYg8HP5+632PbFLGHg913NHSZNEXs4eBlvX1L1aeI PRwcVNw+4ZWT2MOp4z1szCXv405iDwfb81stljqJPRz8IMC3u7GT2MPBjYeX tLZOFns4WHVF8Idbk8Ueriv+/0cznkVMFns4uPDz5wcuk8UeDlblLB9oTRZ7 OPhuytGy6kliD6eB9SlCvSpjktjDwfKL45pXTxJ7OLikWUfNYpLYw8HrGgqM JZPEHg7W77TMs2Si2MN1w3NHhz5R+yeKPRz8NaH89qyJYg/331/fdJAbOFHs 4eALPvMdvzqKPRx8RHP4gYuOYg/XHT/3DrJ1mxzFHg6+nvnEzs5R7OFgBZWT qZ0cxR4OftJjnepzB7GHg/vsdghJdBB7uB74udXp0eLtIPZwsN3R6oDhDmIP B2tdTP3TMkHs4WCfft7bb0wQezhYN6lXj50TxB5OE++9DcWZzhPEHg4uubfM RWuC2MPBcd8krdX2Yg8HH+welXbKXuzh4DtySnMC7MUeTovjRy1fo2VlL/Zw sEXX0tdSe7GHg10v9Ux7OF7s4WBDFZf1B8aLPRycVenv7DVe7OF6Yl1/E2yo P17s4eChZQHdftiJPRxcudZZctVO7OHglMiuLVvtxB4O9npw7fskO7GH64X1 uW3CTw07sYeD255f/vtmnNjDwVt6d+iYNk7s4WDbaLP+fuPEHg5W+GrPjx4n 9nC9Ob70p8l8yTixh4OfeMvsvj9W7OHgRdLj+bFjxR4O7rOnf8ucsWIP1wef h6J1o/TGij0cbLk8ddP3MWIPB+fani7OHSP2cHC0fFjvbWPEHg623Wy8bvIY sYfry/E7F2dVdBsj9nCw8w5uzDtbsYeDsxIHZabbij0c3LpSQ9ffVuzh4BN5 pcctbcUerh++pxxn68rbij0crFRxPvORjdjDwdlDHo1JsBF7OPhEh+yX823E Hg62N1y4foiN2MP1x8/r4vI+v6zFHg5e7qdWct1a7OHg+11UgnZaiz0cHN/5 gamrtdjDweZDJv/uZS32cNoc7zB09/UaXuzh4JgXkbvP82IPB3drtJ+/gRd7 OPifxQ2rcbzYw8FpIT/7qvBiDzcA3vquQ7mV2MPBeUphv5OtxB4Ofvmq+ttS K7GHgwfmNdeNtBJ7OPhbQF6DrJXYww3k+JvFZq3FlmIPB7uGeneMsRR7ODhq kd2AOZZiDwfvGv3UVs9S7OHgA3fVFv+wEHu4Qfj8v2jbd81C7OHgf0NjbodZ iD0c/CHmuYyzhdjDwT/LbvE9LcQeDl6eNWP7x9FiD6fD8bf/7i89N1rs4eDE wDU6G0aLPRz86PO/kHGjxR4OntNfv1pltNjD6eLX8fGXQ4W52MPBGbLeOcfN xR4OXmoeOHSFudjDwftmD0g3Mxd7OLiP8UoDibnYw+nh+3bHjIsPzMQeDp4y 4NXYeDOxh4M/PvldMd9M7OHgAs9za4aaiT0c/HLvP83fpmIPp4/PlXl1wS1T sYeDQ/rODthtKvZwcH1nXwN3U7GHg52fK33WNhV7OPgAb3WmfpTYww3G379r u3U5o8QeDl4yyMVh6yixh4NvWBr1dxol9nDwHt2jspqjxB4Ozr1w4MP7kWIP Z8DxU09pPT47Uuzh4Lg3OrfWjxR7OFhO62ruuJFiDwebGTy/0nmk2MPBau/W XH9pIvZwQ/DrlT9cctJE7OFgyfJxb1aZiD0cfKNqRYuFidjDwcuNtbormIg9 HPzC0M6q1Fjs4Ybi85X2bckRY7GHg7ss1TjiYyz2cPDa8TnPjY3FHg6+ofS8 m6yx2MPBF3Ys97xnJPZww/Dzv3tzRqyR2MPBB+s4mXlGYg8Hd/GXcx9iJPZw sElTQE7LCLGHG47vbetZfQtGiD0cfEDn4q6oEWIPB79fH9TOY4TYw8GNSlc2 DBoh9nCw9an5fxsNxR4O/xk6ZEPoNUOxh8N/HvGSUQ03FHu4//ef9P+n/x79 7+jvQ39f+ufQP5d+HfTrol8n/brp34P+vejfk/696feBfl/o94l+3+j3kX5f 6feZft/pz4H+XOjPif7c6M+R/lzpz5n+3OlzQJ8L+pzQ54Y+R/S5os8Zfe7o c0ifS/qc0ueWPsf0uabPOX3u6eeAfi7o54R+bujniH6u6OeMfu7o55B+Lunn lH5u6eeYfq7p55x+7mkdoHWB1glaN2gdoXWF1hlad2gdonWJ1ilat2gdo3WN 1jla92gdpHWR1klaN2kdpXWV1llad2kdpnWZ1mlat2kdp3Wd1nla9+l7gL4X 6HuCvjfoe4S+V+h7hr536HuIvpfoe4q+t+h7jL7X6HuOvvfoe5C+F+l7kr43 6XuUvlfpe5a+d+l7mL6X6Xuavrfpe5y+1+l7nr736TmAngv+95wgPjfQcwQ9 V9BzBj130HMIPZfQcwo9t9BzDD3X0HMOPffQcxA9F9FzEj030XMUPVfRcxY9 d9FzGD2X0XMaPbfRcxw919FzHj330XMgPRfScyI9N9JzJD1X0nMmPXfScyg9 l9JzKj230nMsPdfScy4999JzMD0X03MyPTfTczQ9V9NzNj1303M4PZfTczo9 t9NzPD3X03M+PffTewC9F9B7Ar030HsEvVfQewa9d9B7CL2X0HsKvbfQewy9 19B7Dr330HsQvRfRexK9N9F7FL1X0XsWvXfRexi9l9F7Gr230XscvdfRex69 99F7IL0X0nsivTfSeyS9V9J7Jr130nsovZfSeyq9t9J7LL3X0nsuvffSezC9 F9N7Mr0303s0vVfTeza9d9N7OL2X03s6vbfTezy919N7Pr330z4A7QvQPgHt G9A+Au0r0D4D7TvQPgTtS9A+Be1b0D4G7WvQPgfte9A+CO2L0D4J7ZvQPgrt q9A+C+270D4M7cvQPg3t29A+Du3r0D4P7fvQPhDtC9E+Ee0b0T4S7SvRPhPt O9E+FO1L0T4V7VvRPhbta9E+F+170T4Y7YvRPhntm9E+Gu2r0T4b7bvRPhzt y9E+He3b0T4e7evRPh/t+9E+IO0L0j4h7RvSPiLtK9I+I+070j4k7UvSPiXt W9I+Ju1r0j4n7XvSPijti9I+Ke2b0j4q7avSPivtu9I+LO3L0j4t7dvSPi7t 69I+L+370j4w7QvTPjHtG9M+Mu0r0z4z7TvTPjTtS9M+Ne1b0z427WvTPjft e9M+OO2L0z457ZvTPjrtq9M+O+270z487cvTPj3t29M+Pu3r0z4/7fvTOQCd C9A5AZ0b0DkCnSvQOQOdO9A5BJ1L0DkFnVvQOQada9A5B5170DkInYvQOQmd m9A5Cp2r0DkLnbvQOQydy9A5DZ3b0DkOnevQOQ+d+9A5EJ0L0TkRnRvRORKd K9E5E5070TkUnUvRORWdW9E5Fp1r0TkXnXvRORidi9E5GZ2b0TkanavRORud u9E5HJ3L0TkdndvROR6d69E5H5370TkgnQvSOSGdG9I5Ip0r0jkjnTvSOSSd S9I5JZ1b0jkmnWvSOSede9I5KJ2L0jkpnZvSOSqdq9I5K5270jksncvSOS2d 29I5Lp3r0jkvnfvSOTCdC9M5MZ0b0zkynSvTOTOdO9M5NJ1L0zk1nVvTOTad a9M5N5170zk4nYvTOTmdm9M5Op2r0zk7nbvTOTydy9M5PZ3b0zk+nevTOT+d +1MHQF0AdQLUDVBHQF0BdQbUHVCHQF0CdQrULVDHQF0DdQ7UPVAHQV0EdRLU TVBHQV0FdRbUXVCHQV0GdRrUbVDHQV0HdR7UfVAHQl0IdSLUjVBHQl0JdSbU nVCHQl0KdSrUrVDHQl0LdS7UvVAHQ10MdTLUzVBHQ10NdTbU3VCHQ10OdTrU 7VDHQ10PdT7U/VAHRF0QdULUDVFHRF0RdUbUHVGHRF0SdUrULVHHRF0TdU7U PVEHRV0UdVLUTVFHRV0VdVbUXVGHRV0WdVrUbVHHRV0XdV7UfVEHRl0YdWLU jVFHRl0ZdWbUnVGHRl0adWrUrVHHRl0bdW7UvVEHR10cdXLUzVFHR10ddXbU 3VGHR10edXrU7VHHR10fdX7U/VEHSF0gdYLUDVJHSF0hdYbUHVKHSF0idYrU LVLHSF0jdY7UPVIHSV0kdZLUTVJHSV0ldZbUXVKHSV0mdZrUbVLHSV0ndZ7U fVIHSl0odaLUjVJHSl0pdabUnVKHSl0qdarUrVLHSl0rda7UvVIHS10sdbLU zVJHS10tdbbU3VKHS10udbrU7VLHS10vdb7U/VIHTF0wdcLUDVNHTF0xdcbU HVOHTF0ydcrULVPHTF0zdc7UPVMHTV00ddLUTVNHTV01ddbUXVOHTV02ddrU bVPHTV03dd7UfVMHTl04deLUjVNHTl05debUnVOHTl06derUrVPHTl07de7U vVMHT108dfLUzVNHT109dfbU3VOHT10+dfrU7VPHT10/df7U/dM9ALoXQPcE 6N4A3SOgewV0z4DuHdA9BLqXQPcU6N4C3WOgew10z4HuPdA9CLoXQfck6N4E 3aOgexV0z4LuXdA9DLqXQfc06N4G3eOgex10z4PufdA9ELoXQvdE6N4I3SOh eyV0z4TundA9FLqXQvdU6N4K3WOhey10z4XuvdA9GLoXQ/dk6N4M3aOhezV0 z4bu3dA9HLqXQ/d06N4O3eOhez10z4fu/dA9ILoXRPeE6N4Q3SOie0V0z4ju HdE9JLqXRPeU6N4S3WOie010z4nuPdE9KLoXRfek6N4U3aOie1V0z4ruXdE9 LLqXRfe06N4W3eOie110z4vufdE9MLoXRvfE6N4Y3SOje2V0z4zundE9NLqX RvfU6N4a3WOje210z43uvdE9OLoXR/fk6N4c3aOje3V0z47u3dE9PLqXR/f0 6N4e3eOje310z4/u/dE9QLoXSPcE6d4g3SOke4V0z5DuHdI9RLqXSPcU6d4i 3WOke410z5HuPdI9SLoXSfck6d4k3aOke5V0z5LuXdI9TLqXSfc06d4m3eOk e510z5PufdI9ULoXSvdE6d4o3SOle6V0z5TundI9VLqXSvdU6d4q3WOle610 z5XuvdI9WLoXS/dk6d4s3aOle7V0z5bu3dI9XLqXS/d06d4u3eOle710z5fu /dI9YLoXTPeE6d4w3SOme8V0z5juHdM9ZLqXTPeU6d4y3WOme810z5nuPdM9 aLoXTfek6d403aOme9V0z5ruXdM9bLqXTfe06d423eOme910z5vufdM9cLoX TvfE6d443SOne+V0z5zundM9dLqXTvfU6d463WOne+10z53uvdM9eLoXT/fk 6d483aOne/V0z57u3dM9fLqXT/f06d4+3eOne/10z5/u/dMcAJoLQHMCaG4A zRGguQI0Z4DmDtAcAppLQHMKaG4BzTGguQY054DmHtAcBJqLQHMSaG4CzVGg uQo0Z4HmLtAcBprLQHMaaG4DzXGguQ4054HmPtAcCJoLQXMiaG4EzZGguRI0 Z4LmTtAcCppLQXMqaG4FzbGguRY054LmXtAcDJqLQXMyaG4GzdGguRo0Z4Pm btAcDprLQXM6aG4HzfGguR4054PmftAcEJoLQnNCaG4IzRGhuSI0Z4TmjtAc EppLQnNKaG4JzTGhuSY054TmntAcFJqLQnNSaG4KzVGhuSo0Z4XmrtAcFprL QnNaaG4LzXGhuS4054XmvtAcGJoLQ3NiaG4MzZGhuTI0Z4bmztAcGppLQ3Nq aG4NzbGhuTY054bm3tAcHJqLQ3NyaG4OzdGhuTo0Z4fm7tAcHprLQ3N6aG4P zfGhuT4054fm/tAcIJoL9L85QeLcIJojRHOFaM4QzR2iOUQ0l4jmFNHcIppj RHONaM4RzT2iOUg0F4nmJNHcJJqjRHOVaM4SzV2iOUw0l4nmNNHcJprjRHOd aM4TzX2iOVA0F4rmRNHcKJojRXOlaM4UzZ2iOVQ0l4rmVNHcKppjRXOtaM4V zb2iOVg0F4vmZNHcLJqjRXO1aM4Wzd2iOVw0l4vmdNHcLprjRXO9aM4Xzf2i OWA0F4zmhNHcMJojRnPFaM4YzR2jOWQ0l4zmlNHcMppjRnPNaM4ZzT2jOWg0 F43mpNHcNJqjRnPVaM4azV2jOWw0l43mtNHcNprjRnPdaM4bzX2jOXA0F47m xNHcOJojR3PlaM4czZ2jOXQ0l47m1NHcOppjR3PtaM4dzb2jOXg0F4/m5NHc PJqjR3P1aM4ezd2jOXw0l4/m9NHcPprjR3P9aM4fzf2jOYA0F5DmBNLcQJoj SHMFac4gzR2kOYQ0l5DmFNLcQppjSHMNac4hzT2kOYg0F5HmJNLcRJqjSHMV ac4izV2kOYw0l5HmNNLcRprjSHMdac4jzX2kOZA0F5LmRNLcSJojSXMlac4k zZ2kOZQ0l5LmVNLcSppjSXMtac4lzb2kOZg0F5PmZNLcTJqjSXM1ac4mzd2k OZw0l5PmdNLcTprjSXM9ac4nzf2kOaA0F5TmhNLcUJojSnNFac4ozR2lOaQ0 l5TmlNLcUppjSnNNac4pzT2lOaj/19O5h/V4/388y+0tYQ4zp5ybM5tTzty1 WiiEIiTHnHLImbE5NVpqzqSwhK9i5nxqyNDUzPk0Z5tTVMgpTPk9vV/v52// PS7XNfH53Pf9vnc993jQi0pPKr2p9KjSq0rPKr2r9LDSy0pPK72t9LjS60rP K72v9MDSC0tPLL2x9MjSK0vPLL2z9NDSS0tPLb219NjSa0vPLb239ODSi0tP Lr259OjSq0vPLr279PDSy0tPL7299PjS60vPL72/9ADTC0xPML3B9AjTK0zP ML3D9BDTS0xPMb3F9BjTa0zPMb3H9CDTi0xPMr3J9CjTq0zPMr3L9DDTy0xP M73N9DjT60zPM73P9EDTC01PNL3R9EjTK03PNL3T9FDTS01PNb3V9FjTa03P