From 2d8fcebf2f56efd1c3913ba49eaff6520ffdb33d Mon Sep 17 00:00:00 2001
From: Jaron Kent-Dobias <jaron@kent-dobias.com>
Date: Fri, 6 Jul 2018 14:42:44 -0400
Subject: rewrote wolff in c++ with templates so that any system can be run
 with it

---
 CMakeLists.txt     |  15 +-
 lib/cluster.c      | 277 -------------------------------------
 lib/cluster.h      | 391 +++++++++++++++++++++++++++++++++++++++++++++--------
 lib/graph.h        |  10 +-
 lib/rand.h         |   9 ++
 lib/stack.h        |   9 ++
 src/wolff.cpp      | 137 +++++++++++++++++++
 src/wolff_dgm.c    | 247 ---------------------------------
 src/wolff_vector.c | 377 ---------------------------------------------------
 9 files changed, 507 insertions(+), 965 deletions(-)
 delete mode 100644 lib/cluster.c
 create mode 100644 src/wolff.cpp
 delete mode 100644 src/wolff_dgm.c
 delete mode 100644 src/wolff_vector.c

diff --git a/CMakeLists.txt b/CMakeLists.txt
index 4b46bcd..7c1bc32 100644
--- a/CMakeLists.txt
+++ b/CMakeLists.txt
@@ -4,15 +4,15 @@ project(wolff)
 set(CMAKE_CXX_FLAGS_DEBUG "-g")
 set(CMAKE_CXX_FLAGS_RELEASE "-O3")
 
-set (CMAKE_CXX_STANDARD 11)
+set (CMAKE_CXX_STANDARD 17)
 
 include_directories(lib ~/.local/include)
 link_directories(~/.local/lib)
 
-file(GLOB SOURCES lib/*.c)
-add_executable(wolff_finite src/wolff_finite.c ${SOURCES})
-add_executable(wolff_vector src/wolff_vector.c ${SOURCES})
-add_executable(wolff_dgm src/wolff_dgm.c ${SOURCES})
+file(GLOB CSOURCES lib/*.c)
+file(GLOB CPPSOURCES lib/*.cpp)
+add_executable(wolff_finite src/wolff_finite.c ${CSOURCES})
+add_executable(wolff src/wolff.cpp ${CPPSOURCES} ${CSOURCES})
 
 find_package(OpenMP)
 if (OPENMP_FOUND)
@@ -21,8 +21,7 @@ if (OPENMP_FOUND)
 endif()
 
 target_link_libraries(wolff_finite gsl m cblas fftw3)
-target_link_libraries(wolff_vector gsl m cblas fftw3)
-target_link_libraries(wolff_dgm gsl m cblas fftw3)
+target_link_libraries(wolff gsl m cblas fftw3)
 
-install(TARGETS wolff_finite wolff_vector wolff_dgm DESTINATION bin)
+install(TARGETS wolff_finite wolff DESTINATION bin)
 
