#include "space_wolff.hpp" #include const unsigned D = 2; typedef Model, double> model; class animation : public measurement, double> { public: animation(double L, unsigned w, int argc, char *argv[]) { glutInit(&argc, argv); glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB); glutInitWindowSize(w, w); glutCreateWindow("wolff"); glClearColor(0.0,0.0,0.0,0.0); glMatrixMode(GL_PROJECTION); glLoadIdentity(); gluOrtho2D(-1, L + 1, -1 , L + 1); } void post_cluster(const model& m) override { glClearColor(1.0f, 1.0f, 1.0f, 1.0f ); glClear(GL_COLOR_BUFFER_BIT); for (const Spin& s : m.s) { glBegin(GL_POLYGON); unsigned n_points = 50; glColor3f(0.0f, 0.0f, 0.0f); for (unsigned i = 0; i < n_points; i++) { glVertex2d(m.s0.inverse().act(s).x(0) + s.s * cos(2 * i * M_PI / n_points), m.s0.inverse().act(s).x(1) + s.s * sin(2 * i * M_PI / n_points)); } glEnd(); } glFlush(); getchar(); } }; std::function(const model&, randutils::mt19937_rng&)> eGen(const std::vector>& mats, const std::vector>& vecs) { return [&mats, &vecs] (const model& M, randutils::mt19937_rng& rng) -> Euclidean { Vector t; Matrix m; unsigned flip = rng.uniform((unsigned)0, (unsigned)(mats.size() + vecs.size() - 1)); if (flip < mats.size()) { unsigned f_ind = rng.uniform((unsigned)0, (unsigned)M.s.size()); t = M.s[f_ind].x; for (unsigned j = 0; j < D; j++) { t(j) += rng.variate(0.0, 0.1); } m = mats[flip]; } else { for (unsigned j = 0; j < D; j++) { for (unsigned k = 0; k < D; k++) { if (j == k) { m(j, k) = 1; } else { m(j, k) = 0; } } } t = vecs[flip - mats.size()]; } Euclidean g(M.L, t, m); return g; }; } int main(int argc, char* argv[]) { const unsigned D = 2; double L = 32; unsigned N = 1000; double T = 2.0 / log(1.0 + sqrt(2.0)); double H = 1.0; unsigned n = 25; int opt; while ((opt = getopt(argc, argv, "n:N:L:T:H:")) != -1) { switch (opt) { case 'n': n = (unsigned)atof(optarg); break; case 'N': N = (unsigned)atof(optarg); break; case 'L': L = atof(optarg); break; case 'T': T = atof(optarg); break; case 'H': H = atof(optarg); break; default: exit(1); } } std::function&, const Spin&)> Z = [L] (const Spin& s1, const Spin& s2) -> double { Vector d = diff(L, s1.x, s2.x); double rad_sum = pow(s1.s + s2.s, 2); bool overlap = d.transpose() * d < rad_sum; if (overlap) { return -1e8; } else { return 0; } }; std::function)> B = [L, H] (Spin s) -> double { return H * s.x(1); }; std::vector> mats = torus_mats(); std::vector> vecs = torus_vecs(L); auto g = eGen(mats, vecs); animation A(L, 750, argc, argv); model sphere(L, Z, B, g, std::floor(log2(L)), 2, A); randutils::mt19937_rng rng; sphere.s.reserve(n); unsigned nx = floor(sqrt(n)); for (unsigned i = 0; i < n; i++) { Vector pos = {(i / nx) * L / nx + rng.uniform(0.0, L / (4 * nx)), (i % nx) * L / nx + rng.uniform(0.0, L / (4 * nx))}; sphere.s.push_back({pos, 0.5}); sphere.dict.insert(&sphere.s.back()); } sphere.wolff(T, N); std::ofstream snapfile; snapfile.open("sphere_snap.dat"); for (Spin s : sphere.s) { Spin rs = sphere.s0.inverse().act(s); snapfile << rs.x.transpose() << "\n"; } snapfile.close(); return 0; }