Nb3X9GDTi01PNr3Z9GjTq03PNr3b9HDTy01PN73d9HjT603PN73f9IDTC05P OL3h9IjTK07POL3j9JDTS05POb3l9JjTa07POb3n9KDTi05POr3p9KjTq07P Or3r9LDTy05PO73t9LjT607PO73v9MDTC09PPL3x9MjTK0/PPL3z9NDTS09P Pb319NjTa0/PPb339ODTi09PPr359OjTq0/PPr379PDTy09PP7399PjT60/P P73/7ACwC8BOALsB7AiwK8DOALsD7BCwS8BOAbsF7Biwa8DOAbsH7CCwi8BO ArsJ7Ciwq8DOArsL7DCwy8BOA7sN7Diw68DOA7sP7ECwC8FOBLsR7EiwK8HO BLsT7FCwS8FOBbsV7Fiwa8HOBbsX7GCwi8FOBrsZ7Giwq8HOBrsb7HCwy8FO B7sd7Hiw68HOB7sf7ICwC/L/nRDTDWFHhF0RdkbYHWGHhF0SdkrYLWHHhF0T dk7YPWEHhV0UdlLYTWFHhV0VdlbYXWGHhV0WdlrYbWHHhV0Xdl7YfWEHhl0Y dmLYjWFHhl0ZdmbYnWGHhl0admrYrWHHhl0bdm7YvWEHh10cdnLYzWFHh10d dnbY3WGHh10ednrY7WHHh10fdn7Y/WEHiF0gdoLYDWJHiF0hdobYHWKHiF0i dorYLWLHiF0jdo7YPWIHiV0kdpLYTWJHiV0ldpbYXWKHiV0mdprYbWLHiV0n dp7YfWIHil0odqLYjWJHil0pdqbYnWKHil0qdqrYrWLHil0rdq7YvWIHi10s drLYzWJHi10tdrbY3WKHi10udrrY7WLHi10vdr7Y/WIHjF0wdsLYDWNHjF0x dsbYHWOHjF0ydsrYLWPHjF0zds7YPWMHjV00dtLYTWNHjV01dtbYXWOHjV02 dtrYbWPHjV03dt7YfWMHjl04duLYjWNHjl05dubYnWOHjl06durYrWPHjl07 du7YvWMHj108dvLYzWNHj109dvbY3WOHj10+dvrY7WPHj10/dv7Y/WMHkF1A dgLZDWRHkF1BdgbZHWSHkF1CdgrZLWTHkF1Ddg7ZPWQHkV1EdhLZTWRHkV1F dhbZXWSHkV1GdhrZbWTHkV1Hdh7ZfWQHkl1IdiLZjWRHkl1JdibZnWSHkl1K dirZrWTHkl1Ldi7ZvWQHk11MdjLZzWRHk11NdjbZ3WSHk11OdjrZ7WTHk11P dj7Z/WQHlF1QdkLZDWVHlF1RdkbZHWWHlF1SdkrZLWXHlF1Tdk7ZPWUHlV1U dlLZTWVHlV1VdlbZXWWHlV1WdlrZbWXHlV1Xdl7ZfWUHll1YdmLZjWVHll1Z dmbZnWWHll1admrZrWXHll1bdm7ZvWUHl11cdnLZzWVHl11ddnbZ3WWHl11e dnrZ7WXHl11fdn7Z/WUHmF1gdoLZDWZHmF1hdobZHWaHmF1idorZLWbHmF1j do7ZPWYHmV1kdpLZTWZHmV1ldpbZXWaHmV1mdprZbWbHmV1ndp7ZfWYHml1o dqLZjWZHml1pdqbZnWaHml1qdqrZrWbHml1rdq7ZvWYHm11sdrLZzWZHm11t drbZ3WaHm11udrrZ7WbHm11vdr7Z/WYHnF1wdsLZDWdHnF1xdsbZHWeHnF1y dsrZLWfHnF1zds7ZPWcHnV10dtLZTWdHnV11dtbZXWeHnV12dtrZbWfHnV13 dt7ZfWcHnl14duLZjWdHnl15dubZnWeHnl16durZrWfHnl17du7Zvdd7OHCl hD3FQsF6Dwe+0nhe0+NgvYcbiPOQ551hlTyV7OHAgw6kbpoM1ns4cMy4Fi/P gPUeDpzfpVXnOl5K9nDgJk1O7ZwD1nu4Afg+OrxwvQHWezjwpJVb1zf7Rske Drz+en7DhWC9hwPf/zXjjwyw3sOBk1+MCvXwVrKH64/3n6hol9VgvYcDfwjy vfYKrPdwYF/vLRu6dlCyhwNnNvxlehJY7+HALXP9+jt2VLKHC7bso3PjuvYD 6z0cuO3+aN99YL2HAy+aWqdnyU5K9nDgk4lho0LBeg8HbtAgZGEqWO/h+ll2 lceFU6r4KNnDgVsd7/ffNLDew4E94kM8L4L1Hg5cc3D12Ia+SvZw4ELPl7+P AOs9XBDOc42Pht4F6z0cuLhT0sO2nZXs4cDdg3zDYsB6DwdOK/mr9QKs93Dg sZ+e3dS5i5I9XF88v1vv7pkI1ns4cK0ZQaUcuyrZw4HL7P/zWj+w3sOBsy85 bN8P1nu4Ppa98KDDktJ+SvZwYNXjr1ljwHoPB46eFTIjHaz3cOCI+qfDXbsp 2cOBF7QrHDsTrPdwvS2719oyB6+B9R4OfK3Jm8fNuivZw4G/fLij5mKw3sOB 18R7js0C6z0cOLbDzuPePZTs4QJxnjrxvuZ6sN7Dgd8WqrkiH6z3cOA6T78s 1cdfyR4OPHeES9wesN7DgYP7Z39VMkDJHq4X3s+SN1wYBdZ7OPCtwZ5z08B6 Dwcu883p9q49lezhwK86eTrNAus9HHh/UOLt62C9h+uJzyfk/dHmvZTs4cDJ fh67loL1Hg7sX3jG9qdgvYcD/zBlS7JPoJI9HHjMj+fPbQLrPVwA3t/rvHjl 2FvJHg6c7vFprQFgvYf7+Ou/1w45CNZ7OHD2Ivft5foo2cOBZ63pW3gSWO/h /HE+vTB19Dmw3sOB4yrH3W7QV8keDlxi1PHgSLDew4EHJL5+/ACs93DgCUea hH8dpGQP1wO/vu67uvFgvYcDj2px+eZ7sN7DgZ0mtF/bu5+SPRz4arvfQveC 9R4OvOVHn29KByvZw3XH+cb9eYMwsN7DgSf676h+Cqz3cOCn2yNd6/ZXsocD T/Ka1WQ+WO/huln2AYdlXe+B9R4OvO7cianuA5Ts4cBtN1Xathas93Dg02Er n/8H1ns48NFKzb/uPVDJHs4Pz581+fF7wXoPB55056nzZ4OU7OHAby8VDR8H 1ns48PAxvZzOgPUeDlwx9lxc/cFK9nBdcf7q+F3rSLDew4EjRgdlPATrPRz4 79dhCV5DlOzhwMsvHxyxHqz3cOC8PPd2BUKU7OG64P0o+JOq/cF6Dwfe9ehD 8UNgvYcDD1vcxrniUCV7OPBy7+TPpoH1Hg48JP/belfAeg/XGefhxFldmw1T socDj21+atZSsN7Ddf74PjAoJQes93DgsHMezn7DlezhwK5Hxw75Faz3cL6W bQ/J/LPoCCV7OHDTLfvahYL1Hg68LvJySjpY7+HAPV537FJ7pJI9HNj739KP 54H1Hs4H3xcPt6X3wXoPB/7beVdHz1Alezhwn8ZRxdaD9R4O/GjzsVsFRinZ w4HHjux7aABY7+E64Xw7NCApBaz3cODMJbsSKo9WsocD//xgStJ3YL2HAx/v ueHQDbDew3XE/etqq9utxyjZw4HvDW5bPA6s93DgctlbO70D6z0cuEHoT8t6 j1WyhwPvvXgncz9Y7+E64PtedZNfuTAlezhwX6+7R6eA9R4OvKDVSo8rYL2H A/vnHj/jNk7JHg7cYsKYkSvAeg/nbdkPNi4v9Rqs93DgdvPbpAWMV7KH8/74 38NCFuwB6z0cOMitZFCZCUr2cOCzLz1aTQLrPdw3OO98/f6LS2C9hwPHVWhf pdlEJXs48JEJxWouB+s9HPiR94hWr8B6DweesMg/KGCSkj2cl2U/+ebcgj1g vYcDlw35J63MZCV7OPDte/NKTwbrPRx40JFjoZfBeg8HzslZdc5tipI9nCfe nyY6e60E6z0cuJ97hT9ywXoPB073T/MPnKpkDwcOTiqbsx+s93DgoFZF4spP U7KH+xrnHceE7t+C9R4OHP7hTtnrYL2HA1erl/649bdK9nDgInOCTq4G6z0c eLzDmgN5YL2H87DsgwlRe4KnK9nDgaeHNEhJAes9HHi81+zLVWco2cOBV7SP /G82WO/hwEW7dWp4F6z3cO64XqccG+P5nZI9HHjyttyDG8F6DwfelJtRTn2v ZA8H/l/nVXOGg/Uezsb5c1uRd+lgvYcD/1yx/cx6M5Xs4cDBi1qUigbrPRx4 QtG3O5+A9R4O/NtPcwb6zVKyh2tv2V9/fqXSTrDew4E7Jbx5WHq2kj0c2G78 KGUSWO/hwKmpmzdeAes9HHhLUPtVLeco2cO1s+zXrxNj48B6Dwe+vuxRUh5Y 7+HAh90cT/Sfq2QPB25+Mzfnd7Dew4GL/5he1zVcyR6uLe7/rb8dNw+s93Dg Zy+d/8gA6z0ceO6+WbV9flCyhwOHh1+L2QrWezjwrn4Vy5aYp2QP18ayC3h5 rR8P1ns48JI2fdpeAus9HPjAN0H3m89XsocD54V0josF6z0cuOyaL/vngfUe rjWeb08KNhoQoWQPB04IPlPiGFjv4cDfPV2U/8WPSvZw4A8bfN5FgPUeDnxt ToGCWWC9h2uF6yNqd8WukUr2cODAE0Pdd4L1Hu4ju1WYVGaBkj0ceOSts3un gvUeDtzyeFShG2C9h2uJ83xW1yHto5Ts4Vp+PP+4nE0A6z0c+ED5lx0LRSvZ w4Fd6lw9NwKs93AtLHv+olPDToH1Hg58IeCCc6OflOzhwEVnZh1aBtZ7OPDY UhW/fwPWezjw6M8H+gYtVLKHa27ZSYuP1D4C1ns48NvI1qVdFynZw4GHOF10 jgDrPRy45mdRpbLAeg8H3rIzpJbfYiV7ODc8n7MGddoN1ns48J70H6aXW6Jk Dwcu1f1s8gyw3sOB70V7Fv4HrPdwbh//f4J7g72WKtnDNbPsP913nkoC6z0c uPPJbV7FlynZw4Fr1rt9cjxY7+HAUSM9BlwB6z0cOGPJ9U/aLFeyh2uKz3fr L7viwXoPB26Sum+8tULJHg786t/89iPBeg8H7lMyvOIZsN7DgU/26Wg1Xalk D9cEz4d0v7wYsN7Dgb8fsdoxH6z3cOCVng3LDY5RsocDjxxauHUaWO/hwIOv 1R/VYJWSPVxj3A9/WbNlCVjv4cBTHga9zQWLHw7nw5hRAf1ilfHDWXabk6dT joLFD4fnf9QPLWrHKeOHs+yAjCUp0WDxw+F6yXrj/wIsfjhcHxsOvAlcrYwf zrLdqlzZfBgsfji8j43oEeq6Rhk/HL4/i75qFQkWP5xlL04IK/sMLH443J+3 lnHsuVYZPxye70eq5f0GFj8czrsZK6zqPyvjh7Psd02nuESAxQ9n2Td2H3d/ AhY/nGWXnzJ7kn+8Mn44y86N3LYvGSx+OMt+8cGvcLV1yvjh8PvfHzZsPlj8 cLj+fF9fzAaLHw7n+a/z/fwTlPHDWfa/12dfTwaLHw7Pyy/mTqy2Xhk/HH7+ xgVdIsDih8P9sqQ6/wQsfjjL3nopekXABmX8cDgPLIwdcRAsfjic1/y+9Kmx URk/HN6H6nZpHQkWPxye7w3ftswBix8O5/uwxt6B/1PGD4fnwSfvB6WAxQ+H 58WrXtE1Nynjh7PswsEd/ogGix8O729dzhR7BRY/nGV3vfpkcFCiMn44nD9L JaUdA4sfzrLnFXdoUy9JGT+cZVt3Xh1aAhY/HL5vcVFd3oHFD2fZb/z/yB64 WRk/HM7n1TbGpYPFD2fZMz+rF9hoizJ+OJwPPfvUWAUWPxzub8eb5jn8oowf zrKzthy8Pxwsfjjc7z59eeMsWPxwlp3vePPfFluV8cPh/h0/LTceLH44vB++ O1nB6Vdl/HA4v9S57DsOLH44y3bwiI2+ChY/nGX3Dqpw032bMn44vK8tDGy9 GSx+OFwvOT0TS21Xxg+H9/XYsq7TweKHw3kxYfWvd8Hih8P5o2qGt+8OZfxw +P0bvH+6Gyx+OHx+d679r9JOZfxwlh3Tfd6oeWDxw+H+uNrB/SlY/HD4813x cQ3cpYwfDp+vy8jPfweLHw7nj7n9ytbdrYwfDtdLrdq1loLFD4f3lep/eb0H ix/OsltH+0wI2aOMHw7P5zmJ206DxQ+H84rL/XfN9yrjh7PsWpMdA9aBxQ+H 83ySdbjIPmX8cHgens9uNhEsfjicl4oePngTLH44PH/HTe3uvV8ZP5xlqypV creDxQ9n2fFf7t5c4YAyfjjLvpTScnQ4WPxwuL4zd7R7AhY/nGUvPFu5SmCy Mn44nKci5xQ/ChY/HO7PbreL1v9NGT8czhc5bhVWgMUPh/P31QVuDgeV8cPh eih6Z+BIsPjh8PNtarb6Ilj8cPj+p/10v90hZfxw+P2js9smgcUPZ9k1Pvff WPqwMn44vM/OOl7xe7D44fD+kWmvywCLH86yPSefbNYjRRk/HL4P9tCrh8Di h8PvP6J0VO0jyvjhcN4ucanzUrD44Szbp+fWyvlg8cNZ9qd91+YP/10ZP5xl V22/OfsCWPxwll2/xoXMdkeV8cPh+qxd8W0SWPxwll1sbHiZMseU8cPheihf 0n0WWPxwOH91ODY9Eyx+OFzPldek9jyujB8Of/5D8ZWPgsUP9/F8dnZeg1Rl /HB4H7vZID8GLH44vO9t+C284B/K+OHw/Dw8vUIYWPxweD53CUu5DhY/HM7v U+MmeJ9Qxg+H50PwB7ddYPHD4Txcc61TlTRl/HCWHfJ8WmYkWPxwuJ89XHbj NVj8cPh56+bcGJSujB/Osh/fWpR1Gix+OMs+Vneyc+s/lfHD4fvSeH3LTWDx w+H+51JhSumTyvjh8L5Q7OaxmWDxw+E8XfdJlSyw+OFw3o3ruiDwL2X8cJY9 /AfHQqlg8cPhvPtp0UWNTinjh7PsQv1D66wFix8O563VNc4XOa2MH86yvZ64 RU4Bix8O57sZm7rdA4sfzrJ7jp5Su9sZZfxwOL89Six+GCx+OHy/KrQrWO+s Mn44y/7ri5ZOMWDxw1n2qWarK1nnlPHD4fMZP8J9PFj8cJadYq2feBssfjg8 