#include #include #include "include/randutils/randutils.hpp" #include // define your R_t and X_t. here both are the same, ising_t class ising_t { public: bool x; // both X_t and R_t need a default constructor (and destructor, if relevant) ising_t() : x(false) {} ising_t(bool x) : x(x) {} // R_t needs the member functions // X_t act(const X_t& s) const {} // R_t act(const R_t& s) const {} // to define action on both spins and other transformations ising_t act(const ising_t& s) const { if (x) { return ising_t(!(s.x)); } else { return ising_t(s.x); } } // R_t needs the member functions // X_t act_inverse(const X_t& s) const {} // R_t act_inverse(const R_t& s) const {} // to define action of its inverse on both spins and other transformations ising_t act_inverse(const ising_t& s) const { return this->act(s); } }; // define how measurements should be taken by importing the interface wolff_measurement class ising_measurements : public wolff_measurement { private: count_t n; double E; int M; v_t S; double totalE; double totalM; double totalS; public: ising_measurements(D_t D, L_t L, double H) { n = 0; M = (int)pow(L, D); E = -D * pow(L, D) - H * pow(L, D); totalE = 0; totalM = 0; totalS = 0; } void pre_cluster(const state_t& s, count_t step, count_t N, v_t v0, const ising_t& R) { S = 0; } void plain_bond_added(v_t v, const ising_t& s_old, const ising_t& s_new, v_t vn, const ising_t& sn, double dE) { E += dE; } void ghost_bond_added(v_t v, const ising_t& s_old, const ising_t& s_new, double dE) { E += dE; if (s_old.x) { M++; } else { M--; } if (s_new.x) { M--; } else { M++; } } void plain_site_transformed(v_t v, const ising_t& s_old, const ising_t& s_new) { S++; } void ghost_site_transformed(const ising_t& R_old, const ising_t& R_new) { } void post_cluster(const state_t& s, count_t step, count_t N) { totalE += E; totalM += M; totalS += S; n++; } double avgE() { return totalE / n; } double avgM() { return totalM / n; } double avgS() { return totalS / n; } }; int main(int argc, char *argv[]) { // set defaults count_t N = (count_t)1e4; D_t D = 2; L_t L = 128; double T = 2.26918531421; double H = 0.0; int opt; // take command line arguments while ((opt = getopt(argc, argv, "N:D:L:T:H:")) != -1) { switch (opt) { case 'N': // number of steps N = (count_t)atof(optarg); break; case 'D': // dimension D = atoi(optarg); break; case 'L': // linear size L = atoi(optarg); break; case 'T': // temperature T = atof(optarg); break; case 'H': // external field H = atof(optarg); break; default: exit(EXIT_FAILURE); } } // define the spin-spin coupling std::function Z = [] (const ising_t& s1, const ising_t& s2) -> double { if (s1.x == s2.x) { return 1.0; } else { return -1.0; } }; // define the spin-field coupling std::function B = [=] (const ising_t& s) -> double { if (s.x) { return -H; } else { return H; } }; // initialize the system state_t s(D, L, T, Z, B); // initialize the random number generator randutils::auto_seed_128 seeds; std::mt19937 rng{seeds}; // define function that generates self-inverse rotations std::function gen_R = [] (std::mt19937&, const ising_t& s) -> ising_t { return ising_t(true); }; // initailze the measurement object ising_measurements m(D, L, H); // run wolff N times wolff(N, s, gen_R, m, rng); // print the result of our measurements std::cout << "Wolff complete!\nThe average energy per site was " << m.avgE() / s.nv << ".\nThe average magnetization per site was " << m.avgM() / s.nv << ".\nThe average cluster size per site was " << m.avgS() / s.nv << ".\n"; // exit return 0; }