#include #include #ifdef HAVE_GLUT #include #endif // include your group and spin space #include #include // hack to speed things up considerably #define N_STATES POTTSQ #include // include wolff.h #include #include #include #include typedef state_t , potts_t> sim_t; int main(int argc, char *argv[]) { count_t N = (count_t)1e4; D_t D = 2; L_t L = 128; double T = 2.26918531421; double *H_vec = (double *)calloc(MAX_Q, sizeof(double)); bool silent = false; bool draw = false; bool N_is_sweeps = false; unsigned int window_size = 512; // don't measure anything by default unsigned char measurement_flags = 0; int opt; q_t H_ind = 0; while ((opt = getopt(argc, argv, "N:D:L:T:H:sdw:M:S")) != -1) { switch (opt) { case 'N': // number of steps N = (count_t)atof(optarg); break; case 'D': // dimension D = atoi(optarg); break; case 'L': // linear size L = atoi(optarg); break; case 'T': // temperature T = atof(optarg); break; case 'H': // external field. nth call couples to state n H_vec[H_ind] = atof(optarg); H_ind++; break; case 's': // don't print anything during simulation. speeds up slightly silent = true; break; case 'S': N_is_sweeps = true; break; case 'd': #ifdef HAVE_GLUT draw = true; break; #else printf("You didn't compile this with the glut library installed!\n"); exit(EXIT_FAILURE); #endif case 'w': window_size = atoi(optarg); break; case 'M': measurement_flags ^= 1 << atoi(optarg); break; default: exit(EXIT_FAILURE); } } // get nanosecond timestamp for unique run id unsigned long timestamp; { struct timespec spec; clock_gettime(CLOCK_REALTIME, &spec); timestamp = spec.tv_sec*1000000000LL + spec.tv_nsec; } // initialize random number generator gsl_rng *r = gsl_rng_alloc(gsl_rng_mt19937); gsl_rng_set(r, rand_seed()); // define spin-spin coupling std::function , potts_t)> Z = [] (potts_t s1, potts_t s2) -> double { if (s1.x == s2.x) { return 1.0; } else { return 0.0; } }; // define spin-field coupling std::function )> B = [=] (potts_t s) -> double { return H_vec[s.x]; }; // initialize state object state_t , potts_t> s(D, L, T, Z, B); // define function that generates self-inverse rotations std::function (gsl_rng *, potts_t)> gen_R = [] (gsl_rng *r, potts_t v) -> symmetric_t { symmetric_t rot; q_t j = gsl_rng_uniform_int(r, POTTSQ - 1); q_t swap_v; if (j < v.x) { swap_v = j; } else { swap_v = j + 1; } rot[v.x] = swap_v; rot[swap_v] = v.x; return rot; }; FILE **outfiles = measure_setup_files(measurement_flags, timestamp); std::function other_f; uint64_t sum_of_clusterSize = 0; if (N_is_sweeps) { other_f = [&] (const sim_t *s) { sum_of_clusterSize += s->last_cluster_size; }; } else if (draw) { #ifdef HAVE_GLUT // initialize glut glutInit(&argc, argv); glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB); glutInitWindowSize(window_size, window_size); glutCreateWindow("wolff"); glClearColor(0.0,0.0,0.0,0.0); glMatrixMode(GL_PROJECTION); glLoadIdentity(); gluOrtho2D(0.0, L, 0.0, L); other_f = [] (const sim_t *s) { glClear(GL_COLOR_BUFFER_BIT); for (v_t i = 0; i < pow(s->L, 2); i++) { potts_t tmp_s = s->R.act_inverse(s->spins[i]); glColor3f(hue_to_R(tmp_s.x * 2 * M_PI / POTTSQ), hue_to_G(tmp_s.x * 2 * M_PI / POTTSQ), hue_to_B(tmp_s.x * 2 * M_PI / POTTSQ)); glRecti(i / s->L, i % s->L, (i / s->L) + 1, (i % s->L) + 1); } glFlush(); }; #endif } else { other_f = [] (const sim_t *s) {}; } std::function measurements = measure_function_write_files(measurement_flags, outfiles, other_f); // add line to metadata file with run info { FILE *outfile_info = fopen("wolff_metadata.txt", "a"); fprintf(outfile_info, "<| \"ID\" -> %lu, \"MODEL\" -> \"POTTS\", \"q\" -> %d, \"D\" -> %" PRID ", \"L\" -> %" PRIL ", \"NV\" -> %" PRIv ", \"NE\" -> %" PRIv ", \"T\" -> %.15f, \"H\" -> {", timestamp, POTTSQ, s.D, s.L, s.nv, s.ne, T); for (q_t i = 0; i < POTTSQ; i++) { fprintf(outfile_info, "%.15f", H_vec[i]); if (i < POTTSQ - 1) { fprintf(outfile_info, ", "); } } fprintf(outfile_info, "} |>\n"); fclose(outfile_info); } // run wolff for N cluster flips if (N_is_sweeps) { count_t N_rounds = 0; printf("\n"); while (sum_of_clusterSize < N * s.nv) { printf("\033[F\033[J\033[F\033[JWOLFF: sweep %" PRIu64 " / %" PRIu64 ": E = %.2f, S = %" PRIv "\n", (count_t)((double)sum_of_clusterSize / (double)s.nv), N, s.E, s.last_cluster_size); wolff(N, &s, gen_R, measurements, r, silent); N_rounds++; } printf("\033[F\033[J\033[F\033[JWOLFF: sweep %" PRIu64 " / %" PRIu64 ": E = %.2f, S = %" PRIv "\n\n", (count_t)((double)sum_of_clusterSize / (double)s.nv), N, s.E, s.last_cluster_size); } else { wolff(N, &s, gen_R, measurements, r, silent); } // free the random number generator gsl_rng_free(r); free(H_vec); measure_free_files(measurement_flags, outfiles); return 0; }