From 3b8e7ea25f0c23ca596c1c4e3e4f71d12c5fc065 Mon Sep 17 00:00:00 2001
From: Jaron Kent-Dobias <jaron@kent-dobias.com>
Date: Fri, 19 Oct 2018 13:23:23 -0400
Subject: added more examples and cleaned up the model headers

---
 examples/CMakeLists.txt          |  12 +++-
 examples/clock.cpp               |  98 ++++++++++++++++++++++++++++++++
 examples/continuous_gaussian.cpp | 112 +++++++++++++++++++++++++++++++++++++
 examples/discrete_gaussian.cpp   | 117 +++++++++++++++++++++++++++++++++++++++
 examples/ising_standalone.cpp    |   4 +-
 examples/potts.cpp               | 110 ++++++++++++++++++++++++++++++++++++
 6 files changed, 451 insertions(+), 2 deletions(-)
 create mode 100644 examples/clock.cpp
 create mode 100644 examples/continuous_gaussian.cpp
 create mode 100644 examples/discrete_gaussian.cpp
 create mode 100644 examples/potts.cpp

(limited to 'examples')

diff --git a/examples/CMakeLists.txt b/examples/CMakeLists.txt
index c64bb06..634c600 100644
--- a/examples/CMakeLists.txt
+++ b/examples/CMakeLists.txt
@@ -3,11 +3,21 @@ add_executable(ising ising.cpp)
 add_executable(ising_animation ising_animation.cpp)
 add_executable(ising_standalone ising_standalone.cpp)
 add_executable(xy On.cpp)
+add_executable(potts_3 potts.cpp)
+add_executable(clock_5 clock.cpp)
+add_executable(discrete_gaussian discrete_gaussian.cpp)
+add_executable(continuous_gaussian continuous_gaussian.cpp)
 
-add_compile_definitions(xy WOLFF_N=2)
+target_compile_definitions(xy PUBLIC WOLFF_N=2)
+target_compile_definitions(potts_3 PUBLIC WOLFF_POTTSQ=3)
+target_compile_definitions(clock_5 PUBLIC WOLFF_POTTSQ=5)
 
 target_link_libraries(ising wolff)
 target_link_libraries(ising_animation wolff GL GLU glut)
 target_link_libraries(ising_standalone wolff)
 target_link_libraries(xy wolff)
+target_link_libraries(potts_3 wolff)
+target_link_libraries(clock_5 wolff)
+target_link_libraries(discrete_gaussian wolff)
+target_link_libraries(continuous_gaussian wolff)
 