diff --git a/lib/cluster.c b/lib/cluster.c
deleted file mode 100644
index 96225a2..0000000
--- a/lib/cluster.c
+++ /dev/null
@@ -1,277 +0,0 @@
-
-#include "cluster.h"
-
-v_t flip_cluster_dgm(dgm_state_t *s, v_t v0, h_t rot, gsl_rng *r) {
-  v_t nv = 0;
-
-  ll_t *stack = NULL;     // create a new stack
-  stack_push(&stack, v0); // push the initial vertex to the stack
-
-  bool *marks = (bool *)calloc(s->g->nv, sizeof(bool));
-
-  while (stack != NULL) {
-    v_t v = stack_pop(&stack);
-
-    if (!marks[v]) {
-      h_t s_old, s_new;
-      dihinf_t *R_new; 
-      bool external_flipped;
-
-      marks[v] = true;
-
-      if (v == s->g->nv - 1) {
-        R_new = dihinf_compose(rot, s->R);
-        external_flipped = true;
-      } else {
-        s_old = s->spins[v];
-        s_new = dihinf_act(rot, s_old);
-        external_flipped = false;
-      }
-
-      v_t nn = s->g->v_i[v + 1] - s->g->v_i[v];
-
-      for (v_t i = 0; i < nn; i++) {
-        h_t sn;
-        double prob;
-        bool external_neighbor = false;
-
-        v_t vn = s->g->v_adj[s->g->v_i[v] + i];
-
-        if (vn == s->g->nv - 1) {
-          external_neighbor = true;
-        } else {
-          sn = s->spins[vn];
-        }
-
-        if (external_flipped || external_neighbor) {
-          h_t rot_s_old, rot_s_new;
-
-          if (external_neighbor) {
-            rot_s_old = dihinf_inverse_act(s->R, s_old);
-            rot_s_new = dihinf_inverse_act(s->R, s_new);
-          } else {
-            rot_s_old = dihinf_inverse_act(s->R, sn);
-            rot_s_new = dihinf_inverse_act(R_new, sn);
-          }
-
-          double dE = s->H(s->H_info, rot_s_old) - s->H(s->H_info, rot_s_new);
-          prob = 1.0 - exp(-dE / s->T);
-
-          s->M += rot_s_new - rot_s_old;
-          s->E += dE;
-        } else {
-          double dE = (s->J)(s_old - sn) - (s->J)(s_new - sn);
-          prob = 1.0 - exp(-dE / s->T);
-          s->E += dE;
-        }
-
-        if (gsl_rng_uniform(r) < prob) { // and with probability ps[e]...
-          stack_push(&stack, vn); // push the neighboring vertex to the stack
-        }
-      }
-
-      if (external_flipped) {
-        free(s->R);
-        s->R = R_new;
-      } else {
-        s->spins[v] = s_new;
-      }
-
-      if (v != s->g->nv - 1) { // count the number of non-external sites that flip
-        nv++;
-      }
-    }
-  }
-
-  free(marks);
-
-  return nv;
-}
-
-v_t flip_cluster_vector(vector_state_t *s, v_t v0, double *rot, gsl_rng *r) {
-  v_t nv = 0;
-
-  ll_t *stack = NULL;     // create a new stack
-  stack_push(&stack, v0); // push the initial vertex to the stack
-
-  //node_t *T = NULL;
-  bool *marks = (bool *)calloc(s->g->nv, sizeof(bool));
-
-  while (stack != NULL) {
-    v_t v = stack_pop(&stack);
-
-//    if (!tree_contains(T, v)) { // if the vertex hasn't already been flipped
-    if (!marks[v]) {
-      bool v_is_external = false;
-      double *s_old, *s_new, *R_tmp; 
-
-      if (v == s->g->nv - 1) {
-        v_is_external = true;
-      }
-
-      //tree_insert(&T, v);
-      marks[v] = true;
-
-      if (v == s->g->nv - 1) {
-        R_tmp = orthogonal_rotate(s->n, rot, s->R);
-      } else {
-        s_old = &(s->spins[s->n * v]); // don't free me! I'm a pointer within array s->spins
-        s_new = vector_rotate(s->n, rot, s_old); // free me! I'm a new vector
-      }
-
-      v_t nn = s->g->v_i[v + 1] - s->g->v_i[v];
-
-      for (v_t i = 0; i < nn; i++) {
-        v_t vn = s->g->v_adj[s->g->v_i[v] + i];
-
-        bool vn_is_external = false;
-
-        if (vn == s->g->nv - 1) {
-          vn_is_external = true;
-        }
-
-        double *sn;
-
-        if (!vn_is_external) {
-          sn = &(s->spins[s->n * vn]);
-        }
-
-        double prob;
-
-        if (v_is_external || vn_is_external) {
-          double *rs_old, *rs_new;
-          if (vn_is_external) {
-            rs_old = vector_rotate_inverse(s->n, s->R, s_old);
-            rs_new = vector_rotate_inverse(s->n, s->R, s_new);
-          } else {
-            rs_old = vector_rotate_inverse(s->n, s->R, sn);
-            rs_new = vector_rotate_inverse(s->n, R_tmp, sn);
-          }
-          double dE = s->H(s->n, s->H_info, rs_old) - s->H(s->n, s->H_info, rs_new);
-          prob = 1.0 - exp(-dE / s->T);
-          vector_subtract(s->n, s->M, rs_old);
-          vector_add(s->n, s->M, rs_new);
-          s->E += dE;
-
-          free(rs_old);
-          free(rs_new);
-        } else {
-          double dE = (s->J)(vector_dot(s->n, sn, s_old)) - (s->J)(vector_dot(s->n, sn, s_new));
-          prob = 1.0 - exp(-dE / s->T);
-          s->E += dE;
-        }
-
-        if (gsl_rng_uniform(r) < prob) { // and with probability ps[e]...
-          stack_push(&stack, vn); // push the neighboring vertex to the stack
-        }
-      }
-
-      if (v == s->g->nv - 1) {
-        free(s->R);
-        s->R = R_tmp;
-      } else {
-        vector_replace(s->n, s_old, s_new);
-        free(s_new);
-      }
-
-      if (v != s->g->nv - 1) { // count the number of non-external sites that flip
-        nv++;
-      }
-    }
-  }
-
-  //tree_freeNode(T);
-  free(marks);
-
-  return nv;
-}
-
-/*G
-template <class R_t, class X_t>
-v_t flip_cluster(state_t <R_t, X_t> *state, v_t v0, R_t *r, gsl_rng *rand) {
-  v_t nv = 0;
-
-  ll_t *stack = NULL;     // create a new stack
-  stack_push(&stack, v0); // push the initial vertex to the stack
-
-  bool *marks = (bool *)calloc(state->g->nv, sizeof(bool));
-
-  while (stack != NULL) {
-    v_t v = stack_pop(&stack);
-
-    if (!marks[v]) {
-      X_t *si_old, *si_new;
-      R_t *s0_old, *s0_new;
-
-      si_old = state->s[v];
-      s0_old = state->s0;
-
-      marks[v] = true;
-
-      if (v == state->g->nv - 1) {
-        s0_new = act <R_t, R_t> (r, s0_old);
-      } else {
-        si_new = act <R_t, X_t> (r, si_old);
-      }
-
-      v_t nn = state->g->v_i[v + 1] - state->g->v_i[v];
-
-      for (v_t i = 0; i < nn; i++) {
-        v_t vn = state->g->v_adj[state->g->v_i[v] + i];
-
-        X_t *sj;
-
-        if (vn != state->g->nv - 1) {
-          sj = state->s[vn];
-        }
-
-        double prob;
-
-        bool is_ext = (v == state->g->nv - 1 || vn == state->g->nv - 1);
-
-        if (is_ext) {
-          X_t *rs_old, *rs_new;
-          if (vn == state->g->nv - 1) {
-            rs_old = inverse_act <class R_t, class X_t> (s0_old, si_old);
-            rs_new = inverse_act <class R_t, class X_t> (s0_old, si_new);
-          } else {
-            rs_old = inverse_act <class R_t, class X_t> (s0_old, sj);
-            rs_new = inverse_act <class R_t, class X_t> (s0_new, sj);
-          }
-          double dE = state->B(rs_old) - state->B(rs_new);
-          prob = 1.0 - exp(-dE / state->T);
-          update_magnetization <X_t> (state->M, rs_old, rs_new);
-          state->E += dE;
-
-          free_X <X_t> (rs_old);
-          free_X <X_t> (rs_new);
-        } else {
-          double dE = state->Z(si_old, sj) - state->Z(si_new, sj);
-          prob = 1.0 - exp(-dE / state->T);
-          state->E += dE;
-        }
-
-        if (gsl_rng_uniform(rand) < prob) { // and with probability...
-          stack_push(&stack, vn); // push the neighboring vertex to the stack
-        }
-      }
-
-      if (v == state->g->nv - 1) {
-        free_R <R_t> (state->s0);
-        state->s0 = s0_new;
-      } else {
-        free_X <X_t> (state->s[v]);
-        state->s[v] = si_new;
-      }
-
-      if (v != state->g->nv - 1) { // count the number of non-external sites that flip
-        nv++;
-      }
-    }
-  }
-
-  free(marks);
-
-  return nv;
-}
-*/
diff --git a/lib/cluster.h b/lib/cluster.h
index d118735..29dd0cb 100644
--- a/lib/cluster.h
+++ b/lib/cluster.h
@@ -1,13 +1,14 @@
 
 #pragma once
 
+#include <functional>
 #include <assert.h>
 #include <fftw3.h>
 #include <float.h>
 #include <gsl/gsl_randist.h>
 #include <gsl/gsl_rng.h>
 #include <inttypes.h>
-#include <math.h>
+#include <cmath>
 #include <stdbool.h>
 #include <string.h>
 #include <sys/types.h>
@@ -24,57 +25,339 @@
 #include "dihinf.h"
 #include "yule_walker.h"
 
