From 3eb67e3bca774eb0441db60158e1968ad901273b Mon Sep 17 00:00:00 2001 From: Jaron Kent-Dobias Date: Thu, 28 Jun 2018 14:20:25 -0400 Subject: cleaned up the operation of the finite-group wolff code --- lib/cluster_finite.h | 4 ++++ 1 file changed, 4 insertions(+) (limited to 'lib/cluster_finite.h') diff --git a/lib/cluster_finite.h b/lib/cluster_finite.h index abdc8fc..ad45ed3 100644 --- a/lib/cluster_finite.h +++ b/lib/cluster_finite.h @@ -23,6 +23,10 @@ #include "yule_walker.h" typedef struct { + D_t D; + L_t L; + v_t nv; + v_t ne; graph_t *g; q_t q; R_t n_transformations; -- cgit v1.2.3-70-g09d2 From 78d8de381f0b1e99ad98364709cbf876689628b2 Mon Sep 17 00:00:00 2001 From: Jaron Kent-Dobias Date: Fri, 29 Jun 2018 15:43:10 -0400 Subject: completely removed measurement during the simulation, opting to just save binary data points to files throughout --- lib/cluster_finite.c | 4 +- lib/cluster_finite.h | 2 +- lib/initial_finite.c | 22 ++- lib/initial_finite.h | 3 + lib/measurement.c | 145 +++++++++++++++++-- lib/measurement.h | 18 ++- src/wolff_finite.c | 398 +++++++++------------------------------------------ 7 files changed, 242 insertions(+), 350 deletions(-) (limited to 'lib/cluster_finite.h') diff --git a/lib/cluster_finite.c b/lib/cluster_finite.c index f11a3ea..71396e0 100644 --- a/lib/cluster_finite.c +++ b/lib/cluster_finite.c @@ -62,14 +62,14 @@ v_t flip_cluster_finite(state_finite_t *s, v_t v0, q_t rot_ind, gsl_rng *r) { s->M[rot_s_old]--; s->M[rot_s_new]++; - s->E += - s->H[rot_s_new] + s->H[rot_s_old]; } else { q_t diff_old = (s_old + s->q - sn) % s->q; q_t diff_new = (s_new + s->q - sn) % s->q; prob = s->J_probs[diff_new * s->q + diff_old]; - s->E += - s->J[diff_new] + s->J[diff_old]; + s->B[diff_old]--; + s->B[diff_new]++; } if (gsl_rng_uniform(r) < prob) { // and with probability ps[e]... diff --git a/lib/cluster_finite.h b/lib/cluster_finite.h index ad45ed3..701c197 100644 --- a/lib/cluster_finite.h +++ b/lib/cluster_finite.h @@ -38,7 +38,7 @@ typedef struct { double *H_probs; q_t *spins; q_t *R; - double E; + v_t *B; v_t *M; } state_finite_t; diff --git a/lib/initial_finite.c b/lib/initial_finite.c index f286dcc..fb120f0 100644 --- a/lib/initial_finite.c +++ b/lib/initial_finite.c @@ -58,9 +58,10 @@ state_finite_t *initial_finite_prepare_ising(D_t D, L_t L, double T, double *H) s->spins = (q_t *)calloc(s->nv, sizeof(q_t)); s->R = initialize_R(2); - s->E = - ((double)s->ne) * s->J[0] - ((double)s->nv) * s->H[0]; s->M = (v_t *)calloc(2, sizeof(v_t)); s->M[0] = s->nv; // everyone starts in state 0, remember? + s->B = (v_t *)calloc(2, sizeof(v_t)); + s->B[0] = s->ne; return s; } @@ -98,9 +99,10 @@ state_finite_t *initial_finite_prepare_potts(D_t D, L_t L, q_t q, double T, doub s->spins = (q_t *)calloc(s->nv, sizeof(q_t)); s->R = initialize_R(q); - s->E = - ((double)s->ne) * s->J[0] - ((double)s->nv) * s->H[0]; s->M = (v_t *)calloc(q, sizeof(v_t)); s->M[0] = s->nv; // everyone starts in state 0, remember? + s->B = (v_t *)calloc(q, sizeof(v_t)); + s->B[0] = s->ne; // everyone starts in state 0, remember? return s; } @@ -142,9 +144,10 @@ state_finite_t *initial_finite_prepare_clock(D_t D, L_t L, q_t q, double T, doub s->spins = (q_t *)calloc(s->nv, sizeof(q_t)); s->R = initialize_R(q); - s->E = - ((double)s->ne) * s->J[0] - ((double)s->nv) * s->H[0]; s->M = (v_t *)calloc(q, sizeof(v_t)); s->M[0] = s->nv; // everyone starts in state 0, remember? + s->B = (v_t *)calloc(q, sizeof(v_t)); + s->B[0] = s->ne; // everyone starts in state 0, remember? return s; } @@ -189,13 +192,23 @@ state_finite_t *initial_finite_prepare_dgm(D_t D, L_t L, q_t q, double T, double s->spins = (q_t *)calloc(s->nv, sizeof(q_t)); s->R = initialize_R(q); - s->E = - ((double)s->ne) * s->J[0] - ((double)s->nv) * s->H[0]; s->M = (v_t *)calloc(q, sizeof(v_t)); s->M[0] = s->nv; // everyone starts in state 0, remember? return s; } +double state_finite_energy(state_finite_t *s) { + double E = 0; + + for (q_t i = 0; i < s->q; i++) { + E += s->J[i] * s->B[i]; + E += s->H[i] * s->M[i]; + } + + return -E; +} + void state_finite_free(state_finite_t *s) { graph_free(s->g); free(s->J); @@ -205,6 +218,7 @@ void state_finite_free(state_finite_t *s) { free(s->spins); free(s->R); free(s->M); + free(s->B); free(s->transformations); free(s); } diff --git a/lib/initial_finite.h b/lib/initial_finite.h index 65414cd..542f923 100644 --- a/lib/initial_finite.h +++ b/lib/initial_finite.h @@ -7,6 +7,8 @@ #include "dihedral.h" #include "cluster_finite.h" +static char *finite_model_t_strings[] = {"ISING", "POTTS", "CLOCK", "DGM"}; + typedef enum { ISING, POTTS, @@ -21,4 +23,5 @@ state_finite_t *initial_finite_prepare_dgm(D_t D, L_t L, q_t q, double T, double void state_finite_free(state_finite_t *s); +double state_finite_energy(state_finite_t *s); diff --git a/lib/measurement.c b/lib/measurement.c index ad824f6..b30cf6b 100644 --- a/lib/measurement.c +++ b/lib/measurement.c @@ -1,6 +1,15 @@ +#include "convex.h" #include "measurement.h" +meas_t *meas_initialize(count_t W) { + meas_t *m = (meas_t *)calloc(1, sizeof(meas_t)); + m->W = W; + m->xx = (double *)calloc(2 * W + 1, sizeof(double)); + + return m; +} + double add_to_avg(double mx, double x, count_t n) { return mx * (n / (n + 1.0)) + x / (n + 1.0); } @@ -10,24 +19,42 @@ void meas_update(meas_t *m, double x) { m->x = add_to_avg(m->x, x, n); m->x2 = add_to_avg(m->x2, pow(x, 2), n); + m->x4 = add_to_avg(m->x4, pow(x, 4), n); m->m2 = add_to_avg(m->m2, pow(x - m->x, 2), n); m->m4 = add_to_avg(m->m4, pow(x - m->x, 4), n); - /* - if (n > 1) { - double s2 = n / (n - 1.) * (m->x2 - pow(m->x, 2)); - m->dx = sqrt(s2 / n); - m->c = s2; - m->dc = sqrt((m->m4 - (n - 3.)/(n - 1.) * pow(m->m2, 2)) / n); + dll_t *tmp_window = m->x_window; + dll_t *pos_save; + count_t t = 0; + + while (tmp_window != NULL) { + m->xx[t] = add_to_avg(m->xx[t], x * (tmp_window->x), m->n - t - 1); + t++; + if (t == 2 * (m->W)) { + pos_save = tmp_window; + } + tmp_window = tmp_window->next; } - */ + + if (t == 2 * (m->W) + 1) { + if (2 * (m->W) + 1 == 1) { + free(m->x_window); + m->x_window = NULL; + } else { + free(pos_save->next); + pos_save->next = NULL; + } + } + + stack_push_d(&(m->x_window), x); (m->n)++; } double meas_dx(const meas_t *m) { - return sqrt(1. / (m->n - 1.) * (m->x2 - pow(m->x, 2))); + return 2 * get_tau(m) * Cxx(m, 0) / m->n; +// return sqrt(1. / (m->n - 1.) * (m->x2 - pow(m->x, 2))); } double meas_c(const meas_t *m) { @@ -74,3 +101,105 @@ double rho(const autocorr_t *o, count_t i) { return (o->OO[i] - pow(o->O, 2)) / (o->O2 - pow(o->O, 2)); } +double Cxx(const meas_t *m, count_t t) { + return m->xx[t] - pow(m->x, 2); +} + +double rho_m(const meas_t *m, count_t t) { + return Cxx(m, t) / Cxx(m, 0); +} + +double get_tau(const meas_t *m) { + double *Gammas = (double *)malloc((m->W + 1) * sizeof(double)); + + Gammas[0] = 1 + rho_m(m, 0); + for (uint64_t i = 0; i < m->W; i++) { + Gammas[1 + i] = rho_m(m, 2 * i + 1) + rho_m(m, 2 * i + 2); + } + + uint64_t n; + for (n = 0; n < m->W + 1; n++) { + if (Gammas[n] <= 0) { + break; + } + } + + double *conv_Gamma = get_convex_minorant(n, Gammas); + + double tau = - 0.5; + + for (uint64_t i = 0; i < n + 1; i++) { + tau += conv_Gamma[i]; + } + + free(Gammas); + + return tau; +} + +void print_meas(const meas_t *m, const char *sym, FILE *outfile) { + fprintf(outfile, "%s-><|n->%" PRIcount ",x->%.15f,x^2->%.15f,x^4->%.15f,xx->{", sym, m->n, m->x, m->x2, m->x4); + for (count_t i = 0; i < 2 * (m->W) + 1; i++) { + fprintf(outfile, "%.15f", m->xx[i]); + if (i < 2 * (m->W)) { + fprintf(outfile, ","); + } + } + fprintf(outfile, "}|>"); +} + +void print_vec_meas(q_t q, const meas_t **m, const char *sym, FILE *outfile) { + fprintf(outfile, "%s-><|n->{", sym); + for (q_t i = 0; i < q; i++) { + fprintf(outfile, "%" PRIcount, m[i]->n); + if (i < q - 1) { + fprintf(outfile, ","); + } + } + fprintf(outfile, "},x->{"); + for (q_t i = 0; i < q; i++) { + fprintf(outfile, "%.15f", m[i]->x); + if (i < q - 1) { + fprintf(outfile, ","); + } + } + fprintf(outfile, "},x^2->{"); + for (q_t i = 0; i < q; i++) { + fprintf(outfile, "%.15f", m[i]->x2); + if (i < q - 1) { + fprintf(outfile, ","); + } + } + fprintf(outfile, "},x^4->{"); + for (q_t i = 0; i < q; i++) { + fprintf(outfile, "%.15f", m[i]->x4); + if (i < q - 1) { + fprintf(outfile, ","); + } + } + fprintf(outfile, "},xx->{"); + for (q_t i = 0; i < q; i++) { + fprintf(outfile, "{"); + for (count_t j = 0; j < 2 * (m[i]->W) + 1; j++) { + fprintf(outfile, "%.15f", m[i]->xx[j]); + if (j < 2 * (m[i]->W)) { + fprintf(outfile, ","); + } + } + fprintf(outfile, "}"); + if (i < q - 1) { + fprintf(outfile, ","); + } + } + fprintf(outfile, "}|>"); +} + +void free_meas(meas_t *m) { + free(m->xx); + while (m->x_window != NULL) { + stack_pop_d(&(m->x_window)); + } + free(m); +} + + diff --git a/lib/measurement.h b/lib/measurement.h index eaa260b..d9bd52e 100644 --- a/lib/measurement.h +++ b/lib/measurement.h @@ -3,16 +3,21 @@ #include #include +#include #include "types.h" #include "stack.h" typedef struct { - uint64_t n; + count_t n; double x; double x2; + double x4; double m2; double m4; + count_t W; + double *xx; + dll_t *x_window; } meas_t; typedef struct { @@ -36,3 +41,14 @@ void update_autocorr(autocorr_t *OO, double O); double rho(const autocorr_t *o, uint64_t i); +void print_meas(const meas_t *m, const char *sym, FILE *outfile); +void print_vec_meas(q_t q, const meas_t **m, const char *sym, FILE *outfile); + +void free_meas(meas_t *m); + +meas_t *meas_initialize(count_t W); + +double get_tau(const meas_t *m); + +double Cxx(const meas_t *m, count_t t); + diff --git a/src/wolff_finite.c b/src/wolff_finite.c index 47fcc88..e41c326 100644 --- a/src/wolff_finite.c +++ b/src/wolff_finite.c @@ -1,93 +1,60 @@ +#include #include #include int main(int