#include #include #include #include "simple_measurement.hpp" #include #include #include int main(int argc, char *argv[]) { // set defaults N_t N = (N_t)1e4; D_t D = 2; L_t L = 128; double T = 0.8; vector_t H; H.fill(0.0); q_t Hi = 0; int opt; // take command line arguments while ((opt = getopt(argc, argv, "N:D:L:T:H:")) != -1) { switch (opt) { case 'N': // number of steps N = (N_t)atof(optarg); break; case 'D': // dimension D = atoi(optarg); break; case 'L': // linear size L = atoi(optarg); break; case 'T': // temperature T = atof(optarg); break; case 'H': // external field H[Hi] = atof(optarg); Hi++; break; default: exit(EXIT_FAILURE); } } // define the spin-spin coupling std::function &, const vector_t&)> Z = [] (const vector_t& s1, const vector_t& s2) -> double { return s1 * s2; }; // define the spin-field coupling std::function &)> B = [&] (const vector_t& s) -> double { return H * s; }; // initialize the lattice graph G(D, L); // initialize the system system, vector_t> S(G, T, Z, B); std::function (std::mt19937&, const system, vector_t>&, v_t)> gen_R = generate_rotation_uniform; // initailze the measurement object simple_measurement A(S); // initialize the random number generator auto seed = std::chrono::high_resolution_clock::now().time_since_epoch().count(); std::mt19937 rng{seed}; // run wolff N times S.run_wolff(N, gen_R, A, rng); // print the result of our measurements std::cout << "Wolff complete!\nThe average energy per site was " << A.avgE() / S.nv << ".\nThe average magnetization per site was " << A.avgM() / S.nv << ".\nThe average cluster size per site was " << A.avgC() / S.nv << ".\n"; // exit return 0; }