-typedef struct {
-  graph_t *g;
-  q_t *spins;
-  double T;
-  double *J;
-  double *H;
-  double *J_probs;
-  double *H_probs;
-  dihedral_t *R;
-  double E;
-  v_t *M;
-  q_t q;
-} ising_state_t;
-
-typedef struct {
-  graph_t *g;
-  h_t *spins;
-  double T;
-  double (*J)(h_t);
-  double (*H)(double *, h_t);
-  double *H_info;
-  dihinf_t *R;
-  double E;
-  h_t M;
-} dgm_state_t;
-
-typedef struct {
-  graph_t *g;
-  double *spins;
-  double T;
-  double (*J)(double);
-  double (*H)(q_t, double *, double *);
-  double *H_info;
-  double *R;
-  double E;
-  double *M;
-  q_t n;
-} vector_state_t;
-
-typedef enum {
-  VECTOR,
-  MODULATED,
-  CUBIC,
-  QUADRATIC
-} vector_field_t;
-
-v_t flip_cluster(ising_state_t *s, v_t v0, q_t s1, gsl_rng *r);
-
-v_t flip_cluster_vector(vector_state_t *s, v_t v0, double *rot, gsl_rng *r);
-
-v_t flip_cluster_dgm(dgm_state_t *s, v_t v0, h_t rot, gsl_rng *r);
-
-graph_t *graph_add_ext(const graph_t *g);
+template <class T>
+void init(T*);
+
+template <class T>
+T scalar_multiple(v_t a, T b);
+
+template <class R_t, class X_t>
+X_t act(R_t a, X_t b);
+
+template <class R_t, class X_t>
+X_t act_inverse(R_t a, X_t b);
+
+template <class T>
+T copy(T a);
+
+template <class T>
+void free_spin(T a);
+
+template <class T>
+T add(T, T);
+
+template <class T>
+T subtract(T, T);
+
+template <class T>
+T gen_rot(gsl_rng *r);
+
+template <class R_t, class X_t>
+class state_t {
+  public:
+    D_t D;
+    L_t L;
+    v_t nv;
+    v_t ne;
+    graph_t *g;
+    double T;
+    X_t *spins;
+    R_t R;
+    double E;
+    X_t M; // the "sum" of the spins, like the total magnetization
+
+    std::function <double(X_t, X_t)> J;
+    std::function <double(X_t)> H;
+
+    state_t(D_t D, L_t L, double T, std::function <double(X_t, X_t)> J, std::function <double(X_t)> H) : D(D), L(L), T(T), J(J), H(H) {
+      graph_t *h = graph_create_square(D, L);
+      nv = h->nv;
+      ne = h->ne;
+      g = graph_add_ext(h);
+      graph_free(h);
+      spins = (X_t *)malloc(nv * sizeof(X_t));
+      for (v_t i = 0; i < nv; i++) {
+        init (&(spins[i]));
+      }
+      init (&R);
+      E = - (double)ne * J(spins[0], spins[0]) - (double)nv * H(spins[0]);
+      M = scalar_multiple (nv, spins[0]);
+    }
+
+    ~state_t() {
+      graph_free(g);
+      for (v_t i = 0; i < nv; i++) {
+        free_spin(spins[i]);
+      }
+      free(spins);
+      free_spin(R);
+      free_spin(M);
+    }
+};
+
+template <q_t q, class T>
+struct vector_t { T *x; };
+
+template <q_t q, class T>
+void init(vector_t <q, T> *ptr) {
+  ptr->x = (T *)calloc(q, sizeof(T));
+
+  ptr->x[0] = (T)1;
+}
+
+template <q_t q, class T>
+vector_t <q, T> copy (vector_t <q, T> v) {
+  vector_t <q, T> v_copy;
+ 
+ v_copy.x = (T *)calloc(q, sizeof(T));
+
+  for (q_t i = 0; i < q; i++) {
+    v_copy.x[i] = v.x[i];
+  }
+
+  return v_copy;
+}
+
+template <q_t q, class T>
+void add (vector_t <q, T> v1, vector_t <q, T> v2) {
+  for (q_t i = 0; i < q; i++) {
+    v1.x[i] += v2.x[i];
+  }
+}
+
+template <q_t q, class T>
+void subtract (vector_t <q, T> v1, vector_t <q, T> v2) {
+  for (q_t i = 0; i < q; i++) {
+    v1.x[i] -= v2.x[i];
+  }
+}
+
+template <q_t q, class T>
+vector_t <q, T> scalar_multiple(v_t a, vector_t <q, T> v) {
+  vector_t <q, T> multiple;
+  multiple.x = (T *)malloc(q * sizeof(T));
+  for (q_t i = 0; i < q; i++) {
+    multiple.x[i] = a * v.x[i];
+  }
+
+  return multiple;
+}
+
+template <q_t q, class T>
+T dot(vector_t <q, T> v1, vector_t <q, T> v2) {
+  T prod = 0;
+
+  for (q_t i = 0; i < q; i++) {
+    prod += v1.x[i] * v2.x[i];
+  }
+
+  return prod;
+}
+
+template <q_t q, class T>
+void free_spin (vector_t <q, T> v) {
+  free(v.x);
+}
+
+template <q_t q, class T>
+struct orthogonal_t { T *x; };
+
+template <q_t q, class T>
+void init(orthogonal_t <q, T> *ptr) {
+  ptr->x = (T *)calloc(q * q, sizeof(T));
+
+  for (q_t i = 0; i < q; i++) {
+    ptr->x[q * i + i] = (T)1;
+  }
+}
+
+template <q_t q, class T>
+orthogonal_t <q, T> copy (orthogonal_t <q, T> m) {
+  orthogonal_t <q, T> m_copy;
+  m_copy.x = (T *)calloc(q * q, sizeof(T));
+
+  for (q_t i = 0; i < q * q; i++) {
+    m_copy.x[i] = m.x[i];
+  }
+
+  return m_copy;
+}
+
+template <q_t q, class T>
+void free_spin (orthogonal_t <q, T> m) {
+  free(m.x);
+}
+
+template <q_t q, class T>
+vector_t <q, T> act (orthogonal_t <q, T> m, vector_t <q, T> v) {
+  vector_t <q, T> v_rot;
+  v_rot.x = (T *)calloc(q, sizeof(T));
+
+  for (q_t i = 0; i < q; i++) {
+    for (q_t j = 0; j < q; j++) {
+      v_rot.x[i] += m.x[q * i + j] * v.x[j];
+    }
+  }
+
+  return v_rot;
+}
+
+
+template <q_t q, class T>
+orthogonal_t <q, T> act (orthogonal_t <q, T> m1, orthogonal_t <q, T> m2) {
+  orthogonal_t <q, T> m2_rot;
+  m2_rot.x = (T *)calloc(q * q, sizeof(T));
+
+  for (q_t i = 0; i < q; i++) {
+    for (q_t j = 0; j < q; j++) {
+      for (q_t k = 0; k < q; k++) {
+        m2_rot.x[i * q + j] += m1.x[i * q + j] * m2.x[j * q + k];
+      }
+    }
+  }
+
+  return m2_rot;
+}
+
+template <q_t q, class T>
+vector_t <q, T> act_inverse (orthogonal_t <q, T> m, vector_t <q, T> v) {
+  vector_t <q, T> v_rot;
+  v_rot.x = (T *)calloc(q, sizeof(T));
+
+  for (q_t i = 0; i < q; i++) {
+    for (q_t j = 0; j < q; j++) {
+      v_rot.x[i] += m.x[q * j + i] * v.x[j];
+    }
+  }
+
+  return v_rot;
+}
+
+template <q_t q, class T>
+orthogonal_t <q, T> act_inverse (orthogonal_t <q, T> m1, orthogonal_t <q, T> m2) {
+  orthogonal_t <q, T> m2_rot;
+  m2_rot.x = (T *)calloc(q * q, sizeof(T));
+
+  for (q_t i = 0; i < q; i++) {
+    for (q_t j = 0; j < q; j++) {
+      for (q_t k = 0; k < q; k++) {
+        m2_rot.x[i * q + j] += m1.x[j * q + i] * m2.x[j * q + k];
+      }
+    }
+  }
+
+  return m2_rot;
+}
+
+template <q_t q>
+void generate_rotation (gsl_rng *r, orthogonal_t <q, double> *ptr) {
+  double *v = (double *)malloc(q * sizeof(double));
+  double v2 = 0;
+
+  for (q_t i = 0; i < q; i++) {
+    v[i] = gsl_ran_ugaussian(r);
+    v2 += v[i] * v[i];
+  }
+
+  ptr->x = (double *)calloc(q * q, sizeof(double));
+  
+  for (q_t i = 0; i < q; i++) {
+    ptr->x[q * i + i] = 1.0;
+    for (q_t j = 0; j < q; j++) {
+      ptr->x[q * i + j] -= 2 * v[i] * v[j] / v2;
+    }
+  }
+
+  free(v);
+}
+
+template <class R_t, class X_t>
+v_t flip_cluster(state_t <R_t, X_t> *state, v_t v0, R_t r, gsl_rng *rand) {
+  v_t nv = 0;
+
+  ll_t *stack = NULL;     // create a new stack
+  stack_push(&stack, v0); // push the initial vertex to the stack
+
+  bool *marks = (bool *)calloc(state->g->nv, sizeof(bool));
+
+  while (stack != NULL) {
+    v_t v = stack_pop(&stack);
+
+    if (!marks[v]) {
+      X_t si_old, si_new;
+      R_t R_old, R_new;
+
+      si_old = state->spins[v];
+      R_old = state->R;
+
+      marks[v] = true;
+
+      if (v == state->g->nv - 1) {
+        R_new = act (r, R_old);
+      } else {
+        si_new = act (r, si_old);
+      }
+
+      v_t nn = state->g->v_i[v + 1] - state->g->v_i[v];
+
+      for (v_t i = 0; i < nn; i++) {
+        v_t vn = state->g->v_adj[state->g->v_i[v] + i];
+
+        X_t sj;
+
+        if (vn != state->g->nv - 1) {
+          sj = state->spins[vn];
+        }
+
+        double prob;
+
+        bool is_ext = (v == state->g->nv - 1 || vn == state->g->nv - 1);
+
+        if (is_ext) {
+          X_t rs_old, rs_new;
+          if (vn == state->g->nv - 1) {
+            rs_old = act_inverse (R_old, si_old);
+            rs_new = act_inverse (R_old, si_new);
+          } else {
+            rs_old = act_inverse (R_old, sj);
+            rs_new = act_inverse (R_new, sj);
+          }
+          double dE = state->H(rs_old) - state->H(rs_new);
+          prob = 1.0 - exp(-dE / state->T);
+
+          subtract (state->M, rs_old);
+          add (state->M, rs_new);
+          state->E += dE;
+
+          free_spin (rs_old);
+          free_spin (rs_new);
+        } else {
+          double dE = state->J(si_old, sj) - state->J(si_new, sj);
+          prob = 1.0 - exp(-dE / state->T);
+          state->E += dE;
+        }
+
+        if (gsl_rng_uniform(rand) < prob) { // and with probability...
+          stack_push(&stack, vn); // push the neighboring vertex to the stack
+        }
+      }
+
+      if (v == state->g->nv - 1) {
+        free_spin(state->R);
+        state->R = R_new;
+      } else {
+        free_spin(state->spins[v]);
+        state->spins[v] = si_new;
+      }
+
+      if (v != state->g->nv - 1) { // count the number of non-external sites that flip
+        nv++;
+      }
+    }
+  }
+
+  free(marks);
+
+  return nv;
+}
 
