#include #include #include typedef state_t , vector_t <2, double>> sim_t; int main(int argc, char *argv[]) { count_t N = (count_t)1e7; D_t D = 2; L_t L = 128; double T = 2.26918531421; double *H = (double *)calloc(MAX_Q, sizeof(double)); bool silent = false; bool use_pert = false; int opt; q_t J_ind = 0; q_t H_ind = 0; double epsilon = 1; while ((opt = getopt(argc, argv, "N:q:D:L:T:J:H:spe:")) != -1) { switch (opt) { case 'N': // number of steps N = (count_t)atof(optarg); break; case 'D': // dimension D = atoi(optarg); break; case 'L': // linear size L = atoi(optarg); break; case 'T': // temperature T = atof(optarg); break; case 'H': // external field. nth call couples to state n H[H_ind] = atof(optarg); H_ind++; break; case 's': // don't print anything during simulation. speeds up slightly silent = true; break; case 'p': use_pert = true; break; case 'e': epsilon = atof(optarg); break; default: exit(EXIT_FAILURE); } } unsigned long timestamp; { struct timespec spec; clock_gettime(CLOCK_REALTIME, &spec); timestamp = spec.tv_sec*1000000000LL + spec.tv_nsec; } const char *pert_type; std::function (gsl_rng *, const sim_t *)> gen_R; if (use_pert) { gen_R = std::bind(generate_rotation_perturbation <2>, std::placeholders::_1, std::placeholders::_2, epsilon); pert_type = "PERTURB"; } else { gen_R = generate_rotation_uniform <2>; pert_type = "UNIFORM"; } FILE *outfile_info = fopen("wolff_metadata.txt", "a"); fprintf(outfile_info, "<| \"ID\" -> %lu, \"MODEL\" -> \"PLANAR\", \"q\" -> 2, \"D\" -> %" PRID ", \"L\" -> %" PRIL ", \"NV\" -> %" PRIv ", \"NE\" -> %" PRIv ", \"T\" -> %.15f, \"H\" -> {", timestamp, D, L, L * L, D * L * L, T); for (q_t i = 0; i < 2; i++) { fprintf(outfile_info, "%.15f", H[i]); if (i < 2 - 1) { fprintf(outfile_info, ", "); } } fprintf(outfile_info, "}, \"GENERATOR\" -> \"%s\", \"EPS\" -> %g |>\n", pert_type, epsilon); fclose(outfile_info); char *filename_M = (char *)malloc(255 * sizeof(char)); char *filename_E = (char *)malloc(255 * sizeof(char)); char *filename_S = (char *)malloc(255 * sizeof(char)); char *filename_X = (char *)malloc(255 * sizeof(char)); sprintf(filename_M, "wolff_%lu_M.dat", timestamp); sprintf(filename_E, "wolff_%lu_E.dat", timestamp); sprintf(filename_S, "wolff_%lu_S.dat", timestamp); sprintf(filename_X, "wolff_%lu_X.dat", timestamp); FILE *outfile_M = fopen(filename_M, "wb"); FILE *outfile_E = fopen(filename_E, "wb"); FILE *outfile_S = fopen(filename_S, "wb"); FILE *outfile_X = fopen(filename_X, "wb"); free(filename_M); free(filename_E); free(filename_S); free(filename_X); std::function *measurements = (std::function *)calloc(4, sizeof(std::function )); measurements[0] = (std::function )[&](const sim_t *s) { float smaller_E = (float)s->E; fwrite(&smaller_E, sizeof(float), 1, outfile_E); }; measurements[1] = [&](const sim_t *s) { float smaller_X = (float)correlation_length(s); fwrite(&smaller_X, sizeof(float), 1, outfile_X); }; measurements[2] = [&](const sim_t *s) { write_magnetization(s->M, outfile_M); }; measurements[3] = [&](const sim_t *s) { fwrite(&(s->last_cluster_size), sizeof(uint32_t), 1, outfile_S); }; wolff , vector_t <2, double>> (N, D, L, T, dot <2, double>, std::bind(H_vector <2, double>, std::placeholders::_1, H), gen_R, 4, measurements, silent); free(measurements); fclose(outfile_M); fclose(outfile_E); fclose(outfile_S); fclose(outfile_X); free(H); return 0; }