From 78d8de381f0b1e99ad98364709cbf876689628b2 Mon Sep 17 00:00:00 2001
From: Jaron Kent-Dobias <jaron@kent-dobias.com>
Date: Fri, 29 Jun 2018 15:43:10 -0400
Subject: completely removed measurement during the simulation, opting to just
 save binary data points to files throughout

---
 lib/cluster_finite.c |   4 +-
 lib/cluster_finite.h |   2 +-
 lib/initial_finite.c |  22 ++-
 lib/initial_finite.h |   3 +
 lib/measurement.c    | 145 +++++++++++++++++--
 lib/measurement.h    |  18 ++-
 src/wolff_finite.c   | 398 +++++++++------------------------------------------
 7 files changed, 242 insertions(+), 350 deletions(-)

diff --git a/lib/cluster_finite.c b/lib/cluster_finite.c
index f11a3ea..71396e0 100644
--- a/lib/cluster_finite.c
+++ b/lib/cluster_finite.c
@@ -62,14 +62,14 @@ v_t flip_cluster_finite(state_finite_t *s, v_t v0, q_t rot_ind, gsl_rng *r) {
           s->M[rot_s_old]--;
           s->M[rot_s_new]++;
 
-          s->E += - s->H[rot_s_new] + s->H[rot_s_old];
         } else {
           q_t diff_old = (s_old + s->q - sn) % s->q;
           q_t diff_new = (s_new + s->q - sn) % s->q;
 
           prob = s->J_probs[diff_new * s->q + diff_old];
 
-          s->E += - s->J[diff_new] + s->J[diff_old];
+          s->B[diff_old]--;
+          s->B[diff_new]++;
         }
 
         if (gsl_rng_uniform(r) < prob) { // and with probability ps[e]...
diff --git a/lib/cluster_finite.h b/lib/cluster_finite.h
index ad45ed3..701c197 100644
--- a/lib/cluster_finite.h
+++ b/lib/cluster_finite.h
@@ -38,7 +38,7 @@ typedef struct {
   double *H_probs;
   q_t *spins;
   q_t *R;
-  double E;
+  v_t *B;
   v_t *M;
 } state_finite_t;
 
diff --git a/lib/initial_finite.c b/lib/initial_finite.c
index f286dcc..fb120f0 100644
--- a/lib/initial_finite.c
+++ b/lib/initial_finite.c
@@ -58,9 +58,10 @@ state_finite_t *initial_finite_prepare_ising(D_t D, L_t L, double T, double *H)
   s->spins = (q_t *)calloc(s->nv, sizeof(q_t));
   s->R = initialize_R(2);
 
-  s->E = - ((double)s->ne) * s->J[0] - ((double)s->nv) * s->H[0];
   s->M = (v_t *)calloc(2, sizeof(v_t));
   s->M[0] = s->nv; // everyone starts in state 0, remember?
+  s->B = (v_t *)calloc(2, sizeof(v_t));
+  s->B[0] = s->ne;
 
   return s;
 }
@@ -98,9 +99,10 @@ state_finite_t *initial_finite_prepare_potts(D_t D, L_t L, q_t q, double T, doub
   s->spins = (q_t *)calloc(s->nv, sizeof(q_t));
   s->R = initialize_R(q);
 
-  s->E = - ((double)s->ne) * s->J[0] - ((double)s->nv) * s->H[0];
   s->M = (v_t *)calloc(q, sizeof(v_t));
   s->M[0] = s->nv; // everyone starts in state 0, remember?
+  s->B = (v_t *)calloc(q, sizeof(v_t));
+  s->B[0] = s->ne; // everyone starts in state 0, remember?
 
   return s;
 }
@@ -142,9 +144,10 @@ state_finite_t *initial_finite_prepare_clock(D_t D, L_t L, q_t q, double T, doub
   s->spins = (q_t *)calloc(s->nv, sizeof(q_t));
   s->R = initialize_R(q);
 
-  s->E = - ((double)s->ne) * s->J[0] - ((double)s->nv) * s->H[0];
   s->M = (v_t *)calloc(q, sizeof(v_t));
   s->M[0] = s->nv; // everyone starts in state 0, remember?
+  s->B = (v_t *)calloc(q, sizeof(v_t));
+  s->B[0] = s->ne; // everyone starts in state 0, remember?
 