H8v67PM9r4wfzrJjzw92SgaLHw7c/+nIWheU8cPh7zfj6fVlYPHD4XwRMyzo k4vK+OEs2zcmMGssWPxwlr2qdOqCm2Dxw+H9tum2Vj6XlPHD4f5bq/zb/WDx w+E8+bl1ouZlZfxwlp1Yf9KGZWDxw1n2uRWhiz+5oowfDp/PrMfRYWDxw1n2 yzIvV90Cix8O58e5kXt8/1bGD4f70attd5LB4oez7M9jh1asc1UZPxzu92u2 h6wEix/OshvWX5RiXVPGD2fZ5SapOhPB4ofDn29juYR/weKH++j7SK3b7boy fjic5yeVPJYCFj8c7m/j80Y2vKGMHw7nhxJR1deAxQ+H79P3KY+cbyrjh8P3 IXPVkW/B4oez7B/nV9r0CCx+ONxP5viuCbyljB/OsiOc66w/ARY/HM6nPfbs d7utjB8O/77IFzc3gsUPZ9nZd+6XKnNHGT8c3g8jfuoVDhY/nGWf3/50ywuw +OFwPoxyLjH4H2X8cJZ9y/fe3PNg8cPh56sxQ3n8q4wfzrLXelyK3QEWPxyu nxs5bavdVcYPZ9mhNS4+WwQWPxyuz07f73K4p4wfDj9/+PMfwsDih8P5tmCT 4XfA4ofD8zzfvY/ffWX8cJZ9d2O1oCNg8cPh82l4cfRXD5Txw+Hn/avvwniw +OEsu/qe5CMlHirjh8P3z+VFgdlg8cNZ9nI31SMHLH44fJ4t3+4amGH2cM6W 3ajvSdfzGWYPB+56duZGj0dmDwcufqac265HZg8HXhAdc7nGY7OHA1fzKDB/ 2WOzhyuCv58aAd5WptnDgZsPX1F2cqbZw4HXe5/IfZBp9nDgD28ePeyVZfZw 4Gu7HDLSsswezgnPv+3F3rTMNns4cNQXpcttyTZ7OHCyb+kOLk/MHg5cPrhE RPQTs4cDhy0p+nf+E7OHK2zZJ6oXaRH21OzhwIM6OCf+89Ts4cCpbUrV7vHM 7OHAO1tW23/8mdnDgetOaxXolmP2cAqfd7MBhRNzzB4OnJu4LK38c7OHA0cU vxaz4LnZw4Fd1jWelvfc7OHA2XHxI8a+MHu4Qji/tKo58p8XZg8HHrc/9dse L80eDnyl2+y41JdmDwe+7dH3r+avzB4O7JAWUGzzK7OHsyz7eaUJwS6vzR4O vHn2npSfXps9HLj/V1UaFcg1ezjwvGE7d07INXu4gvi+DBnn+SDX7OHAbYYG Pwh8Y/Zw4FdJ02NOvjF7OPD4MSf7tHtr9nDgYc+7Ntjx1uzhHPH+PNG5hOs7 s4cDn2rq4LjyndnDgR+M+6pQkf/MHg6cHrq2/Hf/mT0cOHSQb9tn/5k93Ce4 36xoM27we7OH+8je4/Zcfm/2cOCqe7OcOuWZPRw4wHXHmEN5Zg8H/vv8kbtf 5Zs9XAHLruJYecSGfLOHA999/Wd+2Q9mDweu/Cx9w4IPZg8HdmpUqe8H8OgP Lfp9ZAf9T2H7/wAt9W9m "]]}, Annotation[#, "Charting`Private`Tag#7"]& ], TagBox[{ Hue[0.3224758424985268, 0.6, 0.6], Directive[ PointSize[ NCache[ Rational[1, 360], 0.002777777777777778]], RGBColor[1, 0.75, 0], AbsoluteThickness[2]], LineBox[CompressedData[" 1:eJxF23lcT2nYBvAsdUpIiwhJy1AhVGStX5SihSyVZCwpS5ukKClr1km0og0R SpYKEaUFIevQpminJAzaVO/lfT/X551/fL4zjer8zrnP89z39aiu8Vzk3FtM TEyrj5jYnz//7x9J0YVXGdrjlwgiDWfr/n/clT981B+7LL6ol9cjiKacqvpn NezV+G1VMOzhldQZAUuvGhM+D04yc9/wGFZoNC/qD79X1ivuhgPvLe3/olsQ Df3RZqK3VBAtlbeyCYNtHt+7vg6+OVInxhY+mLB3VAxcptj2WQnO9Z0f8gKW 1L00p6JLEHVYDvrd11YQJZ6fk5AA66m/3TANVk/O670Wdm0/VewOy/pquY6B E5+vNj0DyxtuKW38LYjenRuT9haunHbWKhUeHNA8StpOEM1OyHjoBVstSgsx gtUuXDKbDAdr+v32hrce2FXU1imI7nUbbrwA22ybtiwLbv23b8k7+E3qy8Yg eELyY1NZe0Fk6DRv9xx4/a7QNFP43dN4FQFOsLNV9YeHqP+b+7hDEJWOH3E0 Fd4QW+caAsv2rf5dDbt4vx62CJ5flrRxyDJBdONdzPPB8J6r7iUW8GBZ40Ol 7YLoTrDe3J2wvXn2/Fj4h2N7Wjq8/rai7Gp4nF626ifYJH5uhQbsLLXvqLKD IOo1wfrKxzZBFPt+fpcNXHh63P4U+G3GINdguHJC1dpN8MAjb0tuwxGyrub6 sNmamLktsENQ4aS2VkEUNHVNuvpyQXTtWueoLPjWQE01e3hilZjiTvhrbfPR I/DeuSWDTGCtO2ldObD3sF2ykvDqY36uP+HXER1Dnv4SRCfXGZVqOeL7fZuj EQq/miVu9jd8z8VxyhJYWuFJ+nF4nc4c66HwnMZQtYfw/V2tru9+CqKAHNvQ Tlj+5LajCXB65IjuCSsEUebVgltr4Wa3ate1sEZPRYMmPHrOhdJouPxezojm H4LobyUPsyI4UMvd7hoc1aKX0etvfP9t1VE+8POCdrUp8Np6lcppsGRMduhG 2CZFQ7v7P0Ek2ryvOw7e1vfr9lzYz9zC7TVco7nrdTB8baRsmbASP9fi4okW cOOPt2YzYdXsb2EysNqTmIxN8JZzz3+//i6Ilp9eo34OHmS8yTUaDtuqeawU dn/66r0j/NTqS/eAVXiudv9apgr31Uh3mw2nx5SV1n0TRLM6/Mp84Q7bwJWX YJ8XRubJcGbTh0YPOPW8+I338JuIXgF6cH3AE3WF1bjvQt/LtX0VRCqLjx0z h0cr+l/Jgu217HoC4GNrXtjsgkN7Rrhfgx9crWo3hQvfVJfVwUNmXk7qB/dK uWA+bI0gajLSXf68RRBN3+1xwxrOafVUCIc32+tr7IE1451f28PJOh3HbsJF XnLRynBN35yeJtgj2WdN9RdBNKJ8n/soJ9yf+0N0k+Al1yzKl8BScxwl3eB/ 9svOOwi3DK2smQgXrCi+cRc+Zypf8LNZEHXrxWp8h+3EO5Nvw1P6OR0fvVYQ mYeHRwfBnh80xZbDz3TeHzKBk258cT8K28mW7ZaCPxxJL8+DXbbt3fnsM667 k/+8Njg8oWJPGGwzTXRznLMgOvqg9og9fFBG4q/V8IgxJ04pw7l1T45HwIN7 2q9UNwmizjvHxB7DroclHifBesftPLphDal7n9xgt/XK73RdcB9kqMjowomG NfPWwcZF2tNbGwVRhcLFm6dglZDKjVnw4CaPv17AiyZPP70Ltr6vH9Z3nSCy FJtVMRcOjuoQmwZHjasf2R/Ods/xcIdftuq7vPyEejYn+N1pODVeMy0SnjjM cv5buGN1jrgjvP6r7K1+6/H7BnSuUIVPPyj+ywj2Gl96p/4j6llMbJg3HH/d XiUFlvN26nUBNpzvd8ALnj9Py/MdHKw7vXUKvEel5d2gDYIo7+JJ198NqGc/ 0+ebwg5fTtTdh3888b/l9+e/Gxo474fHnxGNToWPlHo1WsLO2yTCq/98fZe5 jxwcZ/2015CNgqjh4x3xknrUM43jnhZw3/LCU7GwTKddRRAcKbfZwAk2e6ls kQ6feJZWognvTKq59RFWsQ4J+lKHerbj4mhlV1zHF2Lj0uFviz3DbWDn8H6V frCW9uTewXBG6aUII3iNWKfnbfji+w+LxOGTb3MqvsB365IHP6lFnUsJtlB3 E0QHxkpXhsLSeywz7eC0r13JtrDJMrkxR+DuLXuCRsABE0rCc2CjtpP21TX4 PuJxvX/Ca27PMbgAN5c7bdJyx+fSGTDcAx59Xatyxf/aVFwf/vtAi8VxOLQj 9kd7NT73vzMyH8Dq0/Z+yoZf6G8f0wn7tbbW7IMlpY0jJnjgufVtq7GAjask +qyFjX7u/SQL+918uikaLsqI+VFcJYiu/3O88ins2GYoHgc3Otlb9vJEneva OHwtrD595O3J8AWJUQba8PJBtWM2wrpLVth//YD7qP5iRBxsO0Yt6Ab8NMuz z+s///2+e3IALB422UvYJIja1xhVzIZnbeisnAF/t4pUkIJ9je5bboJ35HnZ PH+P+3bw/tuJ8EDxl2ERcEOTpWYprLMkrXw5rJIrFznAC/X9+xAtNdg+uqTP bDhdtXv7x0pcJ484L1/4lLrzv6lwocna95dghemWuj5wr+HaVu9hxaTrETPg 6d9abstvFkRXUqK6e8HeDzM0zWGxfzrcHlWgnsVujwyATQ6VfQiBa72N+16D H9ZPcVgKj5gvbK6DW2oHlg6Hl44qeq/kLYgmP1y9ovod6tmv41bWsOYLnYYL 8IOn9nd2w56zfXw94e4zI7VuwgWr9KWnwAZ+tZFNcKe767nf5fi6BZf6jtoi iNpSlEzz4At/bdq8BM5cZdh4EP7QOfnDAXjh05LwhbDSq06ru3C97keTIbDN hft3vv35+mLXjooyQXQocL/WaB9BpNy9JiMRzl1iFeUAb//01McV7tSWFz8K L6m4MEMX1utVujkPnqX8S6K9FPWsOO5DK1z1Oa04Gz53ea31OF9cr9Cqy8Fw xR7trFWw9/zAg1awosNXrQhYY9XBjQqw9cQbUYXw0MG9bcpLBNF+iQDxbtj5 csPMM3D2O2Nv3a34XNyn6WyA264LVS5wefQvjYnwxINF1qfghC0jVVuLse5a GZb1HO40uap2Dz49eZl23224btbJWvvgMmmV6Klw9JuBUyxhuepacXd4tEqZ mTxsceuS92n4g2f/lWVvUc9CNlW9gc/2P7f9NJy1dsqCfn6CaNX0s7Hr4R/T f2cZwiqGEgUT4PGyudrecLdj0bdfb/B7NOyPToInvWtVvwfH3bWSeAeL9dq3 fB/8Nkx+yyB/PCeDtkRbwjIbS6tMYEmb/DJ52FwUv8APNhJ81Mr/RT1TdL57 GZb32+d5Bs78rD22Gp76+cf9DfC33K/Ritvx+Z3PVZoEa5+4IWEB32tu9m17 jTrjGbAlCG4TfEuz4VOms6vTYIMZDsb74dfDJRd+hOOKTqRaw/2/F90dEYD3 o7i+qiJs8ihsrA1coal5ouIVntO4ZSf2wesDfRTPwRlbVITb8C7L4Sfc4C/z 67Z8gW+VDlXVh0erJler7cDz6eae2vlSEK1s3bTQDp5gOdQ4D44qmnLvMNx5 b2jpIfjF2d9jc+AeaQ/fRbCkf+6JH/BU/yFKw2DjhQcErUBch4UK96teCCL/ 0dY+K+BLb508LsLXf8vXHIPnLRZX9YKbXpUufAA3DWgrmQqrX4y/1wG3W82I FIMdg5zHTQgSRP85PLN/9Bz1bOnYk06wR8DVUaFw0dhvQjQ8uONDsx0s3vum z1P44vCVOSqwYUlAjdhO1BUt7eiGZ6hnqbNtJsNSG419rsBX9kpmb4DzRifa bYUbHJ6Ni4PNkmyMjOBRk8JPvoLz9eaNE2B7wUFS2IXPU+HQyOdFWKdVqPjO gB8ek1eMggvT6mo8YcUftXIr4d6Hkm0S4eY9XQpj4OmrvLJL4IaDjiNanuI5 nGIwfsBuXH/rXlo34eT+XSeN4WHDm6YHwbXVuZK+8E8DpUVmsHLmAd9L8OQv hzxk4KVHrWsr4Zpgo9DiJ4IoxFlhkfwe1D2LKTfj4QczyrLNYLm9HjXr4B7Z hPEB8IDtDQoTYYOPzqeuwu5+CRZtjwXRpntjpergxEfR+3PgC+HffJX24jpe f/7oAFy18WatFVwaZCJjAysZ71i0G9be/stBCV40ZE7ODbiruTa5qhD1rFlS pwnWU5PpfQnOy3t2SmUf9hOrt6zYDHeeCJdaAqf/kr83Hdbf5LD1ADxhbLN6 H9ht7qi6LHj9vJ6QJ49Qz0bUL/oGp56a1xMGV3xPzvkrWBA5uT3Z4ggrFnrp OMC9JPa2aMDW8QYxIbBi2mbP5oeoZz5dUnnw3HuRPzLgHIu8ra2w5eaWwEC4 TfVg3dj9WKcpBQw0gye1WS9eBY8Xm3lWBt7wTOF+ONzoqTOr5IEgOpNYplMI G6UvepcAl/knxHTBNkMv7NwAy9u49NM9gOeqYby2LmwxZtw2F/i2W01JRwH2 bV3f6k7Chf89PJIHZ72+ufg5LP2ozPQI/PPijvt9DuL9OHl436Xw+J1zJkyF DwcfeKgMu9hKxbrBkyTVQuvzUSfGPe93Gi4Vb1hxBS7uHbHtDezx5O3EbbBM qUO91CHsGxO/ShrD5ldGLTGEfSr16qXgnfvq72+GNfPjH73Kw3O8PGVCEjz/ jN7VU/D3SZtjy2Hdgi8xa2FtyanSgw7j+vm9CBkPO1V2bTOBR0iX7PuVi3qW nle/DZ76sO/ubPjfQweXXIYXdCzdcwDuv3pBbhWs/u3xQRvY1GDwRMUjWN+3 rYkYBu8YUB47H965Qvl8zX3s02sSpIPgTrf2Oynwl0wXvzR4+JZfb33gMaHj GhpgmRz5VkN4pcv3JSP+wXMTt3CEJBw981buQjhhecrclzmoZ3KBE/fBUnNH +56EpT7NicuEKy/dveQEG2dL9f8C3y32qh0H+0c891MLwX5l2Gz1X9moZ64R Dbawd874ddlwk/HypYfhliH6Vw/A6kNV87LhbI8l3Taw45f6iT/gJrkQm+Fw RH5KnOZR1JFFHy7W3kM9O7m5/wq4fvt8IRWW8JrqfwzWq3iyYStsaNbdUAAX 5zu9FMFblfOXdsDzdska9oOv/HcwTycU993qf6+8viuIPhYumOQEv7mePDoW