diff --git a/lib/graph.h b/lib/graph.h
index cb47faa..beb7f4c 100644
--- a/lib/graph.h
+++ b/lib/graph.h
@@ -7,6 +7,10 @@
 
 #include "types.h"
 
+#ifdef __cplusplus
+extern "C" {
+#endif
+
 typedef struct {
   v_t ne;
   v_t nv;
@@ -15,8 +19,10 @@ typedef struct {
 } graph_t;
 
 graph_t *graph_create_square(D_t D, L_t L);
-
 graph_t *graph_add_ext(const graph_t *G);
-
 void graph_free(graph_t *h);
 
+#ifdef __cplusplus
+}
+#endif
+
diff --git a/lib/rand.h b/lib/rand.h
index 2354f6a..7bb5354 100644
--- a/lib/rand.h
+++ b/lib/rand.h
@@ -4,4 +4,13 @@
 #include <assert.h>
 #include <stdio.h>
 
+#ifdef __cplusplus
+extern "C" {
+#endif
+
 unsigned long int rand_seed();
+
+#ifdef __cplusplus
+}
+#endif
+
diff --git a/lib/stack.h b/lib/stack.h
index a354ab5..8d25aff 100644
--- a/lib/stack.h
+++ b/lib/stack.h
@@ -8,6 +8,11 @@
 
 #include "types.h"
 
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
 typedef struct ll_tag {
   v_t x;
   struct ll_tag *next;
@@ -24,3 +29,7 @@ void stack_push_d(dll_t **q, double x);
 v_t stack_pop(ll_t **q);
 double stack_pop_d(dll_t **q);
 