   return s;
 }
@@ -189,13 +192,23 @@ state_finite_t *initial_finite_prepare_dgm(D_t D, L_t L, q_t q, double T, double
   s->spins = (q_t *)calloc(s->nv, sizeof(q_t));
   s->R = initialize_R(q);
 
-  s->E = - ((double)s->ne) * s->J[0] - ((double)s->nv) * s->H[0];
   s->M = (v_t *)calloc(q, sizeof(v_t));
   s->M[0] = s->nv; // everyone starts in state 0, remember?
 
   return s;
 }
 
+double state_finite_energy(state_finite_t *s) {
+  double E = 0;
+
+  for (q_t i = 0; i < s->q; i++) {
+    E += s->J[i] * s->B[i];
+    E += s->H[i] * s->M[i];
+  }
+
+  return -E;
+}
+
 void state_finite_free(state_finite_t *s) {
   graph_free(s->g);
   free(s->J);
@@ -205,6 +218,7 @@ void state_finite_free(state_finite_t *s) {
   free(s->spins);
   free(s->R);
   free(s->M);
+  free(s->B);
   free(s->transformations);
   free(s);
 }
diff --git a/lib/initial_finite.h b/lib/initial_finite.h
index 65414cd..542f923 100644
--- a/lib/initial_finite.h
+++ b/lib/initial_finite.h
@@ -7,6 +7,8 @@
 #include "dihedral.h"
 #include "cluster_finite.h"
 
+static char *finite_model_t_strings[] = {"ISING", "POTTS", "CLOCK", "DGM"};
+
 typedef enum {
   ISING,
   POTTS,
@@ -21,4 +23,5 @@ state_finite_t *initial_finite_prepare_dgm(D_t D, L_t L, q_t q, double T, double
 
 void state_finite_free(state_finite_t *s);
 
+double state_finite_energy(state_finite_t *s);
 
diff --git a/lib/measurement.c b/lib/measurement.c
index ad824f6..b30cf6b 100644
--- a/lib/measurement.c
+++ b/lib/measurement.c
@@ -1,6 +1,15 @@
 
+#include "convex.h"
 #include "measurement.h"
 
+meas_t *meas_initialize(count_t W) {
+  meas_t *m = (meas_t *)calloc(1, sizeof(meas_t));
+  m->W = W;
+  m->xx = (double *)calloc(2 * W + 1, sizeof(double));
+
+  return m;
+}
+
 double add_to_avg(double mx, double x, count_t n) {
   return mx * (n / (n + 1.0)) + x / (n + 1.0);
 }
@@ -10,24 +19,42 @@ void meas_update(meas_t *m, double x) {
 
   m->x = add_to_avg(m->x, x, n);
   m->x2 = add_to_avg(m->x2, pow(x, 2), n);
+  m->x4 = add_to_avg(m->x4, pow(x, 4), n);
 
   m->m2 = add_to_avg(m->m2, pow(x - m->x, 2), n);
   m->m4 = add_to_avg(m->m4, pow(x - m->x, 4), n);
 
-  /*
-  if (n > 1) {
-    double s2 = n / (n - 1.) * (m->x2 - pow(m->x, 2));
-    m->dx = sqrt(s2 / n);
-    m->c = s2;
-    m->dc = sqrt((m->m4 - (n - 3.)/(n - 1.) * pow(m->m2, 2)) / n);
+  dll_t *tmp_window = m->x_window;
+  dll_t *pos_save;
+  count_t t = 0;
+
+  while (tmp_window != NULL) {
+    m->xx[t] = add_to_avg(m->xx[t], x * (tmp_window->x), m->n - t - 1);
+    t++;
+    if (t == 2 * (m->W)) {
+      pos_save = tmp_window;
+    }
+    tmp_window = tmp_window->next;
   }
-  */
+
+  if (t == 2 * (m->W) + 1) {
+    if (2 * (m->W) + 1 == 1) {
+      free(m->x_window);
+      m->x_window = NULL;
+    } else {
+      free(pos_save->next);
+      pos_save->next = NULL;
+    }
+  }
+
+  stack_push_d(&(m->x_window), x);
 