diff --git a/examples/clock.cpp b/examples/clock.cpp
new file mode 100644
index 0000000..4b0ffb8
--- /dev/null
+++ b/examples/clock.cpp
@@ -0,0 +1,98 @@
+
+#include <getopt.h>
+#include <iostream>
+#include <chrono>
+
+#include "simple_measurement.hpp"
+
+#include <wolff/models/potts.hpp>
+#include <wolff/models/dihedral.hpp>
+#include <wolff/finite_states.hpp>
+
+#include <wolff.hpp>
+
+using namespace wolff;
+
+int main(int argc, char *argv[]) {
+
+  // set defaults
+  N_t N = (N_t)1e4;
+  D_t D = 2;
+  L_t L = 128;
+  double T = 2.26918531421;
+  vector_t<2, double> H;
+  H.fill(0.0);
+  q_t Hi = 0;
+
+  int opt;
+
+  // take command line arguments
+  while ((opt = getopt(argc, argv, "N:D:L:T:H:")) != -1) {
+    switch (opt) {
+    case 'N': // number of steps
+      N = (N_t)atof(optarg);
+      break;
+    case 'D': // dimension
+      D = atoi(optarg);
+      break;
+    case 'L': // linear size
+      L = atoi(optarg);
+      break;
+    case 'T': // temperature
+      T = atof(optarg);
+      break;
+    case 'H': // external field
+      H[Hi] = atof(optarg);
+      Hi++;
+      break;
+    default:
+      exit(EXIT_FAILURE);
+    }
+  }
+
+  // define the spin-spin coupling
+  std::function <double(const potts_t<WOLFF_POTTSQ>&, const potts_t<WOLFF_POTTSQ>&)> Z = [] (const potts_t<WOLFF_POTTSQ>& s1, const potts_t<WOLFF_POTTSQ>& s2) -> double {
+    return cos(2 * M_PI * (double)(s1.x + WOLFF_POTTSQ - s2.x) / (double)WOLFF_POTTSQ);
+  };
+
+  // define the spin-field coupling
+  std::function <double(const potts_t<WOLFF_POTTSQ>&)> B = [=] (const potts_t<WOLFF_POTTSQ>& s) -> double {
+    return H[0] * cos(2 * M_PI * (double)s.x / (double)WOLFF_POTTSQ) + H[1] * sin(2 * M_PI * (double)s.x / (double)WOLFF_POTTSQ);
+  };
+
+  // initialize the lattice
+  graph G(D, L);
+
+  // initialize the system
+  system<dihedral_t<WOLFF_POTTSQ>, potts_t<WOLFF_POTTSQ>> S(G, T, Z, B);
+
+  // initialize the random number generator
+  auto seed = std::chrono::high_resolution_clock::now().time_since_epoch().count();
+  std::mt19937 rng{seed};
+
+  // define function that generates self-inverse rotations
+  std::function <dihedral_t<WOLFF_POTTSQ>(std::mt19937&, const system<dihedral_t<WOLFF_POTTSQ>, potts_t<WOLFF_POTTSQ>>&, v_t)> gen_r = [] (std::mt19937& r, const system<dihedral_t<WOLFF_POTTSQ>, potts_t<WOLFF_POTTSQ>>& S, v_t i0) -> dihedral_t<WOLFF_POTTSQ> {
+    dihedral_t<WOLFF_POTTSQ> rot;
+    rot.is_reflection = true;
+    std::uniform_int_distribution<q_t> dist(0, WOLFF_POTTSQ - 2);
+    q_t x = dist(r);
+    rot.x = (2 * S.s[i0].x + x + 1) % WOLFF_POTTSQ;
+
+    return rot;
+  };
+
+  // initailze the measurement object
+  simple_measurement A(S);
+
+  // run wolff N times
+  S.run_wolff(N, gen_r, A, rng);
+
+  // print the result of our measurements
+  std::cout << "Wolff complete!\nThe average energy per site was " << A.avgE() / S.nv
+    << ".\nThe average magnetization per site was " << A.avgM() / S.nv
+    << ".\nThe average cluster size per site was " << A.avgC() / S.nv << ".\n";
+
+  // exit
+  return 0;
+}
+
diff --git a/examples/continuous_gaussian.cpp b/examples/continuous_gaussian.cpp
new file mode 100644
index 0000000..ef08247
--- /dev/null
+++ b/examples/continuous_gaussian.cpp
@@ -0,0 +1,112 @@
+
+#include <getopt.h>
+#include <iostream>
+#include <chrono>
+
+#include "simple_measurement.hpp"
+
+#include <wolff/models/height.hpp>
+#include <wolff/models/dihedral_inf.hpp>
+
+#include <wolff.hpp>
+
+int main(int argc, char *argv[]) {
+
+  // set defaults
+  N_t N = (N_t)1e4;
+  D_t D = 2;
+  L_t L = 128;
+  double T = 0.8;
+  double H = 0.0;
+
+  int opt;
+
+  // take command line arguments
+  while ((opt = getopt(argc, argv, "N:D:L:T:H:")) != -1) {
+    switch (opt) {
+    case 'N': // number of steps
+      N = (N_t)atof(optarg);
+      break;
+    case 'D': // dimension
+      D = atoi(optarg);
+      break;
+    case 'L': // linear size
+      L = atoi(optarg);
+      break;
+    case 'T': // temperature
+      T = atof(optarg);
+      break;
+    case 'H': // external field
+      H = atof(optarg);
+      break;
+    default:
+      exit(EXIT_FAILURE);
+    }
+  }
+
+  // define the spin-spin coupling
+  std::function <double(const height_t<double>&, const height_t<double>&)> Z = [] (const height_t<double>& s1, const height_t<double>& s2) -> double {
+    return - pow(s1.x - s2.x, 2);
+  };
+
+  // define the spin-field coupling
+  std::function <double(const height_t<double>&)> B = [&] (const height_t<double>& s) -> double {
+    return - H * pow(s.x, 2);
+  };
+
+  // initialize the lattice
+  graph G(D, L);
+
+  // initialize the system
+  system<dihedral_inf_t<double>, height_t<double>> S(G, T, Z, B);
+
+  bool odd_run = false;
+
