#include #include #include #include #include #include #include "pcg-cpp/include/pcg_random.hpp" #include "randutils/randutils.hpp" using Rng = randutils::random_generator; template using Vector = Eigen::Matrix; template using Matrix = Eigen::Matrix; int iPow(int x, unsigned p) { if (p == 0) return 1; if (p == 1) return x; int tmp = iPow(x, p / 2); if (p % 2 == 0) return tmp * tmp; else return x * tmp * tmp; } unsigned mod(signed a, unsigned b) { return ((a < 0) ? (a + (1 - a / (signed)b) * b) : a) % b; } template Vector mod(const Eigen::MatrixBase& v, unsigned b) { Vector u; for (unsigned i = 0; i < D; i++) { u(i) = mod(v(i), b); } return u; } template void one_sequences(std::list>& sequences, unsigned level) { if (level > 0) { unsigned new_level = level - 1; unsigned old_length = sequences.size(); for (std::array& sequence : sequences) { std::array new_sequence = sequence; new_sequence[new_level] = -1; sequences.push_front(new_sequence); } one_sequences(sequences, new_level); } } template std::vector> generateTorusMatrices() { std::vector> mats; std::array ini_sequence; ini_sequence.fill(1); std::list> sequences; sequences.push_back(ini_sequence); one_sequences(sequences, D); sequences.pop_back(); // don't want the identity matrix! for (std::array sequence : sequences) { Matrix m; for (unsigned i = 0; i < D; i++) { for (unsigned j = 0; j < D; j++) { if (i == j) { m(i, j) = sequence[i]; } else { m(i, j) = 0; } } } mats.push_back(m); } for (unsigned i = 0; i < D; i++) { for (unsigned j = 0; j < D; j++) { if (i != j) { Matrix m; for (unsigned k = 0; k < D; k++) { for (unsigned l = 0; l < D; l++) { if ((k == i && l == j) || (k == j && l == i)) { if (i < j) { m(k, l) = 1; } else { m(k, l) = -1; } } else if (k == l && (k != i && k != j)) { m(k, l) = 1; } else { m(k, l) = 0; } } } mats.push_back(m); } } } return mats; } class State { public: unsigned type; State() { type = 0; } State(unsigned t) { type = t; } bool isEmpty() const { return type == 0; } void remove() { type = 0; } }; template class Transformation { public: unsigned L; Matrix m; Vector v; Transformation(unsigned L) : L(L) { m.setIdentity(); v.setZero(); } Transformation(unsigned L, const Matrix& m, const Vector& v) : L(L), m(m), v(v) {} Transformation(unsigned L, const std::vector>& ms, Rng& r) : m(r.pick(ms)), L(L) { for (unsigned i = 0; i < D; i++) { v[i] = r.uniform((unsigned)0, L - 1); } v = v - m * v; } Vector apply(const Vector& x) const { return mod(v + m * x, L); } Transformation apply(const Transformation& t) const { Transformation tNew(L); tNew.m = m * t.m; tNew.v = apply(t.v); return tNew; } Transformation inverse() const { return Transformation(L, m.transpose(), -m.transpose() * v); } }; template class HalfEdge; template class Vertex { public: Vector position; Vector initialPosition; State state; std::vector> adjacentEdges; bool marked; bool isEmpty() const { return state.isEmpty(); } }; template class HalfEdge { public: Vertex& neighbor; Vector Δx; HalfEdge(Vertex& n, const Vector& d) : neighbor(n), Δx(d) {} }; template class System { public: const unsigned L; unsigned N; std::vector> vertices; std::vector interaction; unsigned vectorToIndex(const Vector& x) const { unsigned i = 0; for (unsigned d = 0; d < D; d++) { i += x[d] * iPow(L, d); } return i; } Vector indexToVector(unsigned i) const { Vector x; for (unsigned d = 0; d < D; d++) { x[d] = (i / iPow(L, d)) % L; } return x; } System(unsigned L, unsigned N, Rng& r) : L(L), N(N), vertices(iPow(L, D)), interaction(N * N) { for (unsigned i = 0; i < iPow(L, D); i++) { vertices[i].position = indexToVector(i); vertices[i].initialPosition = vertices[i].position; vertices[i].adjacentEdges.reserve(2 * D); vertices[i].marked = false; } for (unsigned d = 0; d < D; d++) { Vector Δx = Vector::Zero(); Δx[d] = 1; for (signed i = 0; i < iPow(L, D); i++) { unsigned j = iPow(L, d + 1) * (i / iPow(L, d + 1)) + mod(i + iPow(L, d), pow(L, d + 1)); vertices[i].adjacentEdges.push_back(HalfEdge(vertices[j], Δx)); vertices[j].adjacentEdges.push_back(HalfEdge(vertices[i], -Δx)); } } for (double& V : interaction) { V = r.uniform(-0.5, 0.5); } for (unsigned i = 0; i < N; i++) { vertices[i].state.type = i + 1; } } double pairEnergy(const State& s1, const State& s2) const { if (s1.isEmpty() || s2.isEmpty()) { return 0; } else { if (s1.type < s2.type) { return interaction[(s1.type - 1) * N + (s2.type - 1)]; } else { return interaction[(s2.type - 1) * N + (s1.type - 1)]; } } } double siteEnergy(const Vertex& v) const { double E = 0; for (const HalfEdge& e : v.adjacentEdges) { E += pairEnergy(v.state, e.neighbor.state); } return E; } double energy() const { double E = 0; for (const Vertex& v : vertices) { E += siteEnergy(v); } return E / 2; } bool trySwap(Vertex& v1, Vertex& v2, double T, Rng& r) { double E0 = siteEnergy(v1) + siteEnergy(v2); std::swap(v1.state, v2.state); double E1 = siteEnergy(v1) + siteEnergy(v2); double ΔE = E1 - E0; if (exp(-ΔE / T) > r.uniform(0.0, 1.0)) { /* Accept the swap. */ std::swap(v1.initialPosition, v2.initialPosition); return true; } else { /* Revert the swap. */ std::swap(v1.state, v2.state); return false; } } bool tryRandomMove(double T, Rng& r) { Vertex& v1 = r.pick(vertices); if (v1.isEmpty()) { return false; } Vertex& v2 = (r.pick(v1.adjacentEdges)).neighbor; if (!v2.isEmpty()) { return false; } return trySwap(v1, v2, T, r); } bool tryRandomSwap(double T, Rng& r) { Vertex& v1 = r.pick(vertices); Vertex& v2 = r.pick(vertices); if (v1.state.type != v2.state.type) { return trySwap(v1, v2, T, r); } else { return false; } } double density() const { return N / pow(L, D); } void sweepLocal(Rng& r) { for (unsigned i = 0; i < iPow(L, D); i++) { tryRandomMove(r); } } void sweepSwap(Rng& r) { for (unsigned i = 0; i < iPow(L, D); i++) { tryRandomSwap(r); } } unsigned flipCluster(const Transformation& R, Vertex& v0, double T, Rng& r, bool dry = false) { std::queue>, 2>> q; Vector x0New = R.apply(v0.position); Vertex& v0New = vertices[vectorToIndex(x0New)]; q.push({v0, v0New}); unsigned n = 0; while (!q.empty()) { auto [vR, vNewR] = q.front(); q.pop(); Vertex& v = vR; Vertex& vNew = vNewR; if (!v.marked && !vNew.marked) { v.marked = true; vNew.marked = true; for (HalfEdge& e : v.adjacentEdges) { Vertex& vn = e.neighbor; Vector xnNew = R.apply(vn.position); Vertex& vnNew = vertices[vectorToIndex(xnNew)]; if (!vn.marked && !vnNew.marked) { double E0 = pairEnergy(v.state, vn.state) + pairEnergy(vNew.state, vnNew.state); double E1 = pairEnergy(vNew.state, vn.state) + pairEnergy(v.state, vnNew.state); double ΔE = E1 - E0; if (exp(-ΔE / T) < r.uniform(0.0, 1.0)) { q.push({vn, vnNew}); } } } if (!dry) { std::swap(v.state, vNew.state); std::swap(v.initialPosition, vNew.initialPosition); } n += 1; } } return n; } unsigned wolff(const Transformation& R, double T, Rng& r) { unsigned n = flipCluster(R, r.pick(vertices), T, r); for (Vertex& v : vertices) { v.marked = false; } return n; } void swendsenWang(const Transformation& R, double T, Rng& r) { for (Vertex& v : vertices) { if (!v.marked) { bool dry = 0.5 < r.uniform(0.0, 1.0); flipCluster(R, v, T, r, dry); } } for (Vertex& v : vertices) { v.marked = false; } } int overlap(const System& s) const { int o = 0; for (unsigned i = 0; i < vertices.size(); i++) { // State s2 = orientation.apply(s.vertices[vectorToIndex(orientation.inverse().apply(indexToVector(i)))].state); // o += vertices[i].state.dot(s2); } return o; } void setInitialPosition() { for (Vertex& v: vertices) { v.initialPosition = v.position; } } double selfIntermediateScattering() const { double F = 0; Vector k1 = {M_PI, 0}; Vector k2 = {0, M_PI}; for (const Vertex& v : vertices) { if (!v.isEmpty()) { F += cos(k1.dot(v.position - v.initialPosition)); F += cos(k2.dot(v.position - v.initialPosition)); } } return F / (2 * N); } }; template Vector randomVector(unsigned L, Rng& r) { Vector x; for (unsigned i = 0; i < D; i++) { x[i] = r.uniform((unsigned)0, L - 1); } return x; } int main() { const unsigned D = 2; unsigned L = 40; unsigned N = 1560; double Tmin = 0; double Tmax = 0.4; double δT = 0.02; Rng r; System s(L, N, r); std::vector> ms = generateTorusMatrices(); for (unsigned j = 0; j < 10 * s.vertices.size(); j++) { //unsigned nC = s.wolff(Transformation(L, m, v.position - m * v.position), T, r); s.tryRandomSwap(1000, r); } for (unsigned i = 0; i < 1e5; i++) { for (unsigned j = 0; j < s.vertices.size(); j++) { s.tryRandomMove(Tmax, r); } } unsigned n = 1; for (double T = Tmax; T > Tmin; T -= δT) { /* for (unsigned i = 0; i < 1e5; i++) { Matrix m = r.pick(ms); Vertex& v = r.pick(s.vertices); s.wolff(Transformation(L, m, v.position - m * v.position), T, r); } */ /* */ s.setInitialPosition(); std::cout << T << " "; for (unsigned i = 0; i < 1e4; i++) { Matrix m = r.pick(ms); Vertex& v = r.pick(s.vertices); s.wolff(Transformation(L, m, v.position - m * v.position), T, r); std::cout << s.selfIntermediateScattering() << " "; } /* for (unsigned i = 0; i < 1e5; i++) { for (unsigned j = 0; j < s.vertices.size(); j++) { s.tryRandomMove(T, r); } std::cout << s.selfIntermediateScattering() << " "; } */ std::cout << std::endl; std::cerr << T << " " << s.energy() / N << std::endl; // s.sweepLocal(r); // s.sweepSwap(r); // s.swendsenWang(Transformation(L, ms, r), r); } return 0; }