#include #include int main(int argc, char *argv[]) { L_t L = 128; count_t N = (count_t)1e7; count_t min_runs = 10; count_t n = 3; q_t q = 2; D_t D = 2; double T = 2.26918531421; double *J = (double *)calloc(MAX_Q, sizeof(double)); J[0] = 1.0; double *H = (double *)calloc(MAX_Q, sizeof(double)); double eps = 0; bool pretend_ising = false; bool planar_potts = false; bool silent = false; bool snapshots = false; bool snapshot = false; bool record_autocorrelation = false; bool record_distribution = false; count_t W = 10; count_t ac_skip = 1; int opt; q_t J_ind = 0; q_t H_ind = 0; while ((opt = getopt(argc, argv, "N:n:D:L:q:T:J:H:m:e:IpsSPak:W:d")) != -1) { switch (opt) { case 'N': N = (count_t)atof(optarg); break; case 'n': n = (count_t)atof(optarg); break; case 'D': D = atoi(optarg); break; case 'L': L = atoi(optarg); break; case 'q': q = atoi(optarg); break; case 'T': T = atof(optarg); break; case 'J': J[J_ind] = atof(optarg); J_ind++; break; case 'H': H[H_ind] = atof(optarg); H_ind++; break; case 'm': min_runs = atoi(optarg); break; case 'e': eps = atof(optarg); break; case 'I': pretend_ising = true; break; case 'p': planar_potts = true; break; case 's': silent = true; break; case 'S': snapshots = true; break; case 'P': snapshot = true; break; case 'a': record_autocorrelation = true; break; case 'k': ac_skip = (count_t)atof(optarg); break; case 'W': W = (count_t)atof(optarg); break; case 'd': record_distribution = true; break; default: exit(EXIT_FAILURE); } } gsl_rng *r = gsl_rng_alloc(gsl_rng_mt19937); gsl_rng_set(r, rand_seed()); if (pretend_ising) { q = 2; H[1] = -H[0]; J[1] = -J[0]; } if (planar_potts) { for (q_t i = 0; i < q; i++) { J[i] = cos(2 * M_PI * i / ((double)q)); } } ising_state_t *s = (ising_state_t *)calloc(1, sizeof(ising_state_t)); graph_t *h = graph_create_square(D, L); s->g = graph_add_ext(h); s->q = q; s->spins = (q_t *)calloc(h->nv, sizeof(q_t)); s->T = T; s->H = H; s->J = J; s->R = (dihedral_t *)calloc(1, sizeof(dihedral_t)); s->J_probs = (double *)calloc(pow(q, 2), sizeof(double)); for (q_t i = 0; i < q; i++) { for (q_t j = 0; j < q; j++) { s->J_probs[q * i + j] = 1.0 - exp((s->J[i] - s->J[j]) / T); } } s->H_probs = (double *)calloc(pow(q, 2), sizeof(double)); for (q_t i = 0; i < q; i++) { for (q_t j = 0; j < q; j++) { s->H_probs[q * i + j] = 1.0 - exp((s->H[i] - s->H[j]) / T); } } s->M = (v_t *)calloc(q, sizeof(v_t)); s->M[0] = h->nv; s->E = - ((double)h->ne) * s->J[0] - ((double)h->nv) * s->H[0]; double diff = 1e31; count_t n_runs = 0; count_t n_steps = 0; meas_t *E, *clust, **M, **sE, ***sM; M = (meas_t **)malloc(q * sizeof(meas_t *)); for (q_t i = 0; i < q; i++) { M[i] = (meas_t *)calloc(1, sizeof(meas_t)); } E = calloc(1, sizeof(meas_t)); clust = calloc(1, sizeof(meas_t)); sE = (meas_t **)malloc(q * sizeof(meas_t *)); sM = (meas_t ***)malloc(q * sizeof(meas_t **)); for (q_t i = 0; i < q; i++) { sE[i] = (meas_t *)calloc(1, sizeof(meas_t)); sM[i] = (meas_t **)malloc(q * sizeof(meas_t *)); for (q_t j = 0; j < q; j++) { sM[i][j] = (meas_t *)calloc(1, sizeof(meas_t)); } } count_t *freqs = (count_t *)calloc(q, sizeof(count_t)); q_t cur_M = 0; autocorr_t *autocorr; if (record_autocorrelation) { autocorr = (autocorr_t *)calloc(1, sizeof(autocorr_t)); autocorr->W = 2 * W + 1; autocorr->OO = (double *)calloc(2 * W + 1, sizeof(double)); } count_t *cluster_dist; if (record_distribution) { cluster_dist = (count_t *)calloc(h->nv, sizeof(count_t)); } if (!silent) printf("\n"); while (((diff > eps || diff != diff) && n_runs < N) || n_runs < min_runs) { if (!silent) printf("\033[F\033[JWOLFF: sweep %" PRIu64 ", dH/H = %.4f, dM/M = %.4f, dC/C = %.4f, dX/X = %.4f, cps: %.1f\n", n_runs, fabs(meas_dx(E) / E->x), meas_dx(M[0]) / M[0]->x, meas_dc(E) / meas_c(E), meas_dc(M[0]) / meas_c(M[0]), h->nv / clust->x); count_t n_flips = 0; while (n_flips / h->nv < n) { v_t v0 = gsl_rng_uniform_int(r, h->nv); q_t step; if (q == 2) { step = 1; } else { step = gsl_rng_uniform_int(r, q); } v_t tmp_flips = flip_cluster(s, v0, step, r); n_flips += tmp_flips; if (n_runs > 0) { n_steps++; meas_update(clust, tmp_flips); if (record_autocorrelation && n_steps % ac_skip == 0) { update_autocorr(autocorr, s->E); } if (record_distribution) { cluster_dist[tmp_flips - 1]++; } } } for (q_t i = 0; i < q; i++) { meas_update(M[i], s->M[i]); } meas_update(E, s->E); q_t n_at_max = 0; q_t max_M_i = 0; v_t max_M = 0; for (q_t i = 0; i < q; i++) { if (s->M[i] > max_M) { n_at_max = 1; max_M_i = i; max_M = s->M[i]; } else if (s->M[i] == max_M) { n_at_max++; } } if (n_at_max == 1) { for (q_t i = 0; i < q; i++) { meas_update(sM[max_M_i][i], s->M[i]); } meas_update(sE[max_M_i], s->E); freqs[max_M_i]++; } diff = fabs(meas_dx(clust) / clust->x); n_runs++; } if (!silent) { printf("\033[F\033[J"); } printf("WOLFF: sweep %" PRIu64 ", dH/H = %.4f, dM/M = %.4f, dC/C = %.4f, dX/X = %.4f, cps: %.1f\n", n_runs, fabs(meas_dx(E) / E->x), meas_dx(M[0]) / M[0]->x, meas_dc(E) / meas_c(E), meas_dc(M[0]) / meas_c(M[0]), h->nv / clust->x); if (snapshots) { FILE *snapfile = fopen("snapshots.m", "a"); fprintf(snapfile, "\n"); } if (snapshot) { FILE *snapfile = fopen("snapshot.m", "a"); fprintf(snapfile, "{{"); for (L_t i = 0; i < L; i++) { fprintf(snapfile, "{"); for (L_t j = 0; j < L; j++) { fprintf(snapfile, "%" PRIq, dihedral_inverse_act(q, s->R, s->spins[L * i + j])); if (j != L - 1) { fprintf(snapfile, ","); } } fprintf(snapfile, "}"); if (i != L - 1) { fprintf(snapfile, ","); } } fprintf(snapfile, "},{%" PRIq ",%d}}\n", s->R->i, s->R->r); fclose(snapfile); } double tau = 0; int tau_failed = 0; if (record_autocorrelation) { double *Gammas = (double *)malloc((W + 1) * sizeof(double)); Gammas[0] = 1 + rho(autocorr, 0); for (uint64_t i = 0; i < W; i++) { Gammas[1 + i] = rho(autocorr, 2 * i + 1) + rho(autocorr, 2 * i + 2); } uint64_t n; for (n = 0; n < W + 1; n++) { if (Gammas[n] <= 0) { break; } } if (n == W + 1) { printf("WARNING: correlation function never hit the noise floor.\n"); tau_failed = 1; } if (n < 2) { printf("WARNING: correlation function only has one nonnegative term.