   (m->n)++;
 }
 
 double meas_dx(const meas_t *m) {
-  return sqrt(1. / (m->n - 1.) * (m->x2 - pow(m->x, 2)));
+  return 2 * get_tau(m) * Cxx(m, 0) / m->n;
+//  return sqrt(1. / (m->n - 1.) * (m->x2 - pow(m->x, 2)));
 }
 
 double meas_c(const meas_t *m) {
@@ -74,3 +101,105 @@ double rho(const autocorr_t *o, count_t i) {
   return (o->OO[i] - pow(o->O, 2)) / (o->O2 - pow(o->O, 2));
 }
 
+double Cxx(const meas_t *m, count_t t) {
+  return m->xx[t] - pow(m->x, 2);
+}
+
+double rho_m(const meas_t *m, count_t t) {
+  return Cxx(m, t) / Cxx(m, 0);
+}
+
+double get_tau(const meas_t *m) {
+  double *Gammas = (double *)malloc((m->W + 1) * sizeof(double));
+
+  Gammas[0] = 1 + rho_m(m, 0);
+  for (uint64_t i = 0; i < m->W; i++) {
+    Gammas[1 + i] = rho_m(m, 2 * i + 1) + rho_m(m, 2 * i + 2);
+  }
+
+  uint64_t n;
+  for (n = 0; n < m->W + 1; n++) {
+    if (Gammas[n] <= 0) {
+      break;
+    }
+  }
+
+  double *conv_Gamma = get_convex_minorant(n, Gammas);
+
+  double tau = - 0.5;
+
+  for (uint64_t i = 0; i < n + 1; i++) {
+    tau += conv_Gamma[i];
+  }
+
+  free(Gammas);
+
+  return tau;
+}
+
+void print_meas(const meas_t *m, const char *sym, FILE *outfile) {
+  fprintf(outfile, "%s-><|n->%" PRIcount ",x->%.15f,x^2->%.15f,x^4->%.15f,xx->{", sym, m->n, m->x, m->x2, m->x4);
+  for (count_t i = 0; i < 2 * (m->W) + 1; i++) {
+    fprintf(outfile, "%.15f", m->xx[i]);
+    if (i < 2 * (m->W)) {
+      fprintf(outfile, ",");
+    }
+  }
+  fprintf(outfile, "}|>");
+}
+
+void print_vec_meas(q_t q, const meas_t **m, const char *sym, FILE *outfile) {
+  fprintf(outfile, "%s-><|n->{", sym);
+  for (q_t i = 0; i < q; i++) {
+    fprintf(outfile, "%" PRIcount, m[i]->n);
+    if (i < q - 1) {
+      fprintf(outfile, ",");
+    }
+  }
+  fprintf(outfile, "},x->{");
+  for (q_t i = 0; i < q; i++) {
+    fprintf(outfile, "%.15f", m[i]->x);
+    if (i < q - 1) {
+      fprintf(outfile, ",");
+    }
+  }
+  fprintf(outfile, "},x^2->{");
+  for (q_t i = 0; i < q; i++) {
+    fprintf(outfile, "%.15f", m[i]->x2);
+    if (i < q - 1) {
+      fprintf(outfile, ",");
+    }
+  }
+  fprintf(outfile, "},x^4->{");
+  for (q_t i = 0; i < q; i++) {
+    fprintf(outfile, "%.15f", m[i]->x4);
+    if (i < q - 1) {
+      fprintf(outfile, ",");
+    }
+  }
+  fprintf(outfile, "},xx->{");
+  for (q_t i = 0; i < q; i++) {
+    fprintf(outfile, "{");
+    for (count_t j = 0; j < 2 * (m[i]->W) + 1; j++) {
+      fprintf(outfile, "%.15f", m[i]->xx[j]);
+      if (j < 2 * (m[i]->W)) {
+        fprintf(outfile, ",");
+      }
+    }
+    fprintf(outfile, "}");
+    if (i < q - 1) {
+      fprintf(outfile, ",");
+    }
+  }
+  fprintf(outfile, "}|>");
+}
+
+void free_meas(meas_t *m) {
+  free(m->xx);
+  while (m->x_window != NULL) {
+    stack_pop_d(&(m->x_window));
+  }
+  free(m);
+}
+
+
diff --git a/lib/measurement.h b/lib/measurement.h
index eaa260b..d9bd52e 100644
--- a/lib/measurement.h
+++ b/lib/measurement.h
@@ -3,16 +3,21 @@
 
