From 3b8e7ea25f0c23ca596c1c4e3e4f71d12c5fc065 Mon Sep 17 00:00:00 2001 From: Jaron Kent-Dobias Date: Fri, 19 Oct 2018 13:23:23 -0400 Subject: added more examples and cleaned up the model headers --- examples/CMakeLists.txt | 12 +++- examples/clock.cpp | 98 ++++++++++++++++++++++++++++++++ examples/continuous_gaussian.cpp | 112 +++++++++++++++++++++++++++++++++++++ examples/discrete_gaussian.cpp | 117 +++++++++++++++++++++++++++++++++++++++ examples/ising_standalone.cpp | 4 +- examples/potts.cpp | 110 ++++++++++++++++++++++++++++++++++++ 6 files changed, 451 insertions(+), 2 deletions(-) create mode 100644 examples/clock.cpp create mode 100644 examples/continuous_gaussian.cpp create mode 100644 examples/discrete_gaussian.cpp create mode 100644 examples/potts.cpp (limited to 'examples') diff --git a/examples/CMakeLists.txt b/examples/CMakeLists.txt index c64bb06..634c600 100644 --- a/examples/CMakeLists.txt +++ b/examples/CMakeLists.txt @@ -3,11 +3,21 @@ add_executable(ising ising.cpp) add_executable(ising_animation ising_animation.cpp) add_executable(ising_standalone ising_standalone.cpp) add_executable(xy On.cpp) +add_executable(potts_3 potts.cpp) +add_executable(clock_5 clock.cpp) +add_executable(discrete_gaussian discrete_gaussian.cpp) +add_executable(continuous_gaussian continuous_gaussian.cpp) -add_compile_definitions(xy WOLFF_N=2) +target_compile_definitions(xy PUBLIC WOLFF_N=2) +target_compile_definitions(potts_3 PUBLIC WOLFF_POTTSQ=3) +target_compile_definitions(clock_5 PUBLIC WOLFF_POTTSQ=5) target_link_libraries(ising wolff) target_link_libraries(ising_animation wolff GL GLU glut) target_link_libraries(ising_standalone wolff) target_link_libraries(xy wolff) +target_link_libraries(potts_3 wolff) +target_link_libraries(clock_5 wolff) +target_link_libraries(discrete_gaussian wolff) +target_link_libraries(continuous_gaussian wolff) diff --git a/examples/clock.cpp b/examples/clock.cpp new file mode 100644 index 0000000..4b0ffb8 --- /dev/null +++ b/examples/clock.cpp @@ -0,0 +1,98 @@ + +#include +#include +#include + +#include "simple_measurement.hpp" + +#include +#include +#include + +#include + +using namespace wolff; + +int main(int argc, char *argv[]) { + + // set defaults + N_t N = (N_t)1e4; + D_t D = 2; + L_t L = 128; + double T = 2.26918531421; + vector_t<2, double> H; + H.fill(0.0); + q_t Hi = 0; + + int opt; + + // take command line arguments + while ((opt = getopt(argc, argv, "N:D:L:T:H:")) != -1) { + switch (opt) { + case 'N': // number of steps + N = (N_t)atof(optarg); + break; + case 'D': // dimension + D = atoi(optarg); + break; + case 'L': // linear size + L = atoi(optarg); + break; + case 'T': // temperature + T = atof(optarg); + break; + case 'H': // external field + H[Hi] = atof(optarg); + Hi++; + break; + default: + exit(EXIT_FAILURE); + } + } + + // define the spin-spin coupling + std::function &, const potts_t&)> Z = [] (const potts_t& s1, const potts_t& s2) -> double { + return cos(2 * M_PI * (double)(s1.x + WOLFF_POTTSQ - s2.x) / (double)WOLFF_POTTSQ); + }; + + // define the spin-field coupling + std::function &)> B = [=] (const potts_t& s) -> double { + return H[0] * cos(2 * M_PI * (double)s.x / (double)WOLFF_POTTSQ) + H[1] * sin(2 * M_PI * (double)s.x / (double)WOLFF_POTTSQ); + }; + + // initialize the lattice + graph G(D, L); + + // initialize the system + system, potts_t> S(G, T, Z, B); + + // initialize the random number generator + auto seed = std::chrono::high_resolution_clock::now().time_since_epoch().count(); + std::mt19937 rng{seed}; + + // define function that generates self-inverse rotations + std::function (std::mt19937&, const system, potts_t>&, v_t)> gen_r = [] (std::mt19937& r, const system, potts_t>& S, v_t i0) -> dihedral_t { + dihedral_t rot; + rot.is_reflection = true; + std::uniform_int_distribution dist(0, WOLFF_POTTSQ - 2); + q_t x = dist(r); + rot.x = (2 * S.s[i0].x + x + 1) % WOLFF_POTTSQ; + + return rot; + }; + + // initailze the measurement object + simple_measurement A(S); + + // run wolff N times + S.run_wolff(N, gen_r, A, rng); + + // print the result of our measurements + std::cout << "Wolff complete!