+  std::function <dihedral_inf_t<double>(std::mt19937&, const system<dihedral_inf_t<double>, height_t<double>>&, v_t)> gen_R_IH = [&](std::mt19937& r, const system<dihedral_inf_t<double>, height_t<double>>& S, v_t i0) -> dihedral_inf_t<double> {
+    dihedral_inf_t<double> rot;
+    rot.is_reflection = true;
+
+    if (odd_run) {
+      std::uniform_int_distribution<v_t> dist(0, S.nv - 2);
+      v_t j = i0;
+
+      //while (S.s[j].x == S.s[i0].x) {
+        v_t tmp = dist(r);
+
+        if (tmp < i0) {
+          j = tmp;
+        } else {
+          j = tmp + 1;
+        }
+      //}
+
+      rot.x = 2 * S.s[j].x;
+    } else {
+      std::normal_distribution<double> dist(0.0,1.0);
+      rot.x = 2 * S.s[i0].x + dist(r);
+    }
+
+    odd_run = !odd_run;
+
+    return rot;
+  };
+
+  // initailze the measurement object
+  simple_measurement A(S);
+
+  // initialize the random number generator
+  auto seed = std::chrono::high_resolution_clock::now().time_since_epoch().count();
+  std::mt19937 rng{seed};
+
+  // run wolff N times
+  S.run_wolff(N, gen_R_IH, A, rng);
+
+  // print the result of our measurements
+  std::cout << "Wolff complete!\nThe average energy per site was " << A.avgE() / S.nv
+    << ".\nThe average magnetization per site was " << A.avgM() / S.nv
+    << ".\nThe average cluster size per site was " << A.avgC() / S.nv << ".\n";
+
+  // exit
+  return 0;
+}
+
diff --git a/examples/discrete_gaussian.cpp b/examples/discrete_gaussian.cpp
new file mode 100644
index 0000000..75ea0f9
--- /dev/null
+++ b/examples/discrete_gaussian.cpp
@@ -0,0 +1,117 @@
+
+#include <getopt.h>
+#include <iostream>
+#include <chrono>
+
+#include "simple_measurement.hpp"
+
+#include <wolff/models/height.hpp>
+#include <wolff/models/dihedral_inf.hpp>
+
+#include <wolff.hpp>
+
+int main(int argc, char *argv[]) {
+
+  // set defaults
+  N_t N = (N_t)1e4;
+  D_t D = 2;
+  L_t L = 128;
+  double T = 0.8;
+  double H = 0.0;
+
+  int opt;
+
+  // take command line arguments
+  while ((opt = getopt(argc, argv, "N:D:L:T:H:")) != -1) {
+    switch (opt) {
+    case 'N': // number of steps
+      N = (N_t)atof(optarg);
+      break;
+    case 'D': // dimension
+      D = atoi(optarg);
+      break;
+    case 'L': // linear size
+      L = atoi(optarg);
+      break;
+    case 'T': // temperature
+      T = atof(optarg);
+      break;
+    case 'H': // external field
+      H = atof(optarg);
+      break;
+    default:
+      exit(EXIT_FAILURE);
+    }
+  }
+
+  // define the spin-spin coupling
+  std::function <double(const height_t<int64_t>&, const height_t<int64_t>&)> Z = [] (const height_t<int64_t>& s1, const height_t<int64_t>& s2) -> double {
+    return - pow(s1.x - s2.x, 2);
+  };
+
+  // define the spin-field coupling
+  std::function <double(const height_t<int64_t>&)> B = [&] (const height_t<int64_t>& s) -> double {
+    return - H * pow(s.x, 2);
+  };
+
+  // initialize the lattice
+  graph G(D, L);
+
+  // initialize the system
+  system<dihedral_inf_t<int64_t>, height_t<int64_t>> S(G, T, Z, B);
+
+  bool odd_run = false;
+
+  std::function <dihedral_inf_t<int64_t>(std::mt19937&, const system<dihedral_inf_t<int64_t>, height_t<int64_t>>&, v_t)> gen_R_IH = [&](std::mt19937& r, const system<dihedral_inf_t<int64_t>, height_t<int64_t>>& S, v_t i0) -> dihedral_inf_t<int64_t> {
+    dihedral_inf_t<int64_t> rot;
+    rot.is_reflection = true;
+
+    if (odd_run) {
+      std::uniform_int_distribution<v_t> dist(0, S.nv - 2);
+      v_t j = i0;
+
+      //while (S.s[j].x == S.s[i0].x) {
+        v_t tmp = dist(r);
+
+        if (tmp < i0) {
+          j = tmp;
+        } else {
+          j = tmp + 1;
+        }
+      //}
+
+      rot.x = 2 * S.s[j].x;
+    } else {
+      std::uniform_int_distribution<int> dist(0, 1);
+      int j = dist(r);
+      if (j) {
+        rot.x = 2 * S.s[i0].x + 1;
+      } else {
+        rot.x = 2 * S.s[i0].x - 1;
+      }
+    }
+
+    odd_run = !odd_run;
+
+    return rot;
+  };
+
+  // initailze the measurement object
+  simple_measurement A(S);
+
+  // initialize the random number generator
+  auto seed = std::chrono::high_resolution_clock::now().time_since_epoch().count();
+  std::mt19937 rng{seed};
+
+  // run wolff N times
+  S.run_wolff(N, gen_R_IH, A, rng);
+
+  // print the result of our measurements
+  std::cout << "Wolff complete!\nThe average energy per site was " << A.avgE() / S.nv
+    << ".\nThe average magnetization per site was " << A.avgM() / S.nv
+    << ".\nThe average cluster size per site was " << A.avgC() / S.nv << ".\n";
+
+  // exit
+  return 0;
+}
+
diff --git a/examples/ising_standalone.cpp b/examples/ising_standalone.cpp
index c958777..62b4089 100644
--- a/examples/ising_standalone.cpp
+++ b/examples/ising_standalone.cpp
@@ -23,8 +23,10 @@ class ising_t {
 };
 