 #include <math.h>
 #include <stdlib.h>
+#include <stdio.h>
 
 #include "types.h"
 #include "stack.h"
 
 typedef struct {
-  uint64_t n;
+  count_t n;
   double x;
   double x2;
+  double x4;
   double m2;
   double m4;
+  count_t W;
+  double *xx;
+  dll_t *x_window;
 } meas_t;
 
 typedef struct {
@@ -36,3 +41,14 @@ void update_autocorr(autocorr_t *OO, double O);
 
 double rho(const autocorr_t *o, uint64_t i);
 
+void print_meas(const meas_t *m, const char *sym, FILE *outfile);
+void print_vec_meas(q_t q, const meas_t **m, const char *sym, FILE *outfile);
+
+void free_meas(meas_t *m);
+
+meas_t *meas_initialize(count_t W);
+
+double get_tau(const meas_t *m);
+
+double Cxx(const meas_t *m, count_t t);
+
diff --git a/src/wolff_finite.c b/src/wolff_finite.c
index 47fcc88..e41c326 100644
--- a/src/wolff_finite.c
+++ b/src/wolff_finite.c
@@ -1,93 +1,60 @@
 
+#include <time.h>
 #include <getopt.h>
 
 #include <initial_finite.h>
 
 int main(int argc, char *argv[]) {
 
-  L_t L = 128;
   count_t N = (count_t)1e7;
-  count_t min_runs = 10;
-  count_t n = 3;
+
+  finite_model_t model = ISING;
+
   q_t q = 2;
   D_t D = 2;
+  L_t L = 128;
   double T = 2.26918531421;
   double *J = (double *)calloc(MAX_Q, sizeof(double));
   J[0] = 1.0;
   double *H = (double *)calloc(MAX_Q, sizeof(double));
-  double eps = 0;
-  bool silent = false;
-  bool snapshots = false;
-  bool snapshot = false;
-  bool record_autocorrelation = false;
-  bool record_distribution = false;
-  count_t W = 10;
-  count_t ac_skip = 1;
 
-  finite_model_t model = ISING;
+  bool silent = false;
 
   int opt;
   q_t J_ind = 0;
   q_t H_ind = 0;
 
-  while ((opt = getopt(argc, argv, "N:n:D:L:q:T:J:H:m:e:IpsSPak:W:drt:")) != -1) {
+  while ((opt = getopt(argc, argv, "N:t:q:D:L:T:J:H:s")) != -1) {
     switch (opt) {
-    case 'N':
+    case 'N': // number of steps
       N = (count_t)atof(optarg);
       break;
-    case 'n':
-      n = (count_t)atof(optarg);
+    case 't': // type of simulation
+      model = (finite_model_t)atoi(optarg);
+      break;
+    case 'q': // number of states, if relevant
+      q = atoi(optarg);
       break;
-    case 'D':
+    case 'D': // dimension
       D = atoi(optarg);
       break;
-    case 'L':
+    case 'L': // linear size
       L = atoi(optarg);
       break;
-    case 'q':
-      q = atoi(optarg);
-      break;
-    case 'T':
+    case 'T': // temperature 
       T = atof(optarg);
       break;
-    case 'J':
+    case 'J': // couplings, if relevant. nth call couples states i and i + n
       J[J_ind] = atof(optarg);
       J_ind++;
       break;
-    case 'H':
+    case 'H': // external field. nth call couples to state n
       H[H_ind] = atof(optarg);
       H_ind++;
       break;
-    case 'm':
-      min_runs = atoi(optarg);
-      break;
-    case 'e':
-      eps = atof(optarg);
-      break;
-    case 's':
+    case 's': // don't print anything during simulation. speeds up slightly
       silent = true;
       break;
-    case 'S':
-      snapshots = true;
-      break;
-    case 'P':
-      snapshot = true;
-      break;
-    case 'a':
-      record_autocorrelation = true;
-      break;
-    case 'k':
-      ac_skip = (count_t)atof(optarg);
-      break;
-    case 'W':
-      W = (count_t)atof(optarg);
-      break;
-    case 'd':
-      record_distribution = true;
-      break;
-    case 't':
-      model = (finite_model_t)atoi(optarg);
-      break;
     default:
       exit(EXIT_FAILURE);
     }
@@ -95,9 +62,6 @@ int main(int argc, char *argv[]) {
 
   state_finite_t *s;
 
