#pragma once #include "matrix.hpp" #include "spin.hpp" #include "vector.hpp" template <class T, int D> class Euclidean { public: Vector<T, D> t; Matrix<T, D> r; Euclidean(T L) { for (unsigned i = 0; i < D; i++) { t(i) = 0; r(i, i) = 1; for (unsigned j = 1; j < D; j++) { r(i, (i + j) % D) = 0; } } } Euclidean(Vector<T, D> t0, Matrix<T, D> r0) { t = t0; r = r0; } template <class S> Spin<T, D, S> act(const Spin<T, D, S>& s) const { Spin<T, D, S> s_new; s_new.x = t + r * s.x; s_new.s = s.s; return s_new; } Euclidean act(const Euclidean& x) const { Vector<T, D> tnew = r * x.t + t; Matrix<T, D> rnew = r * x.r; Euclidean pnew(tnew, rnew); return pnew; } Euclidean inverse() const { Vector<T, D> tnew = -r.transpose() * t; Matrix<T, D> rnew = r.transpose(); Euclidean pnew(tnew, rnew); return pnew; } }; template <class T, int D> class TorusGroup { private: T L; public: Vector<T, D> t; Matrix<T, D> r; /** brief TorusGroup - default constructor, constructs the identity */ TorusGroup(T L) : L(L) { for (unsigned i = 0; i < D; i++) { t(i) = 0; r(i, i) = 1; for (unsigned j = 1; j < D; j++) { r(i, (i + j) % D) = 0; } } } TorusGroup(T L, Vector<T, D> t0, Matrix<T, D> r0) : L(L) { t = t0; r = r0; } template <class S> Spin<T, D, S> act(const Spin<T, D, S>& s) const { Spin<T, D, S> s_new; s_new.x = t + r * s.x; s_new.s = s.s; for (unsigned i = 0; i < D; i++) { s_new.x(i) = fmod(L + s_new.x(i), L); } return s_new; } TorusGroup act(const TorusGroup& x) const { Vector<T, D> tnew = r * x.t + t; Matrix<T, D> rnew = r * x.r; for (unsigned i = 0; i < D; i++) { tnew(i) = fmod(L + tnew(i), L); } TorusGroup pnew(this->L, tnew, rnew); return pnew; } TorusGroup inverse() const { Vector<T, D> tnew = -r.transpose() * t; Matrix<T, D> rnew = r.transpose(); TorusGroup pnew(this->L, tnew, rnew); return pnew; } };