 class measure_clusters : public measurement<ising_t, ising_t> {
-  public:
+  private:
     v_t C;
+
+  public:
     double Ctotal;
 
     measure_clusters() {
diff --git a/examples/potts.cpp b/examples/potts.cpp
new file mode 100644
index 0000000..84494e2
--- /dev/null
+++ b/examples/potts.cpp
@@ -0,0 +1,110 @@
+
+#include <getopt.h>
+#include <iostream>
+#include <chrono>
+
+#include "simple_measurement.hpp"
+
+#include <wolff/models/potts.hpp>
+#include <wolff/models/symmetric.hpp>
+#include <wolff/finite_states.hpp>
+
+#include <wolff.hpp>
+
+using namespace wolff;
+
+int main(int argc, char *argv[]) {
+
+  // set defaults
+  N_t N = (N_t)1e4;
+  D_t D = 2;
+  L_t L = 128;
+  double T = 2.26918531421;
+  vector_t<WOLFF_POTTSQ, double> H;
+  H.fill(0.0);
+  q_t Hi = 0;
+
+  int opt;
+
+  // take command line arguments
+  while ((opt = getopt(argc, argv, "N:D:L:T:H:")) != -1) {
+    switch (opt) {
+    case 'N': // number of steps
+      N = (N_t)atof(optarg);
+      break;
+    case 'D': // dimension
+      D = atoi(optarg);
+      break;
+    case 'L': // linear size
+      L = atoi(optarg);
+      break;
+    case 'T': // temperature
+      T = atof(optarg);
+      break;
+    case 'H': // external field
+      H[Hi] = atof(optarg);
+      Hi++;
+      break;
+    default:
+      exit(EXIT_FAILURE);
+    }
+  }
+
+  // define the spin-spin coupling
+  std::function <double(const potts_t<WOLFF_POTTSQ>&, const potts_t<WOLFF_POTTSQ>&)> Z = [] (const potts_t<WOLFF_POTTSQ>& s1, const potts_t<WOLFF_POTTSQ>& s2) -> double {
+    if (s1.x == s2.x) {
+      return 1.0;
+    } else {
+      return 0.0;
+    }
+  };
+
+  // define the spin-field coupling
+  std::function <double(const potts_t<WOLFF_POTTSQ>&)> B = [=] (const potts_t<WOLFF_POTTSQ>& s) -> double {
+    return H[s.x];
+  };
+
+  // initialize the lattice
+  graph G(D, L);
+
+  // initialize the system
+  system<symmetric_t<WOLFF_POTTSQ>, potts_t<WOLFF_POTTSQ>> S(G, T, Z, B);
+
+  // initialize the random number generator
+  auto seed = std::chrono::high_resolution_clock::now().time_since_epoch().count();
+  std::mt19937 rng{seed};
+
+  // define function that generates self-inverse rotations
+  std::function <symmetric_t<WOLFF_POTTSQ>(std::mt19937&, const system<symmetric_t<WOLFF_POTTSQ>, potts_t<WOLFF_POTTSQ>>&, v_t)> gen_r = [] (std::mt19937& r, const system<symmetric_t<WOLFF_POTTSQ>, potts_t<WOLFF_POTTSQ>>& S, v_t i0) -> symmetric_t<WOLFF_POTTSQ> {
+    symmetric_t<WOLFF_POTTSQ> rot;
+
+    std::uniform_int_distribution<q_t> dist(0, WOLFF_POTTSQ - 2);
+    q_t j = dist(r);
+    q_t swap_v;
+    if (j < S.s[i0].x) {
+      swap_v = j;
+    } else {
+      swap_v = j + 1;
+    }
+
+    rot[S.s[i0].x] = swap_v;
+    rot[swap_v] = S.s[i0].x;
+
+    return rot;
+  };
+
+  // initailze the measurement object
+  simple_measurement A(S);
+
+  // run wolff N times
+  S.run_wolff(N, gen_r, A, rng);
+
+  // print the result of our measurements
+  std::cout << "Wolff complete!\nThe average energy per site was " << A.avgE() / S.nv
+    << ".\nThe average magnetization per site was " << A.avgM() / S.nv
+    << ".\nThe average cluster size per site was " << A.avgC() / S.nv << ".\n";
+
+  // exit
+  return 0;
+}
+
-- 
cgit v1.2.3-70-g09d2