-  gsl_rng *r = gsl_rng_alloc(gsl_rng_mt19937);
-  gsl_rng_set(r, rand_seed());
-
   switch (model) {
     case ISING:
       s = initial_finite_prepare_ising(D, L, T, H); 
@@ -113,318 +77,84 @@ int main(int argc, char *argv[]) {
       break;
     default:
       printf("Not a valid model!\n");
-      return 1;
+      free(J);
+      free(H);
+      exit(EXIT_FAILURE);
   }
 
   free(J);
   free(H);
 
+  // initialize random number generator
+  gsl_rng *r = gsl_rng_alloc(gsl_rng_mt19937);
+  gsl_rng_set(r, rand_seed());
 
-  double diff = 1e31;
-  count_t n_runs = 0;
-  count_t n_steps = 0;
+  unsigned long timestamp = (unsigned long)time(NULL);
 
-  meas_t *E, *clust, **M, **sE, ***sM;
+  char *filename_M = (char *)malloc(256 * sizeof(char));
+  char *filename_B = (char *)malloc(256 * sizeof(char));
+  char *filename_S = (char *)malloc(256 * sizeof(char));
 
-  M = (meas_t **)malloc(q * sizeof(meas_t *));
+  sprintf(filename_M, "wolff_%s_%" PRIq "_%" PRID "_%" PRIL "_%.8f", finite_model_t_strings[model], q, D, L, T);
   for (q_t i = 0; i < q; i++) {
-    M[i] = (meas_t *)calloc(1, sizeof(meas_t));
+    sprintf(filename_M + strlen(filename_M), "_%.8f", s->H[i]);
   }
 
-  E = calloc(1, sizeof(meas_t));
-  clust = calloc(1, sizeof(meas_t));
+  strcpy(filename_B, filename_M);
+  strcpy(filename_S, filename_M);
 
-  sE = (meas_t **)malloc(q * sizeof(meas_t *));
-  sM = (meas_t ***)malloc(q * sizeof(meas_t **));
+  sprintf(filename_M + strlen(filename_M), "_%lu_M.dat", timestamp);
+  sprintf(filename_B + strlen(filename_B), "_%lu_B.dat", timestamp);
+  sprintf(filename_S + strlen(filename_S), "_%lu_S.dat", timestamp);
 
-  for (q_t i = 0; i < q; i++) {
-    sE[i] = (meas_t *)calloc(1, sizeof(meas_t));
-    sM[i] = (meas_t **)malloc(q * sizeof(meas_t *));
-    for (q_t j = 0; j < q; j++) {
-      sM[i][j] = (meas_t *)calloc(1, sizeof(meas_t));
-    }
-  }
+  FILE *outfile_M = fopen(filename_M, "wb");
+  FILE *outfile_B = fopen(filename_B, "wb");
+  FILE *outfile_S = fopen(filename_S, "wb");
 
-  count_t *freqs = (count_t *)calloc(q, sizeof(count_t));
-  q_t cur_M = 0;
+  free(filename_M);
+  free(filename_B);
+  free(filename_S);
 
-  autocorr_t *autocorr;
-  if (record_autocorrelation) {
-    autocorr = (autocorr_t *)calloc(1, sizeof(autocorr_t));
-    autocorr->W = 2 * W + 1;
-    autocorr->OO = (double *)calloc(2 * W + 1, sizeof(double));
-  }
-
-  count_t *mag_dist;
-  if (record_distribution) {
-    mag_dist = (count_t *)calloc(s->nv + 1, sizeof(count_t));
-  }
+  v_t cluster_size = 0;
 