+#ifdef __cplusplus
+}
+#endif
+
diff --git a/src/wolff.cpp b/src/wolff.cpp
new file mode 100644
index 0000000..85df357
--- /dev/null
+++ b/src/wolff.cpp
@@ -0,0 +1,137 @@
+
+#include <time.h>
+#include <getopt.h>
+
+#include <cluster.h>
+
+double H_vector(vector_t <2, double> v1, double *H) {
+  vector_t <2, double> H_vec;
+  H_vec.x = H;
+  return dot <2, double> (v1, H_vec);
+}
+
+int main(int argc, char *argv[]) {
+
+  count_t N = (count_t)1e7;
+
+  D_t D = 2;
+  L_t L = 128;
+  double T = 2.26918531421;
+  double *H = (double *)calloc(MAX_Q, sizeof(double));
+
+  bool silent = false;
+
+  int opt;
+  q_t J_ind = 0;
+  q_t H_ind = 0;
+
+  while ((opt = getopt(argc, argv, "N:q:D:L:T:J:H:s")) != -1) {
+    switch (opt) {
+    case 'N': // number of steps
+      N = (count_t)atof(optarg);
+      break;
+    case 'D': // dimension
+      D = atoi(optarg);
+      break;
+    case 'L': // linear size
+      L = atoi(optarg);
+      break;
+    case 'T': // temperature 
+      T = atof(optarg);
+      break;
+    case 'H': // external field. nth call couples to state n
+      H[H_ind] = atof(optarg);
+      H_ind++;
+      break;
+    case 's': // don't print anything during simulation. speeds up slightly
+      silent = true;
+      break;
+    default:
+      exit(EXIT_FAILURE);
+    }
+  }
+
+  state_t <orthogonal_t <2, double>, vector_t <2, double>> s(D, L, T, dot <2, double>, std::bind(H_vector, std::placeholders::_1, H));
+
+  // initialize random number generator
+  gsl_rng *r = gsl_rng_alloc(gsl_rng_mt19937);
+  gsl_rng_set(r, rand_seed());
+
+  unsigned long timestamp;
+
+  {
+    struct timespec spec;
+    clock_gettime(CLOCK_REALTIME, &spec);
+    timestamp = spec.tv_sec*1000000000LL + spec.tv_nsec;
+  }
+
+  FILE *outfile_info = fopen("wolff_metadata.txt", "a");
+
+  fprintf(outfile_info, "<| \"ID\" -> %lu, \"D\" -> %" PRID ", \"L\" -> %" PRIL ", \"NV\" -> %" PRIv ", \"NE\" -> %" PRIv ", \"T\" -> %.15f, \"H\" -> {", timestamp, D, L, s.nv, s.ne, T);
+
+  for (q_t i = 0; i < 2; i++) {
+    fprintf(outfile_info, "%.15f", H[i]);
+    if (i < 2 - 1) {
+      fprintf(outfile_info, ", ");
+    }
+  }
+
+  fprintf(outfile_info, "} |>\n");
+
+  fclose(outfile_info);
+
+  char *filename_M = (char *)malloc(255 * sizeof(char));
+  char *filename_E = (char *)malloc(255 * sizeof(char));
+  char *filename_S = (char *)malloc(255 * sizeof(char));
+
+  sprintf(filename_M, "wolff_%lu_M.dat", timestamp);
+  sprintf(filename_E, "wolff_%lu_E.dat", timestamp);
+  sprintf(filename_S, "wolff_%lu_S.dat", timestamp);
+
+  FILE *outfile_M = fopen(filename_M, "wb");
+  FILE *outfile_E = fopen(filename_E, "wb");
+  FILE *outfile_S = fopen(filename_S, "wb");
+
+  free(filename_M);
+  free(filename_E);
+  free(filename_S);
+
+  v_t cluster_size = 0;
+
+  if (!silent) printf("\n");
+  for (count_t steps = 0; steps < N; steps++) {
+    if (!silent) printf("\033[F\033[JWOLFF: sweep %" PRIu64 " / %" PRIu64 ": E = %.2f, M_0 = %.2f, S = %" PRIv "\n", steps, N, s.E, s.M.x[0], cluster_size);
+
+    v_t v0 = gsl_rng_uniform_int(r, s.nv);
+     
+    orthogonal_t <2, double> step;
+    generate_rotation<2>(r, &step);
+
+    printf("(%g %g) . (%g %g) = %g or %g, H = %g\n\n", s.spins[0].x[0], s.spins[0].x[1], s.spins[1].x[0], s.spins[1].x[1], dot(s.spins[0], s.spins[1]), s.J(s.spins[0],s.spins[1]), s.H(s.spins[0]));
+
+    getchar();
+    cluster_size = flip_cluster <orthogonal_t <2, double>, vector_t <2, double>> (&s, v0, step, r);
+
+    free_spin(step);
+
+    fwrite(&(s.E), sizeof(double), 1, outfile_E);
+    fwrite(s.M.x, sizeof(double), 2, outfile_M);
+    fwrite(&cluster_size, sizeof(uint32_t), 1, outfile_S);
+
+  }
+  if (!silent) {
+    printf("\033[F\033[J");
+  }
+  printf("WOLFF: sweep %" PRIu64 " / %" PRIu64 ": E = %.2f, M_0 = %.2f, S = %" PRIv "\n", N, N, s.E, s.M.x[0], cluster_size);
+
+  fclose(outfile_M);
+  fclose(outfile_E);
+  fclose(outfile_S);
+
+  gsl_rng_free(r);
+
+  free(H);
+
+  return 0;
+}
+
diff --git a/src/wolff_dgm.c b/src/wolff_dgm.c
deleted file mode 100644
index f11b296..0000000
--- a/src/wolff_dgm.c
+++ /dev/null
@@ -1,247 +0,0 @@
-
-#include <getopt.h>
-
-#include <cluster.h>
-
-double identity(h_t x) {
-  return -pow(x, 2);
-}
-
-double basic_H(double *H, h_t x) {
-  return -H[0] * pow(x, 2);
-}
-
-int main(int argc, char *argv[]) {
-
-  L_t L = 128;
-  count_t N = (count_t)1e7;
-  count_t min_runs = 10;
-  count_t n = 3;
-  D_t D = 2;
-  double T = 2.26918531421;
-  double *H = (double *)calloc(MAX_Q, sizeof(double));
-  double eps = 0;
-  bool silent = false;
-  bool record_autocorrelation = false;
-  count_t ac_skip = 1;
-  count_t W = 10;
-
-  int opt;
-  q_t H_ind = 0;
-
-  while ((opt = getopt(argc, argv, "N:n:D:L:T:H:m:e:saS:W:")) != -1) {
-    switch (opt) {
-    case 'N':
-      N = (count_t)atof(optarg);
-      break;
-    case 'n':
-      n = (count_t)atof(optarg);
-      break;
-    case 'D':
-      D = atoi(optarg);