argc, char *argv[]) { - L_t L = 128; count_t N = (count_t)1e7; - count_t min_runs = 10; - count_t n = 3; + + finite_model_t model = ISING; + q_t q = 2; D_t D = 2; + L_t L = 128; double T = 2.26918531421; double *J = (double *)calloc(MAX_Q, sizeof(double)); J[0] = 1.0; double *H = (double *)calloc(MAX_Q, sizeof(double)); - double eps = 0; - bool silent = false; - bool snapshots = false; - bool snapshot = false; - bool record_autocorrelation = false; - bool record_distribution = false; - count_t W = 10; - count_t ac_skip = 1; - finite_model_t model = ISING; + bool silent = false; int opt; q_t J_ind = 0; q_t H_ind = 0; - while ((opt = getopt(argc, argv, "N:n:D:L:q:T:J:H:m:e:IpsSPak:W:drt:")) != -1) { + while ((opt = getopt(argc, argv, "N:t:q:D:L:T:J:H:s")) != -1) { switch (opt) { - case 'N': + case 'N': // number of steps N = (count_t)atof(optarg); break; - case 'n': - n = (count_t)atof(optarg); + case 't': // type of simulation + model = (finite_model_t)atoi(optarg); + break; + case 'q': // number of states, if relevant + q = atoi(optarg); break; - case 'D': + case 'D': // dimension D = atoi(optarg); break; - case 'L': + case 'L': // linear size L = atoi(optarg); break; - case 'q': - q = atoi(optarg); - break; - case 'T': + case 'T': // temperature T = atof(optarg); break; - case 'J': + case 'J': // couplings, if relevant. nth call couples states i and i + n J[J_ind] = atof(optarg); J_ind++; break; - case 'H': + case 'H': // external field. nth call couples to state n H[H_ind] = atof(optarg); H_ind++; break; - case 'm': - min_runs = atoi(optarg); - break; - case 'e': - eps = atof(optarg); - break; - case 's': + case 's': // don't print anything during simulation. speeds up slightly silent = true; break; - case 'S': - snapshots = true; - break; - case 'P': - snapshot = true; - break; - case 'a': - record_autocorrelation = true; - break; - case 'k': - ac_skip = (count_t)atof(optarg); - break; - case 'W': - W = (count_t)atof(optarg); - break; - case 'd': - record_distribution = true; - break; - case 't': - model = (finite_model_t)atoi(optarg); - break; default: exit(EXIT_FAILURE); } @@ -95,9 +62,6 @@ int main(int argc, char *argv[]) { state_finite_t *s; - gsl_rng *r = gsl_rng_alloc(gsl_rng_mt19937); - gsl_rng_set(r, rand_seed()); - switch (model) { case ISING: s = initial_finite_prepare_ising(D, L, T, H); @@ -113,318 +77,84 @@ int main(int argc, char *argv[]) { break; default: printf("Not a valid model!\n"); - return 1; + free(J); + free(H); + exit(EXIT_FAILURE); } free(J); free(H); + // initialize random number generator + gsl_rng *r = gsl_rng_alloc(gsl_rng_mt19937); + gsl_rng_set(r, rand_seed()); - double diff = 1e31; - count_t n_runs = 0; - count_t n_steps = 0; + unsigned long timestamp = (unsigned long)time(NULL); - meas_t *E, *clust, **M, **sE, ***sM; + char *filename_M = (char *)malloc(256 * sizeof(char)); + char *filename_B = (char *)malloc(256 * sizeof(char)); + char *filename_S = (char *)malloc(256 * sizeof(char)); - M = (meas_t **)malloc(q * sizeof(meas_t *)); + sprintf(filename_M, "wolff_%s_%" PRIq "_%" PRID "_%" PRIL "_%.8f", finite_model_t_strings[model], q, D, L, T); for (q_t i = 0; i < q; i++) { - M[i] = (meas_t *)calloc(1, sizeof(meas_t)); + sprintf(filename_M + strlen(filename_M), "_%.8f", s->H[i]); } - E = calloc(1, sizeof(meas_t)); - clust = calloc(1, sizeof(meas_t)); + strcpy(filename_B, filename_M); + strcpy(filename_S, filename_M); - sE = (meas_t **)malloc(q * sizeof(meas_t *)); - sM = (meas_t ***)malloc(q * sizeof(meas_t **)); + sprintf(filename_M + strlen(filename_M), "_%lu_M.dat", timestamp); + sprintf(filename_B + strlen(filename_B), "_%lu_B.dat", timestamp); + sprintf(filename_S + strlen(filename_S), "_%lu_S.dat", timestamp); - for (q_t i = 0; i < q; i++) { - sE[i] = (meas_t *)calloc(1, sizeof(meas_t)); - sM[i] = (meas_t **)malloc(q * sizeof(meas_t *)); - for (q_t j = 0; j < q; j++) { - sM[i][j] = (meas_t *)calloc(1, sizeof(meas_t)); - } - } + FILE *outfile_M = fopen(filename_M, "wb"); + FILE *outfile_B = fopen(filename_B, "wb"); + FILE *outfile_S = fopen(filename_S, "wb"); - count_t *freqs = (count_t *)calloc(q, sizeof(count_t)); - q_t cur_M = 0; + free(filename_M); + free(filename_B); + free(filename_S); - autocorr_t *autocorr; - if (record_autocorrelation) { - autocorr = (autocorr_t *)calloc(1, sizeof(autocorr_t)); - autocorr->W = 2 * W + 1; - autocorr->OO = (double *)calloc(2 * W + 1, sizeof(double)); - } - - count_t *mag_dist; - if (record_distribution) { - mag_dist = (count_t *)calloc(s->nv + 1, sizeof(count_t)); - } + v_t cluster_size = 0; if (!silent) printf("\n"); - while (((diff > eps || diff != diff) && n_runs < N) || n_runs < min_runs) { - if (!silent) printf("\033[F\033[JWOLFF: sweep %" PRIu64 - ", dH/H = %.4f, dM/M = %.4f, dC/C = %.4f, dX/X = %.4f, cps: %.1f\n", - n_runs, fabs(meas_dx(E) / E->x), meas_dx(M[0]) / M[0]->x, meas_dc(E) / meas_c(E), meas_dc(M[0]) / meas_c(M[0]), s->nv / clust->x); - - count_t n_flips = 0; + for (count_t steps = 0; steps < N; steps++) { + if (!silent) printf("\033[F\033[JWOLFF: sweep %" PRIu64 " / %" PRIu64 ": E = %.2f, B_0 = %" PRIv ", M_0 = %" PRIv ", S = %" PRIv "\n", steps, N, state_finite_energy(s), s->B[0], s->M[0], cluster_size); - while (n_flips / s->nv < n) { - v_t v0 = gsl_rng_uniform_int(r, s->nv); - R_t step; + v_t v0 = gsl_rng_uniform_int(r, s->nv); + R_t step; - bool changed = false; - while (!changed) { - step = gsl_rng_uniform_int(r, s->n_transformations); - if (symmetric_act(s->transformations + q * step, s->spins[v0]) != s->spins[v0]) { - changed = true; - } + bool changed = false; + while (!changed) { + step = gsl_rng_uniform_int(r, s->n_transformations); + if (symmetric_act(s->transformations + q * step, s->spins[v0]) != s->spins[v0]) { + changed = true; } - - v_t tmp_flips = flip_cluster_finite(s, v0, step, r); - n_flips += tmp_flips; - - if (n_runs > 0) { - n_steps++; - meas_update(clust, tmp_flips); - - if (record_autocorrelation && n_steps % ac_skip == 0) { - update_autocorr(autocorr, s->E); - } - - } - } - for (q_t i = 0; i < q; i++) { - meas_update(M[i], s->M[i]); - } - meas_update(E, s->E); - - q_t n_at_max = 0; - q_t max_M_i = 0; - v_t max_M = 0; - - for (q_t i = 0; i < q; i++) { - if (s->M[i] > max_M) { - n_at_max = 1; - max_M_i = i; - max_M = s->M[i]; - } else if (s->M[i] == max_M) { - n_at_max++; - } - } + cluster_size = flip_cluster_finite(s, v0, step, r); - if (record_distribution) { - mag_dist[s->M[0]]++; - } + // v_t is never going to be bigger than 32 bits, but since it's specified + // as a fast time many machines will actually have it be 64 bits. we cast + // it down here to halve space. - if (n_at_max == 1) { - for (q_t i = 0; i < q; i++) { - meas_update(sM[max_M_i][i], s->M[i]); - } - meas_update(sE[max_M_i], s->E); - freqs[max_M_i]++; + for (q_t i = 0; i < q - 1; i++) { + fwrite(&(s->M[i]), sizeof(uint32_t), 1, outfile_M); // if we know the occupation of the first q - 1 states, we know the occupation of the last + fwrite(&(s->B[i]), sizeof(uint32_t), 1, outfile_B); // if we know the occupation of the first q - 1 states, we know the occupation of the last } - diff = fabs(meas_dx(clust) / clust->x); + fwrite(&cluster_size, sizeof(uint32_t), 1, outfile_S); - n_runs++; } if (!silent) { printf("\033[F\033[J"); } - printf("WOLFF: sweep %" PRIu64 - ", dH/H = %.4f, dM/M = %.4f, dC/C = %.4f, dX/X = %.4f, cps: %.1f\n", - n_runs, fabs(meas_dx(E) / E->x), meas_dx(M[0]) / M[0]->x, meas_dc(E) / meas_c(E), meas_dc(M[0]) / meas_c(M[0]), s->nv / clust->x); - - if (snapshots) { - FILE *snapfile = fopen("snapshots.m", "a"); - fprintf(snapfile, "\n"); - } - - if (snapshot) { - q_t *R_inv = symmetric_invert(q, s->R); - FILE *snapfile = fopen("snapshot.m", "a"); - fprintf(snapfile, "{{"); - for (L_t i = 0; i < L; i++) { - fprintf(snapfile, "{"); - for (L_t j = 0; j < L; j++) { - fprintf(snapfile, "%" PRIq, symmetric_act(R_inv, s->spins[L * i + j])); - if (j != L - 1) { - fprintf(snapfile, ","); - } - } - fprintf(snapfile, "}"); - if (i != L - 1) { - fprintf(snapfile, ","); - } - } - fprintf(snapfile, "}}\n"); - fclose(snapfile); - } + printf("WOLFF: sweep %" PRIu64 " / %" PRIu64 ": E = %.2f, B_0 = %" PRIv ", M_0 = %" PRIv ", S = %" PRIv "\n", N, N, state_finite_energy(s), s->B[0], s->M[0], cluster_size); - double tau = 0; - int tau_failed = 0; + fclose(outfile_M); + fclose(outfile_B); + fclose(outfile_S); - if (record_autocorrelation) { - double *Gammas = (double *)malloc((W + 1) * sizeof(double)); - - Gammas[0] = 1 + rho(autocorr, 0); - for (uint64_t i = 0; i < W; i++) { - Gammas[1 + i] = rho(autocorr, 2 * i + 1) + rho(autocorr, 2 * i + 2); - } - - uint64_t n; - for (n = 0; n < W + 1; n++) { - if (Gammas[n] <= 0) { - break; - } - } - - if (n == W + 1) { - printf("WARNING: correlation function never hit the noise floor.\n"); - tau_failed = 1; - } - - if (n < 2) { - printf("WARNING: correlation function only has one nonnegative term.\n"); - tau_failed = 2; - } - - double *conv_Gamma = get_convex_minorant(n, Gammas); - - double ttau = - 0.5; - - for (uint64_t i = 0; i < n + 1; i++) { - ttau += conv_Gamma[i]; - } - - tau = ttau * ac_skip * clust->x / s->nv; - - free(Gammas); - free(autocorr->OO); - while (autocorr->Op != NULL) { - stack_pop_d(&(autocorr->Op)); - } - free(autocorr); - } - - if (tau_failed) { - //tau = 0; - } - - { - FILE *outfile = fopen("out.m", "a"); - - fprintf(outfile, "<|N->%" PRIcount ",n->%" PRIcount ",D->%" PRID ",L->%" PRIL ",q->%" PRIq ",T->%.15f,J->{", N, n, D, L, q, T); - for (q_t i = 0; i < q; i++) { - fprintf(outfile, "%.15f", s->J[i]); - if (i != q-1) { - fprintf(outfile, ","); - } - } - fprintf(outfile, "},H->{"); - for (q_t i = 0; i < q; i++) { - fprintf(outfile, "%.15f", s->H[i]); - if (i != q-1) { - fprintf(outfile, ","); - } - } - fprintf(outfile, "},E->%.15f,\\[Delta]E->%.15f,C->%.15f,\\[Delta]C->%.15f,M->{", E->x / s->nv, meas_dx(E) / s->nv, meas_c(E) / s->nv, meas_dc(E) / s->nv); - for (q_t i = 0; i < q; i++) { - fprintf(outfile, "%.15f", M[i]->x / s->nv); - if (i != q-1) { - fprintf(outfile, ","); - } - } - fprintf(outfile, "},\\[Delta]M->{"); - for (q_t i = 0; i < q; i++) { - fprintf(outfile, "%.15f", meas_dx(M[i]) / s->nv); - if (i != q-1) { - fprintf(outfile, ","); - } - } - fprintf(outfile, "},\\[Chi]->{"); - for (q_t i = 0; i < q; i++) { - fprintf(outfile, "%.15f", meas_c(M[i]) / s->nv); - if (i != q-1) { - fprintf(outfile, ","); - } - } - fprintf(outfile, "},\\[Delta]\\[Chi]->{"); - for (q_t i = 0; i < q; i++) { - fprintf(outfile, "%.15f", meas_dc(M[i]) / s->nv); - if (i != q-1) { - fprintf(outfile, ","); - } - } - for (q_t i = 0; i < q; i++) { - fprintf(outfile, "},Subscript[E,%" PRIq "]->%.15f,Subscript[\\[Delta]E,%" PRIq "]->%.15f,Subscript[C,%" PRIq "]->%.15f,Subscript[\\[Delta]C,%" PRIq "]->%.15f,Subscript[M,%" PRIq "]->{", i, sE[i]->x / s->nv, i, meas_dx(sE[i]) / s->nv, i, meas_c(sE[i]) / s->nv, i, meas_dc(sE[i]) / s->nv, i); - for (q_t j = 0; j < q; j++) { - fprintf(outfile, "%.15f", sM[i][j]->x / s->nv); - if (j != q-1) { - fprintf(outfile, ","); - } - } - fprintf(outfile, "},Subscript[\\[Delta]M,%" PRIq "]->{", i); - for (q_t j = 0; j < q; j++) { - fprintf(outfile, "%.15f", meas_dx(sM[i][j]) / s->nv); - if (j != q-1) { - fprintf(outfile, ","); - } - } - fprintf(outfile, "},Subscript[\\[Chi],%" PRIq "]->{", i); - for (q_t j = 0; j < q; j++) { - fprintf(outfile, "%.15f", meas_c(sM[i][j]) / s->nv); - if (j != q-1) { - fprintf(outfile, ","); - } - } - fprintf(outfile, "},Subscript[\\[Delta]\\[Chi],%" PRIq "]->{", i); - for (q_t j = 0; j < q; j++) { - fprintf(outfile, "%.15f", meas_dc(sM[i][j]) / s->nv); - if (j != q-1) { - fprintf(outfile, ","); - } - } - } - fprintf(outfile,"}"); - for (q_t i = 0; i < q; i++) { - fprintf(outfile, ",Subscript[f,%" PRIq "]->%.15f,Subscript[\\[Delta]f,%" PRIq "]->%.15f", i, (double)freqs[i] / (double)n_runs, i, sqrt(freqs[i]) / (double)n_runs); - } - fprintf(outfile, ",Subscript[n,\"clust\"]->%.15f,Subscript[\\[Delta]n,\"clust\"]->%.15f,Subscript[m,\"clust\"]->%.15f,Subscript[\\[Delta]m,\"clust\"]->%.15f,\\[Tau]->%.15f,\\[Tau]s->%d", clust->x / s->nv, meas_dx(clust) / s->nv, meas_c(clust) / s->nv, meas_dc(clust) / s->nv,tau,tau_failed); - if (record_distribution) { - fprintf(outfile, ",S->{"); - for (v_t i = 0; i < s->nv + 1; i++) { - fprintf(outfile, "%" PRIcount, mag_dist[i]); - if (i != s->nv) { - fprintf(outfile, ","); - } - } - fprintf(outfile, "}"); - free(mag_dist); - } - fprintf(outfile, "|>\n"); - - fclose(outfile); - } - - free(E); - free(clust); - for (q_t i = 0; i < q; i++) { - free(M[i]); - for (q_t j = 0; j < q; j++) { - free(sM[i][j]); - } - free(sM[i]); - } - free(M); - free(sM); - for (q_t i = 0; i < q; i++) { - free(sE[i]); - } - free(freqs); - free(sE); state_finite_free(s); gsl_rng_free(r); -- cgit v1.2.3-70-g09d2 From 90ae915b5a7961a36e6a33509b16229244c6615a Mon Sep 17 00:00:00 2001 From: Jaron Kent-Dobias Date: Sun, 1 Jul 2018 00:52:31 -0400 Subject: fixed both the system for determining bond energy and how global state is tracked --- lib/cluster.c | 91 -------------------------------- lib/cluster_finite.c | 10 ++-- lib/cluster_finite.h | 7 ++- lib/dihedral.c | 23 ++++++-- lib/dihedral.h | 4 +- lib/initial_finite.c | 145 +++++++++++++++++++++++++++++++++++++++++++-------- lib/symmetric.c | 43 +++++++++++++++ lib/symmetric.h | 2 + src/wolff_finite.c | 12 ++--- 9 files changed, 207 insertions(+), 130 deletions(-) (limited to 'lib/cluster_finite.h') diff --git a/lib/cluster.c b/lib/cluster.c index 7274eb9..96225a2 100644 --- a/lib/cluster.c +++ b/lib/cluster.c @@ -1,97 +1,6 @@ #include "cluster.h" -v_t flip_cluster(ising_state_t *s, v_t v0, q_t rot, gsl_rng *r) { - v_t nv = 0; - - ll_t *stack = NULL; // create a new stack - stack_push(&stack, v0); // push the initial vertex to the stack - - bool *marks = (bool *)calloc(s->g->nv, sizeof(bool)); - - while (stack != NULL) { - v_t v = stack_pop(&stack); - - if (!marks[v]) { - q_t s_old, s_new; - dihedral_t *R_new; - bool external_flipped; - - marks[v] = true; - - if (v == s->g->nv - 1) { - R_new = dihedral_compose(s->q, rot, s->R); - external_flipped = true; - } else { - s_old = s->spins[v]; - s_new = dihedral_act(s->q, rot, s_old); - external_flipped = false; - } - - v_t nn = s->g->v_i[v + 1] - s->g->v_i[v]; - - for (v_t i = 0; i < nn; i++) { - q_t sn; - double prob; - bool external_neighbor = false; - - v_t vn = s->g->v_adj[s->g->v_i[v] + i]; - - if (vn == s->g->nv - 1) { - external_neighbor = true; - } else { - sn = s->spins[vn]; - } - - if (external_flipped || external_neighbor) { - q_t rot_s_old, rot_s_new; - - if (external_neighbor) { - rot_s_old = dihedral_inverse_act(s->q, s->R, s_old); - rot_s_new = dihedral_inverse_act(s->q, s->R, s_new); - } else { - rot_s_old = dihedral_inverse_act(s->q, s->R, sn); - rot_s_new = dihedral_inverse_act(s->q, R_new, sn); - } - - prob = s->H_probs[rot_s_new * s->q + rot_s_old]; - - s->M[rot_s_old]--; - s->M[rot_s_new]++; - - s->E += - s->H[rot_s_new] + s->H[rot_s_old]; - } else { - q_t diff_old = (s_old + s->q - sn) % s->q; - q_t diff_new = (s_new + s->q - sn) % s->q; - - prob = s->J_probs[diff_new * s->q + diff_old]; - - s->E += - s->J[diff_new] + s->J[diff_old]; - } - - if (gsl_rng_uniform(r) < prob) { // and with probability ps[e]... - stack_push(&stack, vn); // push the neighboring vertex to the stack - } - } - - if (external_flipped) { - free(s->R); - s->R = R_new; - } else { - s->spins[v] = s_new; - } - - if (v != s->g->nv - 1) { // count the number of non-external sites that flip - nv++; - } - } - } - - free(marks); - - return nv; -} - v_t flip_cluster_dgm(dgm_state_t *s, v_t v0, h_t rot, gsl_rng *r) { v_t nv = 0; diff --git a/lib/cluster_finite.c b/lib/cluster_finite.c index 71396e0..9392cf8 100644 --- a/lib/cluster_finite.c +++ b/lib/cluster_finite.c @@ -1,8 +1,8 @@ #include "cluster_finite.h" -v_t flip_cluster_finite(state_finite_t *s, v_t v0, q_t rot_ind, gsl_rng *r) { - q_t *rot = s->transformations + s->q * rot_ind; +v_t flip_cluster_finite(state_finite_t *s, v_t v0, R_t rot_ind, gsl_rng *r) { + q_t *rot = s->transformations + s->q * s->involutions[rot_ind]; q_t *R_inv = symmetric_invert(s->q, s->R); v_t nv = 0; @@ -63,10 +63,10 @@ v_t flip_cluster_finite(state_finite_t *s, v_t v0, q_t rot_ind, gsl_rng *r) { s->M[rot_s_new]++; } else { - q_t diff_old = (s_old + s->q - sn) % s->q; - q_t diff_new = (s_new + s->q - sn) % s->q; + q_t diff_old = s->bond_with_zero_type[s->transformations[s->q * s->transform_site_to_zero[sn] + s_old]]; + q_t diff_new = s->bond_with_zero_type[s->transformations[s->q * s->transform_site_to_zero[sn] + s_new]]; - prob = s->J_probs[diff_new * s->q + diff_old]; + prob = s->J_probs[diff_new * s->n_bond_types + diff_old]; s->B[diff_old]--; s->B[diff_new]++; diff --git a/lib/cluster_finite.h b/lib/cluster_finite.h index 701c197..b2d764e 100644 --- a/lib/cluster_finite.h +++ b/lib/cluster_finite.h @@ -31,6 +31,11 @@ typedef struct { q_t q; R_t n_transformations; q_t *transformations; + R_t n_involutions; + R_t *involutions; + R_t *transform_site_to_zero; + q_t n_bond_types; + q_t *bond_with_zero_type; double T; double *J; double *H; @@ -42,5 +47,5 @@ typedef struct { v_t *M; } state_finite_t; -v_t flip_cluster_finite(state_finite_t *s, v_t v0, q_t rot, gsl_rng *r); +v_t flip_cluster_finite(state_finite_t *s, v_t v0, R_t rot, gsl_rng *r); diff --git a/lib/dihedral.c b/lib/dihedral.c index ac74a23..8158b43 100644 --- a/lib/dihedral.c +++ b/lib/dihedral.c @@ -11,10 +11,14 @@ dihedral_t *dihedral_compose(q_t q, q_t g1i, const dihedral_t *g2) { return g3; } -q_t dihedral_act(q_t q, q_t gi, q_t s) { +q_t dihedral_act(q_t q, q_t gi, bool r, q_t s) { // we only need to consider the action of reflections - return (gi + q - s) % q; + if (r) { + return (gi + q - s) % q; + } else { + return (gi + s) % q; + } } q_t dihedral_inverse_act(q_t q, const dihedral_t *g, q_t s) { @@ -26,15 +30,26 @@ q_t dihedral_inverse_act(q_t q, const dihedral_t *g, q_t s) { } q_t *dihedral_gen_transformations(q_t q) { - q_t *transformations = (q_t *)malloc(q * q * sizeof(q_t)); + q_t *transformations = (q_t *)malloc(2 * q * q * sizeof(q_t)); for (q_t i = 0; i < q; i++) { for (q_t j = 0; j < q; j++) { - transformations[q * i + j] = dihedral_act(q, i, j); + transformations[q * i + j] = dihedral_act(q, i, false, j); + transformations[q * q + q * i + j] = dihedral_act(q, i, true, j); } } return transformations; } +R_t *dihedral_gen_involutions(q_t q) { + R_t *transformations = (R_t *)malloc(q * sizeof(R_t)); + + for (q_t i = 0; i < q; i++) { + transformations[i] = q + i; + } + + return transformations; +} + diff --git a/lib/dihedral.h b/lib/dihedral.h index e5e4cbd..c95b23a 100644 --- a/lib/dihedral.h +++ b/lib/dihedral.h @@ -11,9 +11,11 @@ typedef struct { dihedral_t *dihedral_compose(q_t q, q_t gti, const dihedral_t *g2); -q_t dihedral_act(q_t q, q_t gi, q_t s); +q_t dihedral_act(q_t q, q_t gi, bool r, q_t s); q_t dihedral_inverse_act(q_t q, const dihedral_t *g, q_t s); q_t *dihedral_gen_transformations(q_t q); +R_t *dihedral_gen_involutions(q_t q); +R_t factorial(q_t); diff --git a/lib/initial_finite.c b/lib/initial_finite.c index fb120f0..6ea76ef 100644 --- a/lib/initial_finite.c +++ b/lib/initial_finite.c @@ -23,6 +23,40 @@ q_t *initialize_R(q_t q) { return R; } +R_t *transformation_bringing_to_zero(q_t q, R_t n_transformations, q_t *transformations) { + R_t *destination = (R_t *)malloc(q * sizeof(R_t)); + + for (q_t i = 0; i < q; i++) { + for (R_t j = 0; j < n_transformations; j++) { + if (transformations[q * j + i] == 0) { + destination[i] = j; + } + } + } + + return destination; +} + +R_t find_involutions(R_t *destination, q_t q, R_t n_transformations, q_t *transformations) { + R_t n_involutions = 0; + + for (R_t i = 1; i < n_transformations; i++) { + bool is_involution = true; + for (q_t j = 0; j < q; j++) { + if (j != transformations[q * i + transformations[q * i + j]]) { + is_involution = false; + break; + } + } + if (is_involution) { + destination[n_involutions] = i; + n_involutions++; + } + } + + return n_involutions; +} + state_finite_t *initial_finite_prepare_ising(D_t D, L_t L, double T, double *H) { state_finite_t *s = (state_finite_t *)calloc(1, sizeof(state_finite_t)); @@ -38,11 +72,26 @@ state_finite_t *initial_finite_prepare_ising(D_t D, L_t L, double T, double *H) } s->q = 2; - s->n_transformations = 1; - s->transformations = (q_t *)malloc(2 * sizeof(q_t)); - s->transformations[0] = 1; - s->transformations[1] = 0; + s->n_transformations = 2; + s->transformations = (q_t *)malloc(2 * 2 * sizeof(q_t)); + s->transformations[0] = 0; + s->transformations[1] = 1; + s->transformations[2] = 1; + s->transformations[3] = 0; + + s->n_involutions = 1; + s->involutions = (R_t *)malloc(1 * sizeof(R_t)); + s->involutions[0] = 1; + + s->transform_site_to_zero = (R_t *)malloc(2 * sizeof(R_t)); + s->transform_site_to_zero[0] = 0; + s->transform_site_to_zero[1] = 1; + + s->n_bond_types = 2; + s->bond_with_zero_type = (q_t *)malloc(2 * sizeof(q_t)); + s->bond_with_zero_type[0] = 0; + s->bond_with_zero_type[1] = 1; s->T = T; s->J = (double *)malloc(2 * sizeof(double)); @@ -81,19 +130,34 @@ state_finite_t *initial_finite_prepare_potts(D_t D, L_t L, q_t q, double T, doub } s->q = q; - s->n_transformations = q; - s->transformations = dihedral_gen_transformations(q); + s->n_transformations = factorial(q); + s->transformations = symmetric_gen_transformations(q); + s->involutions = (R_t *)malloc(s->n_transformations * sizeof(R_t)); + s->n_involutions = find_involutions(s->involutions, q, s->n_transformations, s->transformations); + + s->transform_site_to_zero = transformation_bringing_to_zero(q, s->n_transformations, s->transformations); + + s->n_bond_types = 2; + + s->bond_with_zero_type = (q_t *)malloc(q * sizeof(q_t)); + + s->bond_with_zero_type[0] = 0; + + for (q_t i = 1; i < q; i++) { + s->bond_with_zero_type[i] = 1; + } s->T = T; - s->J = (double *)calloc(q, sizeof(double)); + s->J = (double *)calloc(2, sizeof(double)); s->J[0] = 1.0; + s->J[1] = 0.0; s->H = (double *)malloc(q * sizeof(double)); for (q_t i = 0; i < q; i++) { s->H[i] = H[i]; } - s->J_probs = Jprobs_from_J(q, T, s->J); + s->J_probs = Jprobs_from_J(s->n_bond_types, T, s->J); s->H_probs = Jprobs_from_J(q, T, s->H); s->spins = (q_t *)calloc(s->nv, sizeof(q_t)); @@ -101,7 +165,7 @@ state_finite_t *initial_finite_prepare_potts(D_t D, L_t L, q_t q, double T, doub s->M = (v_t *)calloc(q, sizeof(v_t)); s->M[0] = s->nv; // everyone starts in state 0, remember? - s->B = (v_t *)calloc(q, sizeof(v_t)); + s->B = (v_t *)calloc(s->n_bond_types, sizeof(v_t)); s->B[0] = s->ne; // everyone starts in state 0, remember? return s; @@ -122,13 +186,30 @@ state_finite_t *initial_finite_prepare_clock(D_t D, L_t L, q_t q, double T, doub } s->q = q; - s->n_transformations = q; + + s->n_transformations = 2 * q; s->transformations = dihedral_gen_transformations(q); + s->n_involutions = q; + s->involutions = dihedral_gen_involutions(q); + + s->transform_site_to_zero = transformation_bringing_to_zero(q, s->n_transformations, s->transformations); + s->bond_with_zero_type = malloc(q * sizeof(q_t)); + + s->n_bond_types = q / 2 + 1; + + for (q_t i = 0; i < q / 2 + 1; i++) { + s->bond_with_zero_type[i] = i; + } + + for (q_t i = 1; i < (q + 1) / 2; i++) { + s->bond_with_zero_type[q - i] = i; + } + s->T = T; - s->J = (double *)malloc(q * sizeof(double)); + s->J = (double *)malloc(s->n_bond_types * sizeof(double)); - for (q_t i = 0; i < q; i++) { + for (q_t i = 0; i < s->n_bond_types; i++) { s->J[i] = cos(2 * M_PI * i / ((double)q)); } @@ -138,7 +219,7 @@ state_finite_t *initial_finite_prepare_clock(D_t D, L_t L, q_t q, double T, doub s->H[i] = H[i]; } - s->J_probs = Jprobs_from_J(q, T, s->J); + s->J_probs = Jprobs_from_J(s->n_bond_types, T, s->J); s->H_probs = Jprobs_from_J(q, T, s->H); s->spins = (q_t *)calloc(s->nv, sizeof(q_t)); @@ -146,7 +227,7 @@ state_finite_t *initial_finite_prepare_clock(D_t D, L_t L, q_t q, double T, doub s->M = (v_t *)calloc(q, sizeof(v_t)); s->M[0] = s->nv; // everyone starts in state 0, remember? - s->B = (v_t *)calloc(q, sizeof(v_t)); + s->B = (v_t *)calloc(s->n_bond_types, sizeof(v_t)); s->B[0] = s->ne; // everyone starts in state 0, remember? return s; @@ -168,17 +249,30 @@ state_finite_t *initial_finite_prepare_dgm(D_t D, L_t L, q_t q, double T, double } s->q = q; - s->n_transformations = q; + + s->n_transformations = 2 * q; s->transformations = dihedral_gen_transformations(q); + s->n_involutions = q; + s->involutions = dihedral_gen_involutions(q); - s->T = T; - s->J = (double *)malloc(q * sizeof(double)); + s->transform_site_to_zero = transformation_bringing_to_zero(q, s->n_transformations, s->transformations); + s->bond_with_zero_type = malloc(q * sizeof(q_t)); + + s->n_bond_types = q / 2 + 1; for (q_t i = 0; i < q / 2 + 1; i++) { - s->J[i] = -pow(i, 2); + s->bond_with_zero_type[i] = i; } - for (q_t i = 1; i < (q + 1) / 2; i++) { - s->J[q - i] = -pow(i, 2); + + for (q_t i = 1; i < (q + 1) / 2; i++) { + s->bond_with_zero_type[(int)q - (int)i] = i; + } + + s->T = T; + s->J = (double *)malloc(s->n_bond_types * sizeof(double)); + + for (q_t i = 0; i < s->n_bond_types; i++) { + s->J[i] = -pow(i, 2); } s->H = (double *)malloc(q * sizeof(double)); @@ -186,7 +280,7 @@ state_finite_t *initial_finite_prepare_dgm(D_t D, L_t L, q_t q, double T, double s->H[i] = H[i]; } - s->J_probs = Jprobs_from_J(q, T, s->J); + s->J_probs = Jprobs_from_J(s->n_bond_types, T, s->J); s->H_probs = Jprobs_from_J(q, T, s->H); s->spins = (q_t *)calloc(s->nv, sizeof(q_t)); @@ -194,6 +288,8 @@ state_finite_t *initial_finite_prepare_dgm(D_t D, L_t L, q_t q, double T, double s->M = (v_t *)calloc(q, sizeof(v_t)); s->M[0] = s->nv; // everyone starts in state 0, remember? + s->B = (v_t *)calloc(s->n_bond_types, sizeof(v_t)); + s->B[0] = s->nv; // everyone starts in state 0, remember? return s; } @@ -201,8 +297,10 @@ state_finite_t *initial_finite_prepare_dgm(D_t D, L_t L, q_t q, double T, double double state_finite_energy(state_finite_t *s) { double E = 0; - for (q_t i = 0; i < s->q; i++) { + for (q_t i = 0; i < s->n_bond_types; i++) { E += s->J[i] * s->B[i]; + } + for (q_t i = 0; i < s->q; i++) { E += s->H[i] * s->M[i]; } @@ -220,6 +318,9 @@ void state_finite_free(state_finite_t *s) { free(s->M); free(s->B); free(s->transformations); + free(s->involutions); + free(s->transform_site_to_zero); + free(s->bond_with_zero_type); free(s); } diff --git a/lib/symmetric.c b/lib/symmetric.c index 729b38c..4487538 100644 --- a/lib/symmetric.c +++ b/lib/symmetric.c @@ -25,3 +25,46 @@ q_t *symmetric_invert(q_t q, const q_t *g) { return g_inv; } +void swap(q_t *q1, q_t *q2) { + q_t temp = *q1; + *q1 = *q2; + *q2 = temp; +} + +R_t factorial(q_t q) { + if (q == 0) { + return 1; + } else { + return q * factorial(q - 1); + } +} + +void permute(q_t *a, q_t l, q_t r, R_t pos, q_t *transformations) { + if (l == r - 1) { + for (q_t i = 0; i < r; i++) { + transformations[r * pos + i] = a[i]; + } + } else { + for (q_t i = l; i < r; i++) { + swap((a+l), (a+i)); + permute(a, l+1, r, pos + (i - l) * factorial(r - l - 1), transformations); + swap((a+l), (a+i)); + } + } +} + +q_t *symmetric_gen_transformations(q_t q) { + q_t *transformations = (q_t *)malloc(q * factorial(q) * sizeof(q_t)); + q_t *tmp = (q_t *)malloc(q * sizeof(q_t)); + + for (q_t i = 0; i < q; i++) { + tmp[i] = i; + } + + permute(tmp, 0, q, 0, transformations); + + free(tmp); + + return transformations; +} + diff --git a/lib/symmetric.h b/lib/symmetric.h index 6e00f52..c71521d 100644 --- a/lib/symmetric.h +++ b/lib/symmetric.h @@ -11,3 +11,5 @@ q_t symmetric_act(const q_t *g, q_t s); q_t *symmetric_invert(q_t q, const q_t *g); +q_t *symmetric_gen_transformations(q_t q); + diff --git a/src/wolff_finite.c b/src/wolff_finite.c index e41c326..4bf96b9 100644 --- a/src/wolff_finite.c +++ b/src/wolff_finite.c @@ -96,7 +96,7 @@ int main(int argc, char *argv[]) { char *filename_S = (char *)malloc(256 * sizeof(char)); sprintf(filename_M, "wolff_%s_%" PRIq "_%" PRID "_%" PRIL "_%.8f", finite_model_t_strings[model], q, D, L, T); - for (q_t i = 0; i < q; i++) { + for (q_t i = 0; i < s->q; i++) { sprintf(filename_M + strlen(filename_M), "_%.8f", s->H[i]); } @@ -126,8 +126,8 @@ int main(int argc, char *argv[]) { bool changed = false; while (!changed) { - step = gsl_rng_uniform_int(r, s->n_transformations); - if (symmetric_act(s->transformations + q * step, s->spins[v0]) != s->spins[v0]) { + step = gsl_rng_uniform_int(r, s->n_involutions); + if (symmetric_act(s->transformations + s->q * s->involutions[step], s->spins[v0]) != s->spins[v0]) { changed = true; } } @@ -138,9 +138,9 @@ int main(int argc, char *argv[]) { // as a fast time many machines will actually have it be 64 bits. we cast // it down here to halve space. - for (q_t i = 0; i < q - 1; i++) { - fwrite(&(s->M[i]), sizeof(uint32_t), 1, outfile_M); // if we know the occupation of the first q - 1 states, we know the occupation of the last - fwrite(&(s->B[i]), sizeof(uint32_t), 1, outfile_B); // if we know the occupation of the first q - 1 states, we know the occupation of the last + for (q_t i = 0; i < s->q - 1; i++) { // if we know the occupation of the first q - 1 states, we know the occupation of the last + fwrite(&(s->M[i]), sizeof(uint32_t), 1, outfile_M); + fwrite(&(s->B[i]), sizeof(uint32_t), 1, outfile_B); } fwrite(&cluster_size, sizeof(uint32_t), 1, outfile_S); -- cgit v1.2.3-70-g09d2