#include #ifdef HAVE_GLUT #include #endif #include #include #include typedef orthogonal_t orthogonal_R_t; typedef vector_t vector_R_t; typedef state_t On_t; // angle from the x-axis of a two-vector double theta(vector_R_t v) { double x = v.x[0]; double y = v.x[1]; double val = atan(y / x); if (x < 0.0 && y > 0.0) { return M_PI + val; } else if ( x < 0.0 && y < 0.0 ) { return - M_PI + val; } else { return val; } } double H_modulated(vector_R_t v, int order, double mag) { return mag * cos(order * theta(v)); } double hue_to_R(double theta) { if (((M_PI / 3 <= theta) && (theta < 2 * M_PI / 3)) || ((4 * M_PI / 3 <= theta) && (theta < 5 * M_PI / 3))) { return 1.0 - fabs(fmod(theta / (2 * M_PI / 6), 2) - 1.0); } else if (((0 <= theta) && (theta < M_PI / 3)) || ((5 * M_PI / 3 <= theta) && (theta <= 2 * M_PI))) { return 1.0; } else { return 0.0; } } double hue_to_G(double theta) { if (((0 <= theta) && (theta < M_PI / 3)) || ((M_PI <= theta) && (theta < 4 * M_PI / 3))) { return 1.0 - fabs(fmod(theta / (2 * M_PI / 6), 2) - 1.0); } else if (((M_PI / 3 <= theta) && (theta < 2 * M_PI / 3)) || ((2 * M_PI / 3 <= theta) && (theta < M_PI))) { return 1.0; } else { return 0.0; } } double hue_to_B(double theta) { if (((2 * M_PI / 3 <= theta) && (theta < M_PI)) || ((5 * M_PI / 3 <= theta) && (theta <= 2 * M_PI))) { return 1.0 - fabs(fmod(theta / (2 * M_PI / 6), 2) - 1.0); } else if (((M_PI <= theta) && (theta < 4 * M_PI / 3)) || ((4 * M_PI / 3 <= theta) && (theta < 5 * M_PI / 3))) { return 1.0; } else { return 0.0; } } int main(int argc, char *argv[]) { count_t N = (count_t)1e7; D_t D = 2; L_t L = 128; double T = 2.26918531421; double *H_vec = (double *)calloc(MAX_Q, sizeof(double)); bool silent = false; bool use_pert = false; bool N_is_sweeps = false; bool draw = false; unsigned int window_size = 512; bool modulated_field = false; int order = 2; int opt; q_t J_ind = 0; q_t H_ind = 0; double epsilon = 1; // unsigned char measurement_flags = measurement_energy | measurement_clusterSize; unsigned char measurement_flags = 0; while ((opt = getopt(argc, argv, "N:D:L:T:H:spe:mo:M:Sdw:")) != -1) { switch (opt) { case 'N': // number of steps N = (count_t)atof(optarg); break; case 'D': // dimension D = atoi(optarg); break; case 'L': // linear size L = atoi(optarg); break; case 'T': // temperature T = atof(optarg); break; case 'H': // external field. nth call couples to state n H_vec[H_ind] = atof(optarg); H_ind++; break; case 's': // don't print anything during simulation. speeds up slightly silent = true; break; case 'p': use_pert = true; break; case 'e': epsilon = atof(optarg); break; case 'm': modulated_field = true; break; case 'M': measurement_flags ^= 1 << atoi(optarg); break; case 'o': order = atoi(optarg); break; case 'S': N_is_sweeps = true; break; case 'd': #ifdef HAVE_GLUT draw = true; break; #else printf("You didn't compile this with the glut library installed!