-      break;
-    case 'L':
-      L = atoi(optarg);
-      break;
-    case 'T':
-      T = atof(optarg);
-      break;
-    case 'H':
-      H[H_ind] = atof(optarg);
-      H_ind++;
-      break;
-    case 'm':
-      min_runs = atoi(optarg);
-      break;
-    case 'e':
-      eps = atof(optarg);
-      break;
-    case 's':
-      silent = true;
-      break;
-    case 'a':
-      record_autocorrelation = true;
-      break;
-    case 'S':
-      ac_skip = (count_t)atof(optarg);
-      break;
-    case 'W':
-      W = (count_t)atof(optarg);
-      break;
-    default:
-      exit(EXIT_FAILURE);
-    }
-  }
-
-  gsl_rng *r = gsl_rng_alloc(gsl_rng_mt19937);
-  gsl_rng_set(r, rand_seed());
-
-  dgm_state_t *s = (dgm_state_t *)calloc(1, sizeof(dgm_state_t));
-
-  graph_t *h = graph_create_square(D, L);
-  s->g = graph_add_ext(h);
-
-  s->spins = (h_t *)calloc(h->nv, sizeof(h_t));
-
-  s->H_info = H;
-  s->T = T;
-  s->H = basic_H;
-  s->J = identity;
-
-  s->R = (dihinf_t *)calloc(1, sizeof(dihinf_t));
-
-  s->M = 0;
-  s->E = 0;
-
-  double diff = 1e31;
-  count_t n_runs = 0;
-  count_t n_steps = 0;
-
-  meas_t *E, *clust, *M, *dM;
-
-  M = (meas_t *)calloc(1, sizeof(meas_t ));
-  dM = (meas_t *)calloc(1, sizeof(meas_t ));
-
-  E = calloc(1, sizeof(meas_t));
-  clust = calloc(1, sizeof(meas_t));
-
-  autocorr_t *autocorr;
-  if (record_autocorrelation) {
-    autocorr = (autocorr_t *)calloc(1, sizeof(autocorr_t));
-    autocorr->W = 2 * W + 1;
-    autocorr->OO = (double *)calloc(2 * W + 1, sizeof(double));
-  }
-
-  if (!silent) printf("\n");
-  while (((diff > eps || diff != diff) && n_runs < N) || n_runs < min_runs) {
-    if (!silent) printf("\033[F\033[JWOLFF: sweep %" PRIu64
-           ", dH/H = %.4f, dM/M = %.4f, dC/C = %.4f, dX/X = %.4f, cps: %.1f\n",
-           n_runs, fabs(meas_dx(E) / E->x), meas_dx(M) / M->x, meas_dc(E) / meas_c(E), meas_dc(M) / meas_c(M), h->nv / clust->x);
-
-    count_t n_flips = 0;
-
-    while (n_flips / h->nv < n) {
-      v_t v0 = gsl_rng_uniform_int(r, h->nv);
-      h_t step = round((((double)s->M) / h->nv) + gsl_ran_gaussian(r, 5));
-
-      v_t tmp_flips = flip_cluster_dgm(s, v0, step, r);
-      n_flips += tmp_flips;
-
-      if (n_runs > 0) {
-        n_steps++;
-        meas_update(clust, tmp_flips);
-      }
-
-      if (record_autocorrelation && n_runs > 0) {
-        if (n_steps % ac_skip == 0) {
-          update_autocorr(autocorr, s->E);
-        }
-      }
-    }
-
-    meas_update(M, s->M);
-    h_t min_h, max_h;
-    min_h = MAX_H;
-    max_h = MIN_H;
-    for (v_t i = 0; i < h->nv; i++) {
-      if (s->spins[i] < min_h) {
-        min_h = s->spins[i];
-      } else if (s->spins[i] > max_h) {
-        max_h = s->spins[i];
-      }
-    }
-    meas_update(dM, max_h - min_h);
-    meas_update(E, s->E);
-
-    diff = fabs(meas_dc(E) / meas_c(E));
-
-    n_runs++;
-  }
-  if (!silent) {
-    printf("\033[F\033[J");
-  }
-  printf("WOLFF: sweep %" PRIu64
-         ", dH/H = %.4f, dM/M = %.4f, dC/C = %.4f, dX/X = %.4f, cps: %.1f\n",
-         n_runs, fabs(meas_dx(E) / E->x), meas_dx(M) / M->x, meas_dc(E) / meas_c(E), meas_dc(M) / meas_c(M), h->nv / clust->x);
-
-  double tau = 0;
-  bool tau_failed = false;
-
-  if (record_autocorrelation) {
-    double *Gammas = (double *)malloc((W + 1) * sizeof(double));
-
-    Gammas[0] = 1 + rho(autocorr, 0);
-    for (uint64_t i = 0; i < W; i++) {
-      Gammas[1 + i] = rho(autocorr, 2 * i + 1) + rho(autocorr, 2 * i + 2);
-    } 
-
-    uint64_t n;
-    for (n = 0; n < W + 1; n++) {
-      if (Gammas[n] <= 0) {
-        break;
-      }
-    }
-
-    if (n == W + 1) {
-      printf("WARNING: correlation function never hit the noise floor.\n");
-      tau_failed = true;
-    }
-
-    if (n < 2) {
-      printf("WARNING: correlation function only has one nonnegative term.\n");
-      tau_failed = true;
-    }
-
-    double *conv_Gamma = get_convex_minorant(n, Gammas);
-
-    double ttau = - 0.5;
-
-    for (uint64_t i = 0; i < n + 1; i++) {
-      ttau += conv_Gamma[i];
-    }
-    
-    free(Gammas);
-    free(autocorr->OO);
-    while (autocorr->Op != NULL) {
-      stack_pop_d(&(autocorr->Op));
-    }
-    free(autocorr);
-    
-    tau = ttau * ac_skip * clust->x / h->nv;
-  }
-
-  if (tau_failed) {
-    tau = 0;
-  }
-
-  FILE *outfile = fopen("out.m", "a");
-
-  fprintf(outfile, "<|D->%" PRID ",L->%" PRIL ",T->%.15f", D, L, T);
-  fprintf(outfile, ",E->%.15f,\\[Delta]E->%.15f,C->%.15f,\\[Delta]C->%.15f,M->%.15f", E->x / h->nv, meas_dx(E) / h->nv, meas_c(E) / h->nv, meas_dc(E) / h->nv, M->x / h->nv);
-  fprintf(outfile, ",\\[Delta]M->%.15f", meas_dx(M) / h->nv);
-  fprintf(outfile, ",\\[Chi]->%.15f", meas_c(M) / h->nv);
-  fprintf(outfile, ",\\[Delta]\\[Chi]->%.15f", meas_dc(M) / h->nv);