   if (!silent) printf("\n");
-  while (((diff > eps || diff != diff) && n_runs < N) || n_runs < min_runs) {
-    if (!silent) printf("\033[F\033[JWOLFF: sweep %" PRIu64
-           ", dH/H = %.4f, dM/M = %.4f, dC/C = %.4f, dX/X = %.4f, cps: %.1f\n",
-           n_runs, fabs(meas_dx(E) / E->x), meas_dx(M[0]) / M[0]->x, meas_dc(E) / meas_c(E), meas_dc(M[0]) / meas_c(M[0]), s->nv / clust->x);
-
-    count_t n_flips = 0;
+  for (count_t steps = 0; steps < N; steps++) {
+    if (!silent) printf("\033[F\033[JWOLFF: sweep %" PRIu64 " / %" PRIu64 ": E = %.2f, B_0 = %" PRIv ", M_0 = %" PRIv ", S = %" PRIv "\n", steps, N, state_finite_energy(s), s->B[0], s->M[0], cluster_size);
 
-    while (n_flips / s->nv < n) {
-      v_t v0 = gsl_rng_uniform_int(r, s->nv);
-      R_t step;
+    v_t v0 = gsl_rng_uniform_int(r, s->nv);
+    R_t step;
      
-      bool changed = false;
-      while (!changed) {
-        step = gsl_rng_uniform_int(r, s->n_transformations);
-        if (symmetric_act(s->transformations + q * step, s->spins[v0]) != s->spins[v0]) {
-          changed = true;
-        }
+    bool changed = false;
+    while (!changed) {
+      step = gsl_rng_uniform_int(r, s->n_transformations);
+      if (symmetric_act(s->transformations + q * step, s->spins[v0]) != s->spins[v0]) {
+        changed = true;
       }
-
-      v_t tmp_flips = flip_cluster_finite(s, v0, step, r);
-      n_flips += tmp_flips;
-
-      if (n_runs > 0) {
-        n_steps++;
-        meas_update(clust, tmp_flips);
-
-        if (record_autocorrelation && n_steps % ac_skip == 0) {
-          update_autocorr(autocorr, s->E);
-        }
-
-      }
-
     }
 
-    for (q_t i = 0; i < q; i++) {
-      meas_update(M[i], s->M[i]);
-    }
-    meas_update(E, s->E);
-
-    q_t n_at_max = 0;
-    q_t max_M_i = 0;
-    v_t max_M = 0;
-
-    for (q_t i = 0; i < q; i++) {
-      if (s->M[i] > max_M) {
-        n_at_max = 1;
-        max_M_i = i;
-        max_M = s->M[i];
-      } else if (s->M[i] == max_M) {
-        n_at_max++;
-      }
-    }
+    cluster_size = flip_cluster_finite(s, v0, step, r);
 
-    if (record_distribution) {
-      mag_dist[s->M[0]]++;
-    }
+    // v_t is never going to be bigger than 32 bits, but since it's specified
+    // as a fast time many machines will actually have it be 64 bits. we cast
+    // it down here to halve space.
 
-    if (n_at_max == 1) {
-      for (q_t i = 0; i < q; i++) {
-        meas_update(sM[max_M_i][i], s->M[i]);
-      }
-      meas_update(sE[max_M_i], s->E);
-      freqs[max_M_i]++;
+    for (q_t i = 0; i < q - 1; i++) {
+      fwrite(&(s->M[i]), sizeof(uint32_t), 1, outfile_M); // if we know the occupation of the first q - 1 states, we know the occupation of the last
+      fwrite(&(s->B[i]), sizeof(uint32_t), 1, outfile_B); // if we know the occupation of the first q - 1 states, we know the occupation of the last
     }
 
-    diff = fabs(meas_dx(clust) / clust->x);
+    fwrite(&cluster_size, sizeof(uint32_t), 1, outfile_S);
 