\n"); exit(EXIT_FAILURE); #endif case 'w': window_size = atoi(optarg); break; default: exit(EXIT_FAILURE); } } unsigned long timestamp; { struct timespec spec; clock_gettime(CLOCK_REALTIME, &spec); timestamp = spec.tv_sec*1000000000LL + spec.tv_nsec; } const char *pert_type; std::function gen_R; if (use_pert) { gen_R = std::bind(generate_rotation_perturbation , std::placeholders::_1, std::placeholders::_2, epsilon); pert_type = "PERTURB"; } else { gen_R = generate_rotation_uniform ; pert_type = "UNIFORM"; } FILE *outfile_info = fopen("wolff_metadata.txt", "a"); fprintf(outfile_info, "<| \"ID\" -> %lu, \"MODEL\" -> \"%s\", \"q\" -> %d, \"D\" -> %" PRID ", \"L\" -> %" PRIL ", \"NV\" -> %" PRIv ", \"NE\" -> %" PRIv ", \"T\" -> %.15f, \"FIELD_TYPE\" -> ", timestamp, ON_strings[N_COMP], N_COMP, D, L, (v_t)pow(L, D), D * (v_t)pow(L, D), T); if (modulated_field) { fprintf(outfile_info, "\"MODULATED\", \"ORDER\" -> %d, \"H\" -> %.15f, ", order, H_vec[0]); } else { fprintf(outfile_info, "\"VECTOR\", \"H\" -> {"); for (q_t i = 0; i < N_COMP; i++) { fprintf(outfile_info, "%.15f", H_vec[i]); if (i < N_COMP - 1) { fprintf(outfile_info, ", "); } } fprintf(outfile_info, "}, "); } fprintf(outfile_info, "\"GENERATOR\" -> \"%s\"", pert_type); if (use_pert) { fprintf(outfile_info, ", \"EPS\" -> %g", epsilon); } fprintf(outfile_info, " |>\n"); fclose(outfile_info); FILE **outfiles = measure_setup_files(measurement_flags, timestamp); std::function other_f; uint64_t sum_of_clusterSize = 0; if (N_is_sweeps) { other_f = [&] (const On_t *s) { sum_of_clusterSize += s->last_cluster_size; }; } else if (draw) { #ifdef HAVE_GLUT // initialize glut glutInit(&argc, argv); glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB); glutInitWindowSize(window_size, window_size); glutCreateWindow("wolff"); glClearColor(0.0,0.0,0.0,0.0); glMatrixMode(GL_PROJECTION); glLoadIdentity(); gluOrtho2D(0.0, L, 0.0, L); other_f = [&] (const On_t *s) { glClear(GL_COLOR_BUFFER_BIT); for (v_t i = 0; i < pow(L, 2); i++) { vector_R_t v_tmp = act_inverse(s->R, s->spins[i]); double thetai = fmod(2 * M_PI + theta(v_tmp), 2 * M_PI); free_spin(v_tmp); double saturation = 0.7; double value = 0.9; double chroma = saturation * value; glColor3f(chroma * hue_to_R(thetai) + (value - chroma), chroma * hue_to_G(thetai) + (value - chroma), chroma * hue_to_B(thetai) + (value - chroma)); glRecti(i / L, i % L, (i / L) + 1, (i % L) + 1); } glFlush(); }; #endif } else { other_f = [] (const On_t *s) {}; } std::function measurements = measure_function_write_files(measurement_flags, outfiles, other_f); std::function H; if (modulated_field) { H = std::bind(H_modulated, std::placeholders::_1, order, H_vec[0]); } else { H = std::bind(H_vector , std::placeholders::_1, H_vec); } // initialize random number generator gsl_rng *r = gsl_rng_alloc(gsl_rng_mt19937); gsl_rng_set(r, rand_seed()); state_t s(D, L, T, dot , H); if (N_is_sweeps) { count_t N_rounds = 0; printf("\n"); while (sum_of_clusterSize < N * s.nv) { printf("\033[F\033[J\033[F\033[JWOLFF: sweep %" PRIu64 " / %" PRIu64 ": E = %.2f, S = %" PRIv "\n", (count_t)((double)sum_of_clusterSize / (double)s.nv), N, s.E, s.last_cluster_size); wolff (N, &s, gen_R, measurements, r, silent); N_rounds++; } printf("\033[F\033[J\033[F\033[JWOLFF: sweep %" PRIu64 " / %" PRIu64 ": E = %.2f, S = %" PRIv "\n\n", (count_t)((double)sum_of_clusterSize / (double)s.nv), N, s.E, s.last_cluster_size); } else { wolff (N, &s, gen_R, measurements, r, silent); } measure_free_files(measurement_flags, outfiles); free(H_vec); gsl_rng_free(r); return 0; }