-  fprintf(outfile, ",w->%.15f,\\[Delta]w->%.15f,wc->%.15f,\\[Delta]wc->%.15f,Subscript[n,\"clust\"]->%.15f,Subscript[\\[Delta]n,\"clust\"]->%.15f,Subscript[m,\"clust\"]->%.15f,Subscript[\\[Delta]m,\"clust\"]->%.15f,\\[Tau]->%.15f|>\n", dM->x, meas_dx(dM), meas_c(dM), meas_dc(dM), clust->x / h->nv, meas_dx(clust) / h->nv, meas_c(clust) / h->nv, meas_dc(clust) / h->nv,tau);
-
-  fclose(outfile);
-
-  FILE *image = fopen("out.dat", "a");
-  for (v_t i = 0; i < h->nv; i++) {
-    fprintf(image, "%" PRIh " ", s->spins[i]);
-  }
-  fprintf(image, "\n");
-  fclose(image);
-
-  free(E);
-  free(clust);
-  free(H);
-  free(s->R);
-  free(s->spins);
-  graph_free(s->g);
-  free(s);
-  graph_free(h);
-  gsl_rng_free(r);
-
-  return 0;
-}
-
diff --git a/src/wolff_vector.c b/src/wolff_vector.c
deleted file mode 100644
index c5ebcb5..0000000
--- a/src/wolff_vector.c
+++ /dev/null
@@ -1,377 +0,0 @@
-
-#include <getopt.h>
-
-#include <cluster.h>
-
-double identity(double x) {
-  return x;
-}
-
-double zero(q_t n, double *H, double *x) {
-  return 0.0;
-}
-
-double dot(q_t n, double *H, double *x) {
-  double total = 0;
-  for (q_t i = 0; i < n; i++) {
-    total += H[i] * x[i];
-  }
-  return total;
-}
-
-double theta(double x, double y) {
-  double val = atan(y / x);
-
-  if (x < 0.0 && y > 0.0) {
-    return M_PI + val;
-  } else if ( x < 0.0 && y < 0.0 ) {
-    return - M_PI + val;
-  } else {
-    return val;
-  }
-}
-
-double modulated(q_t n, double *H_info, double *x) {
-  return H_info[0] * cos(H_info[1] * theta(x[0], x[1]));
-}
-
-double cubic(q_t n, double *H_info, double *x) {
-  double v_sum = 0;
-
-  for (q_t i = 0; i < n; i++) {
-    v_sum += pow(x[i], 4);
-  }
-
-  return - H_info[0] * v_sum;
-}
-
-double quadratic(q_t n, double *H_info, double *x) {
-  double tmp = 0;
-
-  tmp += pow(x[0], 2);
-
-  for (q_t i = 1; i < n; i++) {
-    tmp += - 1.0 / (n - 1.0) * pow(x[i], 2);
-  }
-
-  return - 0.5 *  H_info[0] * tmp;
-}
-
-int main(int argc, char *argv[]) {
-
-  L_t L = 128;
-  count_t N = (count_t)1e7;
-  count_t min_runs = 10;
-  count_t n = 3;
-  q_t q = 2;
-  D_t D = 2;
-  double T = 2.26918531421;
-  double *H = (double *)calloc(MAX_Q, sizeof(double));
-  double eps = 0;
-  bool silent = false;
-  bool record_autocorrelation = false;
-  vector_field_t H_type = VECTOR;
-  count_t ac_skip = 1;
-  count_t W = 10;
-
-  int opt;
-  q_t H_ind = 0;
-
-  while ((opt = getopt(argc, argv, "N:n:D:L:q:T:H:m:e:saS:W:f:")) != -1) {
-    switch (opt) {
-    case 'N':
-      N = (count_t)atof(optarg);
-      break;
-    case 'n':
-      n = (count_t)atof(optarg);
-      break;
-    case 'D':
-      D = atoi(optarg);
-      break;
-    case 'L':
-      L = atoi(optarg);
-      break;
-    case 'q':
-      q = atoi(optarg);
-      break;
-    case 'T':
-      T = atof(optarg);
-      break;
-    case 'H':
-      H[H_ind] = atof(optarg);
-      H_ind++;
-      break;
-    case 'm':
-      min_runs = atoi(optarg);
-      break;
-    case 'e':
-      eps = atof(optarg);
-      break;
-    case 's':
-      silent = true;
-      break;
-    case 'a':
-      record_autocorrelation = true;
-      break;
-    case 'S':
-      ac_skip = (count_t)atof(optarg);
-      break;
-    case 'W':
-      W = (count_t)atof(optarg);
-      break;
-    case 'f':
-      switch (atoi(optarg)) {
-        case 0:
-          H_type = VECTOR;
-          break;
-        case 1:
-          H_type = MODULATED;
-          break;
-        case 2:
-          H_type = CUBIC;
-          break;
-        case 3:
-          H_type = QUADRATIC;
-          break;
-      }
-      break;
-    default:
-      exit(EXIT_FAILURE);
-    }
-  }
-
-  gsl_rng *r = gsl_rng_alloc(gsl_rng_mt19937);
-  gsl_rng_set(r, rand_seed());
-
-  vector_state_t *s = (vector_state_t *)calloc(1, sizeof(vector_state_t));
-
-  graph_t *h = graph_create_square(D, L);
-  s->g = graph_add_ext(h);
-
-  s->n = q;
-
-  s->spins = (double *)calloc(n * h->nv, sizeof(double));
-
-  for (v_t i = 0; i < h->nv; i++) {
-    s->spins[q * i] = 1.0;
-  }
-
-  s->H_info = H;
-  s->T = T;
-  switch (H_type) {
-    case VECTOR:
-      s->H = dot;
-      break;
-    case MODULATED:
-      s->H = modulated;
-      break;
-    case CUBIC:
-      s->H = cubic;
-      break;
-    case QUADRATIC:
-      s->H = quadratic;
-      break;
-  }
-  s->J = identity;
-
-  s->R = (double *)calloc(q * q, sizeof(double));
-
-  for (q_t i = 0; i < q; i++) {
-    s->R[q * i + i] = 1.0;
-  }
-
-  s->M = (double *)calloc(q, sizeof(double));
-  s->M[0] = 1.0;
-  s->E = - ((double)h->ne) * s->J(1.0) - (double)h->nv * s->H(s->n, s->H_info, s->M);
-  s->M[0] *= (double)h->nv;
-
-  double diff = 1e31;
-  count_t n_runs = 0;
-  count_t n_steps = 0;
-
-  meas_t *E, *clust, **M, *aM;
-
-  M = (meas_t **)malloc(q * sizeof(meas_t *));
-  aM = (meas_t *)calloc(q, sizeof(meas_t ));
-  for (q_t i = 0; i < q; i++) {
-    M[i] = (meas_t *)calloc(1, sizeof(meas_t));
-  }
-
-  E = calloc(1, sizeof(meas_t));
-  clust = calloc(1, sizeof(meas_t));
-
-  autocorr_t *autocorr;
-  if (record_autocorrelation) {
