#include #ifdef HAVE_GLUT #include #endif // include your group and spin space #include #include #define N_STATES 2 const ising_t states[N_STATES] = {false, true}; q_t state_to_ind(ising_t state) { return (q_t)state.x; } #include // include wolff.h #include #include int main(int argc, char *argv[]) { count_t N = (count_t)1e4; D_t D = 2; L_t L = 128; double T = 2.26918531421; double H = 0.0; bool silent = false; bool draw = false; unsigned int window_size = 512; int opt; while ((opt = getopt(argc, argv, "N:D:L:T:H:sdw:")) != -1) { switch (opt) { case 'N': // number of steps N = (count_t)atof(optarg); break; case 'D': // dimension D = atoi(optarg); break; case 'L': // linear size L = atoi(optarg); break; case 'T': // temperature T = atof(optarg); break; case 'H': // external field H = atof(optarg); break; case 's': // don't print anything during simulation. speeds up slightly silent = true; break; case 'd': #ifdef HAVE_GLUT draw = true; break; #else printf("You didn't compile this with the glut library installed!\n"); exit(EXIT_FAILURE); #endif case 'w': window_size = atoi(optarg); break; default: exit(EXIT_FAILURE); } } // initialize random number generator gsl_rng *r = gsl_rng_alloc(gsl_rng_mt19937); gsl_rng_set(r, rand_seed()); // define spin-spin coupling std::function Z = [] (ising_t s1, ising_t s2) -> double { if (s1.x == s2.x) { return 1.0; } else { return -1.0; } }; // define spin-field coupling std::function B = [=] (ising_t s) -> double { if (s.x) { return -H; } else { return H; } }; // initialize state object state_t s(D, L, T, Z, B); // define function that generates self-inverse rotations std::function gen_R = [] (gsl_rng *, ising_t s) -> z2_t { z2_t rot; rot.x = true; return rot; }; // define function that updates any number of measurements std::function *)> measurement; double average_M = 0; if (!draw) { // a very simple example: measure the average magnetization measurement = [&] (const state_t *s) { average_M += (double)s->M / (double)N / (double)s->nv; }; } else { // a more complex example: measure the average magnetization, and draw the spin configuration to the screen #ifdef HAVE_GLUT // initialize glut glutInit(&argc, argv); glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB); glutInitWindowSize(window_size, window_size); glutCreateWindow("wolff"); glClearColor(0.0,0.0,0.0,0.0); glMatrixMode(GL_PROJECTION); glLoadIdentity(); gluOrtho2D(0.0, L, 0.0, L); measurement = [&] (const state_t *s) { average_M += (double)s->M / (double)N / (double)s->nv; glClear(GL_COLOR_BUFFER_BIT); for (v_t i = 0; i < pow(L, 2); i++) { if (s->spins[i].x == s->R.x) { glColor3f(0.0, 0.0, 0.0); } else { glColor3f(1.0, 1.0, 1.0); } glRecti(i / L, i % L, (i / L) + 1, (i % L) + 1); } glFlush(); }; #endif } // run wolff for N cluster flips wolff(N, &s, gen_R, measurement, r, silent); // tell us what we found! printf("%" PRIcount " Ising runs completed. D = %" PRID ", L = %" PRIL ", T = %g, H = %g, = %g\n", N, D, L, T, H, average_M); // free the random number generator gsl_rng_free(r); if (draw) { } return 0; }