#include int main(int argc, char *argv[]) { int opt; sim_t sim; bool output_state, use_dual, M_stop, record_autocorrelation; lattice_t lat; uint16_t L; uint32_t min_runs, lattice_i, sim_i; uint64_t N, n, W, ac_skip; double T, H, eps; sim = WOLFF; L = 128; N = 100000000000000; W = 10; ac_skip = 1; n = 3; lat = SQUARE_LATTICE; use_dual = false; M_stop = false; record_autocorrelation = false; T = 2.3; H = 0; eps = 0; output_state = false; min_runs = 10; while ((opt = getopt(argc, argv, "n:N:L:T:H:m:S:e:oq:DMas:W:")) != -1) { switch (opt) { case 'N': N = (uint64_t)atof(optarg); break; case 'W': W = (uint64_t)atof(optarg); break; case 'S': ac_skip = (uint64_t)atof(optarg); break; case 'n': n = (uint64_t)atof(optarg); break; case 'L': L = atoi(optarg); break; case 'T': T = atof(optarg); break; case 'H': H = atof(optarg); break; case 'm': min_runs = atoi(optarg); break; case 'M': M_stop = true; break; case 'e': eps = atof(optarg); break; case 'o': output_state = true; break; case 'D': use_dual = true; break; case 'a': record_autocorrelation = true; break; case 's': sim_i = atoi(optarg); switch (sim_i) { case 0: sim = WOLFF; break; case 1: sim = WOLFF_GHOST; break; case 2: sim = METROPOLIS; break; default: printf("lattice specifier must be 0 (VORONOI_LATTICE), 1 " "(DIAGONAL_LATTICE), or 2 (VORONOI_HYPERUNIFORM_LATTICE).\n"); exit(EXIT_FAILURE); } break; case 'q': lattice_i = atoi(optarg); switch (lattice_i) { case 0: lat = SQUARE_LATTICE; break; case 1: lat = DIAGONAL_LATTICE; break; case 2: lat = TRIANGULAR_LATTICE; break; case 3: lat = VORONOI_HYPERUNIFORM_LATTICE; break; case 4: lat = VORONOI_LATTICE; break; default: printf("lattice specifier must be 0 (VORONOI_LATTICE), 1 " "(DIAGONAL_LATTICE), or 2 (VORONOI_HYPERUNIFORM_LATTICE).\n"); exit(EXIT_FAILURE); } break; default: exit(EXIT_FAILURE); } } gsl_rng *r = gsl_rng_alloc(gsl_rng_mt19937); gsl_rng_set(r, jst_rand_seed()); graph_t *h = graph_create(lat, TORUS_BOUND, L, use_dual); ising_state_t *s = (ising_state_t *)calloc(1, sizeof(ising_state_t)); s->g = graph_add_ext(h); s->spins = (bool *)calloc(h->nv + 1, sizeof(bool)); s->M = sign(H) * h->nv; s->H = -(1.0 * h->ne) - sign (H) * H * h->nv; double *bond_probs = (double *)malloc(2 * sizeof(double)); bond_probs[0] = 1 - exp(-2 / T); bond_probs[1] = 1 - exp(-2 * fabs(H) / T); double diff = 1e31; uint64_t n_runs = 0; uint64_t n_steps = 0; double clust_per_sweep = 0; meas_t *M, *aM, *eM, *mM, *E, *eE, *mE, *clust, *everyE, *blockE; M = calloc(1, sizeof(meas_t)); aM = calloc(1, sizeof(meas_t)); eM = calloc(1, sizeof(meas_t)); mM = calloc(1, sizeof(meas_t)); E = calloc(1, sizeof(meas_t)); eE = calloc(1, sizeof(meas_t)); mE = calloc(1, sizeof(meas_t)); clust = calloc(1, sizeof(meas_t)); everyE = calloc(1, sizeof(meas_t)); blockE = calloc(1,sizeof(meas_t)); uint64_t blocksize = 1000; double Etot = 0; autocorr_t *autocorr; if (record_autocorrelation) { autocorr = (autocorr_t *)calloc(1, sizeof(autocorr_t)); autocorr->W = 2 * W + 1; autocorr->OO = (double *)calloc(2 * W + 1, sizeof(double)); } printf("\n"); while (((diff > eps || diff != diff) && n_runs < N) || n_runs < min_runs) { printf("\033[F\033[JWOLFF: sweep %" PRIu64 ", dH/H = %.4f, dM/M = %.4f, dC/C = %.4f, dX/X = %.4f, cps: %.1f\n", n_runs, fabs(E->dx / E->x), M->dx / M->x, E->dc / E->c, M->dc / M->c, clust_per_sweep); uint32_t n_flips = 0; uint32_t n_clust = 0; while (n_flips / h->nv < n) { uint32_t tmp_flips = wolff_step(T, H, s, sim, r, bond_probs); n_flips += tmp_flips; n_clust++; if (n_runs > 0){ n_steps++; } if (record_autocorrelation && n_runs > 0) { update_meas(everyE, s->H); if (n_steps % blocksize == 0) { update_meas(blockE, Etot / blocksize); Etot = 0; } Etot += s->H; if (n_steps % ac_skip == 0) { update_autocorr(autocorr, s->H); } update_meas(clust, tmp_flips); } } double HH = 1; if (H < 0) { HH = -1; } update_meas(M, (double)(s->M)); update_meas(aM, HH * fabs((double)(s->M))); update_meas(E, s->H); if (s->M > 0) { update_meas(eM, HH * fabs((double)(s->M))); update_meas(eE, s->H); } else { update_meas(mM, - HH * fabs((double)(s->M))); update_meas(mE, s->H); } if (M_stop) { diff = fabs(eM->dx / eM->x); } else { diff = fabs(eM->dc / eM->c); } clust_per_sweep = add_to_avg(clust_per_sweep, n_clust * 1. / n, n_runs); n_runs++; } printf("\033[F\033[JWOLFF: sweep %" PRIu64 ", dH/H = %.4f, dM/M = %.4f, dC/C = %.4f, dX/X = %.4f, cps: %.1f\n", n_runs, fabs(E->dx / E->x), M->dx / M->x, E->dc / E->c, M->dc / M->c, clust_per_sweep); FILE *outfile = fopen("out.dat", "a"); double tau = 0; double dtau = 0; if (record_autocorrelation) { double *Gammas = (double *)malloc((W + 1) * sizeof(double)); Gammas[0] = 1 + rho(autocorr, 0); printf("%g ", Gammas[0]); for (uint64_t i = 0; i < W; i++) { Gammas[1 + i] = rho(autocorr, 2 * i + 1) + rho(autocorr, 2 * i + 2); } uint64_t n; for (n = 0; n < W + 1; n++) { if (Gammas[n] <= 0) { break; } } if (n == W) { printf("WARNING: correlation function never hit the noise floor.\n"); } double *conv_Gamma = get_convex_minorant(n, Gammas); double ttau = - 0.5; for (uint64_t i = 0; i < n; i++) { ttau += conv_Gamma[i]; } free(Gammas); free(autocorr->OO); while (autocorr->Op != NULL) { stack_pop_d(&(autocorr->Op)); } free(autocorr); tau = ttau * ac_skip * clust->x / h->nv; dtau = 0; } fprintf(outfile, "%u %.15f %.15f %" PRIu64 " %" PRIu64 " %.15f %.15f %.15f %.15f %.15f %.15f %.15f %.15f %" PRIu64 " %.15f %.15f %.15f %.15f %.15f %.15f %.15f %.15f %" PRIu64 " %.15f %.15f %.15f %.15f %.15f %.15f %.15f %.15f %.15f %.15f %.15f %.15f %.15f %.15f\n", L, T, H, n_runs, n_steps, E->x / h->nv, E->dx / h->nv, M->x / h->nv, M->dx / h->nv, E->c / h->nv, E->dc / h->nv, M->c / h->nv, M->dc / h->nv, eE->n, eE->x / h->nv, eE->dx / h->nv, eM->x / h->nv, eM->dx / h->nv, eE->c / h->nv, eE->dc / h->nv, eM->c / h->nv, eM->dc / h->nv, mE->n, mE->x / h->nv, mE->dx / h->nv, mM->x / h->nv, mM->dx / h->nv, mE->c / h->nv, mE->dc / h->nv, mM->c / h->nv, mM->dc / h->nv, aM->x / h->nv, aM->dx / h->nv, aM->c / h->nv, aM->dc / h->nv, tau, dtau); fclose(outfile); if (output_state) { FILE *state_file = fopen("state.dat", "a"); for (uint32_t i = 0; i < h->nv; i++) { fprintf(state_file, "%d ", s->spins[i]); } fprintf(state_file, "\n"); fclose(state_file); } gsl_rng_free(r); graph_free(s->g); free(s->spins); free(s); free(M); free(aM); free(eM); free(mM); free(E); free(eE); free(mE); free(clust); free(bond_probs); graph_free(h); return 0; }