-    autocorr = (autocorr_t *)calloc(1, sizeof(autocorr_t));
-    autocorr->W = 2 * W + 1;
-    autocorr->OO = (double *)calloc(2 * W + 1, sizeof(double));
-  }
-
-  if (!silent) printf("\n");
-  while (((diff > eps || diff != diff) && n_runs < N) || n_runs < min_runs) {
-    if (!silent) printf("\033[F\033[JWOLFF: sweep %" PRIu64
-           ", dH/H = %.4f, dM/M = %.4f, dC/C = %.4f, dX/X = %.4f, cps: %.1f\n",
-           n_runs, fabs(meas_dx(E) / E->x), meas_dx(aM) / aM->x, meas_dc(E) / meas_c(E), meas_dc(aM) / meas_c(aM), h->nv / clust->x);
-
-    count_t n_flips = 0;
-
-    while (n_flips / h->nv < n) {
-      v_t v0 = gsl_rng_uniform_int(r, h->nv);
-      double *step = gen_rot(r, q);
-
-      v_t tmp_flips = flip_cluster_vector(s, v0, step, r);
-      free(step);
-      n_flips += tmp_flips;
-
-      if (n_runs > 0) {
-        n_steps++;
-        meas_update(clust, tmp_flips);
-
-        if (record_autocorrelation && n_steps % ac_skip == 0) {
-          update_autocorr(autocorr, s->E);
-        }
-      }
-    }
-
-    double aM_val = 0;
-
-    for (q_t i = 0; i < q; i++) {
-      meas_update(M[i], s->M[i]);
-      aM_val += s->M[i] * s->M[i];
-    }
-
-    meas_update(aM, sqrt(aM_val));
-    meas_update(E, s->E);
-
-    diff = fabs(meas_dx(clust) / clust->x);
-
-    n_runs++;
-  }
-
-  if (!silent) {
-    printf("\033[F\033[J");
-  }
-  printf("WOLFF: sweep %" PRIu64
-         ", dH/H = %.4f, dM/M = %.4f, dC/C = %.4f, dX/X = %.4f, cps: %.1f\n",
-         n_runs, fabs(meas_dx(E) / E->x), meas_dx(M[0]) / M[0]->x, meas_dc(E) / meas_c(E), meas_dc(M[0]) / meas_c(M[0]), h->nv / clust->x);
-
-  double tau = 0;
-  bool tau_failed = false;
-
-  if (record_autocorrelation) {
-    double *Gammas = (double *)malloc((W + 1) * sizeof(double));
-
-    Gammas[0] = 1 + rho(autocorr, 0);
-    for (uint64_t i = 0; i < W; i++) {
-      Gammas[1 + i] = rho(autocorr, 2 * i + 1) + rho(autocorr, 2 * i + 2);
-    } 
-
-    uint64_t n;
-    for (n = 0; n < W + 1; n++) {
-      if (Gammas[n] <= 0) {
-        break;
-      }
-    }
-
-    if (n == W + 1) {
-      printf("WARNING: correlation function never hit the noise floor.\n");
-      tau_failed = true;
-    }
-
-    if (n < 2) {
-      printf("WARNING: correlation function only has one nonnegative term.\n");
-      tau_failed = true;
-    }
-
-    double *conv_Gamma = get_convex_minorant(n, Gammas);
-
-    double ttau = - 0.5;
-
-    for (uint64_t i = 0; i < n + 1; i++) {
-      ttau += conv_Gamma[i];
-    }
-
-    FILE *autocorr_file = fopen("autocorr.dat", "a");
-
-    printf("%g %g\n", Gammas[0], conv_Gamma[0]);
-
-    for (count_t i = 0; i < n+1; i++) {
-      fprintf(autocorr_file, "%g ", conv_Gamma[i]);
-    }
-    fprintf(autocorr_file, "\n");
-
-    fclose(autocorr_file);
-    
-    free(Gammas);
-    free(autocorr->OO);
-    while (autocorr->Op != NULL) {
-      stack_pop_d(&(autocorr->Op));
-    }
-    free(autocorr);
-    
-    tau = ttau * ac_skip * clust->x / h->nv;
-  }
-
-  if (tau_failed) {
-    tau = 0;
-  }
-
-  FILE *outfile = fopen("out.m", "a");
-
-  fprintf(outfile, "<|N->%" PRIcount ",n->%" PRIcount ",D->%" PRID ",L->%" PRIL ",q->%" PRIq ",T->%.15f,H->{", N, n, D, L, q, T);
-  for (q_t i = 0; i < q; i++) {
-    fprintf(outfile, "%.15f", H[i]);
-    if (i != q-1) {
-      fprintf(outfile, ",");
-    }
-  }
-  fprintf(outfile, "},E->%.15f,\\[Delta]E->%.15f,C->%.15f,\\[Delta]C->%.15f,M->{", E->x / h->nv, meas_dx(E) / h->nv, meas_c(E) / h->nv, meas_dc(E) / h->nv);
-  for (q_t i = 0; i < q; i++) {
-    fprintf(outfile, "%.15f", M[i]->x / h->nv);
-    if (i != q-1) {
-      fprintf(outfile, ",");
-    }
-  }
-  fprintf(outfile, "},\\[Delta]M->{");
-  for (q_t i = 0; i < q; i++) {
-    fprintf(outfile, "%.15f", meas_dx(M[i]) / h->nv);
-    if (i != q-1) {
-      fprintf(outfile, ",");
-    }
-  }
-  fprintf(outfile, "},\\[Chi]->{");
-  for (q_t i = 0; i < q; i++) {
-    fprintf(outfile, "%.15f", meas_c(M[i]) / h->nv);
-    if (i != q-1) {
-      fprintf(outfile, ",");
-    }
-  }
-  fprintf(outfile, "},\\[Delta]\\[Chi]->{");
-  for (q_t i = 0; i < q; i++) {
-    fprintf(outfile, "%.15f", meas_dc(M[i]) / h->nv);
-    if (i != q-1) {
-      fprintf(outfile, ",");
-    }
-  }
-  fprintf(outfile, "},aM->%.15f,\\[Delta]aM->%.15f,a\\[Chi]->%.15f,\\[Delta]a\\[Chi]->%.15f,Subscript[n,\"clust\"]->%.15f,Subscript[\\[Delta]n,\"clust\"]->%.15f,Subscript[m,\"clust\"]->%.15f,Subscript[\\[Delta]m,\"clust\"]->%.15f,\\[Tau]->%.15f|>\n", aM->x / h->nv, meas_dx(aM) / h->nv, meas_c(aM) / h->nv, meas_dc(aM) / h->nv, clust->x / h->nv, meas_dx(clust) / h->nv, meas_c(clust) / h->nv, meas_dc(clust) / h->nv,tau);
-
-  fclose(outfile);
-
-  free(E);
-  free(clust);
-  for (q_t i = 0; i < q; i++) {
-    free(M[i]);
-  }
-  free(M);
-  free(H);
-  free(s->M);
-  free(s->R);
-  free(s->spins);
-  graph_free(s->g);
-  free(s);
-  graph_free(h);
-  gsl_rng_free(r);
-
-  return 0;
-}
-
-- 
cgit v1.2.3-70-g09d2