HpUwOD4KNi2IPOMCL/Mt7/8UntgQrj4RPmZ52l/sGOrkunMX27ME0WO1dR/1 4UERD/Xz4N7t42w3wFLZHflH4BnPv+fFwvv0DR1sYe9ztya9gu+YHPuhAqds D4yXOI56bvhf2Kc7qGc2JgNmwGc3O01Ng5U1+233hHUnVFUFwEu7n388C0/O dw2dC4f8G2FbAi/c1dtkEPzw0vL8/mFY79xI/F16G/Vsp6quMfzkus3ts/BU u4Z4H7j6geQOd3jT+MsDLsH+swtNDOCLfby3V8LnfY7L9oKrSqd+kgvH83TV qeZxJuru1W5bM9h5zszb4fCi4Pz87XBw4PDIv+HDjod0r8JLr4tt1YTzdBcm 1MILJjQ5fr8liH5LKg5UihBEwtwysyxY/335ditYw6zIIBh2zzj9aRfsvCdv 3EL43OF1djfgWIus0cPgytXjCxrh9K83/qq9ibo19T9dlUi8P/Oua6XCCwZm JiyGwwZf0d0G768NHHgAjjZIFs2Gc26bBGTBHf7nF/eH20L7NX6FB0xKcH17 A3Vi3Qu7v6LwuSVHHUiAN86KLFgGCzOOXNoIn5F31AuB++rueKkPl39SPZ0L f6ja0NWdgfsqp2FgK7w8xkanELaMvBwwNhp1LU1vbRi81827cSUct00mfgV8 d/Y0+3DY1rC2cgz8c2hPwSP4oO019e/p2De05Ot1wS7yvu5ZsEvBodOTTqD+ P5yUFQzHn1oo4wLPzK+RsYGLvRR3nIQ7HQ+vHw4PMn/X+Az+WjPmQV0a6tnI M/Z9TmLdk3xL8yq868e6BwZwq8SsUH848/F4fTc4wDz9twn8PeG/0wmwcp6y hwysvTVT5g38uHBbbel11DOroB1Sp3Cdr+SvTIRj1E2bZsGbHop98ID/be+3 bDOcvnac8zR4wIsXD87Dp8rmtvSBTc9H6pfDgQELAp9d+/On4xmZGEH0LNZU 7gR8Y5HaIBNY4bhmshPcovlxxzb4U0qruQ48pudyUwrca/b1prarWOe+8V5W BaudswvLg6OTpz0cHIufW7vBKAR+uatHfz4s9deqb/awlH3BmUC48NP9JHV4 ts7hQWnw/qfSTl+u4LnoaxPYAPuqzlLPhNPKFD8Pj8N9OHPpxz1w09V3yxbC yt6Lr1vDGvvPPNwLJw012KUEO65YPzkTFt/ds6Q2FfVMT+dsM/y2T8r4K3CR 1I9BavH4fb/PkPaHJT5kBtrCN8+mNpvARjeCPh+CvVz7vJGBtx4xdciGW+Km 3S+7LIiurpF+9B88M2zh9XPwx6kvJ2smYJ8ca3ZhE6wqE3XWES6XG3l2Brys zlH2GJxi/vqMBHz8jlpQAWwV7pL0MgWf67GPn9thfYviqzFwn/WpDjqnsT7L 1cheB88w3PJoDTzUxvqVLrxFYfqUKNjNYnFjVzL+3saes0/gDEFPKITrcgpk xc6gvpZ/1gyHlaMOB+nDuco7F6yEbd1tmtfDh9Q/+2vDIXOGLI+FreZMTP55 CfVMqeLRS9jktcWHHLin5cwUibNYB2gZDjsCT32wPnE6PCRWYpkdvClGR84T LtqTGKMGX9z8I+gs7Ko/pK75Iuqe+e3mYjhS/G/dTHiYys7l/RPxPFtv27sX XvzTtFAE713rXL4APvxE2sAHbo/XMBgO559+mXgx8c96Nz2q/gLq2dYouUr4 bpVi1zV4svWKnXLnUH8jzdftgN011L/MhYc8nffWHD7f8XH5dvhkmdJ8Bbjy RWrhFVhT6Vbu+yR8XdIWg9o///97dVEyvGDH9HNDz2N9t9cx1xc+sFhM3gq2 XLV63mw4R+vBzl1w4uNJbwbA7T2Hv2Sc//8/+e/5dfz/+Pfw7+X34fflz8Gf iz8nf27+Hvy9+Hvy9+Z14HXhdeJ143XkdeV15nXn58DPhZ8TPzd+jvxc+Tnz c+d9wPuC9wnvG95HvK94n/G+433I+5L3Ke9b3se8r3mf877nc8Dngs8Jnxs+ R3yu+JzxueNzyOeSzymfWz7HfK75nPO5Zx1gXWCdYN1gHWFdYZ1h3WEdYl1i nWLdYh1jXWOdY91jHWRdZJ1k3WQdZV1lnWXdZR1mXWadZt1mHWddZ51n3ed7 gO8Fvif43uB7hO8Vvmf43uF7iO8lvqf43uJ7jO81vuf43uN7kO9Fvif53uR7 lO9Vvmf53uV7mO9lvqf53uZ7nO91vuf53uc6gOsCrhO4buA6gusKrjO47uA6 hOsSrlO4buE6husarnO47uE6iOsirpO4buI6iusqrrO47uI6jOsyrtO4buM6 jus6rvO47uM6kOtCrhO5buQ6kutKrjO57uQ6lOtSrlO5buU6lutarnO57uU6 mOtirpO5buY6mutqrrO57uY6nOtyrtO5buc6nut6rvO57uc+gPsC7hO4b+A+ gvsK7jO47+A+hPsS7lO4b+E+hvsa7nO47+E+iPsi7pO4b+I+ivsq7rO47+I+ jPsy7tO4b+M+jvs67vO47+M+kPtC7hO5b+Q+kvtK7jO57+Q+lPtS7lO5b+U+ lvta7nO57+U+mPti7pO5b+Y+mvtq7rO57+Y+nPty7tO5b+c+nvt67vO572cf gH0B9gnYN2AfgX0F9hnYd2Afgn0J9inYt2Afg30N9jnY92AfhH0R9knYN2Ef hX0V9lnYd2Efhn0Z9mnYt2Efh30d9nnY92EfiH0h9onYN2IfiX0l9pnYd2If in0p9qnYt2Ifi30t9rnY92IfjH0x9snYN2MfjX019tnYd2Mfjn059unYt2Mf j3099vnY92MfkH1B9gnZN2QfkX1F9hnZd2Qfkn1J9inZt2Qfk31N9jnZ92Qf lH1R9knZN2UflX1V9lnZd2Ufln1Z9mnZt2Ufl31d9nnZ92UfmH1h9onZN2Yf mX1l9pnZd2Yfmn1p9qnZt2Yfm31t9rnZ92YfnH1x9snZN2cfnX119tnZd2cf nn159unZt2cfn3199vnZ9+ccgHMBzgk4N+AcgXMFzhk4d+AcgnMJzik4t+Ac g3MNzjk49+AchHMRzkk4N+EchXMVzlk4d+EchnMZzmk4t+Ech3Mdznk49+Ec iHMhzok4N+IciXMlzpk4d+IcinMpzqk4t+Ici3Mtzrk49+IcjHMxzsk4N+Mc jXM1ztk4d+McjnM5zuk4t+Mcj3M9zvk49+MckHNBzgk5N+QckXNFzhk5d+Qc knNJzik5t+Qck3NNzjk59+QclHNRzkk5N+UclXNVzlk5d+UclnNZzmk5t+Uc l3Ndznk59+UcmHNhzok5N+YcmXNlzpk5d+YcmnNpzqk5t+Ycm3Ntzrk59+Yc nHNxzsk5N+ccnXN1ztk5d+ccnnN5zuk5t+ccn3N9zvk592cOgLkA5gSYG2CO gLkC5gyYO2AOgbkE5hSYW2COgbkG5hyYe2AOgrkI5iSYm2COgrkK5iyYu2AO g7kM5jSY22COg7kO5jyY+2AOhLkQ5kSYG2GOhLkS5kyYO2EOhbkU5lSYW2GO hbkW5lyYe/n/HMz/5WKYk2Fuhjka5mqYs2Huhjkc5nKY02Fuhzke5nqY82Hu hzkg5oKYE2JuiDki5oqYM2LuiDkk5pKYU2JuiTkm5pqYc2LuiTko5qKYk2Ju ijkq5qqYs2Luijks5rKY02Juizku5rqY82Luizkw5sKYE2NujDky5sqYM2Pu jDk05tKYU2NujTk25tqYc2PujTk45uKYk2Nujjk65uqYs2Pujjk85vKY02Nu jzk+5vqY82PujzlA5gKZE2RukDlC5gqZM2TukDlE5hKZU2RukTlG5hqZc2Tu kTlI5iKZk2RukjlK5iqZs2TukjlM5jKZ02RukzlO5jqZ82TukzlQ5kKZE2Vu lDlS5kqZM2XulDlU5lKZU2VulTlW5lqZc2XulTlY5mKZk2Vuljla5mqZs2Xu ljlc5nKZ02Vulzle5nqZ82Xulzlg5oKZE2ZumDli5oqZM2bumDlk5pKZU2Zu mTlm5pqZc2bumTlo5qKZk2Zumjlq5qqZs2bumjls5rKZ02Zumzlu5rqZ82bu mzlw5sKZE2dunDly5sqZM2funDl05tKZU2dunTl25tqZc2funTl45uKZk2du njl65uqZs2funjl85vKZ02dunzl+5vqZ82fun+cAeC6A5wR4boDnCHiugOcM eO6A5xB4LoHnFHhugecYeK6B5xx47oHnIHguguckeG6C5yh4roLnLHjugucw eC6D5zR4boPnOHiug+c8eO6D50B4LoTnRHhuhOdIeK7kpe2N/z13wnMo/wNq u39g "]]}, Annotation[#, "Charting`Private`Tag#8"]& ]}}, {{}, {}}}, { DisplayFunction -> Identity, DisplayFunction -> Identity, AspectRatio -> 1, Axes -> {True, True}, AxesLabel -> {None, None}, AxesOrigin -> {1.9000000000000041`, 1.9000000000000041`}, DisplayFunction :> Identity, Frame -> {{True, True}, {True, True}}, FrameLabel -> {{ FormBox[ TagBox[ SubscriptBox["\[Omega]", "2"], HoldForm], TraditionalForm], None}, { FormBox[ TagBox[ SubscriptBox["\[Omega]", "1"], HoldForm], TraditionalForm], None}}, FrameStyle -> GrayLevel[0], FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}}, GridLines -> {None, None}, GridLinesStyle -> Directive[ GrayLevel[0.5, 0.4]], LabelStyle -> {FontFamily -> "Times", GrayLevel[0], FontSize -> 12}, Method -> { "AxisPadding" -> Scaled[0.02], "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "DefaultPlotStyle" -> { Directive[ RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[2]], Directive[ RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[2]], Directive[ RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[2]], Directive[ RGBColor[0.922526, 0.385626, 0.209179], AbsoluteThickness[2]], Directive[ RGBColor[0.528488, 0.470624, 0.701351], AbsoluteThickness[2]], Directive[ RGBColor[0.772079, 0.431554, 0.102387], AbsoluteThickness[2]], Directive[ RGBColor[0.363898, 0.618501, 0.782349], AbsoluteThickness[2]], Directive[ RGBColor[1, 0.75, 0], AbsoluteThickness[2]], Directive[ RGBColor[0.647624, 0.37816, 0.614037], AbsoluteThickness[2]], Directive[ RGBColor[0.571589, 0.586483, 0.], AbsoluteThickness[2]], Directive[ RGBColor[0.915, 0.3325, 0.2125], AbsoluteThickness[2]], Directive[ RGBColor[0.40082222609352647`, 0.5220066643438841, 0.85], AbsoluteThickness[2]], Directive[ RGBColor[ 0.9728288904374106, 0.621644452187053, 0.07336199581899142], AbsoluteThickness[2]], Directive[ RGBColor[0.736782672705901, 0.358, 0.5030266573755369], AbsoluteThickness[2]], Directive[ RGBColor[0.28026441037696703`, 0.715, 0.4292089322474965], AbsoluteThickness[2]]}, "DomainPadding" -> Scaled[0.02], "PointSizeFunction" -> "SmallPointSize", "RangePadding" -> Scaled[0.05], "OptimizePlotMarkers" -> True, "IncludeHighlighting" -> "CurrentSet", "HighlightStyle" -> Automatic, "OptimizePlotMarkers" -> True, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& )}}, PlotRange -> {{1.9, 3.}, {1.9, 3.}}, PlotRangeClipping -> True, PlotRangePadding -> {{0, 0}, {0, 0}}, Ticks -> {Automatic, Automatic}}], FormBox[ FormBox[ TemplateBox[{ "0.`", "0.2`", "0.4`", "0.6000000000000001`", "0.8`", "1.