#include #include double identity(double x) { return x; } double zero(q_t n, double *H, double *x) { return 0.0; } double dot(q_t n, double *H, double *x) { double total = 0; for (q_t i = 0; i < n; i++) { total += H[i] * x[i]; } return total; } double theta(double x, double y) { double val = atan(y / x); if (x < 0.0 && y > 0.0) { return M_PI + val; } else if ( x < 0.0 && y < 0.0 ) { return - M_PI + val; } else { return val; } } double modulated(q_t n, double *H_info, double *x) { return H_info[0] * cos(H_info[1] * theta(x[0], x[1])); } double cubic(q_t n, double *H_info, double *x) { double v_sum = 0; for (q_t i = 0; i < n; i++) { v_sum += pow(x[i], 4); } return - H_info[0] * v_sum; } double quadratic(q_t n, double *H_info, double *x) { double tmp = 0; tmp += pow(x[0], 2); for (q_t i = 1; i < n; i++) { tmp += - 1.0 / (n - 1.0) * pow(x[i], 2); } return - 0.5 * H_info[0] * tmp; } int main(int argc, char *argv[]) { L_t L = 128; count_t N = (count_t)1e7; count_t min_runs = 10; count_t n = 3; q_t q = 2; D_t D = 2; double T = 2.26918531421; double *H = (double *)calloc(MAX_Q, sizeof(double)); double eps = 0; bool silent = false; bool record_autocorrelation = false; vector_field_t H_type = VECTOR; count_t ac_skip = 1; count_t W = 10; int opt; q_t H_ind = 0; while ((opt = getopt(argc, argv, "N:n:D:L:q:T:H:m:e:saS:W:f:")) != -1) { switch (opt) { case 'N': N = (count_t)atof(optarg); break; case 'n': n = (count_t)atof(optarg); break; case 'D': D = atoi(optarg); break; case 'L': L = atoi(optarg); break; case 'q': q = atoi(optarg); break; case 'T': T = atof(optarg); break; case 'H': H[H_ind] = atof(optarg); H_ind++; break; case 'm': min_runs = atoi(optarg); break; case 'e': eps = atof(optarg); break; case 's': silent = true; break; case 'a': record_autocorrelation = true; break; case 'S': ac_skip = (count_t)atof(optarg); break; case 'W': W = (count_t)atof(optarg); break; case 'f': switch (atoi(optarg)) { case 0: H_type = VECTOR; break; case 1: H_type = MODULATED; break; case 2: H_type = CUBIC; break; case 3: H_type = QUADRATIC; break; } break; default: exit(EXIT_FAILURE); } } gsl_rng *r = gsl_rng_alloc(gsl_rng_mt19937); gsl_rng_set(r, rand_seed()); vector_state_t *s = (vector_state_t *)calloc(1, sizeof(vector_state_t)); graph_t *h = graph_create_square(D, L); s->g = graph_add_ext(h); s->n = q; s->spins = (double *)calloc(n * h->nv, sizeof(double)); for (v_t i = 0; i < h->nv; i++) { s->spins[q * i] = 1.0; } s->H_info = H; s->T = T; switch (H_type) { case VECTOR: s->H = dot; break; case MODULATED: s->H = modulated; break; case CUBIC: s->H = cubic; break; case QUADRATIC: s->H = quadratic; break; } s->J = identity; s->R = (double *)calloc(q * q, sizeof(double)); for (q_t i = 0; i < q; i++) { s->R[q * i + i] = 1.0; } s->M = (double *)calloc(q, sizeof(double)); s->M[0] = 1.0; s->E = - ((double)h->ne) * s->J(1.0) - (double)h->nv * s->H(s->n, s->H_info, s->M); s->M[0] *= (double)h->nv; double diff = 1e31; count_t n_runs = 0; count_t n_steps = 0; meas_t *E, *clust, **M, *aM; M = (meas_t **)malloc(q * sizeof(meas_t *)); aM = (meas_t *)calloc(q, sizeof(meas_t )); for (q_t i = 0; i < q; i++) { M[i] = (meas_t *)calloc(1, sizeof(meas_t)); } E = calloc(1, sizeof(meas_t)); clust = calloc(1, sizeof(meas_t)); autocorr_t *autocorr; if (record_autocorrelation) { autocorr = (autocorr_t *)calloc(1, sizeof(autocorr_t)); autocorr->W = 2 * W + 1; autocorr->OO = (double *)calloc(2 * W + 1, sizeof(double)); } if (!silent) printf("\n"); while (((diff > eps || diff != diff) && n_runs < N) || n_runs < min_runs) { if (!silent) printf("\033[F\033[JWOLFF: sweep %" PRIu64 ", dH/H = %.4f, dM/M = %.4f, dC/C = %.4f, dX/X = %.4f, cps: %.1f\n", n_runs, fabs(meas_dx(E) / E->x), meas_dx(aM) / aM->x, meas_dc(E) / meas_c(E), meas_dc(aM) / meas_c(aM), h->nv / clust->x); count_t n_flips = 0; while (n_flips / h->nv < n) { v_t v0 = gsl_rng_uniform_int(r, h->nv); double *step = gen_rot(r, q); v_t tmp_flips = flip_cluster_vector(s, v0, step, r); free(step); n_flips += tmp_flips; if (n_runs > 0) { n_steps++; meas_update(clust, tmp_flips); if (record_autocorrelation && n_steps % ac_skip == 0) { update_autocorr(autocorr, s->E); } } } double aM_val = 0; for (q_t i = 0; i < q; i++) { meas_update(M[i], s->M[i]); aM_val += s->M[i] * s->M[i]; } meas_update(aM, sqrt(aM_val)); meas_update(E, s->E); diff = fabs(meas_dx(clust) / clust->x); n_runs++; } if (!silent) { printf("\033[F\033[J"); } printf("WOLFF: sweep %" PRIu64 ", dH/H = %.4f, dM/M = %.4f, dC/C = %.4f, dX/X = %.4f, cps: %.1f\n", n_runs, fabs(meas_dx(E) / E->x), meas_dx(M[0]) / M[0]->x, meas_dc(E) / meas_c(E), meas_dc(M[0]) / meas_c(M[0]), h->nv / clust->x); double tau = 0; bool tau_failed = false; if (record_autocorrelation) { double *Gammas = (double *)malloc((W + 1) * sizeof(double)); Gammas[0] = 1 + rho(autocorr, 0); for (uint64_t i = 0; i < W; i++) { Gammas[1 + i] = rho(autocorr, 2 * i + 1) + rho(autocorr, 2 * i + 2); } uint64_t n; for (n = 0; n < W + 1; n++) { if (Gammas[n] <= 0) { break; } } if (n == W + 1) { printf("WARNING: correlation function never hit the noise floor.\n"); tau_failed = true; } if (n < 2) { printf("WARNING: correlation function only has one nonnegative term.\n"); tau_failed = true; } double *conv_Gamma = get_convex_minorant(n, Gammas); double ttau = - 0.5; for (uint64_t i = 0; i < n + 1; i++) { ttau += conv_Gamma[i]; } FILE *autocorr_file = fopen("autocorr.dat", "a"); printf("%g %g\n", Gammas[0], conv_Gamma[0]); for (count_t i = 0; i < n+1; i++) { fprintf(autocorr_file, "%g ", conv_Gamma[i]); } fprintf(autocorr_file, "\n"); fclose(autocorr_file); free(Gammas); free(autocorr->OO); while (autocorr->Op != NULL) { stack_pop_d(&(autocorr->Op)); } free(autocorr); tau = ttau * ac_skip * clust->x / h->nv; } if (tau_failed) { tau = 0; } FILE *outfile = fopen("out.m", "a"); fprintf(outfile, "<|N->%" PRIcount ",n->%" PRIcount ",D->%" PRID ",L->%" PRIL ",q->%" PRIq ",T->%.15f,H->{", N, n, D, L, q, T); for (q_t i = 0; i < q; i++) { fprintf(outfile, "%.15f", H[i]); if (i != q-1) { fprintf(outfile, ","); } } fprintf(outfile, "},E->%.15f,\\[Delta]E->%.15f,C->%.15f,\\[Delta]C->%.15f,M->{", E->x / h->nv, meas_dx(E) / h->nv, meas_c(E) / h->nv, meas_dc(E) / h->nv); for (q_t i = 0; i < q; i++) { fprintf(outfile, "%.15f", M[i]->x / h->nv); if (i != q-1) { fprintf(outfile, ","); } } fprintf(outfile, "},\\[Delta]M->{"); for (q_t i = 0; i < q; i++) { fprintf(outfile, "%.15f", meas_dx(M[i]) / h->nv); if (i != q-1) { fprintf(outfile, ","); } } fprintf(outfile, "},\\[Chi]->{"); for (q_t i = 0; i < q; i++) { fprintf(outfile, "%.15f", meas_c(M[i]) / h->nv); if (i != q-1) { fprintf(outfile, ","); } } fprintf(outfile, "},\\[Delta]\\[Chi]->{"); for (q_t i = 0; i < q; i++) { fprintf(outfile, "%.15f", meas_dc(M[i]) / h->nv); if (i != q-1) { fprintf(outfile, ","); } } fprintf(outfile, "},aM->%.15f,\\[Delta]aM->%.15f,a\\[Chi]->%.15f,\\[Delta]a\\[Chi]->%.15f,Subscript[n,\"clust\"]->%.15f,Subscript[\\[Delta]n,\"clust\"]->%.15f,Subscript[m,\"clust\"]->%.15f,Subscript[\\[Delta]m,\"clust\"]->%.15f,\\[Tau]->%.15f|>\n", aM->x / h->nv, meas_dx(aM) / h->nv, meas_c(aM) / h->nv, meas_dc(aM) / h->nv, clust->x / h->nv, meas_dx(clust) / h->nv, meas_c(clust) / h->nv, meas_dc(clust) / h->nv,tau); fclose(outfile); free(E); free(clust); for (q_t i = 0; i < q; i++) { free(M[i]); } free(M); free(H); free(s->M); free(s->R); free(s->spins); graph_free(s->g); free(s); graph_free(h); gsl_rng_free(r); return 0; }