#include #include #include #include "space_wolff.hpp" #include "torus_symmetries.hpp" const unsigned D = 2; typedef Model, double> model; class animation : public measurement, double> { private: uint64_t t1; uint64_t t2; unsigned n; unsigned tmp; unsigned wait; double L; TorusGroup s0_tmp; std::ofstream& file; public: animation(double L, unsigned w, int argc, char* argv[], unsigned wait, std::ofstream& file) : s0_tmp(0), wait(wait), L(50 * L), file(file) { t1 = 0; t2 = 0; n = 0; glutInit(&argc, argv); glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB); glutInitWindowSize(w, w); glutCreateWindow("wolffWindow"); glClearColor(0.0, 0.0, 0.0, 0.0); glMatrixMode(GL_PROJECTION); glLoadIdentity(); gluOrtho2D(-1, L+1, -1, L+1); } void pre_cluster(const model& m, unsigned, const Transformation, double>* t) override { s0_tmp = m.s0.inverse(); tmp = 0; glClearColor(1.0f, 1.0f, 1.0f, 1.0f); glClear(GL_COLOR_BUFFER_BIT); glColor3d(1.0, 0.0, 0.0); glBegin(GL_LINES); Vector r = t->r.t / 2; double θ = atan2(r(1), r(0)); Vector v1 = s0_tmp.act({r(0) + L * sin(θ), r(1) - L * cos(θ)}); Vector v2 = s0_tmp.act({r(0) - L * sin(θ), r(1) + L * cos(θ)}); glVertex2d(v1(0), v1(1)); glVertex2d(v2(0), v2(1)); if (n > wait) file << v1.transpose() << " " << v2.transpose() << std::endl; glEnd(); for (const Spin* s : m.s) { glBegin(GL_POLYGON); unsigned n_points = 50; glColor3f(0.0f, 0.0f, 0.0f); if (n > wait) file << s << " " << s->s << " " << s0_tmp.act(*s).x.transpose() << " "; for (unsigned i = 0; i < n_points; i++) { glVertex2d(s0_tmp.act(*s).x(0) + s->s * cos(2 * i * M_PI / n_points), s0_tmp.act(*s).x(1) + s->s * sin(2 * i * M_PI / n_points)); } glEnd(); } if (n > wait) file << std::endl; glLineWidth(3); glFlush(); } void plain_site_transformed(const model& m, const Transformation, double>& t) override { if (n > wait) { if (t.current().size() > 1) { glColor3f(0.0f, 0.0f, 1.0f); } else { glColor3f(0.0f, 1.0f, 0.0f); } for (const Spin* s : t.current()) { if (s != NULL) { file << s << " " << s0_tmp.act(t.r.act(*s)).x.transpose() << " "; glBegin(GL_POLYGON); unsigned n_points = 50; for (unsigned i = 0; i < n_points; i++) { glVertex2d(s0_tmp.act(*s).x(0) + s->s * cos(2 * i * M_PI / n_points), s0_tmp.act(*s).x(1) + s->s * sin(2 * i * M_PI / n_points)); } glEnd(); } else { file << s << " " << s0_tmp.act({0, 0}).transpose() << " "; } } } tmp++; } void post_cluster(const model& m) override { t1 += tmp; t2 += tmp * tmp; if (n > wait) { file << std::endl; glFlush(); sleep(2); } n++; } void clear() { t1 = 0; t2 = 0; n = 0; } double var() { return (t2 - t1 * t1 / (double)n) / (double)n; } }; Gen, double> eGen(double L) { std::vector> torusVectors = torus_vecs(L); std::vector> torusMatrices = torus_mats(); return [L, torusVectors, torusMatrices](Model, double>& M, Rng& r) -> Transformation, double>* { Matrix m; Vector t; m = r.pick(torusMatrices); t(0) = r.uniform(0, L); t(1) = r.uniform(0, L); t = t - m * t; TorusGroup g = TorusGroup({(double)L, t, m}); Spin* ss = r.pick(M.s); return new SpinFlip, double>(M, g, ss); }; } int main(int argc, char* argv[]) { const unsigned D = 2; double L = 32; unsigned N = 1000; double T = 2.0 / log(1.0 + sqrt(2.0)); double H = 1.0; unsigned n = 25; int opt; while ((opt = getopt(argc, argv, "n:N:L:T:H:")) != -1) { switch (opt) { case 'n': n = (unsigned)atof(optarg); break; case 'N': N = (unsigned)atof(optarg); break; case 'L': L = atof(optarg); break; case 'T': T = atof(optarg); break; case 'H': H = atof(optarg); break; default: exit(1); } } double k = 1e8; double a = 0.0; std::function&, const Spin&)> Z = [L, a, k](const Spin& s1, const Spin& s2) -> double { Vector d = diff(L, s1.x, s2.x); double σ = s1.s + s2.s; double δ = σ - sqrt(d.transpose() * d); if (δ > -a * σ) { return 0.5 * k * (2 * pow(a * σ, 2) - pow(δ, 2)); } else if (δ > -2 * a * σ) { return 0.5 * k * pow(δ + 2 * a * σ, 2); } else { return 0; } }; std::function)> B = [L, H](Spin s) -> double { return H * s.x(1); }; auto g = eGen(L); std::ofstream ofile("test.dat"); animation A(L, 750, argc, argv, 1000, ofile); model sphere(L, Z, B); randutils::mt19937_rng rng; sphere.s.resize(n); unsigned nx = floor(sqrt(n)); for (unsigned i = 0; i < sphere.s.size(); i++) { Spin* ss = new Spin(); ss->x = {(i / nx) * L / nx, (i % nx) * L / nx}; ss->s = rng.pick({0.45, 0.45}); sphere.s[i] = ss; sphere.dict.insert(ss); } sphere.wolff(T, {g}, A, N); ofile.close(); return 0; }