#include #include // if you have GLUT installed, you can see graphics! #ifdef HAVE_GLUT #include #endif // include your group and spin space #include #include // finite_states.h can be included for spin types that have special variables // defined, and it causes wolff execution to use precomputed bond probabilities #include // rand.h uses a unix-specific way to seed the random number generator #include // measure.h contains useful functions for saving timeseries to files #include // include wolff.h #include int main(int argc, char *argv[]) { count_t N = (count_t)1e4; D_t D = 2; L_t L = 128; double T = 2.26918531421; double H = 0.0; bool silent = false; bool draw = false; bool N_is_sweeps = false; unsigned int window_size = 512; // don't measure anything by default unsigned char measurement_flags = 0; int opt; while ((opt = getopt(argc, argv, "N:D:L:T:H:sdw:M:S")) != -1) { switch (opt) { case 'N': // number of steps N = (count_t)atof(optarg); break; case 'D': // dimension D = atoi(optarg); break; case 'L': // linear size L = atoi(optarg); break; case 'T': // temperature T = atof(optarg); break; case 'H': // external field H = atof(optarg); break; case 's': // don't print anything during simulation. speeds up slightly silent = true; break; case 'S': N_is_sweeps = true; break; case 'd': #ifdef HAVE_GLUT draw = true; break; #else printf("You didn't compile this with the glut library installed!\n"); exit(EXIT_FAILURE); #endif case 'w': window_size = atoi(optarg); break; case 'M': measurement_flags ^= 1 << atoi(optarg); break; default: exit(EXIT_FAILURE); } } // get nanosecond timestamp for unique run id unsigned long timestamp; { struct timespec spec; clock_gettime(CLOCK_REALTIME, &spec); timestamp = spec.tv_sec*1000000000LL + spec.tv_nsec; } // initialize random number generator gsl_rng *r = gsl_rng_alloc(gsl_rng_taus2); gsl_rng_set(r, rand_seed()); // define spin-spin coupling std::function Z = [] (const ising_t& s1, const ising_t& s2) -> double { if (s1.x == s2.x) { return 1.0; } else { return -1.0; } }; // define spin-field coupling std::function B = [=] (const ising_t& s) -> double { if (s.x) { return -H; } else { return H; } }; // initialize state object state_t s(D, L, T, Z, B); // define function that generates self-inverse rotations std::function gen_R = [] (gsl_rng *, const ising_t& s) -> z2_t { return z2_t(true); }; FILE **outfiles = measure_setup_files(measurement_flags, timestamp); std::function *)> other_f; uint64_t sum_of_clusterSize = 0; if (N_is_sweeps) { other_f = [&] (const state_t *s) { sum_of_clusterSize += s->last_cluster_size; }; } else if (draw) { #ifdef HAVE_GLUT // initialize glut glutInit(&argc, argv); glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB); glutInitWindowSize(window_size, window_size); glutCreateWindow("wolff"); glClearColor(0.0,0.0,0.0,0.0); glMatrixMode(GL_PROJECTION); glLoadIdentity(); gluOrtho2D(0.0, L, 0.0, L); other_f = [] (const state_t *s) { glClear(GL_COLOR_BUFFER_BIT); for (v_t i = 0; i < pow(s->L, 2); i++) { if (s->spins[i].x == s->R.x) { glColor3f(0.0, 0.0, 0.0); } else { glColor3f(1.0, 1.0, 1.0); } glRecti(i / s->L, i % s->L, (i / s->L) + 1, (i % s->L) + 1); } glFlush(); }; #endif } else { other_f = [] (const state_t *s) {}; } std::function *)> measurements = measure_function_write_files(measurement_flags, outfiles, other_f); // add line to metadata file with run info { FILE *outfile_info = fopen("wolff_metadata.txt", "a"); fprintf(outfile_info, "<| \"ID\" -> %lu, \"MODEL\" -> \"ISING\", \"q\" -> 2, \"D\" -> %" PRID ", \"L\" -> %" PRIL ", \"NV\" -> %" PRIv ", \"NE\" -> %" PRIv ", \"T\" -> %.15f, \"H\" -> %.15f |>\n", timestamp, s.D, s.L, s.nv, s.ne, T, H); fclose(outfile_info); } // run wolff for N cluster flips if (N_is_sweeps) { count_t N_rounds = 0; printf("\n"); while (sum_of_clusterSize < N * s.nv) { printf("\033[F\033[J\033[F\033[JWOLFF: sweep %" PRIu64 " / %" PRIu64 ": E = %.2f, S = %" PRIv "\n", (count_t)((double)sum_of_clusterSize / (double)s.nv), N, s.E, s.last_cluster_size); wolff(N, &s, gen_R, measurements, r, silent); N_rounds++; } printf("\033[F\033[J\033[F\033[JWOLFF: sweep %" PRIu64 " / %" PRIu64 ": E = %.2f, S = %" PRIv "\n\n", (count_t)((double)sum_of_clusterSize / (double)s.nv), N, s.E, s.last_cluster_size); } else { wolff(N, &s, gen_R, measurements, r, silent); } // free the random number generator gsl_rng_free(r); measure_free_files(measurement_flags, outfiles); return 0; }