`", "1.2000000000000002`", "1.4`"}, "LineLegend", DisplayFunction -> (FormBox[ StyleBox[ StyleBox[ PaneBox[ TagBox[ GridBox[{{ StyleBox["\[Epsilon]", {FontFamily -> "Times", GrayLevel[0], FontSize -> 12}, Background -> Automatic, StripOnInput -> False]}, { TagBox[ GridBox[{{ TagBox[ GridBox[{{ GraphicsBox[{{ Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[2]], { LineBox[{{0, 12.5}, {20, 12.5}}]}}, { Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[2]], {}}}, AspectRatio -> Full, ImageSize -> {20, 12.5}, PlotRangePadding -> None, ImagePadding -> Automatic, BaselinePosition -> (Scaled[0.116] -> Baseline)], #}, { GraphicsBox[{{ Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[2]], { LineBox[{{0, 12.5}, {20, 12.5}}]}}, { Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[2]], {}}}, AspectRatio -> Full, ImageSize -> {20, 12.5}, PlotRangePadding -> None, ImagePadding -> Automatic, BaselinePosition -> (Scaled[0.116] -> Baseline)], #2}, { GraphicsBox[{{ Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[2]], { LineBox[{{0, 12.5}, {20, 12.5}}]}}, { Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[2]], {}}}, AspectRatio -> Full, ImageSize -> {20, 12.5}, PlotRangePadding -> None, ImagePadding -> Automatic, BaselinePosition -> (Scaled[0.116] -> Baseline)], #3}, { GraphicsBox[{{ Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], RGBColor[0.922526, 0.385626, 0.209179], AbsoluteThickness[2]], { LineBox[{{0, 12.5}, {20, 12.5}}]}}, { Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], RGBColor[0.922526, 0.385626, 0.209179], AbsoluteThickness[2]], {}}}, AspectRatio -> Full, ImageSize -> {20, 12.5}, PlotRangePadding -> None, ImagePadding -> Automatic, BaselinePosition -> (Scaled[0.116] -> Baseline)], #4}, { GraphicsBox[{{ Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], RGBColor[0.528488, 0.470624, 0.701351], AbsoluteThickness[2]], { LineBox[{{0, 12.5}, {20, 12.5}}]}}, { Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], RGBColor[0.528488, 0.470624, 0.701351], AbsoluteThickness[2]], {}}}, AspectRatio -> Full, ImageSize -> {20, 12.5}, PlotRangePadding -> None, ImagePadding -> Automatic, BaselinePosition -> (Scaled[0.116] -> Baseline)], #5}, { GraphicsBox[{{ Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], RGBColor[0.772079, 0.431554, 0.102387], AbsoluteThickness[2]], { LineBox[{{0, 12.5}, {20, 12.5}}]}}, { Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], RGBColor[0.772079, 0.431554, 0.102387], AbsoluteThickness[2]], {}}}, AspectRatio -> Full, ImageSize -> {20, 12.5}, PlotRangePadding -> None, ImagePadding -> Automatic, BaselinePosition -> (Scaled[0.116] -> Baseline)], #6}, { GraphicsBox[{{ Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], RGBColor[0.363898, 0.618501, 0.782349], AbsoluteThickness[2]], { LineBox[{{0, 12.5}, {20, 12.5}}]}}, { Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], RGBColor[0.363898, 0.618501, 0.782349], AbsoluteThickness[2]], {}}}, AspectRatio -> Full, ImageSize -> {20, 12.5}, PlotRangePadding -> None, ImagePadding -> Automatic, BaselinePosition -> (Scaled[0.116] -> Baseline)], #7}, { GraphicsBox[{{ Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], RGBColor[1, 0.75, 0], AbsoluteThickness[2]], { LineBox[{{0, 12.5}, {20, 12.5}}]}}, { Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], RGBColor[1, 0.75, 0], AbsoluteThickness[2]], {}}}, AspectRatio -> Full, ImageSize -> {20, 12.5}, PlotRangePadding -> None, ImagePadding -> Automatic, BaselinePosition -> (Scaled[0.116] -> Baseline)], #8}}, GridBoxAlignment -> { "Columns" -> {Center, Left}, "Rows" -> {{Baseline}}}, AutoDelete -> False, GridBoxDividers -> { "Columns" -> {{False}}, "Rows" -> {{False}}}, GridBoxItemSize -> { "Columns" -> {{All}}, "Rows" -> {{All}}}, GridBoxSpacings -> { "Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}], "Grid"]}}, GridBoxAlignment -> {"Columns" -> {{Center}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Grid"], Alignment -> Left, AppearanceElements -> None, ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction -> "ResizeToFit"], LineIndent -> 0, StripOnInput -> False], { FontFamily -> "Times", GrayLevel[0], FontSize -> 12}, Background -> Automatic, StripOnInput -> False], TraditionalForm]& ), InterpretationFunction :> (RowBox[{"LineLegend", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Directive", "[", RowBox[{ RowBox[{"PointSize", "[", FractionBox["1", "360"], "]"}], ",", TemplateBox[<| "color" -> RGBColor[0.368417, 0.506779, 0.709798]|>, "RGBColorSwatchTemplate"], ",", RowBox[{"AbsoluteThickness", "[", "2", "]"}]}], "]"}], ",", RowBox[{"Directive", "[", RowBox[{ RowBox[{"PointSize", "[", FractionBox["1", "360"], "]"}], ",", TemplateBox[<| "color" -> RGBColor[0.880722, 0.611041, 0.142051]|>, "RGBColorSwatchTemplate"], ",", RowBox[{"AbsoluteThickness", "[", "2", "]"}]}], "]"}], ",", RowBox[{"Directive", "[", RowBox[{ RowBox[{"PointSize", "[", FractionBox["1", "360"], "]"}], ",", TemplateBox[<| "color" -> RGBColor[0.560181, 0.691569, 0.194885]|>, "RGBColorSwatchTemplate"], ",", RowBox[{"AbsoluteThickness", "[", "2", "]"}]}], "]"}], ",", RowBox[{"Directive", "[", RowBox[{ RowBox[{"PointSize", "[", FractionBox["1", "360"], "]"}], ",", TemplateBox[<| "color" -> RGBColor[0.922526, 0.385626, 0.209179]|>, "RGBColorSwatchTemplate"], ",", RowBox[{"AbsoluteThickness", "[", "2", "]"}]}], "]"}], ",", RowBox[{"Directive", "[", RowBox[{ RowBox[{"PointSize", "[", FractionBox["1", "360"], "]"}], ",", TemplateBox[<| "color" -> RGBColor[0.528488, 0.470624, 0.701351]|>, "RGBColorSwatchTemplate"], ",", RowBox[{"AbsoluteThickness", "[", "2", "]"}]}], "]"}], ",", RowBox[{"Directive", "[", RowBox[{ RowBox[{"PointSize", "[", FractionBox["1", "360"], "]"}], ",", TemplateBox[<| "color" -> RGBColor[0.772079, 0.431554, 0.102387]|>, "RGBColorSwatchTemplate"], ",", RowBox[{"AbsoluteThickness", "[", "2", "]"}]}], "]"}], ",", RowBox[{"Directive", "[", RowBox[{ RowBox[{"PointSize", "[", FractionBox["1", "360"], "]"}], ",", TemplateBox[<| "color" -> RGBColor[0.363898, 0.618501, 0.782349]|>, "RGBColorSwatchTemplate"], ",", RowBox[{"AbsoluteThickness", "[", "2", "]"}]}], "]"}], ",", RowBox[{"Directive", "[", RowBox[{ RowBox[{"PointSize", "[", FractionBox["1", "360"], "]"}], ",", TemplateBox[<|"color" -> RGBColor[1, 0.75, 0]|>, "RGBColorSwatchTemplate"], ",", RowBox[{"AbsoluteThickness", "[", "2", "]"}]}], "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{#, ",", #2, ",", #3, ",", #4, ",", #5, ",", #6, ",", #7, ",", #8}], "}"}], ",", RowBox[{"LegendMarkers", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"False", ",", "Automatic"}], "}"}], ",", RowBox[{"{", RowBox[{"False", ",", "Automatic"}], "}"}], ",", RowBox[{"{", RowBox[{"False", ",", "Automatic"}], "}"}], ",", RowBox[{"{", RowBox[{"False", ",", "Automatic"}], "}"}], ",", RowBox[{"{", RowBox[{"False", ",", "Automatic"}], "}"}], ",", RowBox[{"{", RowBox[{"False", ",", "Automatic"}], "}"}], ",", RowBox[{"{", RowBox[{"False", ",", "Automatic"}], "}"}], ",", RowBox[{"{", RowBox[{"False", ",", "Automatic"}], "}"}], ",", RowBox[{"{", RowBox[{"False", ",", "Automatic"}], "}"}]}], "}"}]}], ",", RowBox[{"Joined", "\[Rule]", RowBox[{"{", RowBox[{ "True", ",", "True", ",", "True", ",", "True", ",", "True", ",", "True", ",", "True", ",", "True", ",", "True"}], "}"}]}], ",", RowBox[{"LegendLabel", "\[Rule]", "\[Epsilon]"}], ",", RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ), Editable -> True], TraditionalForm], TraditionalForm]}, "Legended", DisplayFunction->(GridBox[{{ TagBox[ ItemBox[ PaneBox[ TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline}, BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"], "SkipImageSizeLevel"], ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}}, GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}}, AutoDelete -> False, GridBoxItemSize -> Automatic, BaselinePosition -> {1, 1}]& ), Editable->True, InterpretationFunction->(RowBox[{"Legended", "[", RowBox[{#, ",", RowBox[{"Placed", "[", RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output", CellChangeTimes->{ 3.909045677015095*^9, 3.909046340411375*^9, {3.909047439726328*^9, 3.909047526046637*^9}, 3.909047564404361*^9, 3.9155360776765347`*^9, 3.9155368604895*^9, 3.915772759432945*^9}, CellLabel->"Out[37]=",ExpressionUUID->"0062a0bc-735d-4365-b826-64b7fedf2201"] }, Open ]] }, Closed]] }, WindowSize->{1918.5, 1023.75}, WindowMargins->{{0, Automatic}, {Automatic, 0}}, FrontEndVersion->"14.0 for Linux x86 (64-bit) (December 12, 2023)", StyleDefinitions->"Default.nb", ExpressionUUID->"fe7785c4-a5eb-46c5-8188-772697b31ba4" ] (* End of Notebook Content *) (* Internal cache information *) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[CellGroupData[{ Cell[580, 22, 153, 3, 50, "Section",ExpressionUUID->"926df485-ea0b-4c71-a1d6-03ba4988e06d"], Cell[736, 27, 222, 4, 22, "Input",ExpressionUUID->"ee12c51c-6b29-47d4-ae25-f1f7fff92040"], Cell[961, 33, 606, 12, 22, "Input",ExpressionUUID->"a4718025-6526-4aa1-b1d9-23f283157609"], Cell[1570, 47, 751, 18, 53, "Input",ExpressionUUID->"6297bd5f-9997-4788-b876-fdf7032919da"] }, Open ]], Cell[CellGroupData[{ Cell[2358, 70, 171, 3, 50, "Section",ExpressionUUID->"e26a72a6-0937-45b0-a625-f1bdf166fa4e"], Cell[2532, 75, 900, 29, 48, "Input",ExpressionUUID->"50c08a66-4e65-4112-8ad7-d5d45f281a8c"], Cell[CellGroupData[{ Cell[3457, 108, 2089, 51, 24, "Input",ExpressionUUID->"6c00d5eb-8ba7-405a-9bf1-5d71e992492f"], Cell[5549, 161, 29581, 584, 187, "Output",ExpressionUUID->"91d0dd3d-b26c-45d4-b0c1-2273c50e7d81"] }, Open ]], Cell[CellGroupData[{ Cell[35167, 750, 363, 8, 22, "Input",ExpressionUUID->"0c67dbb9-49b6-4edb-9219-e0a5cdf9b31d"], Cell[35533, 760, 471, 7, 35, "Output",ExpressionUUID->"bb552b18-713a-411e-b9bb-b974b3ab87fd"] }, Open ]], Cell[36019, 770, 436, 12, 35, "Input",ExpressionUUID->"06818f5b-ee0e-4634-b547-e05e415c12a6"], Cell[36458, 784, 312, 8, 27, "Input",ExpressionUUID->"ab28ae26-b52f-4a56-978d-e7ee3f806eda"], Cell[36773, 794, 676, 19, 44, "Input",ExpressionUUID->"eec97d73-ae34-443d-825f-cbb8adebe02f"], Cell[CellGroupData[{ Cell[37474, 817, 200, 4, 22, "Input",ExpressionUUID->"83c0ad8f-8d45-4089-b5a6-d03efc9cdfbe"], Cell[37677, 823, 195, 3, 35, "Output",ExpressionUUID->"28c77ad6-9821-4980-bae1-816090bc8085"] }, Open ]], Cell[37887, 829, 2461, 60, 39, "Input",ExpressionUUID->"def223fd-aeee-4091-9e76-97462b62b6cc"], Cell[40351, 891, 5558, 139, 116, "Input",ExpressionUUID->"f1078ecd-48ad-4003-b086-93bd8c2242bb"], Cell[45912, 1032, 7561, 192, 193, "Input",ExpressionUUID->"244eac76-0bbb-4e5a-9b06-0f294e654a3f"], Cell[CellGroupData[{ Cell[53498, 1228, 701, 12, 22, "Input",ExpressionUUID->"28a195c1-e132-4911-80e7-05e2e1470f78"], Cell[54202, 1242, 32223, 586, 83, "Output",ExpressionUUID->"d05fb8f0-b7b9-47a5-a984-00b2a18f0f10"] }, Open ]], Cell[CellGroupData[{ Cell[86462, 1833, 680, 14, 22, "Input",ExpressionUUID->"e68d9ce5-814e-4498-aeeb-52ccf1b87537"], Cell[87145, 1849, 31407, 575, 83, "Output",ExpressionUUID->"4fdf1572-8b7c-4352-8f24-df96a72089dd"] }, Open ]], Cell[CellGroupData[{ Cell[118589, 2429, 733, 14, 22, "Input",ExpressionUUID->"9df7247c-bae3-4562-95d7-d5d547f8369d"], Cell[119325, 2445, 31577, 579, 83, "Output",ExpressionUUID->"085d89e1-1412-44e2-9992-5f811f7e8263"] }, Open ]], Cell[150917, 3027, 799, 20, 53, "Input",ExpressionUUID->"9c8fbe7e-534f-4567-b9e1-d7a5c3ce1086"] }, Open ]], Cell[CellGroupData[{ Cell[151753, 3052, 157, 3, 50, "Section",ExpressionUUID->"8475cc42-326a-4ebf-b66b-7d80366a5280"], Cell[151913, 3057, 6536, 183, 341, "Input",ExpressionUUID->"830d12ec-ccc1-4fbc-9de0-2282430f4840"], Cell[158452, 3242, 1571, 48, 22, "Input",ExpressionUUID->"bcf9e08b-5bc8-4156-8987-ae991b3777be"], Cell[160026, 3292, 706, 19, 38, "Input",ExpressionUUID->"90676af5-535d-4801-950c-574cc68db098"], Cell[CellGroupData[{ Cell[160757, 3315, 241, 5, 22, "Input",ExpressionUUID->"3e4fb69d-9599-4326-945e-414023395a5f"], Cell[161001, 3322, 1351, 30, 111, "Output",ExpressionUUID->"31ed0430-b8ee-4e74-8482-c51b4ee8b6d3"] }, Open ]], Cell[CellGroupData[{ Cell[162389, 3357, 472, 13, 22, "Input",ExpressionUUID->"692c829b-e066-4a5e-bd71-7d2bb33fb03d"], Cell[162864, 3372, 1358, 31, 111, "Output",ExpressionUUID->"5c44de21-95e3-40ea-8171-bdba9bd0ca88"] }, Open ]], Cell[CellGroupData[{ Cell[164259, 3408, 714, 21, 22, "Input",ExpressionUUID->"9dee447a-c909-40cb-8546-4295c33c7ecb"], Cell[164976, 3431, 579, 9, 25, "Output",ExpressionUUID->"a4b05569-f206-413a-a53c-79ed31b50a77"] }, Open ]], Cell[165570, 3443, 3810, 99, 78, "Input",ExpressionUUID->"ae225317-c8f2-42eb-a092-5a3d6696fcf1"], Cell[CellGroupData[{ Cell[169405, 3546, 998, 25, 22, "Input",ExpressionUUID->"27f3f5fd-a103-416e-9e22-49288939ab46"], Cell[170406, 3573, 6479, 175, 73, "Output",ExpressionUUID->"7c116b5c-7bb6-4259-98ab-703694af8842"] }, Open ]], Cell[CellGroupData[{ Cell[176922, 3753, 910, 26, 24, "Input",ExpressionUUID->"ad63e4bc-666e-46ed-8c23-6d418adb2b5d"], Cell[177835, 3781, 3851, 116, 55, "Output",ExpressionUUID->"2f3c957d-28b6-4286-a434-e11d516208bf"] }, Open ]], Cell[181701, 3900, 988, 21, 22, "Input",ExpressionUUID->"c88cdbf9-9e5d-49a2-927e-12c0fc1e998e"], Cell[182692, 3923, 2608, 55, 24, "Input",ExpressionUUID->"13c828e2-dc96-418a-98b1-bcedb602773f"], Cell[CellGroupData[{ Cell[185325, 3982, 423, 11, 22, "Input",ExpressionUUID->"5547b70f-6ccc-4c3c-b7a2-430267adff70"], Cell[185751, 3995, 5699, 145, 160, "Output",ExpressionUUID->"36211747-6213-49d3-af64-0c1c0cf9c4be"] }, Open ]], Cell[CellGroupData[{ Cell[191487, 4145, 435, 11, 22, "Input",ExpressionUUID->"87393889-0e58-4140-85b8-c09bdfb83fa6"], Cell[191925, 4158, 11216, 318, 177, "Output",ExpressionUUID->"45c1ecc4-6c35-4af1-a8c6-4c6db7168bb2"] }, Open ]], Cell[CellGroupData[{ Cell[203178, 4481, 476, 13, 22, "Input",ExpressionUUID->"4d2d8f62-3f6d-45b3-9a63-780219e0e7e8"], Cell[203657, 4496, 1353, 37, 27, "Output",ExpressionUUID->"76297447-9a1b-4498-9d3f-c2078f821920"] }, Open ]], Cell[CellGroupData[{ Cell[205047, 4538, 951, 21, 22, "Input",ExpressionUUID->"83eebe5d-3503-4b31-b14f-639ea14a0248"], Cell[206001, 4561, 800, 15, 