\nThe average energy per site was " << A.avgE() / S.nv + << ".\nThe average magnetization per site was " << A.avgM() / S.nv + << ".\nThe average cluster size per site was " << A.avgC() / S.nv << ".\n"; + + // exit + return 0; +} + diff --git a/examples/continuous_gaussian.cpp b/examples/continuous_gaussian.cpp new file mode 100644 index 0000000..ef08247 --- /dev/null +++ b/examples/continuous_gaussian.cpp @@ -0,0 +1,112 @@ + +#include +#include +#include + +#include "simple_measurement.hpp" + +#include +#include + +#include + +int main(int argc, char *argv[]) { + + // set defaults + N_t N = (N_t)1e4; + D_t D = 2; + L_t L = 128; + double T = 0.8; + double H = 0.0; + + int opt; + + // take command line arguments + while ((opt = getopt(argc, argv, "N:D:L:T:H:")) != -1) { + switch (opt) { + case 'N': // number of steps + N = (N_t)atof(optarg); + break; + case 'D': // dimension + D = atoi(optarg); + break; + case 'L': // linear size + L = atoi(optarg); + break; + case 'T': // temperature + T = atof(optarg); + break; + case 'H': // external field + H = atof(optarg); + break; + default: + exit(EXIT_FAILURE); + } + } + + // define the spin-spin coupling + std::function &, const height_t&)> Z = [] (const height_t& s1, const height_t& s2) -> double { + return - pow(s1.x - s2.x, 2); + }; + + // define the spin-field coupling + std::function &)> B = [&] (const height_t& s) -> double { + return - H * pow(s.x, 2); + }; + + // initialize the lattice + graph G(D, L); + + // initialize the system + system, height_t> S(G, T, Z, B); + + bool odd_run = false; + + std::function (std::mt19937&, const system, height_t>&, v_t)> gen_R_IH = [&](std::mt19937& r, const system, height_t>& S, v_t i0) -> dihedral_inf_t { + dihedral_inf_t rot; + rot.is_reflection = true; + + if (odd_run) { + std::uniform_int_distribution dist(0, S.nv - 2); + v_t j = i0; + + //while (S.s[j].x == S.s[i0].x) { + v_t tmp = dist(r); + + if (tmp < i0) { + j = tmp; + } else { + j = tmp + 1; + } + //} + + rot.x = 2 * S.s[j].x; + } else { + std::normal_distribution dist(0.0,1.0); + rot.x = 2 * S.s[i0].x + dist(r); + } + + odd_run = !odd_run; + + return rot; + }; + + // initailze the measurement object + simple_measurement A(S); + + // initialize the random number generator + auto seed = std::chrono::high_resolution_clock::now().time_since_epoch().count(); + std::mt19937 rng{seed}; + + // run wolff N times + S.run_wolff(N, gen_R_IH, A, rng); + + // print the result of our measurements + std::cout << "Wolff complete!\nThe average energy per site was " << A.avgE() / S.nv + << ".\nThe average magnetization per site was " << A.avgM() / S.nv + << ".\nThe average cluster size per site was " << A.avgC() / S.nv << ".\n"; + + // exit + return 0; +} + diff --git a/examples/discrete_gaussian.cpp b/examples/discrete_gaussian.cpp new file mode 100644 index 0000000..75ea0f9 --- /dev/null +++ b/examples/discrete_gaussian.cpp @@ -0,0 +1,117 @@ + +#include +#include +#include + +#include "simple_measurement.hpp" + +#include +#include + +#include + +int main(int argc, char *argv[]) { + + // set defaults + N_t N = (N_t)1e4; + D_t D = 2; + L_t L = 128; + double T = 0.8; + double H = 0.0; + + int opt; + + // take command line arguments + while ((opt = getopt(argc, argv, "N:D:L:T:H:")) != -1) { + switch (opt) { + case 'N': // number of steps + N = (N_t)atof(optarg); + break; + case 'D': // dimension + D = atoi(optarg); + break; + case 'L': // linear size + L = atoi(optarg); + break; + case 'T': // temperature + T = atof(optarg); + break; + case 'H': // external field + H = atof(optarg); + break; + default: + exit(EXIT_FAILURE); + } + } + + // define the spin-spin coupling + std::function &, const height_t&)> Z = [] (const height_t& s1, const height_t& s2) -> double { + return - pow(s1.x - s2.x, 2); + }; + + // define the spin-field coupling + std::function &)> B = [&] (const height_t& s) -> double { + return - H * pow(s.x, 2); + }; + + // initialize the lattice + graph G(D, L); + + // initialize the system + system, height_t> S(G, T, Z, B); + + bool odd_run = false; + + std::function (std::mt19937&, const system, height_t>&, v_t)> gen_R_IH = [&](std::mt19937& r, const system, height_t>& S, v_t i0) -> dihedral_inf_t { + dihedral_inf_t rot; + rot.is_reflection = true; + + if (odd_run) { + std::uniform_int_distribution dist(0, S.nv - 2); + v_t j = i0; + + //while (S.s[j].x == S.s[i0].x) { + v_t tmp = dist(r); + + if (tmp < i0) { + j = tmp; + } else { + j = tmp + 1; + } + //} + + rot.x = 2 * S.s[j].x; + } else { + std::uniform_int_distribution dist(0, 1); + int j = dist(r); + if (j) { + rot.x = 2 * S.s[i0].x + 1; + } else { + rot.x = 2 * S.s[i0].x - 1; + } + } + + odd_run = !odd_run; + + return rot; + }; + + // initailze the measurement object + simple_measurement A(S); + + // initialize the random number generator + auto seed = std::chrono::high_resolution_clock::now().time_since_epoch().count(); + std::mt19937 rng{seed}; + + // run wolff N times + S.run_wolff(N, gen_R_IH, A, rng); + + // print the result of our measurements + std::cout << "Wolff complete!\nThe average energy per site was " << A.avgE() / S.nv + << ".\nThe average magnetization per site was " << A.avgM() / S.nv + << ".\nThe average cluster size per site was " << A.avgC() / S.nv << ".\n"; + + // exit + return 0; +} + diff --git a/examples/ising_standalone.cpp b/examples/ising_standalone.cpp index c958777..62b4089 100644 --- a/examples/ising_standalone.cpp +++ b/examples/ising_standalone.cpp @@ -23,8 +23,10 @@ class ising_t { }; class measure_clusters : public measurement { - public: + private: v_t C; + + public: double Ctotal; measure_clusters() { diff --git a/examples/potts.cpp b/examples/potts.cpp new file mode 100644 index 0000000..84494e2 --- /dev/null +++ b/examples/potts.cpp @@ -0,0 +1,110 @@ + +#include +#include +#include + +#include "simple_measurement.hpp" + +#include +#include +#include + +#include + +using namespace wolff; + +int main(int argc, char *argv[]) { + + // set defaults + N_t N = (N_t)1e4; + D_t D = 2; + L_t L = 128; + double T = 2.26918531421; + vector_t H; + H.fill(0.0); + q_t Hi = 0; + + int opt; + + // take command line arguments + while ((opt = getopt(argc, argv, "N:D:L:T:H:")) != -1) { + switch (opt) { + case 'N': // number of steps + N = (N_t)atof(optarg); + break; + case 'D': // dimension + D = atoi(optarg); + break; + case 'L': // linear size + L = atoi(optarg); + break; + case 'T': // temperature + T = atof(optarg); + break; + case 'H': // external field + H[Hi] = atof(optarg); + Hi++; + break; + default: + exit(EXIT_FAILURE); + } + } + + // define the spin-spin coupling + std::function &, const potts_t&)> Z = [] (const potts_t& s1, const potts_t& s2) -> double { + if (s1.x == s2.x) { + return 1.0; + } else { + return 0.0; + } + }; + + // define the spin-field coupling + std::function &)> B = [=] (const potts_t& s) -> double { + return H[s.x]; + }; + + // initialize the lattice + graph G(D, L); + + // initialize the system + system, potts_t> S(G, T, Z, B); + + // initialize the random number generator + auto seed = std::chrono::high_resolution_clock::now().time_since_epoch().count(); + std::mt19937 rng{seed}; + + // define function that generates self-inverse rotations + std::function (std::mt19937&, const system, potts_t>&, v_t)> gen_r = [] (std::mt19937& r, const system, potts_t>& S, v_t i0) -> symmetric_t { + symmetric_t rot; + + std::uniform_int_distribution dist(0, WOLFF_POTTSQ - 2); + q_t j = dist(r); + q_t swap_v; + if (j < S.s[i0].x) { + swap_v = j; + } else { + swap_v = j + 1; + } + + rot[S.s[i0].x] = swap_v; + rot[swap_v] = S.s[i0].x; + + return rot; + }; + + // initailze the measurement object + simple_measurement A(S); + + // run wolff N times + S.run_wolff(N, gen_r, A, rng); + + // print the result of our measurements + std::cout << "Wolff complete!\nThe average energy per site was " << A.avgE() / S.nv + << ".\nThe average magnetization per site was " << A.avgM() / S.nv + << ".\nThe average cluster size per site was " << A.avgC() / S.nv << ".\n"; + + // exit + return 0; +} + -- cgit v1.2.3-70-g09d2