#include #include #include int main(int argc, char *argv[]) { count_t N = (count_t)1e7; finite_model_t model = ISING; q_t q = 2; D_t D = 2; L_t L = 128; double T = 2.26918531421; double *J = (double *)calloc(MAX_Q, sizeof(double)); J[0] = 1.0; double *H = (double *)calloc(MAX_Q, sizeof(double)); bool silent = false; int opt; q_t J_ind = 0; q_t H_ind = 0; while ((opt = getopt(argc, argv, "N:t:q:D:L:T:J:H:s")) != -1) { switch (opt) { case 'N': // number of steps N = (count_t)atof(optarg); break; case 't': // type of simulation model = (finite_model_t)atoi(optarg); break; case 'q': // number of states, if relevant q = atoi(optarg); break; case 'D': // dimension D = atoi(optarg); break; case 'L': // linear size L = atoi(optarg); break; case 'T': // temperature T = atof(optarg); break; case 'J': // couplings, if relevant. nth call couples states i and i + n J[J_ind] = atof(optarg); J_ind++; break; case 'H': // external field. nth call couples to state n H[H_ind] = atof(optarg); H_ind++; break; case 's': // don't print anything during simulation. speeds up slightly silent = true; break; default: exit(EXIT_FAILURE); } } state_finite_t *s; switch (model) { case ISING: s = initial_finite_prepare_ising(D, L, T, H); break; case POTTS: s = initial_finite_prepare_potts(D, L, q, T, H); break; case CLOCK: s = initial_finite_prepare_clock(D, L, q, T, H); break; case DGM: s = initial_finite_prepare_dgm(D, L, q, T, H); break; default: printf("Not a valid model!\n"); free(J); free(H); exit(EXIT_FAILURE); } free(J); free(H); // initialize random number generator gsl_rng *r = gsl_rng_alloc(gsl_rng_mt19937); gsl_rng_set(r, rand_seed()); unsigned long timestamp = (unsigned long)time(NULL); char *filename_M = (char *)malloc(256 * sizeof(char)); char *filename_B = (char *)malloc(256 * sizeof(char)); char *filename_S = (char *)malloc(256 * sizeof(char)); sprintf(filename_M, "wolff_%s_%" PRIq "_%" PRID "_%" PRIL "_%.8f", finite_model_t_strings[model], q, D, L, T); for (q_t i = 0; i < s->q; i++) { sprintf(filename_M + strlen(filename_M), "_%.8f", s->H[i]); } strcpy(filename_B, filename_M); strcpy(filename_S, filename_M); sprintf(filename_M + strlen(filename_M), "_%lu_M.dat", timestamp); sprintf(filename_B + strlen(filename_B), "_%lu_B.dat", timestamp); sprintf(filename_S + strlen(filename_S), "_%lu_S.dat", timestamp); FILE *outfile_M = fopen(filename_M, "wb"); FILE *outfile_B = fopen(filename_B, "wb"); FILE *outfile_S = fopen(filename_S, "wb"); free(filename_M); free(filename_B); free(filename_S); v_t cluster_size = 0; if (!silent) printf("\n"); for (count_t steps = 0; steps < N; steps++) { if (!silent) printf("\033[F\033[JWOLFF: sweep %" PRIu64 " / %" PRIu64 ": E = %.2f, B_0 = %" PRIv ", M_0 = %" PRIv ", S = %" PRIv "\n", steps, N, state_finite_energy(s), s->B[0], s->M[0], cluster_size); v_t v0 = gsl_rng_uniform_int(r, s->nv); R_t step; bool changed = false; while (!changed) { step = gsl_rng_uniform_int(r, s->n_involutions); if (symmetric_act(s->transformations + s->q * s->involutions[step], s->spins[v0]) != s->spins[v0]) { changed = true; } } cluster_size = flip_cluster_finite(s, v0, step, r); // v_t is never going to be bigger than 32 bits, but since it's specified // as a fast time many machines will actually have it be 64 bits. we cast // it down here to halve space. for (q_t i = 0; i < s->q - 1; i++) { // if we know the occupation of the first q - 1 states, we know the occupation of the last fwrite(&(s->M[i]), sizeof(uint32_t), 1, outfile_M); fwrite(&(s->B[i]), sizeof(uint32_t), 1, outfile_B); } fwrite(&cluster_size, sizeof(uint32_t), 1, outfile_S); } if (!silent) { printf("\033[F\033[J"); } printf("WOLFF: sweep %" PRIu64 " / %" PRIu64 ": E = %.2f, B_0 = %" PRIv ", M_0 = %" PRIv ", S = %" PRIv "\n", N, N, state_finite_energy(s), s->B[0], s->M[0], cluster_size); fclose(outfile_M); fclose(outfile_B); fclose(outfile_S); state_finite_free(s); gsl_rng_free(r); return 0; }