#include #include int main(int argc, char *argv[]) { count_t N = (count_t)1e7; D_t D = 2; L_t L = 128; double T = 2.26918531421; double H = 0.0; bool silent = false; int opt; while ((opt = getopt(argc, argv, "N:q:D:L:T:J:H:s")) != -1) { switch (opt) { case 'N': // number of steps N = (count_t)atof(optarg); break; case 'D': // dimension D = atoi(optarg); break; case 'L': // linear size L = atoi(optarg); break; case 'T': // temperature T = atof(optarg); break; case 'H': // external field H = atof(optarg); break; case 's': // don't print anything during simulation. speeds up slightly silent = true; break; default: exit(EXIT_FAILURE); } } // initialize random number generator gsl_rng *r = gsl_rng_alloc(gsl_rng_mt19937); gsl_rng_set(r, rand_seed()); // define spin-spin coupling std::function Z = [] (ising_t s1, ising_t s2) -> double { if (s1.x == s2.x) { return 1.0; } else { return -1.0; } }; // define spin-field coupling std::function B = [=] (ising_t s) -> double { if (s.x) { return -H; } else { return H; } }; // initialize state object state_t s(D, L, T, Z, B); // define function that generates self-inverse rotations std::function *)> gen_R = [] (gsl_rng *, const state_t *) -> z2_t { z2_t rot; rot.x = true; return rot; }; // define function that updates any number of measurements double average_M = 0; std::function *)> measurement = [&] (const state_t *s) { average_M += (double)s->M / (double)N / (double)s->nv; }; // run wolff for N cluster flips wolff(N, &s, gen_R, measurement, r, silent); // tell us what we found! printf("%" PRIcount " Ising runs completed. D = %" PRID ", L = %" PRIL ", T = %g, H = %g, = %g\n", N, D, L, T, H, average_M); // free the random number generator gsl_rng_free(r); return 0; }