#include #include #include #include typedef state_t , vector_t > planar_t; // angle from the x-axis of a two-vector double theta(vector_t v) { double x = v.x[0]; double y = v.x[1]; double val = atan(y / x); if (x < 0.0 && y > 0.0) { return M_PI + val; } else if ( x < 0.0 && y < 0.0 ) { return - M_PI + val; } else { return val; } } double H_modulated(vector_t v, int order, double mag) { return mag * cos(order * theta(v)); } int main(int argc, char *argv[]) { count_t N = (count_t)1e7; D_t D = 2; L_t L = 128; double T = 2.26918531421; double *H_vec = (double *)calloc(MAX_Q, sizeof(double)); bool silent = false; bool use_pert = false; bool modulated_field = false; int order = 2; int opt; q_t J_ind = 0; q_t H_ind = 0; double epsilon = 1; unsigned char measurement_flags = 0; while ((opt = getopt(argc, argv, "N:q:D:L:T:J:H:spe:mo:M:")) != -1) { switch (opt) { case 'N': // number of steps N = (count_t)atof(optarg); break; case 'D': // dimension D = atoi(optarg); break; case 'L': // linear size L = atoi(optarg); break; case 'T': // temperature T = atof(optarg); break; case 'H': // external field. nth call couples to state n H_vec[H_ind] = atof(optarg); H_ind++; break; case 's': // don't print anything during simulation. speeds up slightly silent = true; break; case 'p': use_pert = true; break; case 'e': epsilon = atof(optarg); break; case 'm': modulated_field = true; break; case 'M': measurement_flags |= 1 << atoi(optarg); break; case 'o': order = atoi(optarg); break; default: exit(EXIT_FAILURE); } } unsigned long timestamp; { struct timespec spec; clock_gettime(CLOCK_REALTIME, &spec); timestamp = spec.tv_sec*1000000000LL + spec.tv_nsec; } const char *pert_type; std::function (gsl_rng *, const planar_t *)> gen_R; if (use_pert) { gen_R = std::bind(generate_rotation_perturbation , std::placeholders::_1, std::placeholders::_2, epsilon); pert_type = "PERTURB"; } else { gen_R = generate_rotation_uniform ; pert_type = "UNIFORM"; } FILE *outfile_info = fopen("wolff_metadata.txt", "a"); fprintf(outfile_info, "<| \"ID\" -> %lu, \"MODEL\" -> \"%s\", \"q\" -> %d, \"D\" -> %" PRID ", \"L\" -> %" PRIL ", \"NV\" -> %" PRIv ", \"NE\" -> %" PRIv ", \"T\" -> %.15f, \"H\" -> {", timestamp, ON_strings[N_COMP], N_COMP, D, L, L * L, D * L * L, T); for (q_t i = 0; i < N_COMP; i++) { fprintf(outfile_info, "%.15f", H_vec[i]); if (i < N_COMP - 1) { fprintf(outfile_info, ", "); } } fprintf(outfile_info, "}, \"GENERATOR\" -> \"%s\", \"EPS\" -> %g |>\n", pert_type, epsilon); fclose(outfile_info); unsigned int n_measurements = 0; std::function *measurements = (std::function *)calloc(POSSIBLE_MEASUREMENTS, sizeof(std::function )); FILE *outfile_M, *outfile_E, *outfile_S, *outfile_F; double *fftw_in, *fftw_out; fftw_plan plan; if (measurement_flags & measurement_energy) { char *filename_E = (char *)malloc(255 * sizeof(char)); sprintf(filename_E, "wolff_%lu_E.dat", timestamp); outfile_E = fopen(filename_E, "wb"); free(filename_E); measurements[n_measurements] = measurement_energy_file, vector_t > (outfile_E); n_measurements++; } if (measurement_flags & measurement_clusterSize) { char *filename_S = (char *)malloc(255 * sizeof(char)); sprintf(filename_S, "wolff_%lu_S.dat", timestamp); outfile_S = fopen(filename_S, "wb"); free(filename_S); measurements[n_measurements] = measurement_cluster_file, vector_t > (outfile_S); n_measurements++; } if (measurement_flags & measurement_magnetization) { char *filename_M = (char *)malloc(255 * sizeof(char)); sprintf(filename_M, "wolff_%lu_M.dat", timestamp); outfile_M = fopen(filename_M, "wb"); free(filename_M); measurements[n_measurements] = measurement_magnetization_file, vector_t > (outfile_M); n_measurements++; } if (measurement_flags & measurement_fourierZero) { char *filename_F = (char *)malloc(255 * sizeof(char)); sprintf(filename_F, "wolff_%lu_F.dat", timestamp); outfile_F = fopen(filename_F, "wb"); free(filename_F); fftw_in = (double *)fftw_malloc(pow(L, D) * sizeof(double)); fftw_out = (double *)fftw_malloc(pow(L, D) * sizeof(double)); int rank = D; int *n = (int *)malloc(rank * sizeof(int)); fftw_r2r_kind *kind = (fftw_r2r_kind *)malloc(rank * sizeof(fftw_r2r_kind)); for (D_t i = 0; i < rank; i++) { n[i] = L; kind[i] = FFTW_R2HC; } plan = fftw_plan_r2r(rank, n, fftw_in, fftw_out, kind, 0); free(n); free(kind); measurements[n_measurements] = measurement_fourier_file, vector_t > (outfile_F, plan, fftw_in, fftw_out); n_measurements++; } std::function )> H; if (modulated_field) { H = std::bind(H_modulated, std::placeholders::_1, order, H_vec[0]); } else { H = std::bind(H_vector , std::placeholders::_1, H_vec); } wolff , vector_t > (N, D, L, T, dot , H, gen_R, n_measurements, measurements, silent); free(measurements); if (measurement_flags & measurement_energy) { fclose(outfile_E); } if (measurement_flags & measurement_clusterSize) { fclose(outfile_S); } if (measurement_flags & measurement_magnetization) { fclose(outfile_M); } if (measurement_flags & measurement_fourierZero) { fclose(outfile_F); fftw_destroy_plan(plan); fftw_free(fftw_in); fftw_free(fftw_out); fftw_cleanup(); // fftw is only used if fourier modes are measured! } free(H_vec); return 0; }