-    n_runs++;
   }
   if (!silent) {
     printf("\033[F\033[J");
   }
-  printf("WOLFF: sweep %" PRIu64
-         ", dH/H = %.4f, dM/M = %.4f, dC/C = %.4f, dX/X = %.4f, cps: %.1f\n",
-         n_runs, fabs(meas_dx(E) / E->x), meas_dx(M[0]) / M[0]->x, meas_dc(E) / meas_c(E), meas_dc(M[0]) / meas_c(M[0]), s->nv / clust->x);
-
-  if (snapshots) {
-    FILE *snapfile = fopen("snapshots.m", "a");
-    fprintf(snapfile, "\n");
-  }
-
-  if (snapshot) {
-    q_t *R_inv = symmetric_invert(q, s->R);
-    FILE *snapfile = fopen("snapshot.m", "a");
-    fprintf(snapfile, "{{");
-    for (L_t i = 0; i < L; i++) {
-      fprintf(snapfile, "{");
-      for (L_t j = 0; j < L; j++) {
-        fprintf(snapfile, "%" PRIq, symmetric_act(R_inv, s->spins[L * i + j]));
-        if (j != L - 1) {
-          fprintf(snapfile, ",");
-        }
-      }
-      fprintf(snapfile, "}");
-      if (i != L - 1) {
-        fprintf(snapfile, ",");
-      }
-    }
-    fprintf(snapfile, "}}\n");
-    fclose(snapfile);
-  }
+  printf("WOLFF: sweep %" PRIu64 " / %" PRIu64 ": E = %.2f, B_0 = %" PRIv ", M_0 = %" PRIv ", S = %" PRIv "\n", N, N, state_finite_energy(s), s->B[0], s->M[0], cluster_size);
 
-  double tau = 0;
-  int tau_failed = 0;
+  fclose(outfile_M);
+  fclose(outfile_B);
+  fclose(outfile_S);
 