\n"); tau_failed = 2; } double *conv_Gamma = get_convex_minorant(n, Gammas); double ttau = - 0.5; for (uint64_t i = 0; i < n + 1; i++) { ttau += conv_Gamma[i]; } tau = ttau * ac_skip * clust->x / h->nv; free(Gammas); free(autocorr->OO); while (autocorr->Op != NULL) { stack_pop_d(&(autocorr->Op)); } free(autocorr); } if (tau_failed) { //tau = 0; } FILE *outfile = fopen("out.m", "a"); fprintf(outfile, "<|N->%" PRIcount ",n->%" PRIcount ",D->%" PRID ",L->%" PRIL ",q->%" PRIq ",T->%.15f,J->{", N, n, D, L, q, T); for (q_t i = 0; i < q; i++) { fprintf(outfile, "%.15f", J[i]); if (i != q-1) { fprintf(outfile, ","); } } fprintf(outfile, "},H->{"); for (q_t i = 0; i < q; i++) { fprintf(outfile, "%.15f", H[i]); if (i != q-1) { fprintf(outfile, ","); } } fprintf(outfile, "},E->%.15f,\\[Delta]E->%.15f,C->%.15f,\\[Delta]C->%.15f,M->{", E->x / h->nv, meas_dx(E) / h->nv, meas_c(E) / h->nv, meas_dc(E) / h->nv); for (q_t i = 0; i < q; i++) { fprintf(outfile, "%.15f", M[i]->x / h->nv); if (i != q-1) { fprintf(outfile, ","); } } fprintf(outfile, "},\\[Delta]M->{"); for (q_t i = 0; i < q; i++) { fprintf(outfile, "%.15f", meas_dx(M[i]) / h->nv); if (i != q-1) { fprintf(outfile, ","); } } fprintf(outfile, "},\\[Chi]->{"); for (q_t i = 0; i < q; i++) { fprintf(outfile, "%.15f", meas_c(M[i]) / h->nv); if (i != q-1) { fprintf(outfile, ","); } } fprintf(outfile, "},\\[Delta]\\[Chi]->{"); for (q_t i = 0; i < q; i++) { fprintf(outfile, "%.15f", meas_dc(M[i]) / h->nv); if (i != q-1) { fprintf(outfile, ","); } } for (q_t i = 0; i < q; i++) { fprintf(outfile, "},Subscript[E,%" PRIq "]->%.15f,Subscript[\\[Delta]E,%" PRIq "]->%.15f,Subscript[C,%" PRIq "]->%.15f,Subscript[\\[Delta]C,%" PRIq "]->%.15f,Subscript[M,%" PRIq "]->{", i, sE[i]->x / h->nv, i, meas_dx(sE[i]) / h->nv, i, meas_c(sE[i]) / h->nv, i, meas_dc(sE[i]) / h->nv, i); for (q_t j = 0; j < q; j++) { fprintf(outfile, "%.15f", sM[i][j]->x / h->nv); if (j != q-1) { fprintf(outfile, ","); } } fprintf(outfile, "},Subscript[\\[Delta]M,%" PRIq "]->{", i); for (q_t j = 0; j < q; j++) { fprintf(outfile, "%.15f", meas_dx(sM[i][j]) / h->nv); if (j != q-1) { fprintf(outfile, ","); } } fprintf(outfile, "},Subscript[\\[Chi],%" PRIq "]->{", i); for (q_t j = 0; j < q; j++) { fprintf(outfile, "%.15f", meas_c(sM[i][j]) / h->nv); if (j != q-1) { fprintf(outfile, ","); } } fprintf(outfile, "},Subscript[\\[Delta]\\[Chi],%" PRIq "]->{", i); for (q_t j = 0; j < q; j++) { fprintf(outfile, "%.15f", meas_dc(sM[i][j]) / h->nv); if (j != q-1) { fprintf(outfile, ","); } } } fprintf(outfile,"}"); for (q_t i = 0; i < q; i++) { fprintf(outfile, ",Subscript[f,%" PRIq "]->%.15f,Subscript[\\[Delta]f,%" PRIq "]->%.15f", i, (double)freqs[i] / (double)n_runs, i, sqrt(freqs[i]) / (double)n_runs); } fprintf(outfile, ",Subscript[n,\"clust\"]->%.15f,Subscript[\\[Delta]n,\"clust\"]->%.15f,Subscript[m,\"clust\"]->%.15f,Subscript[\\[Delta]m,\"clust\"]->%.15f,\\[Tau]->%.15f,\\[Tau]s->%d", clust->x / h->nv, meas_dx(clust) / h->nv, meas_c(clust) / h->nv, meas_dc(clust) / h->nv,tau,tau_failed); if (record_distribution) { fprintf(outfile, ",S->{"); for (v_t i = 0; i < h->nv; i++) { fprintf(outfile, "%" PRIcount, cluster_dist[i]); if (i != h->nv - 1) { fprintf(outfile, ","); } } fprintf(outfile, "}"); free(cluster_dist); } fprintf(outfile, "|>\n"); fclose(outfile); free(E); free(clust); for (q_t i = 0; i < q; i++) { free(M[i]); for (q_t j = 0; j < q; j++) { free(sM[i][j]); } free(sM[i]); } free(M); free(sM); for (q_t i = 0; i < q; i++) { free(sE[i]); } free(freqs); free(sE); free(s->H_probs); free(s->J_probs); free(s->M); free(s->spins); free(s->R); graph_free(s->g); free(s); free(H); free(J); graph_free(h); gsl_rng_free(r); return 0; }