22, "Message",ExpressionUUID->"8caaea4c-f1d2-4f89-97f5-7e5b71ca8e2a"] }, Open ]], Cell[206816, 4579, 1110, 23, 22, "Input",ExpressionUUID->"4c448220-e031-41d2-9096-b9e341dcd981"], Cell[207929, 4604, 3839, 84, 41, "Input",ExpressionUUID->"63ea8c17-6059-4955-9b14-1b9deb692962"], Cell[CellGroupData[{ Cell[211793, 4692, 1255, 27, 24, "Input",ExpressionUUID->"7fe546c9-0af1-4973-85bb-971e16ca3307"], Cell[213051, 4721, 1678, 39, 38, "Output",ExpressionUUID->"fafa3e14-532d-4f8f-a8ed-c5504aa4836f"] }, Open ]], Cell[214744, 4763, 968, 26, 24, "Input",ExpressionUUID->"84934d64-fc27-4a55-a1de-6f9f09494033"], Cell[215715, 4791, 362, 10, 22, "Input",ExpressionUUID->"83f76904-20b3-4c92-8479-9704a86e9bc3"], Cell[216080, 4803, 890, 19, 22, "Input",ExpressionUUID->"82f4b3f0-5071-4e29-8e26-febf3110e5e0"], Cell[CellGroupData[{ Cell[216995, 4826, 3664, 87, 107, "Input",ExpressionUUID->"acfb6249-e04b-4f94-810b-05af73aac0bc"], Cell[220662, 4915, 3554, 69, 59, "Output",ExpressionUUID->"22fa23af-56ac-41f0-bad7-75e203e68dfd"] }, Open ]], Cell[CellGroupData[{ Cell[224253, 4989, 2813, 63, 24, "Input",ExpressionUUID->"2a2f7dd9-b465-4d3a-81cf-abf195bcfc21"], Cell[227069, 5054, 680, 13, 22, "Message",ExpressionUUID->"fd049e2d-b962-42ba-8dca-46fc9644cce9"], Cell[227752, 5069, 505, 11, 22, "Message",ExpressionUUID->"5cb44bf7-173f-499b-851b-adf000d36880"], Cell[228260, 5082, 505, 11, 22, "Message",ExpressionUUID->"3413d04c-3008-4bee-a8ec-f365f773087f"], Cell[228768, 5095, 505, 11, 22, "Message",ExpressionUUID->"982a2288-fc78-4c1e-8b15-7a87bdc87b9b"], Cell[229276, 5108, 549, 11, 22, "Message",ExpressionUUID->"a6869e09-be0b-47fc-9d8f-a7b647e3ebf2"], Cell[229828, 5121, 680, 13, 22, "Message",ExpressionUUID->"3e572292-7317-4d82-b804-f7ec1744c5da"], Cell[230511, 5136, 680, 13, 22, "Message",ExpressionUUID->"d651ce85-ec36-45c7-9151-74cc477901a5"], Cell[231194, 5151, 549, 11, 22, "Message",ExpressionUUID->"9996e476-8dd5-4dff-abe4-3dc38d2bcc7b"] }, Open ]], Cell[CellGroupData[{ Cell[231780, 5167, 1907, 53, 39, "Input",ExpressionUUID->"f6acd6ad-220b-4828-a7d3-5558b5c91e4c"], Cell[233690, 5222, 3373, 87, 75, "Output",ExpressionUUID->"9b8635de-045e-4f3a-b8b3-4a1dc739d03e"] }, Open ]], Cell[237078, 5312, 1583, 41, 24, "Input",ExpressionUUID->"b04acde6-1c4d-4632-b34e-b05a8c3158f7"], Cell[CellGroupData[{ Cell[238686, 5357, 310, 8, 22, "Input",ExpressionUUID->"bb7ea87c-a295-4530-bdcd-103371a64b77"], Cell[238999, 5367, 75439, 1299, 183, "Output",ExpressionUUID->"471fcd6b-1223-49d9-962f-85e668fab430"] }, Open ]], Cell[314453, 6669, 23716, 405, 174, "Input",ExpressionUUID->"c8acd08e-419d-47df-95d8-cd474e7cf4f4"], Cell[CellGroupData[{ Cell[338194, 7078, 3692, 87, 56, "Input",ExpressionUUID->"0012cb53-2118-4c32-9687-3900486d9017"], Cell[341889, 7167, 609, 12, 22, "Message",ExpressionUUID->"a407657b-19ae-486f-b6cf-16ca559b3fb6"], Cell[342501, 7181, 611, 12, 22, "Message",ExpressionUUID->"2a251b03-af55-4ee8-b6ee-dc27429eff8a"], Cell[343115, 7195, 611, 12, 22, "Message",ExpressionUUID->"466d17bf-ce0f-47a2-8764-46320b67ac6e"], Cell[343729, 7209, 478, 10, 22, "Message",ExpressionUUID->"841bbca7-6ddd-4432-bc00-7d704794b41e"] }, Open ]], Cell[CellGroupData[{ Cell[344244, 7224, 2254, 58, 22, "Input",ExpressionUUID->"abdd1227-571e-42c2-ba14-b0236a50da8f"], Cell[346501, 7284, 258497, 4393, 294, "Output",ExpressionUUID->"ccc0c10d-374b-4561-9b69-130306acddb0"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[605047, 11683, 157, 3, 50, "Section",ExpressionUUID->"3e089f73-01c1-4198-8f45-28504d7853b6"], Cell[605207, 11688, 8352, 226, 562, "Input",ExpressionUUID->"32615cc9-ab89-4fec-9507-d4081e5ab9af"], Cell[613562, 11916, 665, 21, 24, "Input",ExpressionUUID->"b5146e99-78bb-48d4-9374-7b833d3a6574"], Cell[614230, 11939, 1566, 47, 22, "Input",ExpressionUUID->"ae37dedd-da6c-42ec-ae9b-796780482b37"], Cell[615799, 11988, 701, 18, 38, "Input",ExpressionUUID->"3d84f495-773b-4ce0-a779-44c19e0915c3"], Cell[616503, 12008, 371, 9, 22, "Input",ExpressionUUID->"618a42f8-b051-4cdf-8473-21e9de937b82"], Cell[616877, 12019, 373, 9, 22, "Input",ExpressionUUID->"9a83e28a-4231-4cff-9a04-fac75f5e1b4d"], Cell[617253, 12030, 427, 11, 22, "Input",ExpressionUUID->"43300cae-9f4f-47cf-9813-49db8b5d69a9"], Cell[617683, 12043, 379, 10, 22, "Input",ExpressionUUID->"e7afa4f7-6f52-45c9-9d8a-53932a27bcf7"], Cell[CellGroupData[{ Cell[618087, 12057, 384, 7, 22, "Input",ExpressionUUID->"c1a6934f-6252-4ba2-8a31-abb6a974a91c"], Cell[618474, 12066, 617, 15, 35, "Output",ExpressionUUID->"bafdc24d-ce74-44fa-81b1-b5eed3c1c110"] }, Open ]], Cell[619106, 12084, 146, 3, 22, "Input",ExpressionUUID->"c7e4db28-e1d9-4e45-8d64-b45ae3f3b02a"], Cell[CellGroupData[{ Cell[619277, 12091, 237, 4, 22, "Input",ExpressionUUID->"90f8e6cf-a2cb-4fc4-af6b-a2643f1c18bc"], Cell[619517, 12097, 1350, 30, 111, "Output",ExpressionUUID->"761ce714-4f2f-4e7a-9a77-4aeb97c7b9e3"] }, Open ]], Cell[CellGroupData[{ Cell[620904, 12132, 468, 12, 22, "Input",ExpressionUUID->"8fc542b7-ffb8-43ab-82fe-a6e3bc6c4dc1"], Cell[621375, 12146, 1356, 31, 111, "Output",ExpressionUUID->"ba200cb0-9e0e-423b-9f5f-963ad56ef299"] }, Open ]], Cell[CellGroupData[{ Cell[622768, 12182, 710, 20, 22, "Input",ExpressionUUID->"d97a16cb-8f13-463e-9235-10cf798e882c"], Cell[623481, 12204, 575, 8, 25, "Output",ExpressionUUID->"ab9cfbb0-fc67-419d-ba7f-6c7524f65677"] }, Open ]], Cell[624071, 12215, 4382, 113, 78, "Input",ExpressionUUID->"1be6ad59-07a8-4e68-a148-615473405a94"], Cell[CellGroupData[{ Cell[628478, 12332, 244, 5, 22, "Input",ExpressionUUID->"31ecc6b1-3013-4df7-a379-762ad87db2ba"], Cell[628725, 12339, 4838, 148, 66, "Output",ExpressionUUID->"c29d260e-8842-437a-a5aa-1328cb436e45"] }, Open ]], Cell[633578, 12490, 5182, 145, 95, "Input",ExpressionUUID->"95097ec5-8784-4805-b556-6daf94695fcf"], Cell[CellGroupData[{ Cell[638785, 12639, 197, 3, 22, "Input",ExpressionUUID->"54fb42a2-4e37-42ef-bcb5-a2ee989bb8c3"], Cell[638985, 12644, 9842, 287, 152, "Output",ExpressionUUID->"75df506e-ff6a-4923-b1da-38da451a259d"] }, Open ]], Cell[CellGroupData[{ Cell[648864, 12936, 5332, 137, 148, "Input",ExpressionUUID->"f0db1c0b-165f-4f87-9592-b5d10a026867"], Cell[654199, 13075, 13259, 326, 176, "Output",ExpressionUUID->"94abb570-dead-4d27-9ab4-47b0a6832b02"] }, Open ]], Cell[CellGroupData[{ Cell[667495, 13406, 458, 12, 22, "Input",ExpressionUUID->"dca0231b-2ccb-4ad8-ba7d-c5644fabf4cd"], Cell[667956, 13420, 10619, 274, 154, "Output",ExpressionUUID->"93fcca29-6cfb-44b9-a537-5fa298b15766"] }, Open ]], Cell[CellGroupData[{ Cell[678612, 13699, 192, 2, 22, "Input",ExpressionUUID->"b5c3d02d-a185-4dd1-b953-b06af4d48aed"], Cell[678807, 13703, 10234, 310, 107, "Output",ExpressionUUID->"a298f61a-4c39-4526-8144-4a1ce684b3a3"] }, Open ]], Cell[CellGroupData[{ Cell[689078, 14018, 1098, 27, 22, "Input",ExpressionUUID->"85b738a2-9ed8-4758-a6c3-13831de84fcb"], Cell[690179, 14047, 5347, 154, 66, "Output",ExpressionUUID->"7780f5a5-3b9f-4878-bca1-49d638b2ede5"] }, Open ]], Cell[CellGroupData[{ Cell[695563, 14206, 910, 26, 24, "Input",ExpressionUUID->"54f4b878-a43b-49d6-b99e-acf114036072"], Cell[696476, 