-  if (record_autocorrelation) {
-    double *Gammas = (double *)malloc((W + 1) * sizeof(double));
-
-    Gammas[0] = 1 + rho(autocorr, 0);
-    for (uint64_t i = 0; i < W; i++) {
-      Gammas[1 + i] = rho(autocorr, 2 * i + 1) + rho(autocorr, 2 * i + 2);
-    } 
-
-    uint64_t n;
-    for (n = 0; n < W + 1; n++) {
-      if (Gammas[n] <= 0) {
-        break;
-      }
-    }
-
-    if (n == W + 1) {
-      printf("WARNING: correlation function never hit the noise floor.\n");
-      tau_failed = 1;
-    }
-
-    if (n < 2) {
-      printf("WARNING: correlation function only has one nonnegative term.\n");
-      tau_failed = 2;
-    }
-
-    double *conv_Gamma = get_convex_minorant(n, Gammas);
-
-    double ttau = - 0.5;
-
-    for (uint64_t i = 0; i < n + 1; i++) {
-      ttau += conv_Gamma[i];
-    }
-    
-    tau = ttau * ac_skip * clust->x / s->nv;
-    
-    free(Gammas);
-    free(autocorr->OO);
-    while (autocorr->Op != NULL) {
-      stack_pop_d(&(autocorr->Op));
-    }
-    free(autocorr);
-  }
-
-  if (tau_failed) {
-    //tau = 0;
-  }
-
-  {
-  FILE *outfile = fopen("out.m", "a");
-
-  fprintf(outfile, "<|N->%" PRIcount ",n->%" PRIcount ",D->%" PRID ",L->%" PRIL ",q->%" PRIq ",T->%.15f,J->{", N, n, D, L, q, T);
-  for (q_t i = 0; i < q; i++) {
-    fprintf(outfile, "%.15f", s->J[i]);
-    if (i != q-1) {
-      fprintf(outfile, ",");
-    }
-  }
-  fprintf(outfile, "},H->{");
-  for (q_t i = 0; i < q; i++) {
-    fprintf(outfile, "%.15f", s->H[i]);
-    if (i != q-1) {
-      fprintf(outfile, ",");
-    }
-  }
-  fprintf(outfile, "},E->%.15f,\\[Delta]E->%.15f,C->%.15f,\\[Delta]C->%.15f,M->{", E->x / s->nv, meas_dx(E) / s->nv, meas_c(E) / s->nv, meas_dc(E) / s->nv);
-  for (q_t i = 0; i < q; i++) {
-    fprintf(outfile, "%.15f", M[i]->x / s->nv);
-    if (i != q-1) {
-      fprintf(outfile, ",");
-    }
-  }
-  fprintf(outfile, "},\\[Delta]M->{");
-  for (q_t i = 0; i < q; i++) {
-    fprintf(outfile, "%.15f", meas_dx(M[i]) / s->nv);
-    if (i != q-1) {
-      fprintf(outfile, ",");
-    }
-  }
-  fprintf(outfile, "},\\[Chi]->{");
-  for (q_t i = 0; i < q; i++) {
-    fprintf(outfile, "%.15f", meas_c(M[i]) / s->nv);
-    if (i != q-1) {
-      fprintf(outfile, ",");
-    }
-  }
-  fprintf(outfile, "},\\[Delta]\\[Chi]->{");
-  for (q_t i = 0; i < q; i++) {
-    fprintf(outfile, "%.15f", meas_dc(M[i]) / s->nv);
-    if (i != q-1) {
-      fprintf(outfile, ",");
-    }
-  }
-  for (q_t i = 0; i < q; i++) {
-    fprintf(outfile, "},Subscript[E,%" PRIq "]->%.15f,Subscript[\\[Delta]E,%" PRIq "]->%.15f,Subscript[C,%" PRIq "]->%.15f,Subscript[\\[Delta]C,%" PRIq "]->%.15f,Subscript[M,%" PRIq "]->{", i, sE[i]->x / s->nv, i, meas_dx(sE[i]) / s->nv, i, meas_c(sE[i]) / s->nv, i, meas_dc(sE[i]) / s->nv, i);
-    for (q_t j = 0; j < q; j++) {
-      fprintf(outfile, "%.15f", sM[i][j]->x / s->nv);
-      if (j != q-1) {
-        fprintf(outfile, ",");
-      }
-    }
-    fprintf(outfile, "},Subscript[\\[Delta]M,%" PRIq "]->{", i);
-    for (q_t j = 0; j < q; j++) {
-      fprintf(outfile, "%.15f", meas_dx(sM[i][j]) / s->nv);
-      if (j != q-1) {
-        fprintf(outfile, ",");
-      }
-    }
-    fprintf(outfile, "},Subscript[\\[Chi],%" PRIq "]->{", i);
-    for (q_t j = 0; j < q; j++) {
-      fprintf(outfile, "%.15f", meas_c(sM[i][j]) / s->nv);
-      if (j != q-1) {
-        fprintf(outfile, ",");
-      }
-    }
-    fprintf(outfile, "},Subscript[\\[Delta]\\[Chi],%" PRIq "]->{", i);
-    for (q_t j = 0; j < q; j++) {
-      fprintf(outfile, "%.15f", meas_dc(sM[i][j]) / s->nv);
-      if (j != q-1) {
-        fprintf(outfile, ",");
-      }
-    }
-  }
-  fprintf(outfile,"}");
-  for (q_t i = 0; i < q; i++) {
-    fprintf(outfile, ",Subscript[f,%" PRIq "]->%.15f,Subscript[\\[Delta]f,%" PRIq "]->%.15f", i, (double)freqs[i] / (double)n_runs, i, sqrt(freqs[i]) / (double)n_runs);
-  }
-  fprintf(outfile, ",Subscript[n,\"clust\"]->%.15f,Subscript[\\[Delta]n,\"clust\"]->%.15f,Subscript[m,\"clust\"]->%.15f,Subscript[\\[Delta]m,\"clust\"]->%.15f,\\[Tau]->%.15f,\\[Tau]s->%d", clust->x / s->nv, meas_dx(clust) / s->nv, meas_c(clust) / s->nv, meas_dc(clust) / s->nv,tau,tau_failed);
-  if (record_distribution) {
-    fprintf(outfile, ",S->{");
-    for (v_t i = 0; i < s->nv + 1; i++) {
-      fprintf(outfile, "%" PRIcount, mag_dist[i]);
-      if (i != s->nv) {
-        fprintf(outfile, ",");
-      }
-    }
-    fprintf(outfile, "}");
-    free(mag_dist);
-  }
-  fprintf(outfile, "|>\n");
-
-  fclose(outfile);
-  }
-
-  free(E);
-  free(clust);
-  for (q_t i = 0; i < q; i++) {
-    free(M[i]);
-    for (q_t j = 0; j < q; j++) {
-      free(sM[i][j]);
-    }
-    free(sM[i]);
-  }
-  free(M);
-  free(sM);
-  for (q_t i = 0; i < q; i++) {
-    free(sE[i]);
-  }
-  free(freqs);
-  free(sE);
   state_finite_free(s);
   gsl_rng_free(r);
 
-- 
cgit v1.2.3-70-g09d2