From f2f7a072216dfafab89851e4ff3e0b2c3eb16663 Mon Sep 17 00:00:00 2001 From: Jaron Kent-Dobias Date: Wed, 17 Oct 2018 19:33:25 -0400 Subject: removed a lot of research code to simplify library and examples for publication --- examples/simple_ising.cpp | 192 ---------------------------------------------- 1 file changed, 192 deletions(-) delete mode 100644 examples/simple_ising.cpp (limited to 'examples/simple_ising.cpp') diff --git a/examples/simple_ising.cpp b/examples/simple_ising.cpp deleted file mode 100644 index 24e4ae5..0000000 --- a/examples/simple_ising.cpp +++ /dev/null @@ -1,192 +0,0 @@ - -#include -#include - -#include "include/randutils/randutils.hpp" - -#include - -// define your R_t and X_t. here both are the same, ising_t -class ising_t { - public: - bool x; - - // both X_t and R_t need a default constructor (and destructor, if relevant) - ising_t() : x(false) {} - ising_t(bool x) : x(x) {} - - // R_t needs the member functions - // X_t act(const X_t& s) const {} - // R_t act(const R_t& s) const {} - // to define action on both spins and other transformations - ising_t act(const ising_t& s) const { - if (x) { - return ising_t(!(s.x)); - } else { - return ising_t(s.x); - } - } - - // R_t needs the member functions - // X_t act_inverse(const X_t& s) const {} - // R_t act_inverse(const R_t& s) const {} - // to define action of its inverse on both spins and other transformations - ising_t act_inverse(const ising_t& s) const { - return this->act(s); - } -}; - -// define how measurements should be taken by importing the interface wolff_measurement -class ising_measurements : public wolff_measurement { - private: - count_t n; - - double E; - int M; - v_t S; - - double totalE; - double totalM; - double totalS; - - public: - ising_measurements(D_t D, L_t L, double H) { - n = 0; - M = (int)pow(L, D); - E = -D * pow(L, D) - H * pow(L, D); - - totalE = 0; - totalM = 0; - totalS = 0; - } - - void pre_cluster(const state_t& s, count_t step, count_t N, v_t v0, const ising_t& R) { - S = 0; - } - - void plain_bond_added(v_t v, const ising_t& s_old, const ising_t& s_new, v_t vn, const ising_t& sn, double dE) { - E += dE; - } - - void ghost_bond_added(v_t v, const ising_t& s_old, const ising_t& s_new, double dE) { - E += dE; - - if (s_old.x) { - M++; - } else { - M--; - } - - if (s_new.x) { - M--; - } else { - M++; - } - } - - void plain_site_transformed(v_t v, const ising_t& s_old, const ising_t& s_new) { - S++; - } - - void ghost_site_transformed(const ising_t& R_old, const ising_t& R_new) { - } - - void post_cluster(const state_t& s, count_t step, count_t N) { - totalE += E; - totalM += M; - totalS += S; - n++; - } - - double avgE() { - return totalE / n; - } - - double avgM() { - return totalM / n; - } - - double avgS() { - return totalS / n; - } -}; - -int main(int argc, char *argv[]) { - - // set defaults - count_t N = (count_t)1e4; - D_t D = 2; - L_t L = 128; - double T = 2.26918531421; - double H = 0.0; - - int opt; - - // take command line arguments - while ((opt = getopt(argc, argv, "N:D:L:T:H:")) != -1) { - switch (opt) { - case 'N': // number of steps - N = (count_t)atof(optarg); - break; - case 'D': // dimension - D = atoi(optarg); - break; - case 'L': // linear size - L = atoi(optarg); - break; - case 'T': // temperature - T = atof(optarg); - break; - case 'H': // external field - H = atof(optarg); - break; - default: - exit(EXIT_FAILURE); - } - } - - // define the spin-spin coupling - std::function Z = [] (const ising_t& s1, const ising_t& s2) -> double { - if (s1.x == s2.x) { - return 1.0; - } else { - return -1.0; - } - }; - - // define the spin-field coupling - std::function B = [=] (const ising_t& s) -> double { - if (s.x) { - return -H; - } else { - return H; - } - }; - - // initialize the system - state_t s(D, L, T, Z, B); - - // initialize the random number generator - randutils::auto_seed_128 seeds; - std::mt19937 rng{seeds}; - - // define function that generates self-inverse rotations - std::function gen_R = [] (std::mt19937&, const ising_t& s) -> ising_t { - return ising_t(true); - }; - - // initailze the measurement object - ising_measurements m(D, L, H); - - // run wolff N times - wolff(N, s, gen_R, m, rng); - - // print the result of our measurements - std::cout << "Wolff complete!\nThe average energy per site was " << m.avgE() / s.nv - << ".\nThe average magnetization per site was " << m.avgM() / s.nv - << ".\nThe average cluster size per site was " << m.avgS() / s.nv << ".\n"; - - // exit - return 0; -} - -- cgit v1.2.3-70-g09d2