#include #ifdef HAVE_GLUT #include #endif // include your group and spin space #include #include // include wolff.h #include #include typedef state_t , height_t> sim_t; int main(int argc, char *argv[]) { count_t N = (count_t)1e4; D_t D = 2; L_t L = 128; double T = 2.26918531421; double H = 0; bool silent = false; bool draw = false; unsigned int window_size = 512; uint64_t epsilon = 1; int opt; while ((opt = getopt(argc, argv, "N:D:L:T:H:sdw:e:")) != -1) { switch (opt) { case 'N': // number of steps N = (count_t)atof(optarg); break; case 'D': // dimension D = atoi(optarg); break; case 'L': // linear size L = atoi(optarg); break; case 'T': // temperature T = atof(optarg); break; case 'H': // external field. nth call couples to state n H = atof(optarg); break; case 'e': // external field. nth call couples to state n epsilon = atof(optarg); break; case 's': // don't print anything during simulation. speeds up slightly silent = true; break; case 'd': #ifdef HAVE_GLUT draw = true; break; #else printf("You didn't compile this with the glut library installed!\n"); exit(EXIT_FAILURE); #endif case 'w': window_size = atoi(optarg); break; default: exit(EXIT_FAILURE); } } // initialize random number generator gsl_rng *r = gsl_rng_alloc(gsl_rng_mt19937); gsl_rng_set(r, rand_seed()); // define spin-spin coupling std::function &, const height_t&)> Z = [] (const height_t& h1, const height_t& h2) -> double { return -pow(h1.x - h2.x, 2); }; // define spin-field coupling std::function &)> B = [=] (const height_t& h) -> double { return -H * pow(h.x, 2);; }; // initialize state object sim_t s(D, L, T, Z, B); // define function that generates self-inverse rotations std::function (gsl_rng *, height_t)> gen_R = [=] (gsl_rng *r, height_t h) -> dihedral_inf_t { dihedral_inf_t rot; rot.is_reflection = true; int direction = gsl_rng_uniform_int(r, 2); int64_t amount = gsl_rng_uniform_int(r, epsilon); if (direction == 0) { rot.x = 2 * h.x + (1 + amount); } else { rot.x = 2 * h.x - (1 + amount); } return rot; }; // define function that updates any number of measurements std::function measurement; double average_M = 0; if (!draw) { // a very simple example: measure the average magnetization measurement = [&] (const sim_t& s) { average_M += (double)s.M / (double)N / (double)s.nv; }; } else { // a more complex example: measure the average magnetization, and draw the spin configuration to the screen #ifdef HAVE_GLUT // initialize glut glutInit(&argc, argv); glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB); glutInitWindowSize(window_size, window_size); glutCreateWindow("wolff"); glClearColor(0.0,0.0,0.0,0.0); glMatrixMode(GL_PROJECTION); glLoadIdentity(); gluOrtho2D(0.0, L, 0.0, L); measurement = [&] (const sim_t& s) { average_M += (double)s.M / (double)N / (double)s.nv; glClear(GL_COLOR_BUFFER_BIT); int64_t max_h = INT64_MIN; int64_t min_h = INT64_MAX; for (v_t i = 0; i < pow(L, 2); i++) { int64_t cur_h = (s.R.act_inverse(s.spins[i])).x; if (cur_h < min_h) { min_h = cur_h; } if (cur_h > max_h) { max_h = cur_h; } } for (v_t i = 0; i < pow(L, 2); i++) { int64_t cur_h = (s.R.act_inverse(s.spins[i])).x; double mag = ((double)(cur_h - min_h)) / ((double)(max_h - min_h)); glColor3f(mag, mag, mag); glRecti(i / L, i % L, (i / L) + 1, (i % L) + 1); } glFlush(); }; #endif } // run wolff for N cluster flips wolff(N, s, gen_R, measurement, r, silent); // tell us what we found! printf("%" PRIcount " DGM runs completed. D = %" PRID ", L = %" PRIL ", T = %g, H = %g, = %g\n", N, D, L, T, H, average_M); // free the random number generator gsl_rng_free(r); if (draw) { } return 0; }