#include #include double identity(h_t x) { return -pow(x, 2); } double basic_H(double *H, h_t x) { return -H[0] * pow(x, 2); } int main(int argc, char *argv[]) { L_t L = 128; count_t N = (count_t)1e7; count_t min_runs = 10; count_t n = 3; D_t D = 2; double T = 2.26918531421; double *H = (double *)calloc(MAX_Q, sizeof(double)); double eps = 0; bool silent = false; bool record_autocorrelation = false; count_t ac_skip = 1; count_t W = 10; int opt; q_t H_ind = 0; while ((opt = getopt(argc, argv, "N:n:D:L:T:H:m:e:saS:W:")) != -1) { switch (opt) { case 'N': N = (count_t)atof(optarg); break; case 'n': n = (count_t)atof(optarg); break; case 'D': D = atoi(optarg); break; case 'L': L = atoi(optarg); break; case 'T': T = atof(optarg); break; case 'H': H[H_ind] = atof(optarg); H_ind++; break; case 'm': min_runs = atoi(optarg); break; case 'e': eps = atof(optarg); break; case 's': silent = true; break; case 'a': record_autocorrelation = true; break; case 'S': ac_skip = (count_t)atof(optarg); break; case 'W': W = (count_t)atof(optarg); break; default: exit(EXIT_FAILURE); } } gsl_rng *r = gsl_rng_alloc(gsl_rng_mt19937); gsl_rng_set(r, rand_seed()); dgm_state_t *s = (dgm_state_t *)calloc(1, sizeof(dgm_state_t)); graph_t *h = graph_create_square(D, L); s->g = graph_add_ext(h); s->spins = (h_t *)calloc(h->nv, sizeof(h_t)); s->H_info = H; s->T = T; s->H = basic_H; s->J = identity; s->R = (dihinf_t *)calloc(1, sizeof(dihinf_t)); s->M = 0; s->E = 0; double diff = 1e31; count_t n_runs = 0; count_t n_steps = 0; meas_t *E, *clust, *M, *dM; M = (meas_t *)calloc(1, sizeof(meas_t )); dM = (meas_t *)calloc(1, sizeof(meas_t )); E = calloc(1, sizeof(meas_t)); clust = calloc(1, sizeof(meas_t)); autocorr_t *autocorr; if (record_autocorrelation) { autocorr = (autocorr_t *)calloc(1, sizeof(autocorr_t)); autocorr->W = 2 * W + 1; autocorr->OO = (double *)calloc(2 * W + 1, sizeof(double)); } if (!silent) printf("\n"); while (((diff > eps || diff != diff) && n_runs < N) || n_runs < min_runs) { if (!silent) printf("\033[F\033[JWOLFF: sweep %" PRIu64 ", dH/H = %.4f, dM/M = %.4f, dC/C = %.4f, dX/X = %.4f, cps: %.1f\n", n_runs, fabs(meas_dx(E) / E->x), meas_dx(M) / M->x, meas_dc(E) / meas_c(E), meas_dc(M) / meas_c(M), h->nv / clust->x); count_t n_flips = 0; while (n_flips / h->nv < n) { v_t v0 = gsl_rng_uniform_int(r, h->nv); h_t step = round((((double)s->M) / h->nv) + gsl_ran_gaussian(r, 5)); v_t tmp_flips = flip_cluster_dgm(s, v0, step, r); n_flips += tmp_flips; if (n_runs > 0) { n_steps++; meas_update(clust, tmp_flips); } if (record_autocorrelation && n_runs > 0) { if (n_steps % ac_skip == 0) { update_autocorr(autocorr, s->E); } } } meas_update(M, s->M); h_t min_h, max_h; min_h = MAX_H; max_h = MIN_H; for (v_t i = 0; i < h->nv; i++) { if (s->spins[i] < min_h) { min_h = s->spins[i]; } else if (s->spins[i] > max_h) { max_h = s->spins[i]; } } meas_update(dM, max_h - min_h); meas_update(E, s->E); diff = fabs(meas_dc(E) / meas_c(E)); n_runs++; } if (!silent) { printf("\033[F\033[J"); } printf("WOLFF: sweep %" PRIu64 ", dH/H = %.4f, dM/M = %.4f, dC/C = %.4f, dX/X = %.4f, cps: %.1f\n", n_runs, fabs(meas_dx(E) / E->x), meas_dx(M) / M->x, meas_dc(E) / meas_c(E), meas_dc(M) / meas_c(M), h->nv / clust->x); double tau = 0; bool tau_failed = false; if (record_autocorrelation) { double *Gammas = (double *)malloc((W + 1) * sizeof(double)); Gammas[0] = 1 + rho(autocorr, 0); for (uint64_t i = 0; i < W; i++) { Gammas[1 + i] = rho(autocorr, 2 * i + 1) + rho(autocorr, 2 * i + 2); } uint64_t n; for (n = 0; n < W + 1; n++) { if (Gammas[n] <= 0) { break; } } if (n == W + 1) { printf("WARNING: correlation function never hit the noise floor.\n"); tau_failed = true; } if (n < 2) { printf("WARNING: correlation function only has one nonnegative term.\n"); tau_failed = true; } double *conv_Gamma = get_convex_minorant(n, Gammas); double ttau = - 0.5; for (uint64_t i = 0; i < n + 1; i++) { ttau += conv_Gamma[i]; } free(Gammas); free(autocorr->OO); while (autocorr->Op != NULL) { stack_pop_d(&(autocorr->Op)); } free(autocorr); tau = ttau * ac_skip * clust->x / h->nv; } if (tau_failed) { tau = 0; } FILE *outfile = fopen("out.m", "a"); fprintf(outfile, "<|D->%" PRID ",L->%" PRIL ",T->%.15f", D, L, T); fprintf(outfile, ",E->%.15f,\\[Delta]E->%.15f,C->%.15f,\\[Delta]C->%.15f,M->%.15f", E->x / h->nv, meas_dx(E) / h->nv, meas_c(E) / h->nv, meas_dc(E) / h->nv, M->x / h->nv); fprintf(outfile, ",\\[Delta]M->%.15f", meas_dx(M) / h->nv); fprintf(outfile, ",\\[Chi]->%.15f", meas_c(M) / h->nv); fprintf(outfile, ",\\[Delta]\\[Chi]->%.15f", meas_dc(M) / h->nv); fprintf(outfile, ",w->%.15f,\\[Delta]w->%.15f,wc->%.15f,\\[Delta]wc->%.15f,Subscript[n,\"clust\"]->%.15f,Subscript[\\[Delta]n,\"clust\"]->%.15f,Subscript[m,\"clust\"]->%.15f,Subscript[\\[Delta]m,\"clust\"]->%.15f,\\[Tau]->%.15f|>\n", dM->x, meas_dx(dM), meas_c(dM), meas_dc(dM), clust->x / h->nv, meas_dx(clust) / h->nv, meas_c(clust) / h->nv, meas_dc(clust) / h->nv,tau); fclose(outfile); FILE *image = fopen("out.dat", "a"); for (v_t i = 0; i < h->nv; i++) { fprintf(image, "%" PRIh " ", s->spins[i]); } fprintf(image, "\n"); fclose(image); free(E); free(clust); free(H); free(s->R); free(s->spins); graph_free(s->g); free(s); graph_free(h); gsl_rng_free(r); return 0; }