14234, 4849, 146, 66, "Output",ExpressionUUID->"8ab0a219-d516-4630-ab17-d2c9ecd07701"] }, Open ]], Cell[701340, 14383, 3835, 83, 41, "Input",ExpressionUUID->"19946ab1-9943-42ba-8c04-694cc1f0098d"], Cell[CellGroupData[{ Cell[705200, 14470, 1251, 26, 24, "Input",ExpressionUUID->"623df1f0-acb4-43e6-b11b-11cede6c62f1"], Cell[706454, 14498, 1648, 37, 38, "Output",ExpressionUUID->"f98a2dfe-f238-4006-aca1-8b523c40cf8d"] }, Open ]], Cell[CellGroupData[{ Cell[708139, 14540, 490, 11, 22, "Input",ExpressionUUID->"2dd75e13-4f61-4be7-b65b-acbf57a3d45b"], Cell[708632, 14553, 8242, 189, 117, "Output",ExpressionUUID->"c4f58aa5-4d98-4810-9646-4e8d42c22b4d"] }, Open ]], Cell[CellGroupData[{ Cell[716911, 14747, 1216, 36, 24, "Input",ExpressionUUID->"785da43f-dcbf-49db-b834-5c4280942ceb"], Cell[718130, 14785, 7508, 186, 122, "Output",ExpressionUUID->"ef9ef3d0-78d5-4ee8-9f3f-0ea8bcf8e2ee"] }, Open ]], Cell[CellGroupData[{ Cell[725675, 14976, 1044, 24, 22, "Input",ExpressionUUID->"aff1542a-e458-46e1-bc4e-b34eedfeafcd"], Cell[726722, 15002, 207, 3, 25, "Output",ExpressionUUID->"540af864-3347-4186-9e31-aa1340e04ef2"] }, Open ]], Cell[726944, 15008, 2604, 54, 24, "Input",ExpressionUUID->"b1a9bc1c-abed-43f0-a0e6-669043a8612a"], Cell[CellGroupData[{ Cell[729573, 15066, 919, 22, 22, "Input",ExpressionUUID->"d0e2a3ad-c754-4c6f-892c-e1eb7382819e"], Cell[730495, 15090, 9406, 209, 75, "Output",ExpressionUUID->"2ab0480a-d3ff-4a97-b7ed-5c8b82ae738f"] }, Open ]], Cell[CellGroupData[{ Cell[739938, 15304, 1564, 47, 24, "Input",ExpressionUUID->"bb7b14e3-b7dc-4aab-b889-d2be5f9e5ca1"], Cell[741505, 15353, 3570, 109, 76, "Output",ExpressionUUID->"dc4be792-83a9-4fbe-af25-cb419d9bd7f5"] }, Open ]], Cell[CellGroupData[{ Cell[745112, 15467, 711, 18, 22, "Input",ExpressionUUID->"e749859b-f1bb-4500-b28b-6db621a38217"], Cell[745826, 15487, 4407, 112, 76, "Output",ExpressionUUID->"d7d109d7-3932-47b3-bf98-64b81ad6ca17"] }, Open ]], Cell[CellGroupData[{ Cell[750270, 15604, 635, 15, 23, "Input",ExpressionUUID->"1e958760-e7cd-4052-b9b9-908474376dba"], Cell[750908, 15621, 489, 10, 35, "Output",ExpressionUUID->"2ad54e2e-1894-4c5a-b49c-69dc3d8f2778"] }, Open ]], Cell[CellGroupData[{ Cell[751434, 15636, 718, 14, 22, "Input",ExpressionUUID->"e3e9458f-95e8-4772-8a74-726345ff1051"], Cell[752155, 15652, 12022, 346, 180, "Output",ExpressionUUID->"365b5ad7-7989-4846-bb39-0e6808cb0ccd"] }, Open ]], Cell[CellGroupData[{ Cell[764214, 16003, 698, 14, 22, "Input",ExpressionUUID->"13c24c5e-bb61-4d7d-b2bf-3c3997d9edaa"], Cell[764915, 16019, 205, 4, 35, "Output",ExpressionUUID->"98447f30-3d37-4177-8919-efee0d8245af"] }, Open ]], Cell[CellGroupData[{ Cell[765157, 16028, 177, 3, 22, "Input",ExpressionUUID->"af6aac65-5a4e-453d-b4b6-17d282a20e18"], Cell[765337, 16033, 11800, 322, 196, "Output",ExpressionUUID->"3e4a980e-1533-48dd-9ff1-621494d5b9c2"] }, Open ]], Cell[CellGroupData[{ Cell[777174, 16360, 234, 5, 22, "Input",ExpressionUUID->"f42329fb-b20f-4aaa-a8d2-db55af9748ac"], Cell[777411, 16367, 225, 4, 35, "Output",ExpressionUUID->"05e474ca-1e55-4d23-afd9-d0f3a09207a6"] }, Open ]], Cell[CellGroupData[{ Cell[777673, 16376, 179, 3, 22, "Input",ExpressionUUID->"d10961b8-b152-4e5e-9c29-4145a2972d3d"], Cell[777855, 16381, 22623, 476, 264, "Output",ExpressionUUID->"c36222bd-4f89-4cc7-a993-0cf35af05bc7"] }, Open ]], Cell[CellGroupData[{ Cell[800515, 16862, 419, 10, 22, "Input",ExpressionUUID->"58abea83-2416-4b80-aea1-49c6f03cd553"], Cell[800937, 16874, 5669, 143, 160, "Output",ExpressionUUID->"e15a4a61-3508-49a6-873c-f26ddee17deb"] }, Open ]], Cell[CellGroupData[{ Cell[806643, 17022, 431, 10, 22, "Input",ExpressionUUID->"4538f42b-62c4-4651-9986-8bec11748d70"], Cell[807077, 17034, 11191, 317, 177, "Output",ExpressionUUID->"7c39a957-cd36-48d3-a034-eee66c14231d"] }, Open ]], Cell[CellGroupData[{ Cell[818305, 17356, 472, 12, 22, "Input",ExpressionUUID->"b2530e76-38c3-48b8-85fb-23b713cd8c3c"], Cell[818780, 17370, 1322, 35, 27, "Output",ExpressionUUID->"abded75c-64eb-402a-9a69-78d296d1035c"] }, Open ]], Cell[CellGroupData[{ Cell[820139, 17410, 947, 20, 22, "Input",ExpressionUUID->"583ab52e-3647-429c-9c33-fd12ede259b8"], Cell[821089, 17432, 775, 15, 22, "Message",ExpressionUUID->"2f4c2728-fd8d-46d6-a68a-371b7c8a7ba9"] }, Open ]], Cell[821879, 17450, 1004, 20, 22, "Input",ExpressionUUID->"e570420b-e9e0-4c23-ae5b-1941f99cb727"], Cell[822886, 17472, 3835, 83, 41, "Input",ExpressionUUID->"83b8cb66-7a5d-443e-8848-d633f7da5d42"], Cell[CellGroupData[{ Cell[826746, 17559, 1251, 26, 24, "Input",ExpressionUUID->"408b9498-9f18-42c3-a258-3358b138cc65"], Cell[828000, 17587, 1626, 37, 38, "Output",ExpressionUUID->"e46e4e60-dba7-4188-9de8-05742c779360"] }, Open ]], Cell[829641, 17627, 964, 25, 24, "Input",ExpressionUUID->"59c41cae-4e24-4a51-a7a3-7d500a289340"], Cell[830608, 17654, 358, 9, 22, "Input",ExpressionUUID->"10d3cd49-4d16-4520-bb58-ea59fc8d7b92"], Cell[830969, 17665, 886, 18, 22, "Input",ExpressionUUID->"93de0c72-ab3d-4e0e-91df-edd506da949b"], Cell[CellGroupData[{ Cell[831880, 17687, 3660, 86, 107, "Input",ExpressionUUID->"9e5141ea-32bd-48b0-8277-cb026f090ea9"], Cell[835543, 17775, 3546, 66, 59, "Output",ExpressionUUID->"0ec956b2-4200-4dbd-bf3a-8e1ba4f9fb29"] }, Open ]], Cell[CellGroupData[{ Cell[839126, 17846, 2809, 62, 24, "Input",ExpressionUUID->"15a4bc43-3d38-4bf8-ab87-9fe6c3c52fd5"], Cell[841938, 17910, 633, 13, 22, "Message",ExpressionUUID->"021c4989-876c-4967-bcac-1f978a0f6419"], Cell[842574, 17925, 633, 13, 22, "Message",ExpressionUUID->"4c8cb9d5-8149-4cd8-9ae8-7fb98ffaf525"], Cell[843210, 17940, 633, 13, 22, "Message",ExpressionUUID->"9bc6aaf1-acad-42a4-8e8c-3d1bc23999cc"], Cell[843846, 17955, 502, 11, 22, "Message",ExpressionUUID->"f629becb-1a0a-41c4-982d-075455cd242a"] }, Open ]], Cell[CellGroupData[{ Cell[844385, 17971, 1903, 52, 39, "Input",ExpressionUUID->"a6ab04f8-b182-4e06-87d3-44cf4d55f296"], Cell[846291, 18025, 3335, 87, 75, "Output",ExpressionUUID->"e43b3e00-885a-43e1-b26b-8b1a2615d3fc"] }, Open ]], Cell[849641, 18115, 1579, 40, 24, "Input",ExpressionUUID->"cc4f2eca-a54d-413e-8b18-94ba1c2bbbc2"], Cell[CellGroupData[{ Cell[851245, 18159, 306, 7, 22, "Input",ExpressionUUID->"971b5a9c-8ceb-429f-9eab-88056cb74ad9"], Cell[851554, 18168, 75499, 1300, 183, "Output",ExpressionUUID->"e2ba4c38-edde-4b75-bc95-88dc47d04160"] }, Open ]], Cell[927068, 19471, 23714, 405, 174, "Input",ExpressionUUID->"596a8ce7-fc36-4ac8-af24-031757805468"], Cell[CellGroupData[{ Cell[950807, 19880, 3572, 83, 39, "Input",ExpressionUUID->"22832d0e-448c-47f2-8f0e-e89d73befd40"], Cell[954382, 19965, 702, 14, 22, "Message",ExpressionUUID->"0e26f2eb-9d86-492c-91a9-5ea47d8e976a"], Cell[955087, 19981, 702, 14, 22, "Message",ExpressionUUID->"d7d2d2b6-5759-4cc8-9a15-621a513b57c6"] }, Open ]], Cell[CellGroupData[{ Cell[955826, 20000, 2196, 57, 22, "Input",ExpressionUUID->"e61533c0-9653-4007-9f77-db9184a97720"], Cell[958025, 20059, 216473, 3703, 282, "Output",ExpressionUUID->"0062a0bc-735d-4365-b826-64b7fedf2201"] }, Open ]] }, Closed]] } ] *)